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Lowest-Landau-level theory of the quantum Hall effect: The Fermi-liquid-like state of bosons
at filling factor one

N. Read
Departments of Physics and Applied Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520

~Received 28 April 1998; revised manuscript received 21 July 1998!

A theory for a Fermi-liquid-like state in a system of charged bosons at filling factor 1 is developed, working
in the lowest Landau level. The approach is based on a representation of the problem as fermions with a system
of constraints, introduced by Pasquier and Haldane~unpublished!. This makes the system a gauge theory with
gauge algebraW` . The low-energy theory is analyzed based on a Hartree-Fock approximation and a corre-
sponding conserving approximation. This is shown to be equivalent to introducing a gauge field, which at long
wavelengths gives an infinite-coupling U~1! gauge theory,without a Chern-Simons term. The system is com-
pressible, and the Fermi-liquid properties are similar, but not identical, to those in the previous U~1! Chern-
Simons fermion theory. The fermions in the theory are effectively neutral, but carry a dipole moment. The
density-density response, longitudinal conductivity, and current density are considered explicitly.
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I. INTRODUCTION

The so-called composite-particle view of the liquid sta
of electrons~or other charged particles! in two dimensions in
a high magnetic field1 has been developed gradually ov
more than a decade.2–12 Girvin2 proposed to develop a
Ginzburg-Landau theory of the fractional quantum Hall
fect, with an action for a complex scalar~boson! field and
containing a Chern-Simons~CS! term to enforce the condi
tion that the quantized vortices carry a fractional char
Girvin and MacDonald3 introduced a singular gauge tran
formation, and exhibited algebraic long-range order in
bosonic field. This transformation, which attachesd-function
flux tubes to particles~via a CS term in the action of the fiel
theory! and so in general changes the statistics of the p
ticles as in the theory of anyons,13 was then used in severa
theories, in conjunction with the mean-field approximati
of replacing the gauge field strength by its expectation va
to obtain a system in a different magnetic field. Thus any
superconductivity was discovered by mapping anyons
zero magnetic field to fermions filling Landau levels in
magnetic field;4 the Laughlin states14 were described by
mapping fermions to bosons in zero net magnetic field
then Bose condensing them;5 the Laughlin and hierarchy15,16

states were reinterpeted by mapping fermions to fermion
a reduced magnetic field and then filling Landau levels;6,7 the
hierarchy states and the anyon superconductors in zero m
netic field were redescribed by hierarchical extension of
mapping to bosons, using duality methods.8 At the same
time, a lowest-Landau-level~LLL ! treatment of the
Ginzburg-Landau idea was developed,9,10 without using
d-function flux tubes, by attaching vortices to electrons
convert them to bosons; in this case, the bosons cond
and have true long-range order.

It has to be admitted that these ways of viewing the fr
tional quantum Hall effect produced little in the way of di
tinctive experimental predictions or explanations that w
not already known by other methods, though interest
PRB 580163-1829/98/58~24!/16262~29!/$15.00
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speculations concerning the phase transitions between
quantized Hall plateaus17 may be an exception. The situatio
changed, however, following the discovery of an anomaly
the surface acoustic wave propagation at filling factorn5 1

2

~and less strongly at other filling factors, such as1
4 and 3

2 ).18

This result speeded the development of a theory11 ~to be
referred to as HLR! for a case not included in the above lis
in which fermions~electrons! are mapped to fermions at zer
magnetic field and form a Fermi sea. In the simplest ca
this occurs for filling factorn5 1

2 , 1
4 , 1

6 , . . . . The Fermi sea
was predicted to be a compressible state that does not
duce a Hall plateau, and the experimental result of a lon
tudinal conductivity increasing linearly with wave vector19

was explained11. The Fermi surface, at which the fermion
exist as genuine low-energy excitations, was obser
through geometric resonance effects atn close to1

2 in further
surface acoustic wave experiments20 ~as predicted explicitly
in Ref. 11!, and in other experiments.21,22 ~We should point
out that for other filling factors in the fermion descriptio
the fermions are dressed to become the fractionally char
fractional-statistics quasiparticles,14–16,23and so are not ob-
served as fermions.!

In this paper, we return to the basic theory of the Ferm
liquid-like state. Recent work24–26 has raised the possibility
of changes in the way we think about the theory of the lo
energy excitations near the Fermi surface. In particular, th
authors find constraints not mentioned in any earlier pap
known to the present author. At the same time, we may
motivated by trying to avoid the seemingly artificial CS a
proach, which begins with a singular gauge transformati
Ultimately, it would aid our understanding to have more i
tuition about what drives the formation of the Fermi-liqui
like ~and other! states. There are no flux tubes attached to
particles in reality; the background magnetic field rema
essentially uniform in these states of matter. The appro
begun in Ref. 10 was intended to head in this direction
uses LLL states only, so is valid in the~not entirely realistic!
limit of interactions weak compared withvc , and bindsvor-
16 262 ©1998 The American Physical Society
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tices to the electrons to lower the energy, thus forming t
composite particles. Several implications of this approa
were pointed out in Ref. 12 for the Fermi sea and the B
condensate.

The approach taken in the present paper avoids the
approach. While it is perhaps not as simple minded as
would want, it does make close contact with the work ju
cited.12 Here we start from the approach of Pasquier a
Haldane,26,27 that gives an exact representation of the LL
problem in the case of charged bosons in a magnetic fiel
n51, where a Fermi-liquid~FL! state is possible. Although
our paper is long and fairly detailed, we can give a succi
summary of our results.The low-energy, long-wavelengt
theory is a FL coupled to a gauge field~not to be confused
with the physical electromagnetic field!. In contrast to the
scenario arising11 in the CS~singular gauge transformation!
approach,there is no CS term in this low-energy theor.
Consequently, the gauge field is said to be ‘‘strong
coupled,’’ and one of its effects is to enforce constraints t
agree with those of Refs. 24–26. This in turn has the ef
of making the fermions uncharged, but they are left with
subleading coupling to electromagnetic fields through a
pole moment. The interplay of this moment with the tran
verse part of the gauge field leads to a finite compressibi
in spite of the neutrality of the particles. It also leads to C
equations that relate the curl of the vector potential to
density, and a similar equation for the current, still valid
spite of the absence of a CS term in the action, in agreem
with Ref. 12. In general, the good agreement w
experimentally-observed phenomena achieved in the th
of HLR is not spoiled in the present theory. Nonetheless,
detailed structure of this FL-like theory is modified. Whi
the theory is developed here forn51 bosons, there are man
indications that the results are more general. These inc
the derivation in Ref. 24 for general number of attached fl

Section II contains a more detailed review of previo
work, and a more detailed overview of the paper. In Sec.
we explain the formalism due to Pasquier and Haldane
will be used in this paper. In Sec. IV, we perform explic
calculations of response functions, including those for
constraint operators, and interpret the results in terms
strongly coupled gauge field. In Sec. V we outline the ext
sion of the results to all orders, and provide some gen
discussion. Section VI is the conclusion. Appendix A d
cusses some details of the formalism, including the nonc
mutative Fourier transform, and Appendix B indicates how
Hubbard-Stratonovich transformation can be used.

II. REVIEW AND OVERVIEW

In this section, we review some of the background nec
sary for the discussion in this paper. We begin with the U~1!
CS fermion approach developed in Ref. 11. The Fe
liquid-like state proposed in that paper is the main topic
the present work; however, we will not review the relation
experiments. In Sec. II B we review ‘‘physical’’ picture
which are based on consideration of the wave functions
the system, as opposed to field-theoretic methods. In
II C, we review recent work which attempts to push the U~1!
CS approach down to a low-energy effective theory in
LLL. Finally, in Sec. II D, we give a brief overview of the
main results and of the layout of the remainder of the pap
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A. U„1… Chern-Simons fermion theory

In this approach the particles are represented as ferm
with a d function of flux attached, whose strength is an in
gral numberf̃ of flux quantaF0 . Then the underlying par-
ticles must be bosons whenf̃ is an odd integer, and fermion
when f̃ is even~for nonintegerf̃, the underlying particles
must be anyons!. We will reserve the term ‘‘particles’’ for
these original particles, and refer to the transformed partic
as ‘‘fermions’’ or ‘‘quasiparticles.’’ The imaginary time ac
tion ~see, e.g., Ref. 11, to be referred to as HLR! is ~in the
gauge where¹•a50)

S5E dt d2r Fc†S ]

]t
2 ia02m Dc1

1

2m
u~2 i¹2a2A!cu2

2
i

2pf̃
a0¹`aG1

1

2E dt d2r d2r 8 V~r2r 8!

3c†~r !c†~r 8!c~r 8!c~r !. ~2.1!

Herec is the field operator for the fermions, rather than th
for the underlying particles, which could be fermions~elec-
trons! or bosons. We will use the notation~note the use of
the summation convention for repeated Greek indices!

a`b5«mnambn ~2.2!

for a cross product of vectorsa andb in two dimensions,m,
n, . . . 5x,y to label the two components, and«mn

52«nm , «xy51 for the two-dimensional alternating tenso
We have set\51 and, starting with Gaussian units, we ha
absorbed2e into the scalar potential and electric field, an
(2e/c) into the vector potential and magnetic field, so t
charge of the particles is one and the flux quantum is 2p. The
uniform background magnetic field is¹`A5B.0, which
corresponds to the negativeẑ direction ~in the three-
dimensional sense! in conventional units. We choose the un
of length so that the magnetic lengthl B

225B51. It will also
be convenient to writè a for the vector whose componen
are (̀ a)m5«mnan ; thena•`b5a`b.

Varying a0 in the action leads to

¹`a522pf̃r, ~2.3!

where r(r )5c†(r )c(r ) is the number density both of th
Chern-Simons fermions and of the underlying particl
When the filling factorn52pr̄/B is 1/f̃ ~where r̄ is the
average density!, there is no net field for the fermions, an
within a mean-field approximation, a Fermi sea ground st
is possible.

The leading approximation for the linear-response fu
tions is the random phase approximation~RPA!, in both the
gauge fielda0 , a, and the Coulomb~or other! interaction
V(r ). In Fourier space the full density-density respon
function is then,11 before any approximation,

xrr5
xrr

irr

11V~q!xrr
irr

, ~2.4!



th

li
n

, o
et

s
ity

is
th
be
e
n
se
t

th

m
ion

,
th
re
PA
ne

et
a

e
e

th

n
o
r

ha

der-
tion

be
the
an-

e

au

s,
d

ac-

ed
he
uc-
ear
.
ing

-
on

e
cy-

l
is
to
th-
x-

his
ns

ve
s
itly

as

16 264 PRB 58N. READ
and in the RPAxrr
irr 5x0

irr , where

x0
irr5

x0

12~2pf̃!2x0x0
'/q2

. ~2.5!

Here x irr is the response function which is irreducible wi
respect to the interactionV only ~i.e., diagrammatically, it
does not become disconnected when a single interaction
is cut!, while x0 is the density-density response for the no
interacting sea of fermions of massm ~the bare or band
mass!, andx0

' is the transverse current-current response
the same Fermi sea, including the constant ‘‘diamagn
current’’ term. In the limit where first the frequencyv and
then the wave vectorq tend to zero, we have

x05m/2p, ~2.6!

x0
';2q2/12pm, ~2.7!

and hence

]n

]m
[ lim

q→0
xrr

irr ~q,0!5
m/2p

11f̃2/6
. ~2.8!

~For a long-range potential, i.e. one that is divergent aq
→0, this is the appropriate definition of the compressibil
]n/]m. For a short-range interaction, one would usexrr in
place ofxrr

irr .) Thus the theory predicts that the system
compressible. Note, however, that the approach describes
properties that the system has if it is in the phase descri
For a highly correlated system such as particles in the low
Landau level, it is difficult to find any approach that ca
accurately predict, for a given Hamiltonian, in which pha
the system will be. For example, an alternative phase tha
possible at the same filling factors as the Fermi liquid is
Pfaffian state,28 which is believed to be incompressible.29

Nevertheless, the question of the properties of the Fer
liquid state—which has a Fermi surface in the excitat
spectrum for the fermions—is well defined.

For the conductivity, the general statement30 is that the
resistivity tensors add,

r5rCS1rc , ~2.9!

whererCSmn52pf̃«mn , coincides with the Hall resistivity
at n51/f̃, andrcmn is the resistivity tensor of the fermions
the inverse of the conductivity tensor which is related to
current-current response function that is irreducible with
spect to both the interaction and the gauge field. In the R
using the Drude approximation to include impurities, o
has, takingq→0, thenv→0, rcmn5dmn /scxx , wherescxx
is the usual Drude result for the Fermi sea in zero magn
field with impurity scattering. There is also an unusual sc
tering mechanism11,31 in which the fermions scatter off th
static vector potentialda induced in the Chern-Simons gaug
field by a variation in the density of particles produced by
impurity potential, since¹`da522pf̃dr.

The effects of interactions and gauge field fluctuatio
beyond the RPA would be expected to have a variety
effects. By analogy with the Landau-Silin treatment of fe
mions with a long-range interaction, one would expect t
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when both the long-range parts of the interaction~if any! and
of the Chern-Simons gauge field are extracted, by consi
ing responses irreducible with respect to both the interac
and the gauge field as above, the remaining effects can
handled to all orders by renormalizing parameters, and
leading long-wavelength effects expressed in terms of L
dau interaction parametersF l and an effective massm* .
Since the system is translationally and Galilean invariant~in
the absence of impurities!, the latter mass must satisfy th
usual relation11,32

m* /m511F1 ~2.10!

~details of our two-dimensional normalization of the Land
parameters such asF1 are given later!. In addition, in the
limit where the cyclotron energyvc51/m is large compared
with the typical interaction strength between particle
V( r̄21/2), ~e.g., asm→0), the dynamics should be governe
entirely by the interactions, and so 1/m* should scale with
the interaction strength, and be of order the typical inter
tion strength up to numerical factors.

This expectation that the theory would be a renormaliz
Fermi liquid, coupled to the long-range interaction and t
gauge field, turned out to be too naive, however. The fl
tuations of the gauge field have singular effects that app
to cause a partial breakdown of the Fermi-liquid picture11

The effects of such fluctuations were evaluated in lead
order in the RPA gauge field propagator in HLR~the small
parameter beingf̃, with the background magnetic field be
ing adjusted such that the net field seen by the fermions
average was zero for any value off̃, i.e., the filling factor
was always 1/f̃; recall that for generic values off̃ the par-
ticles are anyons!. The main effects were, first, that th
propagator itself shows the appearance of a mode at the
clotron frequency 1/m, which carries all of thef-sum rule
spectral weight to orderq2. Thus this mode is the physica
cyclotron mode. The virtual excitation of this mode, which
the longitudinal part of the gauge field, led, in first order,
a contribution to the fermion self-energy that was logari
mically infrared divergent. The effect could plausibly be e
ponentiated to give, for the quasiparticle residueZF of a
fermion at the Fermi wave vectorkF ,

ZF;L2f̃/2, ~2.11!

whereL is the system size~or, presumably,uk2kFuf̃/2 as k
approacheskF for infinite L). This would correspond to the
Girvin-MacDonald~GM! power law,3 generalized to the fer-
mion case; in particular, the exponent should be exact. T
is supported by further analysis of these fluctuatio
which, similarly to the boson case33, lead to a factor
) i , j uzi2zj uf̃, times a Gaussian, in the ground-state wa
function of the fermions~the result for the fermion case i
widely known, but does not appear to have been explic
published!. This in turn leads to the GM powerr 2f̃/2 as a
factor in the equal-time Green’s function of the fermion,34

^c~r !c†~0!&;r 2~3/21f̃/2!sin~kFr 2p/4!, ~2.12!

and correspondingly to the above result forZF ~see also Ref.
35!. ~The GM power law in the composite boson case h
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also been recovered field theoretically in Ref. 36.! Related
effects were also found in the work of Shankar a
Murthy,24 to which we shall turn shortly. In the work of HLR
and others, it was assumed that the vanishing quasipar
residue for the original CS fermions was of little signi
cance, since as with many similar effects in field theory,
particular the nonsingular quasiparticle residue in an o
nary Fermi liquid, it is canceled in physical response fun
tions that measure quasiparticle properties. However, the
cent results to be reviewed below, and those of the pre
paper, suggest that things are not quite so simple, and ra
than just ignoring these effects on the assumption that t
cancel, the longitudinal mode should be integrated out ‘‘
actly’’ to obtain an effective field theory, before proceedi
to the effects of the other lower-energy fluctuations, such
the transverse fluctuations.

The fluctuations in the transverse part of the gauge fi
have received more attention~due to the CS term, there ar
also cross-terms that mix the longitudinal and transve
fluctuations; however, these are assumed to have some i
mediate significance!. The first-order self-energy contain
power-law infrared-divergent terms for the case of a sh
range interaction, which are weakened by the presence
long-range interaction because the latter suppresses de
fluctuations which correspond to fluctuations of the tra
verse CS vector potentiala. For the 1/r Coulomb interaction,
the effects become logarithmic, and for an interaction wh
is longer range than 1/r they become finite. In the Coulom
case, the structure of the effects is similar to those in
electron gas coupled to the transverse part of the ordin
electromagnetic field~since there is no CS term in this cas
these effects are not weakened by the Coulomb interac
but are always logarithmic—however, they are extrem
weak in practice!.37,38 In both of these systems, it can b
argued by treating the self-energy self-consistently37,11,39that
the effects lead to an effective mass diverging
m* ;2 lnuk2kFu, a quasiparticle scattering rat
;2u«k* 2mu/ lnu«k*2mu ~where«k* is the dispersion relation
that corresponds to the stated behavior of the effective m
nearkF), and a quasiparticle residueZF;21/lnuk2kFu ~the
latter would be in addition to the effect of the longitudin
fluctuations described above!. These results suggest th
while the effective mass diverges atkF , the quasiparticles
remain just marginally well defined due to the reciproc
logarithm in the decay rate, and thus the system is a ‘‘m
ginal Fermi liquid.’’ For longer-range interaction, there is n
such breakdown of Landau Fermi-liquid theory, and for t
extreme case ofV(r ); lnr, the scattering rate recovers i
usual form;(«k2m)2 ~all these results are for zero tem
perature!.

There are many other studies of this,40–46often with con-
flicting results. We believe that the correct results are th
that agree with the above scenario of HLR for the behav
of the effective mass, etc.

If we are not too concerned about the latter effects
transverse gauge field fluctuations, for example if we c
sider an interaction longer range than the Coulomb inte
tion, or in the Coulomb case neglecting the logarithmic
fects in view of how slowly they diverge atkF , then we are
led to a physical picture of what to expect from the system
all orders in the fluctuations. It is essentially the Land
theory with due regard to the long-range effects, as descr
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above, and thus retains the CS structure present in the R
For the density-density response, the responsesx0 and x0

'

that appeared in the RPA will therefore be replaced by ren
malized versions, and, according to this scenario, we t
expect that, in the limit that gives~for example! the com-
pressibility, x0 and x0

' that appeared in the RPA will be
replaced by renormalized versionsm* /@2p(11F0)# and
q2xd* , respectively, wherexd* is a renormalized long-
wavelength Landau diamagnetic susceptibility, which is
non-Fermi-liquid quantity as it involves derivatives at th
Fermi surface. Explicitly, we expect

]n

]m
5

m*

2p~11F0!2~2pf̃!2xd* m*
. ~2.13!

~We expect thatF0 diverges the same way asm* , so that the
renormalized version ofx0 remains finite.44,45! Thus the sys-
tem remains compressible in this scenario.

B. Physical pictures

In this subsection, we review aspects discussed in Ref.
which was in part an elucidation of Ref. 10~see also Ref.
47!. The approach is based on the wave functions of
particles, which are assumed from the beginning to be in
lowest Landau level. To lower the repulsive interaction e
ergy, each particle would like to bind tof̃ vortices, which at
n51/f̃ leaves no vortices left.~Note that in the LLL, the
number of zeros in the wave function of each particle
equal to the number of flux quanta threading the relev
area, and that a vortex means a simultaneous zero in
wave function of every particle other than the one und
consideration.! For the same choices of statistics of the p
ticles and filling factor as before, the bound states behav
fermions in a zero net magnetic field~this statement again
involves the mean-field assumption that the average den
of particles is uniform, as we will see!.

To make the idea concrete, we may consider trial wa
functions in which the fermionic bound states occupy
Slater determinant of plane waves, or spherical harmonic
the sphere48 ~these resemble Jain’s trial wave functions,6 ex-
cept that the fermions are in zero effective magnetic field!

C̃~z1 , . . . ,zN!5PLLLdet Mi j )
i , j

~zi2zj !
f̃. ~2.14!

Here we write the wave function on the sphere15 with zi
52Rv i /ui , the complex coordinate of particlei in stereo-
graphic projection to the plane. Only the polynomial part
the wave function is shown, as indicated by the tilde onC.
The full wave function is recovered by multiplication b
) i(11uzi u2/2R2)2(Nf12)/2, and this must be done before in
tegration of thezi coordinates over the complex plane to gi
the correct integration measure, in particular when apply
the LLL projection operatorPLLL . In the limit where the
radiusR and the numberNf of flux quanta through the sur
face of the sphere go to infinity with the field strength fixe
the nonpolynomial factor approaches the usuale2(1/4)( i uzi u

2
.

Mi j are the spherical harmonics of angular moment
Li , Mi for the j th particle, or can be replaced by plan
waveseiki•r j in the plane.Li , Mi ~or k i) can be chosen to fill
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16 266 PRB 58N. READ
the Fermi sea to obtain a trial ground state.48 Different
choices of the sets ofLi , Mi do not give orthogonal states
in general, except when the total angular momenta dif
Note that apart from the projection to the LLL, the wa
functions have the form that would be expected from the
approach, on including the fluctuations at the RPA level t
produce the amplitude of the Laughlin-Jastrow~LJ! factor in
the wave function, as noted above.

The fermionic bound states or ‘‘quasiparticles’’ describ
here are created by operators of the formce

†U f̃, wherece
†

creates a particle in the LLL, andU(z)5) i(zi2z) is Laugh-
lin’s quasihole operator,14 which creates a vortex.10 As for
the wave functions; this differs from the CS fermion opera
c† by including the amplitude of the quasihole operator, a
not just the phase~like the wave functions, it should als
include a nonpolynomial factor inz, which we have sup-
pressed here!. Consequently, like the corresponding bos
operator,10 its equal-time Green’s function is not expected
include the GM power-law factorr 2f̃/2; this has been con
firmed by calculation.34 Since atn51/f̃ the f̃ vortices in-
duce a hole in the density of the other particles that conta
a deficiency in the particle number of exactly unity, there h
always been a temptation to say that the bound states for
this way are neutral objects. This should be contrasted w
the CS fermions and bosons, which carry particle num
unity.

The plane-wave factors, in the flat space limit, can
rewritten using49,50 ~see also Appendix A!

PLLLeik•r iPLLL 5eik•Rie2~1/4!uku2, ~2.15!

whereRi is the guiding-center coordinate of particlei, which
has no matrix elements between states in different Lan
levels. The operatorK i52`Ri is the pseudomomentum
that generates magnetic translations of particlei. Thus the
plane-wave factors in the Slater determinant can be repla
by eik•Ri and each such factor displaces thei th particle by
`k ~in units where the magnetic length is 1! from its vorti-
ces. This picture of particles bound to vortices but displa
by `k from their center has several consequences.12

The first consequence is that, if we consider the inter
tion of the particle with the vortices~or correlation hole! to
which it is bound~neglecting the exchange effects due to t
latter being constructed from other particles, indistingui
able from the first!, then, fork50, the particle is precisely
on the vortices as in the Laughlin states, and forkÞ0 it is
displaced bỳ k. Consequently, the energy should increa
and the interaction between the particle and its vortices
comes an effective kinetic~i.e., k-dependent! energy for the
fermion, which is the origin of the effective mass at t
Fermi wave vector, and scales inversely withV. A formula
for this energy can be found for the analogous boson cas
Ref. 10. Notice that the displacements in the Fermi

ground state are bounded above bykF5A2/f̃, which is
much less than the typical distance between neighboring

ticles which is of order;Af̃. Thus forf̃. order 1, which
is the case of interest when the particles are bosons or
mions, not anyons, the displacements do not unduly per
the bound states.
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Second, if we accept that the fermions are neutral, t
their leading coupling to the electric potential is through
dipole moment̀ k. It is important to realize that the wav
vectors of the fermions contribute to the total momentum
the system, which is a conserved quantity. One might im
ine that the dipole moment could be renormalized by effe
not yet included, or that the vortices might not all be at t
same point as we have implicitly assumed. Indeed, when
underlying particles are fermions, the wave function m
have one vortex exactly on every particle, because of a
symmetry. This will not affect the dipole moment, becau
the plane-wave factors must produce the displacem
shown, and, when the particles are fermions, this is acc
plished by displacing the other vortices further to compe
sate for the one that is not displaced at all. Also, if the v
tices are viewed as point objects, then their relat
displacements can only produce multipole moments of e
order, and not a contribution to the dipole moment, which
determined by the displacement of the particle from the c
ter of mass of the vortices. Thus the dipole moment is
renormalized. A more rigorous version of this argument w
be given later in this paper.

Third, when thef̃ vortices are dragged around adiaba
cally, they pick up a Berry phase factor23 which can be in-
terpreted as a vector and scalar potential governed by
particle number and number drift-current densitiesr and
j .10,12,47This means that the fermionic bound states, in ad
tion to the electromagneticA and A0 , experiencea and a0
given by

¹`a522pf̃r, ~2.16!

2ȧ2¹a052pf̃` j . ~2.17!

These have the form of the equations in the CS ferm
approach, but it is important to emphasize that they h
been obtained10,12,47without the use ofd-function fluxes at-
tached to the particles, and that they still involve the physi
density and current, which cannot be identified with the d
sity and current of the fermions because the latter are~or
may be! neutral.

In Ref. 12, these were used as an alternative approach
was stated to be equivalent to the CS approach, and the
trality of the quasiparticles was not invoked. It was felt th
although the fermions and bosons appear neutral, the s
tion might be like that in the usual electron gas problem w
a Coulomb interaction, where at low energies the quasipa
cles are neutral in their couplings to external longitudin
electric fields because of screening; however, in the Fer
liquid viewpoint, one nonetheless views the fermions as h
ing charge unity, and the low-energy behavior of the Fer
liquid itself produces the screening effects in the limitv/q
→0 in the response functions. In the opposite limitv/q
→`, the charge of the quasiparticles does show up in
conductivity ~and also in the transverse response in both
gimes!. However, recent work to be discussed in Sec. II
and the work in the present paper, suggests that in the q
tum Hall effect context, we can in fact obtain a consiste
picture in which the quasiparticles have only dipolar co
plings to external fields. The obvious question is th
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whether the Fermi liquid is still compressible. We will a
swer this question in the affirmative.

C. Recent approaches to the LLL

Several recent works have taken up the outstanding is
discussed in the previous subsections. They are conce
with obtaining results for the Fermi-liquid state, includin
the effects of all the particles being in the lowest Land
level, or, as would seem to be at least roughly equivale
including the effects of the amplitude of the correlation fa
tors produced by the zero-point fluctuations of the cyclotr
frequency longitudinal modes of the CS gauge field. The a
of such work is, of course, to test the validity of the results
HLR. Different approaches have been used. Shankar
Murthy ~SM! ~Ref. 24! based their work on the U~1! CS
fermion field theory approach; however, they worked in
Hamiltonian formalism, and aimed to eliminate the cyclotr
variables by canonical transformation, rather than by res
mation of perturbation theory. The cyclotron modes are r
resented as oscillators whose zero-point motion produces
amplitude of the LJ factor in the ground-state wave functi
However, when fermions are excited to differentk states, the
oscillators must adjust to a displaced ground state, and
seems to reproduce many of the effects of the correla
hole discussed in Sec. II B, as well as other effects conne
with the cyclotron mode and the projection to the lowe
Landau level. Lee25 used duality methods, which are goo
for representing vortices. In his approach, the particles
fermions atn51

2, but, in view of the single vortex exactly o
each particle because of Fermi statistics~for LLL wave func-
tions!, they can be represented as bosons atn51. In these
two works, only the leading long-wavelength effects can
treated. Pasquier and Haldane~PH! ~Ref. 26! used a method
that is valid only forf̃51 ~that is, the particles are bosons
n51!, and represents the LLL problem exactly, throu
equations valid for all wavelengths. A version of the
method will be described in Sec. III and used extensively
this paper.

All these groups arrive at the following points in com
mon. The LLL physics is described by Fermi fieldsc andc†

with canonical anticommutation relations, and the physi
states must obey the operator constraints for each wave
tor q:

E d2k

~2p!2
ck2~1/2!q

† ck1~1/2!qS 12
1

2
ik`qD1O~q2!

2 r̄~2p!2d~q!50. ~2.18!

In SM and Lee, theO(q2) terms are unknown, and in SM
the constraints are further restricted to apply only forq less
than a cutoffQ whch is chosen to equalkF . In PH, the terms
higher order inq are known. The physical particle numbe
density operator reduces to the form

r~q!5 r̄~2p!2d~q!1E d2k

~2p!2
ik`q ck2~1/2!q

† ck1~1/2!q ,

~2.19!

again to leading order inq on using the constraints. Note th
this is the Fourier transform of a dipolar or polarization e
es
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pression for the density,r5 r̄2¹•P, where the polarization
P is that due to a dipole moment of̀k on a fermion of wave
vectork ~this semiclassical way of describing it will be quit
useful; compare the discussion of fermions with a fai
well-defined wave vector and position in Fermi-liqu
theory, which can be better described formally by t
Wigner distribution function!.

A result for the effective mass was obtained as follow
Beginning from the interaction Hamiltonian that is all that
left when the kinetic energy of the particles has be
quenched,

H int5
1

2E d2q

~2p!2
V~q!:r~q!r~2q!:, ~2.20!

where colons :•••: represent normal ordering; the normal o
dering is then dropped as it produces only a constant pro
tional to the number of particles. The density is then repla
by the form in Eq.~2.19!. When this is written in first quan-
tization it becomes

H int5
1

2(i j E d2q

~2p!2
V~q!q`k iq`k j . ~2.21!

On taking thei 5 j term of this expression, they obtain a
effective kinetic energy due to interactions,

(
i

k i
2/~2m* !, ~2.22!

where the effective mass is given by

1/m* 5
1

2E d2q

~2p!2
V~q!q2, ~2.23!

which has the form of the dipole moment squared term in
self-interaction energy of a dipole; if theq integral is cut off
as in SM, the density profile is smeared as it would be in
correlation hole. It is therefore similar to the proposal
Refs. 10 and 12.

For the density-density response function, these auth
found, using the dipolar form of the density,

xrr~q,0!5^r~q!r~2q!&5q2^PP&5q2r̄m* 1O~q4!.
~2.24!

In the last step, the transverse momentum-momentum
sponse function of the Fermi gas with effective massm* was
used. In these calculations, constraints~2.18! were either
ignored,26 or were handled by introducing functional-integr
representations ofd functions of the constraints, which wer
then treated in the RPA~Ref. 24!; the results take the form
stated in either case.

If this last result is taken seriously, it implies that th
system is incompressible. However, SM stated some re
vations about the calculation, because of the way the c
straint was handled. They suggested that the symmetry o
Hamiltonian under translations of the wave vectors of all
particles could lead to cancellations and to factors of 1q2

that could restore a finite compressibility to the system. T
proposal is very close to the results that will be obtained
the present paper by a systematic treatment of the c
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straints. While this paper was being completed, a sh
comment51 and a revised version of Ref. 25 appeared wh
used the same symmetry just mentioned, and obtained re
very similar to some of ours below, including the fact th
the system is compressible. We will comment further on
relation of the symmetries being used in Sec. V.

D. Overview of the results of the present paper

Here we describe results of the present paper. First
give a simple discussion of our central result for the dens
density response function. With the benefit of hindsight,
ing arguments that are justifed by the more detailed and
mal calculations below, the results can in fact be obtain
from the results of Sec. II B. Then we describe the results
this paper.

The dipolar form of the density in Sec. II B can be e
pressed as

r~r !5 r̄2¹`g, ~2.25!

whereg~r ! is the momentum density of the fermions, sin
P5`g. On the other hand, we also have

r~r !5 r̄2 r̄¹`~a1A!. ~2.26!

This suggests that we write

a1A5g/ r̄ ~2.27!

in general, even though the above argument only implies
for the transverse part ofa. This equation suggests there is
gauge-invariant currentjR, which is not the physical curren
such that~for excitations near the Fermi surface!,

jR5$2 i 1
2 @c†¹c2~¹c†!c#2~a1A!c†c%/m*

5@g~r !2~a1A!rR#/m* , ~2.28!

which is required to vanish,jR50. Assuming that the ‘‘den-
sity’’ rR5c†c is just r̄, this is equivalent to Eq.~2.27!.
Indeed, a vanishing current would be consistent with suc
constraint,rR5 r̄, if they together obey a continuity equatio

]rR/]t1¹• jR50. ~2.29!

This involves the longitudinal part of the current, so we ha
an argument for both parts of Eq.~2.27!. The conditionrR

5 r̄ should of course be viewed as the long-wavelength v
sion of the constraint found by SM, Lee, and PH.

The gauge-invariant form of the ‘‘current’’jR encourages
us to consider an effective Hamiltonian

Heff5
1

2m*
E d2r u~2 i¹2a2A!cu21•••, ~2.30!

which, apart from higher covariant derivatives ofc and c†,
contains no other terms ina, not even a CS term. We view
Heff as a Hamiltonian forc andc1, but as a Lagrangian fo
a. Thusa is a strongly coupled gauge field, and varyingHeff
with respect toa yields jR50. Then, neglecting other term
in Heff , we can use the RPA, or the following sel
consistent-field argument, to find the density-density
sponse function. From the form of the density, an exter
rt
h
lts

t
e

e
-
-
r-
d
f

is

a

e

r-

-
l

scalar potential couples to¹`g. The irreducible density re-
sponse contains two parts. The first part is from the tra
verse momentum-momentum response function of the
with massm* ; it is the part found by SM, Lee, and PH
~Refs. 24–26! ~Lee has since revised this result25!. The sec-
ond is the response of the same gas to the induced ve
potential a. ~In both responses, the constant ‘‘diamagne
current’’ term is absent.! Thus

xrr
irr 5~ r̄1m* x0

'!~q2m* 1 iqda'!, ~2.31!

where in the last factor the two terms arise from the two pa
just described, andda' is the response in the transverse ve
tor potential to the perturbation, and is therefore given by

iqda'5xrr
irr / r̄. ~2.32!

From these self-consistent equations we find

xrr
irr 52 r̄~ r̄1m* x0

'!q2/x0
' , ~2.33!

which is exactly the result we obtain in this paper. Th
yields for the compressibilitydn/dm52 r̄2/xd* .0, where
xd* is the diamagnetic susceptibility for this fermion ga
This result differs from that in the scenario based on the U~1!
CS approach, described at the end of Sec. II A. Several o
observables are similarly in close, but not always exa
agreement with the scenario based on HLR, described ab

In this argument, we neglected the Landau paramet
These can be included without significantly changing the
sults. However, the Landau parameterF1 should not be
added, since it is already included in the gauge field effe
The strongly coupled gauge field in the Fermi liquid
equivalent to a Landau parameter F1521, providedm*
.0.52 Thus we are led to a scenario in which the Ferm
liquid-like state has many FL properties in common with t
theory of HLR, including a finite compressibility, yet differ
in that there is no CS term for the gauge field, while t
physical density is dipolar or~using an equation of motion!
is 2 r̄¹`a.

In the rest of the paper, we follow a different argume
from that just presented. We give a detailed microsco
derivation, in which the relationshipr(r )52 r̄¹`a appears
only at the end; thus we do not rely on the Berry pha
argument. The starting point is an approach of Pasquier
Haldane, described in Sec. III below. In this approach, wh
works for f̃51 only, that is bosons atn51, each fermion is
described by two coordinates, which we term ‘‘left’’ an
‘‘right,’’ but the available states are those of a particle
zero magnetic field, because the wave functions are com
analytic in the left and antianalytic in the right coordinate
The left coordinate is that of the underlying particle co
tained in the fermion, while the right coordinate represe
an attached vortex, as in the pictures in Sec. II B. The sys
must obey a constraint of fixed densityrR5 r̄ in the right
coordinates. Since the separation of the left from the ri
coordinate is̀ k when the fermion is in a plane-wave sta
of wave vectork, the physical density is dipolar. In order t
maintain the constraint, the longitudinal part of the currentjR

of the vortices~right coordinates! must vanish, as argue
above. In Sec. IV, we consider a conserving approximat
for observable response functions. We show that the c
straints are satisfied in this method. We calculate the dens
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density response, its spectral density, the longitudinal c
ductivity, the scattering of the fermions by a potential, a
the current-density operator. From the results we deduce
the system can be described in terms of the strongly cou
gauge field mentioned above. The gauge invariance
manifestation of the constraint. The gauge fields obey the
equations, even though there is no CSterm in the action. In
Sec. V, we indicate the form we expect for the exact res
to all orders in the interactions, and give arguments that th
are correct. We conjecture that a certain sum rule for
spectral density is exact. While at present this appro
works for f̃51—that is, for bosons atn51—we expect that
the conclusions are more general, as the results and a
ments of the previous subsections and the beginning of
one are.

III. PASQUIER-HALDANE APPROACH FOR f̃51

In this section we review~with a few variations of our
own! the method of PH,53 which works only for f̃51,
though the filling factor does not necessarily have to be 1
similar method works for fermions with one vortex attache
mapping them to composite bosons. Since the formalism
not appeared elsewhere in the form in which we will use it
will be presented in self-contained fashion.

We begin abstractly, labeling arbitrary single-partic
states with indices. Hopefully the later development in co
dinate space, though less general, will seem less abstrac
give more physical insight, and clearly show the connect
with composites particles and the LLL. We take fermi
operators which are matrices with two indices,cmn andcnm

† ,
with canonical anticommutation relations

$cmn ,cn8m8
† %5dmm8dnn8 ~3.1!

~and others vanish! wherem, m8, n, andn8 run from 1 toN
~this case of square matrices is convenient for then51 boson
problem, while rectangular matrices would be used fornÞ1!.
The anticommutation relations are invariant under indep
dent unitary transformations on the left and right indic
under which

c°ULcUR ,

c†°UR
†c†UL

† , ~3.2!

whereUL and UR are unitaryN3N matrices. These trans
formations are generated by the operators

rnn8
R

5(
m

cnm
† cmn8 , ~3.3!

rmm8
L

5(
n

cnm8
† cmn . ~3.4!

The right generatorsrR generate the group U(N)R of unitary
matrices. These are used to specify a set ofN2 constraints on
the system

~rnn8
R

2dnn8!uCphys&50, ~3.5!
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which defines a subspace of states that will be identified w
the physical Hilbert space. By taking the trace, we see
these imply that the U~1! generator or fermion number op
erator@which is common to U(N)R and U(N)L],

N̂5(
mn

cnm
† cmn , ~3.6!

must have an eigenvalue equal toN. Thus, in the allowed
subspace,N is both the range of the indices, and the numb
of fermions. The remaining right generators gener
SU(N)R , and physical states must be singlets under the
tion of this group. The other group SU(N)L is not used for
constraints, and will be broken by the Hamiltonian to a su
group that represents translations and/or rotations on
two-dimensional manifold~say, the sphere, torus, or infinit
plane! on which the physical particles move. At the sam
time, the generatorsrmm8

L will represent the physical densit
on this manifold.

The physical states that satisfy the constraints can be w
ten as linear combinations of

uCphys
m1 . . . mN&5 (

n1 , . . . ,nN

«n1 , . . . ,nNcn1m1

† cn2m2

†
•••cnNmN

† u0&,

~3.7!

whereu0& is the vacuum containing no fermions. These sta
contain N fermions and are clearly singlets under SU(N)R
since they are antisymmetric in then ~right! indices. On the
other hand, the anticommutation of thec†’s implies that they
are symmetric in the remainingm ~left! indices. Thus these
states can be viewed as basis states for a system ofN bosons,
each of which can be in any one ofN single-particle states
Such a boson system could be described by basis states

am1

†
•••amN

† u0&, ~3.8!

where@am ,am8
†

#5dmm8 , and others vanish. Each such sta
is obtained in this way, which proves that the fermion syst
of c8s with the constraints is equivalent to the unconstrain
boson system. If we define a filling factor as the partic
number divided by the number of available orbitals, asN
→`, then in our case we clearly have bosons at filling fac
n51.

We note that in the larger Hilbert space without the co
straints, which is just the Fock space of thec’s, each fermion
can be in any ofN2 states, so there are

S N2

N D ~3.9!

linearly independent states forN fermions. The states satis
fying the constraints form the Fock space of the bosonsa,
which contains only

S 2N21
N D ~3.10!

linearly independent states.
The left indicesm can run over any range, and this can

used to represent any filling factorn. The constrained system
can also be set up using canonicalcommutationrelations for
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the c’s, and a similar argument then shows that the phys
states representfermions, ~e.g., electrons! at n<1.

So far we have only a way of representing bosons
fermions~or vice versa!, and the technique is reminiscent
the methods used for quantum spin systems, in the case
single quantum spin~see e.g., Ref. 54!. If we now view m
and n as indices for lowest Landau-level states, say o
sphere where there areNf11 such states forNf flux quanta
through the sphere,15 then for the case where both indice
range from 1 toN, we haveN5Nf11, and the filling factor
n agrees with that defined asN/Nf asN→`. We can intro-
duce coordinate space wave functions for the left indexm,
which are just those of the physical bosons. We do the s
for the right indicesn, except that they are complex conju
gated so that the field strength~or the charge! is effectively
reversed. Using orthonormal single-particle LLL basis sta
um(z), we write in analogy with the usual field operators,

c~z,w̄!5(
mn

um~z! un~w!̄cmn ,

c†~w,z̄!5(
mn

un~w! um~z!̄cnm
† , ~3.11!

which are adjoints of each other. Note that we usez’s for
‘‘left’’ indices, corresponding tom’s ~which however appea
on the right inc†) andw’s for ‘‘right’’ indices, correspond-
ing to n’s. The appearance of two coordinates onc and c†

means that they behave like operators on the LLL sing
particle Hilbert space, just like the matrix structure they h
in index notation. A formalism for handling such operato
as integral kernels is given in Appendix A. For the sphe
we can writeũm(z)}zm, for m50, . . . ,Nf5N21, and the
factor (11uzu2/4R2)2(Nf12)/2 must be attached before inte
gration. Following this convention we will write only th
polynomial part in the following wave functions.

In the z, w variables, the densities become

rR~w,w̄8!5E d2z c†~w,z̄!c~z,w̄8!, ~3.12!

rL~z,z̄8!5E d2w c†~w,z̄8!c~z,w̄!. ~3.13!

Matrix multiplication has been replaced by integration,
that all operators in the single-particle Hilbert space of L
functions ofz andw̄ become integral kernels~see Appendix
A!. One can see thatrL(z,z̄) is the LLL-projected density
operator denotedr̄ by Girvin, MacDonald, and Platzma
~GMP!,50 andrR is analogous.

Passing to the thermodynamic limit at fixed field streng
and density equal tor̄, the radius of the sphere goes
infinity, the system becomes flat locally, and we may u
Fourier transforms. The version of the Fourier transform
quired is defined in Appendix A. To avoid discussion
global issues, which would distinguish this thermodynam
limit from that of a torus, we will view the use of Fourie
transforms as a technique for handling local calculations
which we could include damping factors which tend to un
at the end. Alternatively, every calculation could, with only
al

y
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little extra difficulty, be done in coordinate space. A thi
alternative would be to use the analog of the Fourier tra
form, involving spherical harmonics, on the finite-siz
sphere. This is more tedious. Introducing the Fourier tra
form in the plane, then we notice that the pair of coordina
z andw̄ for each particle or field operatorc is replaced by a
single ordinary two-dimensional wave vectork. This makes
sense because, by choosing equal and opposite field stre
for the basis functions in these coordinates, the particles
fectively ‘‘see’’ zero magnetic field for our filling factorn
51/f̃51. Note that, because the functions are analytic inz,
w̄ ~the LLL restriction!, we do not effectively have four rea
variables per particle, as we would if the basis states had
been restricted to the LLL. The transformation of the mat
c(z,w̄) into a plane-wave operator is similar to that for th
density operator, sayrL, which can clearly be traded for it
Fourier components~see, e.g., GMP!.

In terms ofck andck
† , which are defined in Appendix A

and which satisfy

$ck ,ck8
† %5~2p!2d~k2k8!, ~3.14!

we have

rR~q!5E d2k

~2p!2
e2~1/2!ik`q ck2~1/2!q

† ck1~1/2!q ,

~3.15!

rL~q!5E d2k

~2p!2
e~1/2!ik`q ck2~1/2!q

† ck1~1/2!q , ~3.16!

and we can show that

@rR~q!,rL~q8!#50, ~3.17!

@rR~q!,rR~q8!#522i sin1
2 q`q8 rR~q1q8!, ~3.18!

@rL~q!,rL~q8!#52i sin1
2 q`q8 rL~q1q8!. ~3.19!

The Lie algebra commutation relations defined by Eq.~3.19!
appeared in GMP and in Ref. 55, and the algebra so defi
has become known asW` @the defining relations are ofte
given in a different basis of the Lie algebra, essentially
expansion of ourrL(z,z̄8) in angular momentum eigenstate
zm and z̄8m]. In the notation of GMP, our rL(q)
5e(1/4)uqu2r̄(q). ~The following algebraic comments will no
be used in the following.! From our point of view,W` is just
a certain limit of SU(N) asN→`. It is also helpful to note

that if the 2 sin12q`q8 is replaced byq`q8 in the commuta-
tion relations~for example, becauseq andq8 or the magnetic
length are small!, then the resulting algebra is that of ‘‘area
preserving diffeomorphisms,’’ or equivalently~for the corre-
sponding Poisson bracket relations! Fourier components o
functions on classical phase space.W` can then be viewed a
a quantum deformation of the latter, thus as ‘‘diffeomo
phisms of the quantum analogue of phase space,’’ a fa
familiar view of the LLL. The connection ofW` with the
quantum Hall effect has often been remarked.56 Our interest
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here is in the isomorphic algebra generated by therR’s,
which are the constraints of our problem.

The constraints become

@rR~q!2 r̄~2p!2d~q!#uCphys&50. ~3.20!

Thus states can be built up in the ‘‘large’’ Hilbert space
combinations of

)
$ki %

ck
†u0& ~3.21!

~where the product is indexed byk’s in a set ofN wave
vectorsk i), and then projected to satisfy the constraints. T
effect of projection can be more easily appreciated in te
of wave functions in coordinate space, by returning to
finite-size system.

In coordinate space, the constraints require that thew̄ de-
pendence of wave functions be that of a full LLL,

C̃phys~z1 ,w̄1 , . . . ,zN ,w̄N!5 f ~z1 , . . . ,zN!)
i , j

~w̄i2w̄j !,

~3.22!

because the LJ factor in thew̄’s is the unique totally anti-
symmetric function annihilated by therR’s, since the full
LLL has no density fluctuations. Hencef is a symmetric
polynomial in thezi ’s, as appropriate for bosons. Projectio
of the wave function of any state in the ‘‘large’’ Hilber
space to this physical subspace, where states can be ch
terized just byf, is accomplished by multiplying by)(wi
2wj ) and integrating over thewi ’s with the appropriate
measure, leaving a symmetric functionf in thezi ’s ~possibly
zero!. If as a family of examples we take states~3.21!, or
their analogs on the sphere, in first quantization they beco
Slater determinants det@YLi Mi

(zj ,w̄j )#, where theYLM(z,w̄)
are spherical harmonics projected to the LLL, which cor
spond to the plane wavestk in the plane, defined in Appen
dix A. Then the projection gives

f 5E )
k

d2wk)
i , j

~wi2wj !detYLi Mi
~zj ,w̄j !

5PLLLdet YLi Mi
~V j !) ~zi2zj !, ~3.23!

that is, the projection to the LLL of ordinary spherical ha
monics in a Slater determinant times the LJ factor. These
just the trial wave functions described in Sec. II B. Thus
formalism not only describes bosons atn51, but the fermi-
ons are closely related to those in the ‘‘physical’’ approa
where the amplitude of the LJ factor is automatically
cluded in the trial wave functions. Contrast this with the C
approach, where the trial wave functions satisfying the
constraint of one flux attached to each particle consist of
Slater determinant times only the phase of the LJ factor,
no LLL projection. Note also that while the projection into
strictly smaller subspace implies that states described by
tinct sets ofk i before projection may not be orthogonal aft
projection, they do not usually vanish, except in some exc
tional cases noted in Ref. 48.
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Since the right coordinatesw̄ of the fermions become, in
the trial wave functions after projection, the locations of t
vortices, it seems natural to refer to them as such even be
projection. Thus we can say thateach fermion consists of a
particle (boson) at the left coordinate z, and a vortex at t

right coordinate w̄, and so as a whole is effectively neutra.
The constraints demand that the densityrR of vortex coor-
dinates is fixed, as an operator statement. This seems na
if the vortices are thought of as forming a two-dimension
plasma ~in view of the LJ factor and Laughlin’s plasm
mapping14!, since the plasma is in a screening phase a
suppresses long-wavelength density fluctuations; indeed
this case ofn51, there are no fluctuations in the LLL densi
at all in the Laughlin state~the full LLL or Vandemonde
determinant!. In retrospect, this condition on the vortice
seems to be the main effect that was left out in Refs. 10
12.

Now we finally specify the Hamiltonian appropriate
bosons in the LLL atn51. In terms of the boson operatorsa
introduced earlier, we have, assuming a potential interac
between the bosons,

H5 1
2 (

m1 , . . . ,m4

Vm1m2 ;m3m4
am1

† am2

† am4
am3

, ~3.24!

where the matrix elements of the interaction in the LLL are57

Vm1m2 ;m3m4
5E d2r 1 d2r 2 um1

~z1!̄um2
~z2!̄V~r12r2!

3um3
~z1!um4

~z2!. ~3.25!

The corresponding operator in the large Hilbert space, wh
it commutes with the constraintsrR, and so projects toH in
Eq. ~3.24!, is

H5 1
2 (

n1 ,n2

m1 , . . . ,m4

Vm1m2 ;m3m4
cn1m1

† cn2m2

† cm4n2
cm3n1

.

~3.26!

Then using the definition ofc(z,w̄), we obtain

H5 1
2 E d2r 1d2r 2V~r12r2!:rL~z1 ,z̄1!rL~z2 ,z̄2!:,

~3.27!

where the normal ordering is with respect to the vacuum
thec’s, u0&. Thus this is simply a potential interaction writte
in terms of the LLL-projected densityrL. In Fourier space
this becomes

H5
1

2E d2q

~2p!2
Ṽ~q!:rL~q!rL~2q!:, ~3.28!

where Ṽ(q)5e2(1/2)uqu2V(q) absorbs a factor left from the
definition of the Fourier transform ofrL, and V(q) is the
usual Fourier transform

V~q!5E d2r e2 iq•r V~r !. ~3.29!
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The interaction Hamiltonian breaks the symmetry gro
from SU(N)L ~in the absence of interaction! to SU~2! ~for
the sphere! or to magnetic translations and rotations in t
case of the plane. It still commutes with the ‘‘constraint o
erators’’

G~q![rR~q!2 r̄~2p!2d~q!. ~3.30!

Our expression for the Hamiltonian differs somewhat fro
that in the paper of PH. They work on the torus, which is
relatively unimportant difference, and write the Hamiltoni
using the constraints to make the ansatz explained in
II C, which results in a one-body term that gives the ferm
ons an effective kinetic energy coming from the interactio
In our approach we do not wish to make such a substitu
since the commutator ofH with the G(q) would not vanish
identically, but only on using the conditionsG(q)50. The
reason for our insistence on retaining@H,G(q)#50 will be
discussed in Sec. IV. Of course, if everything is done c
rectly, the results should be the same, in the end, since
starting point is the same.

IV. HARTREE-FOCK AND CONSERVING
APPROXIMATIONS

In this section, which is the central one of the paper,
develop an approximate solution for our system that desc
the FL state. We begin in Sec. IV A with the Hartree-Fo
~HF! approximation, which yields a dispersion relation f
the fermions. Then in Sec. IV B we explain how the co
straints can be included. We choose a gauge such that
nonzero frequencies, they must be satisfied without any
sistance from integration over auxiliary fields that impo
them explicitly. This is achieved in Sec. IV C by use
conserving approximations, a familiar method of many-bo
and quantum-field theory. In the present case, such an
proximation consistent with the HF approximation is t
generalized or time-dependent HF approximation, wh
sums ring and ladder diagrams. We show explicitly that
constraints are obeyed in our approximation. In Sec. IV
we investigate the asymptotics of the ladder series that
pears in Sec. IV C, for use in the following calculations.
Sec. IV E we apply the approach to the physical respo
functions, beginning with the density-density response.
show that the system is compressible and that the longit
nal conductivity relevant for the surface acoustic wave
periments, which is a certain limit of this response, is giv
by exactly the same expression as in HLR. We also exhib
sum-rule-like relation for the high-frequency response, or
the first moment of the spectral density, which we will lat
argue is exact. We consider the scattering of a fermion b
scalar potential perturbation, and interpret the result in te
of a vector potential related to the density by the CS relat
discussed in Sec. II. We calculate the longitudinal cond
tivity due to impurity scattering. Finally, we consider th
physical current density, which we relate to the stress
momentum flux tensor of the fermions, and so recover
other CS relation.

A. Hartree-Fock approximation

In this subsection, we use the HF approximation, which
quick and is the simplest one that gives an effective kine
p
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energy and is consistent with a stable Fermi sea as
ground state. The treatment of the constraints will be ext
sively discussed in Sec. IV B, and the formalization of t
exchange part of the self-energy as the saddle point appr
mation to a functional integral, valid in some sense in
large-M limit ~in a generalization of the model toM compo-
nent fermions!, is left to Appendix B.

The problem forf̃51 using the PH approach is describe
by the Hamiltonian~3.28!, which can be written

H5
1

2E d2k1d2k2d2q

~2p!6
Ṽ~q!e~1/2!ik1`q2~1/2!ik2`q

3ck12~1/2!q
† ck21~1/2!q

† ck22~1/2!qck11~1/2!q , ~4.1!

subject to the constraintsG(q)[rR(q)2 r̄(2p)2d(q)50,
that is N̂5N, and

E d2k

~2p!2
e2~1/2!ik`qck2~1/2!q

† ck1~1/2!q50 ~4.2!

for qÞ0. Notice that when the phase factor containingk`q
is expanded in a Taylor series, toO(q2) it takes the same
form as the constraint found by SM and Lee,24,25 as men-
tioned in Sec. II C.

The HF approximation for a translationally invariant sy
tem takes the energy eigenstates to be Slater determinan
plane waves, that is plane-wave-occupation-number eig
states in the second-quantized formalism, and the energ
such a state is taken to be the expectation value ofH. As is
well known, for the excitation spectrum, this is equivalent
replacingH by an effective one-body Hamiltonian with a
effective energy«k for each plane-wave statek, where«k
depends self-consistently on the occupation numbersnk . In
the present case, we must also include the constraints by
use of Lagrange multipliersl̄q and minimize

H2mN2E d2q

~2p!2
l̄qG~2q! ~4.3!

with respect tol̄q to find the ground state. When almost a
particles are in the Fermi sea,l̄q are zero by translationa
symmetry, except atq50, where l̄0 absorbs the chemica
potentialm, consistent with the fact that the constraints
the particle number and hence we are actually in the can
cal, not grand canonical, ensemble. Consequently one
l̄q5(2p)2l̄d(q), andl̄1m is determined by the condition
on the total particle number. One arrives therefore at
total-energy expectation value

E5
1

2L2(
kk8

f kk8nknk8 ~4.4!

~in which we have used the conventional notation for a fin
system in a square box of sideL, with discretek values, and
nk are the expectation values of the occupation numbers
the corresponding states!, where

f kk85Ṽ~0!2Ṽ~k2k8!. ~4.5!
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The function f kk8 plays the role of the Landau interactio
function whenk and k8 are restricted to the Fermi surfac
The effective single-particle HamiltonianK5H2(m1l̄)N
is

Keff5(
k

jkck
†ck , ~4.6!

wherejk5«k2m2l̄ and

«k5Ṽ~0!E d2k8

~2p!2
nk8

0
2E d2k8

~2p!2
Ṽ~k2k8!nk8

0 , ~4.7!

in which the first term is the direct or Hartree term, equal
Ṽ(0) r̄, and the second is the exchange or Fock term, wh
is responsible for thek dependence ofjk . Also, in the
ground state at zero temperature,nk

05u(kF2k) and kF

5A2 in our units, andm1l̄ is chosen so thatjkF
50. Notice

that the phase factors in the HamiltonianH have turned out
to be unity in the HF expressions, which are identical
those of the usual Fermi gas, except that the bare kin
energy is zero, and thatṼ(q) replacesV(q) for reasons con-
nected with the LLL. This formula for«k differs from that of
other authors, discussed in Sec. II C, in that it depends
plicitly on the occupation numbers of the otherk states, and
does not reduce to the self-interaction of a dipole even
small q5k2k8 in the integral in the exchange term. Ourjk
obtains itsk dependence from the exchange effect, while
interaction of the particle with the correlation hole that s
rounds it~due to the vortices! is a ‘‘Hartree-like’’ term~and
not simple Hartree! ~see Ref. 10, where exchange effec
were explicitly neglected!. Thus the exchange effect foun
here in the simplest approximation seems to be complem
tary to the interaction with the correlation hole, and proba
both terms would be present in a better approximation.
for the dipolar form of density, we will see that the dens
does take on this form, and this could be included in
exchange self-energy, but this would necessitate a com
cated self-consistent calculation which could not be do
analytically. In any case, the dipolar effect changes the fo
of the interaction at smallq, while intermediateq values are
important in the exchange self-energy. Thus the expres
here is a convenient starting point, and not badly wro
physically, at least in some cases, as we will see shortly

The zero-temperature HF dispersion relation can be s
ied in detail. Apparently, no difficulties are caused by t
absence of a bare«k term. For any repulsive interactio
Ṽ(q)5e2(1/2)uqu2V(q).0, «k increases monotonically with
uku for all k. At uku5kF ,

kF

m*
[

]jk

]uku
52E

uk8u,kF

d2k8

~2p!2

]Ṽ

]uku ~k82k!

5
kF

2pE dukk8
2p

Ṽ~k82k!cosukk8 ~4.8!

~note thatukk8 parametrizes the angle betweenk8 and k
which are both on the Fermi surface!. For a d-function
~short-range! potentialV(q)5V(0), 1/m* is positive and fi-
nite. Thus the system is stable against single-particle exc
h
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tions. For a Coulomb interactionV(q)52pe2/uqu, there is a
logarithmic singularity atuku5kF :

]jk

]uku
;2 lnuk2kFu. ~4.9!

This is very similar to that for the Coulomb interaction in th
three-dimensional electron gas at zero magnetic field tre
in the HF approximation. In that case, the divergence is
physical and is removed by replacing the bare Coulomb
teraction in the exchange term by the screened one, w
leaves a finite effective mass and heat capacityCV;gT
;m* kFT. This conclusion of course depends on the pr
ence of screening due to the nonzero compressiblity of
electron gas. In the present problem, the existence of su
compressiblity is one of the points we wish to study, so
must return to this later. Note, however, that replacing
unscreened interaction by the dipolar interaction also cuts
the divergence in the present problem. As mentioned
ready, this will also be left for later discussion. For the tim
being, we may consider an interaction of shorter range~de-
caying as a faster power! than the Coulomb interaction, an
the effective mass is then finite within the HF approximatio

The question may be raised of whether a charge-dens
wave~CDW! instability could take place due to the absen
of a bare kinetic energy. However, the constraintsrR(q)
50, though not the same as*d2k ck2(1/2)q

† ck1(1/2)q50, may
have a similar effect in maintaining the uniform density
the fluid within the HF approximation~a CDW in the under-
lying particles cannot be ruled out at some filling facto
especiallyn!1, but may not be describable within the H
approximation for the fermions!. Another possible instability
is to pairing as in BCS theory. This was argued by PH,27 who
found numerically that bosons atn51 tend to form a ground
state with high overlap with the Pfaffian state, a paired st
which is presumably incompressible. However, for some
teractions, such pairing may either not occur, or be v
weak so that it occurs only at very low energies, and then
present results for the ‘‘normal’’ Fermi-liquid-like state wi
still apply at higher energies, temperatures, or wave vect
For the state of electrons atn51

2, experimental and numerica
results both indicate that pairing must be either extrem
weak or absent, so there would seem to be a regime to w
the theory would apply, assuming that it can be extended
f̃.1. We return to the issue of pairing in Sec. V.

B. Constraints

In this subsection we begin a fuller and more systema
analysis which begins from the HF approximation but enta
a careful study of the role of the constraints. In the pres
subsection, we explain a functional integral method for h
dling the constraints exactly. Approximation methods a
discussed beginning in Sec. IV C, where the starting poin
once again the HF approximation. The present subsec
could be skipped on a first reading, but does explain w
many statements later in the paper are restricted to non
frequencies.

The constraint operatorsG(q) obey

@G~q!,G~q8!#52G~q1q8!2i sin 1
2 q`q8, ~4.10!
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@H,G~q!#50. ~4.11!

These relations have the property that if allG(q) are re-
placed by zero throughout, as stipulated by the constra
then they are still true. Constraints with this property a
termed first class, while others are termed second cla58

Second-class constraints lead to modified commutation r
tions given by ‘‘Dirac brackets’’ in the constrained subspa
and are generally more awkward to handle. An example
the constraint of being in the LLL, applied to one or mo
charged particles in a magnetic field, which when impose
the obvious way is second class, and consequently the c
dinatesx andy of the particle~s! end up not commuting when
projected into the LLL. By contrast, systems with only firs
class constraints can be viewed as gauge theories, and
are very well-developed methods by which they can
handled.58 The advantage of the PH approach is that, wh
the fields are in the LLL from the beginning, the only co
straints involved are first class.

The importance of the first-class property of the co
straints is thatG(q) form a Lie algebra, SU(N) or W` , and
are constants of the motiondG(q)/dt50 for all q. Thus,
before considering them as constraints,G(q) can be viewed
as generators of a symmetry algebra of the Hamiltonian.
constants of the motion, the conditionsG(q)50, if imposed
at the initial time, would hold for all other times. Our proc
dure, which is a version of the Faddev-Popov functional
tegral method, will differ somewhat from this, however. T
find thermodynamic properties and correlation functions,
begin with the partition function

Z5TrG50 e2b~H2mN̂!, ~4.12!

where the trace is restricted to states satisfying the c
straints. This can be written formally as

Z5Tr e2b~H2mN̂!dG,0 , ~4.13!

where the trace is taken in the Hilbert space, the Fock sp
of the fermionsc, with no restriction on the fermion numbe
N̂. ~ThemN̂ term is included to make this look conventiona
even though the constraints fixN̂5N, so the constrained
ensemble is canonical, not grand canonical.! The d function,
which imposes all the constraints, can be given a Fou
representation which essentially, for a non-Abelian gro
means integration over the group manifold. Here we ret
to the U(N) notation that we had for finiteN

dG,05E @U21dU# UE
0

2p du

2p
eiu~N̂2N!, ~4.14!

where the first integration is over SU(N) with the invariant
~Haar! normalized measure@U21dU#, and the second is
over U~1! and imposes N̂5N. We can write U
5e2(aiblaGa @wherea51, . . . ,N221 runs over a basis o
the SU(N) Lie algebra# and convert the unrestricted Tr to
functional integral in the standard way to obtain
t,
e
.
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Z5E D@c,c†#@U21dU#b
dl0

2p
expF2E

0

b

dtH Tr c†
d

dt
c1H

2mN̂2 i(
a

laGa2 il0~N̂2N!J G , ~4.15!

whereH, N̂, andGa are given by the standard forms in term
of the Grassman variablescmn(t), cnm

† (t), and the trace in
the exponent is on the U(N) indices. The commutation prop
erties~4.11! were used in obtaining this expression. Thela’s
and l05u/b now play the role of time-independent scal
potentials in the sense of gauge theory. The functional in
gral results from gauge fixing a manifestly gauge-invaria
version,

Z5E D@c,c†#D@f# expF2E
0

b

dtH 2TrS d

dt
1 if D c†c1H

2mN̂1 il0NJ G , ~4.16!

in which f stands for all thel ’s in N3N matrix form, ist
dependent, and is functionally integrated over the U(N) Lie
algebra. Under a U(N) gauge transformation U,
f°U21fU1U21dU/dt. This reduces to the previous in
tegral~4.15! by imposing the conditiondf/dt50 inside the
functional integral~we are neglecting Faddeev-Popov det
minants!. This condition is not the same asf50 ~which is
often used instead!, which cannot be reached by a gau
transformation from an arbitraryf, since gauge transforma
tions must be periodic int with periodb. Thus*dt f can-
not be gauged away to zero. The holonomyPei *dt f (P
denotes that the integral is path ordered!, which is an element
of the group U(N), remains. This holonomy is the combina
tion Ueiu of the earlier integration variables. Under
t-independent gauge transformation it is not invariant,

Pei *dt f°U21Pei *dt fU, ~4.17!

and so only the set of eigenvalues of this matrix is gau
invariant.~Note that there are gauge transformations that p
mute the eigenvalues.! The integral in Eq.~4.15! is over the
holonomy, but can be further gauge fixed to leave integrat
over the eigenvalues only:

E @U21dU#ei *dt (alaGa

→
1

N! E0

2p/b

)
a51

N
dla

2p/b )
g,d

ueiblg2eibldu2

3ei *dt (eleGee, ~4.18!

with the measure well known in, for example, random mat
theory ~which here has no connection with the simila
looking LJ factors!.

The reduction of the constraint integrals to only zer
frequency fields shows that at low temperatures, the inte
tion over these fields is relatively unimportant, since ze
frequency is of zero measure in integrals over frequency
appear in a diagrammatic treatment, as will be used in
following. The non-zero frequency part of the constrain
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G(q,v)50 will have to come out automatically withou
help from an integration over a field that enforces it direc
@as in the totally gauge unfixed version, Eq.~4.16!#. In Sec.
IV C, it will be demonstrated that this occurs.

Finally we note that when developing the HF approxim
tion as in Sec. IV A~or when taking the saddle point of th
functional integral as in Appendix B!, the Lagrange multi-
plier l̄ is the saddle point value ofil0 , so the saddle poin
value of l0 is imaginary. This phenomenon is common
such treatments.

C. Conserving approximations

In this subsection we return to the approximate treatm
begun in Sec. IV A, consider response functions, and add
the question of whether the constraints are satisfied. The
tral issue is the use of a so-called conserving approximat
that is an approximation that satisfies the relevant Ward id
tities, which express the symmetry under U(N) or W` gen-
erated by the constraint operatorsG(q).

The appropriate conserving approximation to use for, s
the density-density response in a normal Fermi liquid,
pends on the approximation used for the one-particle pr
erties, that is, the conserving property involves consiste
of approximations for different properties. It is well-know
that the random-phase approximation corresponds in
sense to the Hartree approximation, and perhaps less
known that the generalized RPA, also called the tim
dependent HF approximation, corresponds to the HF
proximation ~for discussion of conserving approximation
see, e.g., Refs. 59 and 60; for the generalized HF appr
mation in a FL, see Pines and Nozie´res, Chap. 5!. These are
sometimes stated in terms ofF derivability, that is approxi-
mations that can be derived by making an approximat
once and for all for the free energyF ~or for the thermody-
namic potential! in the presence of source fields that coup
to the observables of interest~such as the density!, and then
obtaining response functions in the same approximation
taking functional derivatives with respect to the sourc
guaranteeing the same sort of consistency.

The importance of the conserving approximation depe
on the nature of the problem. In the example of a norm
Fermi liquid, the basic symmetry is conservation of to
particle number, which is not broken by Hartree or HF a
proximations. The conserving approximation is then nee
to ensure that the Fermi-liquid relations are satisfied, prov
ing detailed relations among physical quantities. By contr
in a BCS superconductor, the simplest approximation~which
can be viewed as an extension of the HF approximati!
violates the conservation of the particle number, and the c
serving approximation59 not only restores gauge invarianc
~number conservation! but also leads to the prediction of
collective mode, the Anderson-Bogoliubov mode~which is
the Goldstone mode connected with the spontaneous sym
try breaking in the case of short-range interactions!. Thus the
use of a correct approximation has much greater phys
consequences in the latter case.

Turning now to the present problem, the HF approxim
tion of Sec. IV A does not break conservation of the to
particle number N̂. However, the symmetry generato
G(q)5rR(q) for qÞ0 are not conserved by the HF approx
-
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mation as it stands. The easiest way to see this is thatG(q)
does not annihilate the HF ground state, which is just
Fermi seauFS&. Thus this state does not satisfy the co
straintsG(q)uFS&50 for qÞ0. It is also clear that the HF
effective Hamiltonian@Eq. ~4.6#, does not commute with
theseG(q). The solution to this problem will have to use th
conserving approximation appropriate to our HF approxim
tion. Since there is a conserved quantity for allq’s, the re-
sults will be even more striking than in cases such as
BCS theory where only a global symmetry was broken. W
note that the Fermi sea can be made invariant by projec
to an invariant subspace as in Eq.~3.23!. However, such a
projection necessitates that further work be numerical. A
lytical work, and thus conceptual understanding, can
achieved only by persevering with the gauge theory
proach. Rather than give up the Fermi sea trial state and
HF energies, and searching for some other, invariant, star
point, we keep it and take care of the constraints by
following conserving approximation.

The conserving approximation will be illustrated here
the calculation of therR–rR, rR–rL, andrL –rL imaginary-
time response functions~more precisely, the generalized su
ceptibilities!, defined in Fourier space by

x i j ~q,vn!~2p!2d~q1q8!bdvn1vn8,0

5^r i~q,vn!r j~q8,vn8!&, ~4.19!

in which i and j can beR or L, vn are the usual Matsubar
frequencies, and it is implicit that the connected part of
function is taken, thus dropping ad-function term containing
^r i& ’s. The conserving approximation that corresponds to
HF approximation takes the form of the sum of all ring a
ladder diagrams. The Green’s function lines in the diagra
are the HF Green’s functions

G~k,vn!5~ ivn2jk!21. ~4.20!

The usual Dyson-equation argument leads to formulas
terms of the one-interaction irreducible susceptibilies, as
cussed in Sec. II A, defined as those diagrams that do
become disconnected when one interaction line is cut~note
that we disregard the Hartree self-energy diagrams that
implicitly included in our HF Green’s functions, which
means we are treating the diagrams here as skeleton
grams; such terms would be absent in any case for a lo
range interaction due to the neutralizing background!. These
formulas, which are completely general, are~all x ’s have the
same argumentsq, vn)

xLL5
xLL

irr

11Ṽ~q!xLL
irr

, ~4.21!

xRL5
xRL

irr

11Ṽ~q!xLL
irr

, ~4.22!

xRR5xRR
irr 2xRL

irr Ṽ~q!

11Ṽ~q!xLL
irr

xLR
irr . ~4.23!

Note also thatxLR(q,vn)5xRL(2q,2vn). The conserving
approximation is now the statement that the variousx irr’s are
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to be calculated~for vÞ0) as the sum of the ladder dia
grams, with the HF Green’s functions. SincerL is the physi-
cal density,xLL

irr is the one of most physical interest for lon

rangeṼ(q), such as Coulomb interactions.
We begin withxRR

irr , so as to show that atvÞ0 the fluc-
tuations in the constraintsG(q) vanish in our approximation
The Feynman rule for the interaction can be read off in
standard way;57 it includes the wave-vector-dependent pha
factor as well asṼ(q). Also, there is a phase factor in therR

vertices, as in Eq.~3.15!. Note that those in the interactio
arise from the phase factors in the physical densityrL @Eq.
~3.16!#. In the ladder diagrams forxRR

irr the structure of the
momenta is such thatall the phase factors cancel, as the
industrious reader will verify. Note that this is an exact sta
ment, and not only valid at small wave vectors, wheth
internal or external, so the exponential defining the ph
factor was not expanded in a Taylor series. Consequentlyfor
the ladder diagrams forxRR

irr only, the ladder series is iden
tical to the same approximation to the irreducible susce
bility in the usual density

r~q!5E d2k

~2p!2
ck2~1/2!q

† ck1~1/2!q , ~4.24!

in a model with Hamiltonian

H5
1

2E d2k1 d2k2 d2q

~2p!6
Ṽ~q!ck12~1/2!q

† ck21~1/2!q
†

3ck22~1/2!qck11~1/2!q ~4.25!
e
e

-
r
e

i-

with no kinetic-energy term. This could be phrased by say
that there is the ordinary, Galilean-invariant kinetic-ener
term with zero magnetic field, but the massm0 is infinite.
We call this latter model the zero-field, infinite-mass~ZFIM!
model. Note that the HF approximations in the two mod
also coincide, because the phase factors disappeared
also. In the ZFIM model,@r(q),H#50 for all q, so the
model possesses a gauge symmetry, whether or not we
to impose a constraintr5 const. In fact, if such a constrain
were imposed in this model, there would be no states
satisfied it at all. The reason~in classical language! is that in
a continuum model, any configuration of point particl
clearly has a nonconstant density. In a similar model o
lattice, solutions to the constraint exist only if the value
the particle number required by the constraint at each sit
an integer, since these are the eigenvalues of the num
operator for each site. This cannot be satisfied if we take
continuum limit~zero lattice spacing! at a fixed average den
sity. In our system representing the LLL, which is in th
continuum, many solutions to the constraint do exist, p
vided we choose~similarly to the lattice ZFIM model! the
constrained value of the total number to be the same as
range of the right indicesn, as we have done. Therefore,
the ZFIM model, we will consider the gauge symmetry@or
conservation ofr(q)], but not require a constraint to b
satisfied.

Explicitly, we can writexRR
irr ~or x irr in the ZFIM model!

in terms of the ladder sum, which is the solution to an in
gral equation~we define here various quantities to be us
afterwards!
e-
xRR
irr ~q,ivn!52

1

b (
n
E d2k

~2p!2
L~k,q,ivn!GS k1

1

2
q,vn1vnDGS k2

1

2
q,vnD

52E d2k

~2p!2
L~k,q,ivn!

f ~jk1~1/2!q!2 f ~jk2~1/2!q!

jk1~1/2!q2jk2~1/2!q2 ivn
. ~4.26!

HereL(k,q,ivn) is a one-particle irreducible vertex function,

L~k,q,ivn!512
1

b (
n
E d2k1

~2p!2
GS k11

1

2
q,vn1vnDGS k12

1

2
q,vnDG~k1 ,k,q,ivn!

512E d2k1

~2p!2

f ~jk11~1/2!q!2 f ~jk12~1/2!q!

jk11~1/2!q2jk12~1/2!q2 ivn
G~k1 ,k,q,ivn!, ~4.27!

which we have written in terms of the particle-hole scattering series~the ladders with external Green’s function lines r
moved!,

G~k,k8,q,ivn!5Ṽ~k82k!2
1

b (
n
E d2k1

~2p!2
G~k,k1 ,q,ivn!GS k11

1

2
q,vn1vnDGS k12

1

2
q,vnD Ṽ~k12k8!

5Ṽ~k82k!2E d2k1

~2p!2
G~k,k1 ,q,ivn!

f ~jk11~1/2!q!2 f ~jk12~1/2!q!

jk11~1/2!q2jk12~1/2!q2 ivn
Ṽ~k12k8!. ~4.28!
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~Note that, in this approximation, the scattering function d
pends only on the differencevn of the Matsubara frequen
cies in the external fermion lines, and this is why we are a
to perform the frequency sums explicitly.!

Before analyzing these equations in detail, we pause
point out that forq, v5 ivn small and real, they have th
form standard in Fermi liquid theory@see Pines and Nozie`res
~PN!,61 and especially Nozie`res,62 for the full, formal treat-
ment#, with the approximation that thef kk8 function on the
Fermi surface is taken to be the lowest-order approxima
as already given in Eq.~4.5!, for spinless fermions, and thi
is just the content of the generalized HF approximation~see
PN, Ch. 5!. The Landau parametersF l are then given by

F l 5N~0! f l , ~4.29!

f l 5E dukk8
2p

f kk8cos l ukk8 , ~4.30!

for l >0, where, as before,k•k85kF
2cosukk8 for uku5uk8u

5kF . In particular, we notice that, since the density of sta
at the Fermi energyN(0)5m* /2p, and since the bare ki
netic energy is zero, comparison with Eq.~4.8! yields

F1521. ~4.31!

This is a particular case of the relation

m* /m0511F1 ~4.32!

in ordinary two-dimensional Galilean-invariant Fermi liquid
with bare massm0 . We can view the ZFIM model as such
system but withm05`, from whichF1521 follows. This
is the value that would usually be interpreted as the bord
line of stability of the system; however, usually this view
taken because the bare mass is finite and the effective m
vanishes, and the latter causes instability. Here the effec
in
s

-

le

to

n

s

r-

ss
ve

mass is finite, so the system is not unstable, and moreov
held right at this point by this symmetry. We take it as im
plying that the ladder series must be analyzed with e
greater attention than usual to the limitv→0, q→0, par-
ticularly for the l 51 angular mode. We also point out
contrast with HLR, where this formula was invoked, but wi
the bare~or band! massm in place ofm0 , and was connected
with Kohn’s theorem and thef-sum rule. There the interest
ing limit was m→0 ~to send the cyclotron mode to infinit
frequency!, rather thaǹ . The present discussion is clear
distinct, though it must be related at some deeper level.

In Fermi-liquid theory, relations like that above are d
rived through Ward identities connected with symmetries
the problem, and the symmetries are global, so the relat
are most useful only at smallq or v. Next we will derive a
Ward-identity relationship betweenL and the self-energyS
within the HF approximation, in a way more directly con
nected with the symmetry generated by therR’s, and valid
for all vÞ0 andq.

First we express the HF approximation as a pair of s
consistent equations:

G~k,vn!5@ ivn2~S~k!2l̄2m!#21, ~4.33!

S~k!52
1

b(
n
E d2k1

~2p!2
Ṽ~k2k1!G~k1 ,vn!

52E d2k1

~2p!2
Ṽ~k2k1! f ~jk1

!, ~4.34!

wherejk5S(k)2m2l̄ as before~the direct term has bee
dropped as it plays no role in the following, for the on
interaction irreducible functions; it is absent anyway for t
long-range interaction case!. Then
SS k1
1

2
qD2SS k2

1

2
qD2 ivn52 ivn2

1

b(
n
E d2k1

~2p!2F ṼS k1
1

2
q2k1D2ṼS k2

1

2
q2k1D GG~k1 ,vn!

52 ivn2
1

b(
n
E d2k1

~2p!2
Ṽ~k2k1!GS k11

1

2
q,vn1vnD

3FSS k11
1

2
qD2SS k12

1

2
qD2 ivnGGS k12

1

2
q,vnD ~4.35!
.
e

de
n-

-
on
we
after shifting dummy variables. But from Eqs.~4.27! and
~4.28!, 2 ivnL(k,q,ivn) obeys the same inhomogeneous
tegral equation, the solution of which should be unique,
we conclude that

ivnL~k,q,ivn!5 ivn2SS k1
1

2
qD1SS k2

1

2
qD

5 ivn2jk1~1/2!q1jk2~1/2!q , ~4.36!

which is the desired Ward identity~compare Ref. 59!. The
left-hand side is the vertex function for]rR(q)/]t, which
-
o

should vanish sincerR(q) commutes with the Hamiltonian
This implies that, ifL is viewed as the scattering amplitud
for a fermion scattering off a potential coupling torR, or for
creating or destroying a particle-hole pair, then the amplitu
vanishes if both particles are on shell, that is if their freque
cies ivn satisfy ivn5jk . This suggests~following a similar
argument in Ref. 63, that was inspired by Ref. 64! that in the
on-shell states~energy eigenstates!, if they satisfy the con-
straints G(q)50, then the latter property is actually pre
served in the time evolution, in spite of its apparent violati
in the HF states. This of course is because the calculation
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have done is not the naive one of looking at the states
noninteracting particles; rather we used the conserving
proximation. It appears that the fermionexcitationscan be
viewed as real physical excitations after all, satisfying
constraint conditions on physical states, even though theop-
erators c† are not gauge invariant and so would conn
invariant to noninvariant states. These physical fermion
citations, which are dressed by the fluctuations around
HF states, are the physical composite or~as we shall see!
neutral fermions discussed in Ref. 12 and in Sec. II B.

Now we return to our original goal of calculatingxRR
irr in

the ladder approximation. Using the Ward identity and E
~4.26!, and assumingvÞ0, we find

xRR
irr ~q,ivn!5

1

ivn
E d2k

~2p!2
@ f ~jk1~1/2!q!2 f ~jk2~1/2!q!#50.

~4.37!

Another response function containingrR that should vanish
is xRL

irr (q,ivn). In this case, the appearance ofrL in place of
onerR implies that the phase factors do not all cancel, a
on using the Ward identity for therR vertex we obtain

xRL
irr ~q,ivn!5

1

ivn
E d2k

~2p!2
@ f ~jk1~1/2!q!2 f ~jk2~1/2!q!#eik`q

50, ~4.38!

since shiftingk by 7 1
2 q has no effect on the phase factor

As promised, we have shown that the conserving appr
mation guarantees that there are no fluctuations inrR(q), at
least for nonzero frequency. For zero frequency,
Lagrange multiplier fieldsl(q) ~or the subset of diagona
elements, according to the final gauge-fixed form! enter to
give the same result, but we will not show this explicitl
Similar issues were addressed extensively in the literatur
slave bosons and heavy fermions in the 1980s~see, for ex-
ample, Refs. 65,63 and 66–69!, and later in connection with
theories of high-Tc superconductors and quantum magne
These problems also involve constraints, but these are
ally Abelian and generate only U~1!. It is still frequently
stated incorrectly in the literature that in the function
integral saddle-point approach to such problems, ‘‘the c
straints are satisfied only on the average.’’ In fact, as w
well known to several workers~such as the cited authors! in
the field in the 1980s, the correct RPA or 1/N ~i.e., conserv-
ing! treatment of fluctuations yields just the same sort
results we have just derived, namely the vanishing of
vertex function for, and of all correlation functions contai
ing, the constraint operators@like our G(q)], to all orders in
the fluctuations. Thusthe average of, and all fluctuations in
the constraints vanish, which means that the constraints a
satisfied in every order of approximation, when this is set
correctly. ~The extension to all orders for the present pro
lem will be discussed later.!

It remains to examinexLL
irr . This will be undertaken in

Secs. IV D and IV E.

D. Asymptotics of the ladder series

In this subsection we continue the analysis of the cons
ing approximation of Sec. IV C. We examine the behavior
as
p-

e

t
-
e
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e
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-
s

f
e

p
-

v-
f

the ladder series at smallq and vn , first to elucidate the
mechanism behind the vanishing ofxRR

irr , and then, in Sec.
IV E, the results are applied to the calculation of the physi
density-density response functionxLL

irr .
The equation forG can be rewritten

E d2k1

~2p!2 H ~2p!2d~k82k1!1Ṽ~k82k1!

3S f ~jk11~1/2!q!2 f ~jk12~1/2!q!

jk11~1/2!q2jk12~1/2!q2 ivn
D J

3G~k,k1 ,q,ivn!5Ṽ~k2k8!, ~4.39!

which shows that it is a Fredholm integral equation, whe
the integral kernel appears in the curly brackets on the l
hand side, and containsq and vn as parameters. It implies
that G is Ṽ times the inverse integral operator. The inver
could be calculated by finding the eigenvalues and eig
functions of the integral operator on the left.

At ivn50 ~which could be viewed as the limitivn

→0), one zero eigenvector can be found for allq by use of
the Ward identity proved in Sec. IV C; it isjk1(1/2)q
2jk2(1/2)q @see Eq.~4.35!#. Thus for smallivn , we expect
to have, for allq’s, an eigenvector approximatelyjk1(1/2)q
2jk2(1/2)q , with an eigenvalue tending to zero withivn . If
q→0 also, we obtain

jk1~1/2!q2jk2~1/2!q.q•vk , ~4.40!

wherevk5¹kjk . At small q, the nontrivial part of the inte-
gral kernel becomes

Ṽ~k82k1!
] f

]« U
jk

, ~4.41!

which for zero temperatureT is concentrated atk5kF ~in-
deed, for allq, the difference of Fermi functions is nonzer
only in a shell of width of orderq aroundkF). But this limit
of the kernel is independent ofq, so in addition to the eigen
function just found, which is proportional to cosuk on the
Fermi surface, there is another proportional to sinuk . Note
that these eigenfunctions, in the spirit of a Fermi-liqu
analysis in terms ofdnk or a deformation of the Fermi sur
face, are just rigid displacements of the Fermi sea, resp
tively parallel and perpendicular toq. The second eigenfunc
tion is not a zero mode forqÞ0, so is expected to acquire a
eigenvalue that is nonzero asivn→0, but vanishes asq→0.

For general values of the ratioivn /q the integral equation
and the eigenvalue problem are not easy to analyze, eve
ivn , q small, where the eigenvalue equation takes the fo

A~k,q,ivn!1E d2k1

~2p!2
Ṽ~k2k1!

3
q•vk1

q•vk1
2 ivn

] f

]« U
jk1

A~k1 ,q,ivn!

5l~q,ivn!A~k,q,ivn!. ~4.42!
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This form of equation is standard in Fermi-liquid theor
with Ṽ(k2k1) replaced by 2 f kk1

. At T50, ] f /]«

52d(jk) and the equation can in principle be solved fork
on the Fermi surface, andthese values of the eigenfunctio
determine it elsewhere. Accordingly we might expand bothA
and Ṽ in terms of Fourier modes cosl uk , sin l uk , l 50,
1, . . . for uku5kF . For ivn /uquvFÞ0, the Fourier modes ar
mixed by the integral kernel, so that all components of

2Ṽ~k2k8!5 f 012 (
l 51

`

f l cos l ukk8

5 f 012 (
l 51

`

f l ~cos l ukcos l uk8

1sin l uksin l uk8! ~4.43!

are involved. We have seen that thel 51 mode andf 1 are
crucial to the analysis and must be kept. The other Lan
parametersF l take no special values, and merely produ
finite renormalizations of the response functions~some iden-
tities are implied by the existence of the zero mode for alq,
but these bring in derivatives ofvk and thus parameters tha
lie outside of Fermi-liquid theory!. We propose just to drop
these effects so as to obtain the simplest possible approx
tion that is still conserving. This can be done by replacingf l

for l Þ1 by zero, or more accurately by assuming that
only eigenfunctionsA that are needed are justq•vk /q, q
`vk /q ~which are the correct continuations offuku5kF).
We will actually use this even to higher order inq, as we will
see is necessary.

With this further approximation, the eigenvalues cor
sponding to the two eigenfunctions can be evaluated.
final result forG is

G~k,k8,q,ivn!5
q•vk q•vk8

vn
2x0~q,ivn!

2
q`vk q`vk8

q2x0
'~q,ivn!

,

~4.44!

where

x0~q,ivn!52E d2k

~2p!2

f ~jk1~1/2!q!2 f ~jk2~1/2!q!

jk1~1/2!q2jk2~1/2!q2 ivn

~4.45!

is the ‘‘density-density’’ response function of a Fermi g
with dispersionjk , and

x0
'~q,ivn!52

1

2
N~0!vF

2

2E d2k

~2p!2 S q`vk

uqu D 2f ~jk1~1/2!q!2 f ~jk2~1/2!q!

jk1~1/2!q2jk2~1/2!q2 ivn

~4.46!
u
e

a-

e

-
e

is the transverse ‘‘current-current’’ response function of t
same Fermi gas, including theq-, ivn-independent contac
~‘‘diamagnetic’’! term. x0 arose in a similar way from the
longitudinal current-current response, on using the continu
equation. Note that what we are calling the ‘‘density’’ an
‘‘current,’’ though natural in appearance, arenot to be iden-
tified with the physical density and current.

The above expressions forx0 andx0
' are valid for anyq

and ivn . On the real frequency axis, atv/qvF andq small,
they become

x0~q,v1 i01!5N~0!1 iN~0!v/~qvF!, ~4.47!

x0
'~q,v1 i01!5q2xd* 1 ivkF /~2pq!. ~4.48!

Here xd* is the diamagnetic susceptibility of the Fermi g
with dispersionjk . It is a non-Fermi-liquid property tha
involves derivatives of vk at kF ; if jk were 5(k2

2kF
2)/2m* , thenxd* would be521/(12pm* ). These imply

that the eigenvalues of the longitudinal and transverse eig
modes of the integral kernel above vanish in the ways p
dicted in this limit. This involved the cancellation of th
diamagnetic term in the current-current response in b
cases; this cancellation is well known in normal fluids~i.e.,
nonsuperfluids!.

We can now show that even this further approximation
conserving in the sense discussed in Sec. IV C. Using
above form ofG we can calculate

xRR
irr 5x02x0~x0!21x050, ~4.49!

where the second term is the contribution ofG, for all q and
ivnÞ0. In this calculation, the transverse mode inG did not
contribute. A similar calculation shows thatxRL

irr 50. An ex-
act treatment of the ladder series in the regimev/qvF!1
and q!kF yields the same form with allx0’s replaced by
x0 /(11F0), and the cancellation still occurs, in agreeme
with Sec. IV C.

E. Physical response functions

In this subsection we calculatexLL
irr , the physical density-

density response function, and its limits, the compressibi
and longitudinal conductivity. We also consider the scatt
ing of the fermions by an external potential, and the expr
sion for the current density.

1. Density-density response function

As already remarked, the fact that therL vertex contains
the opposite phase factor from that inrR means that not all
the phase factors cancel inxLL

irr ; instead, those at the two
vertices at the ends of the ladder are doubled. We have
xLL
irr 5x01E d2k d2k8

~2p!4

f ~jk1~1/2!q!2 f ~jk2~1/2!q!

jk1~1/2!q2jk2~1/2!q2 ivn
G~k,k8,q,ivn!

f ~jk81~1/2!q!2 f ~jk82~1/2!q!

jk81~1/2!q2jk82~1/2!q2 ivn

eik`q2 ik8`q. ~4.50!
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However, by comparison withxRR
irr 5xRL

irr 5xLR
irr 50, this simplifies to

xLL
irr 52E d2k

~2p!2
~eik`q21!~e2 ik`q21!

f ~jk1~1/2!q!2 f ~jk2~1/2!q!

jk1~1/2!q2jk2~1/2!q2 ivn
1E d2k d2k8

~2p!4
~eik`q21!

3
f ~jk1~1/2!q!2 f ~jk2~1/2!q!

jk1~1/2!q2jk2~1/2!q2 ivn
G~k,k8,q,ivn!

f ~jk81~1/2!q!2 f ~jk82~1/2!q!

jk81~1/2!q2jk82~1/2!q2 ivn

~e2 ik8`q21!. ~4.51!
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For smallq, we now expand the phase factor. The first te
is then the form found in Refs. 24–26. It is the same
putting rL2rR in place of rL, which goes as; ik`q at
small nonzeroq. The second term is the ladder series w
the insertion (k`q)(k8`q) at the two vertices. This exhibit
the effectively dipolar nature of the coupling of an extern
scalar potential to the physical density: the fermions carr
dipole moment̀ k, as found in Refs. 12 and 24–26 an
discussed in Sec. II. InG, only the transverse mode no
contributes, and we obtain

xLL
irr 5q2m* @ r̄1m* x0

'~q,ivn!#2
q2@ r̄1m* x0

'~q,ivn!#2

x0
'~q,ivn!

52q2r̄@ r̄1m* x0
'~q,ivn!#/x0

'~q,ivn!. ~4.52!

Note that in the numerator, ther̄ ’s occur because of the
absence of a ‘‘diamagnetic’’ term to cancel them, and
writing the remainder of the numerator asx0

' we have ne-
glected the difference betweenk/m* andvk , which affects
the coefficient of the term inx0

' quadratic inq. This term can
be neglected anyway in the following. In the smallv/(qvF),
q region we then have

xLL
irr ~q,v1 i01!5

r̄2

2xd* 2 ivkF /~2pq3!
. ~4.53!

This is similar in form to the result obtained by HLR, or th
renormalized version of it according to the scenario d
cussed in Sec. II A, if we note thatr̄51/(2pf̃) in general
~andf̃51 here!, except that the 1 in the denominator in E
~2.5! has been dropped. That 1 came from the Chern-Sim
term, which couples longitudinal and transverse fluctuatio
by contrast, in the conserving approximation in the pres
approach, the ladder propagatorG does not couple thes
modes. Note that the first term in the first line of Eq.~4.52! is
essentially the result of Refs. 24–26,

xLL
irr 5q2m* @ r̄1m* x0

'~q,ivn!#, ~4.54!

which behaves differently at lowv andq, as we will see.
We now take various limits of this expression. Asv

→0, we obtain

dn

dm
[ lim

uqu→0
xLL

irr ~q,0!52 r̄2/xd* , ~4.55!

which is finite and positive, so the system is compressible
in HLR, though again the expression differs from that in t
scenario of Sec. II A, as given in Eq.~2.13!. Though we used
s

l
a

-

ns
s;
nt

s

the approximate form forG, our result is exact within the
ladder~conserving! approximation.

To obtain the low-frequency longitudinal conductivity
relevant to the surface acoustic wave experiments, we de
a relevant limit:

sxx~q!5 lim
v/q→0

lim
q→0

v/q fixed

2 iv

q2
xLL

irr ~q,v1 i01! ~4.56!

for q parallel tox̂ ~the conductivity should always be viewe
as the response to the total electric field, so it is related to
irreducible response!. Here ‘‘lim’’ means that we keep the
leading nonzero term. This limit corresponds to consider
a long-wavelength sound wave, souqu is small !kF and v
5uquvs , and then taking the sound velocityvs to zero~i.e.,
vs!vF). Then we obtain

sxx~q!5 r̄2
2pq

kF
5

q

2pkF
, ~4.57!

in exact agreement with HLRfor f̃51. There a different
procedure was used to definesxx(q), as given by HLR@Eq.
~B4.a!#. That and the present definition give the same res
both in the RPA of HLR and in the present approximatio
This result was expected to be very robust on Fermi-liq
grounds, within the scenario discussed in Sec. II A, sinc
corresponds to the transverse conductivity of an ordin
Fermi liquid, which is unrenormalized in Fermi-liqui
theory. Remarkably, it is the same here, in spite of ot
differences in the structure of the expressions. This resu
not obtained from expression~4.54!.24 It is also remarkable
how the factor r̄, which came from a standard gaug
invariance result for the usual Fermi liquid, here plays one
the roles played in the CS theory bysxy (5 r̄ in our units!.
This effect, that the ‘‘current’’ response atv/q→0 of a
Fermi gas to a scalar potential coupled to the dipolar exp
sion for the density gives the Hall conductivity, was point
out by Störmer.70

Finally the spectral density forxLL
irr (q,v) implied by Eq.

~4.53!, is, at low frequency,

xLL
irr 9~q,v!5

vkFr̄2/~2pq3!

xd*
21v2kF

2/~2pq3!2
~4.58!

@but vanishes foruvu/(qvF).1], and has a peak, an ove
damped mode atv;uqu3, similar to the result of HLR. As
many physicists have noticed, this implies for the vario
moments, asq→0,
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E
0

`

xLL
irr 9vn;qn13, n>1

;q3ln 1/q, n50

;const n521. ~4.59!

For n,21, the moments diverge as usual.
Then51 moment can be obtained exactly, because of

Kramers-Kronig relation

xLL
irr ~q,v1 i01!5E

2`

` dv8

p

xLL
irr 9~q,v8!

v82~v1 i01!

;
21

v2 E2`

` dv8

p
v8xLL

irr 9~q,v8!

~4.60!

asv→`. The high-frequency behavior ofxLL
irr at smallq can

be obtained by returning to the integral equation forG @Eq.
~4.39!#. To leading order inqvF /v, G(k,k8,0,v)5Ṽ(k
2k8), and, from Eqs.~4.43! and ~4.51!, we obtain

xLL
irr ~q,v1 i01!;

2q4kF
2 r̄~11F2!

4v2m*
. ~4.61!

~The same result except thatF2 is replaced by zero is ob
tained using our earlier approximation forG.) This can be
compared with the result in a usual Fermi liquid, which
2q2r̄(11F1)/(v2m* )52q2r̄/(v2m) on using 11F1
5m* /m. We return in Sec. V below to the question of th
general validity of our result, beyond the ladder approxim
tion.

The moments of the spectral density of the full respo
function xLL can now also be obtained. For then521 mo-
r
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th
ity

tia
e
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ment, one finds;Ṽ(q)21 for a long-range interaction, a
usual in a compressible system. Then50 moment behaves
as q3ln 1/q again, and gives the LLL ‘‘static’’~equal time!
structure factors̄(q). It does not go asq4, as GMP suggested
it should in any liquid state. This is because compress
liquids have both low-energy modes and long-range corr
tions that produce nonanalytic behavior ofs̄(q). GMP con-
cluded that fluids in the LLL should be incompressible, b
this argument is invalid~this point was also made b
Haldane27!. The n51 moment goes asq4, as argued by
GMP, and using the high-frequency behavior ofxLL(q,v),
and becauseṼ(q) is less singular thanq24,

E
2`

` dv8

2p
v8xLL9~q,v8!5E

2`

` dv8

2p
v8xLL

irr 9~q,v8!

5
q4kF

2 r̄~11F2!

8m*
, ~4.62!

to leading order inq. GMP found a formula for this momen
in terms ofV(q) ands̄(q), so we obtain a relation among th
quantitiesm* , F2 , and s̄(q). The result for then51 mo-
ment ofxLL

irr can also be viewed as a sum rule for the lead
part at small q of the longitudinal conductivity
Resxx(q,v)5vxLL

irr 9(q,v)/q2.

2. Fermion scattering vertex

We now consider the scattering of the fermions by
external potentialVext(r ,t). The scattering of a fermion from
wave vectork11

2q to k2 1
2q is given in the same ladde

diagram approximation by the vertex function, similar toL
earlier except for a phase factor,
LL~k,q,ivn!5eik`q2E d2k1

~2p!2
eik1`q

f ~jk11~1/2!q!2 f ~jk12~1/2!q!

jk11~1/2!q2jk12~1/2!q2 ivn
G~k1 ,k,q,ivn! ~4.63!
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after removing the same phase on the external lines as foL
~only the irreducible part is shown!. If the phase factors are
replaced by 1, we obtainL, so we will first reconsider this
briefly.

Earlier we showed that, in the small-q limit,

L512q•vk /~ ivn!. ~4.64!

In terms of the asymptotics ofG, the second term is the
correction produced by the longitudinal mode. While the fi
term is the bare scalar coupling to the external potential,
second term couples to the fermions through their veloc
that is to the ‘‘current’’~in the same sense as before!, and so
can be viewed as describing a longitudinal vector poten
Because of the factorq/ ivn , the vector potential cancels th
direct effect of the scalar potential, if we consider the elec
field they produce. The system responds by producing a
t
e
,

l.

c
n-

gitudinal response purely in the form of a vector potenti
because we chose the gauge such that the scalar potent
the functional integral vanishes at nonzero frequencies. T
for gauge-invariant response functions, such asxRR that we
considered earlier, these terms produce complete canc
tion, as we saw earlier in the example. This should also
true in other calculations, such as for the effect of an exter
‘‘impurity’’ potential on the conductivity, if it coupled torR

instead of torL as it would in fact~such an ‘‘impurity’’
potential would be static, but as usual the same effects wo
be found there as for all nonzero frequencies, thanks to
zero-frequency Lagrange multiplier or scalar potential fiel!.

Since the vertex functionsL and LL differ only by the
phase factor, we conclude that the phase factors likeeik`q

can be replaced byeik`q21 when usingLL. To first order
in q, this gives the dipolar couplingk`q with dipole mo-
ment`k. The first term inLL is thus the direct coupling o
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Vext to the dipole moment of the fermions. This should
contrasted with the direct, minimal coupling to the fermio
with charge 1 in the scenario for the low-energy behavior
the approach of HLR , described in Sec. II A. In the seco
term inLL, where the ladder seriesG contributes, the dipolar
coupling brings in the transverse mode in the ladder ser
as in the calculation ofxLL

irr . This coupling gives, essentially

q`vk@ r̄1m* x0
'~q,ivn!#/x0

'~q,ivn! ~4.65!

at smallq, ivn , which is a coupling to the transverse cu
rent, and is similar to that found in HLR and also in Ref.
in connection with the effects of an impurity potential, that
the ivn50 limit. As there, the external potential couples
the density, which induces a transverse vector poten
which, because it is singular atq50, scatters the fermion
much more effectively than the direct minimal coupling
the potential, let alone the dipolar coupling. The scatter
produced can be simplified by comparison with the phys
densityrL induced by the same external potential, which

^rL&2 r̄5xLL
irr Vext(q,ivn)e2(1/4)uqu2. This shows that if the

induced transverse vector potential is denoteda1A, then we
have

¹`a52^rL&/ r̄522pf̃^rL&, ~4.66!

which is exactly the equation in the CS theory. This sho
that the fermions experience a vector potential that obeys
~4.66!, whererL is the physical charge density,even though
there is no CS term in the effective gauge field coupling a
the fermions behave as dipoles. This agrees with the us
Refs. 10 and 12 of the Berry phase argument of Ref. 23
obtain the vector potential seen by the fermions, which in
way assumed that there are flux tubes attached to the
ticles, unlike the CS approach. Note that, since we also h

rL5 r̄2¹`g, ~4.67!

this is consistent witha1A5g/ r̄ for the longitudinal part.
There should also be an equation2ȧ2¹a052pf̃` jL,
wherejL is the physical current density. The problem of t
form of jL in the present approach will be considered in S
IV E 4.

3. Effect of impurities

Here we consider the effect of impurity scattering on t
density-density response and the longitudinal conducitiv
The HF and ladder approximations can be reconsidered
impurities present. Here we neglect the mechanism of S
IV E 2, and take only direct scattering by the impuritie
analogously to the bare HF appproximation considered
far. The average self-energy should contain an impurity l
~the self-consistent Born approximation!, and the ladders
contain both impurity lines and interactions as the rungs
the ladder. The effective mass and the diamagnetic susc
bility will generally be renormalized by the impurity effect
but we will not distinguish them from their counterparts
the pure system. Calculations are straightforward, and
results can be written down using well-known formulas. T
scattering rate 1/t is given by the usual expression, but co
tainsm* from the density of states~this could be replaced by
n
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the rate from the mechanism of Sec. IV E 2, but this ma
little difference!. At q50, we have

sxx~0,v!5
ivr̄~ r̄1m* x0

'!

x0
'

, ~4.68!

and, in the Drude approximation, recalling that the curre
current response is isotropic atq50,

x0
'~0,v1 i01!5

ivr̄t

m* ~12 ivt!
. ~4.69!

Then

sxx~0,v!5 r̄m* /t5s0, ~4.70!

independent ofv. This can be viewed as the usual form
resistivity of the fermions,rxx5( r̄t/m* )21, divided by
rxy

2 , so is consistent for smallrxx with the result of the CS
theory, of adding the fermion and CS resistivities@see Eq.
~2.9!#. The frequency independence is also consistent w
this, if in the CS approach one usesm* in place ofm, and
includes FL corrections as in the scenario described in S
II A. The effect of the latter corrections is to replace
2 ivt by 12 ivtm/m* ~see PN, p. 191!. As m/m*→0,
with m* , t fixed, the result above is obtained.

For a finite wave vector, we will consider only the sma
v and -q region. With impurities present,x0

' is analytic in
q2 andv,

x0
'~q,v1 i01!5q2xd* 1 ivr̄t/m* . ~4.71!

We then obtain the longitudinal conductivity

sxx~q,v1 i01!5
ivs0

iv2Dq2
, ~4.72!

which exhibits a diffusion pole, with a diffusion constant

D52m* xd* /~ r̄t!, ~4.73!

ands0 obeys the Einstein relations05D dn/dm.

4. Physical current density

We turn here to a calculation of the expression for t
physical current density within linear response. The m
obvious way to obtain the current is by projecting the us
expression to the LLL, as was considered by GMP. T
yields

j c5`¹rL/~2m!, ~4.74!

which involves the bare mass, and describes the current
to the cyclotron motion of the particles. Since it clear
obeys¹• j c50, and gives zero when integrated across a s
tion with a boundary condition of zero density, it does n
contribute to transport. This current, when coupled linea
to a change in the vector potential,A• j c , describes a mag
netic moment on each particle, which should be recovere
the U~1! CS approach, as argued by the authors of Ref.
and obtained by SM.24

We are concerned with transport and with response fu
tions, and this part of the current contains explicit deriv
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tives, so is of less interest at long wavelengths. We there
turn to the current due to drift motion of the guiding cente
of the cyclotron orbits of the particles, due to both the ext
nal one-body potentialA0 and the interparticle two-body in
teraction. We will not consider fully the response to a chan
in the physical vector potentialA. The existence of both
parts of the drift current was recognized by GMP and in R
10; for further discussion, see Refs. 72 and 73. In princip
they can be obtained by carrying the calculation of the p
jected current to higher order in 1/vc ~the cyclotron current
j c being the leading term, of ordervc), by considering vir-
tual excitation of the particles to higher Landau levels. T
was carried out in Ref. 74; it yields two types of terms
order vc

0 in the matrix elements of the current within th
LLL, for an external potentialVext. The first of these, called
j̃ L
1 , can be written as a series of derivatives of the LL

projected potentialVext and of the densityrL; the series can
be further divided into a series of exponential form th
agrees with the ‘‘Noether current’’ of Martinez and Sto
and another series, beginning with a third-order derivat
that is of the form of an integral of an exponential. T
second type of term74 consists of the modification of th
cyclotron current by the effective LLL Hamiltonian to orde
vc

21 , so is more complicated. The general expression for
current is thus by no means simple. However, to find the
current for transport purposes, we require only the smaq
limit, and for this the result is just

jL52rL`¹A0 ~4.75!

for a slowly varying potentialA05Vext, which exhibits the
Hall conductivitysxy5 r̄ in our system.

For the small-q drift current due to the interaction, w
have, in Fourier space,

jL~q!5E d2q8

~2p!2
i `q8Ṽ~q8!:rL~q1q8!rL~2q8!:.

~4.76!

Diagrammatically, one can see that to calculate the lin
response current to a scalar perturbation within the cons
ing approximation, it will be sufficient to take the operat
itself in the HF approximation. SincêjL&50 in the unper-
turbed ground state, the leading term is obtained by repla
a pair of operatorsc† andc by their expectation value in th
ground state,

^ck1

† ck2
&5~2p!2d~k12k2!u~kF2k1!, ~4.77!

in all possible ways; that is, two ‘‘direct’’ and two ‘‘ex-
change’’ terms. Of the direct terms, one vanishes and
other is seen to give the Hall current produced by the fi
due to the interaction with the average density of particle
wave vectorq,

jL~q!direct52 i `q r̄ Ṽ~q!rL~q!. ~4.78!

In calculating the irreducible response to the total field, t
term is clearly included automatically. Therefore we can tu
to the exchange terms which alone give the irreducible
sponse. Sinceq is small, we use
re

-
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u~kF2uk1 1
2 qu!2u~kF2uk2 1

2 qu!52q cosukd~k2kF!
~4.79!

for q in the x̂ direction, and after some algebra we obtain

jL~q! irr5E d2k d2k8

~2p!4
i `~k2k8!Ṽ~k2k8!ck2~1/2!q

† ck1~1/2!q

3@2q cosuk8d~k82kF!#

52E d2k

~2p!2
@ i `k q•k~11F2!/m*

1 i `q kF
2~F02F2!/~2m* !#ck2~1/2!q

† ck1~1/2!q ,

~4.80!

where the Landau parametersF l were defined earlier in Eq
~4.43!. We assumed that only values ofk near kF will be
used, which is true for linear response~thuskF

25k2).
Interpreting ck2(1/2)q

† ck1(1/2)q as dnk(q) in FL theory,
wherednk(r ) is the departure of the distribution of occupie
k values atr from the ground state, and is assumed to
nonzero only fork nearkF , this can be identified as

j m
L ~q! irr52 i«mnqlPnl~q!, ~4.81!

where

Pmn5E d2k

~2p!2F S kmkn2
1

2
k2dmnD ~11F2!/m*

1
1

2m*
k2dmn~11F0!Gdnk~q! ~4.82!

is the stress or momentum flux tensor of the FL; it is equi
lent to that in Ref. 75, modified to two dimensions. Since
have identifiedrL(r )5 r̄2¹•P andP~r !5`g~r !, we expect
a term in the currentj irr

L 5Ṗ(r ).25 But, by momentum conser
vation,

]gm

]t
1]nPmn50, ~4.83!

and so we find Eq.~4.81!. Since we also wish to identifya
1A5g/ r̄, we find

j irr
L 5 r̄`ȧ, ~4.84!

which is essentially the other CS-like equation.
We should also add to the Hamiltonian the potential ter

E d2q

~2p!2
@a0~q!rR~2q!1Ã0rL~2q!#, ~4.85!

where a0 is the scalar potential introduced earlier, whic
implements the constraintrR5 r̄, and for which we chose
the gaugeȧ050, andÃ0(q)5e2(1/4)q2

A0(q)5Ṽext(q) is the
externally applied potential. Then the right-hand side of
momentum conservation equation becomes

2@ r̄¹a01rL~r !¹A0# ~4.86!
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at long wavelengths. Here the coefficientr̄ arises fromrR on
using the constraint. There is also a similar Hall contribut
to 2rL`¹A0 to the current densityjL. Expressing the tota
physical currentjL in terms ofġ5ȧ/ r̄, we obtain

jL5 r̄`~ ȧ1¹a0!, ~4.87!

which is manifestly gauge invariant and of the CS form.
If we consider the current in the right coordinates,jR, in a

similar way, we find that in the absence ofa0 it vanishes
identically, becauserR commutes withH. This result of van-
ishing current was already invoked in Sec. II D. It can
interpreted by breaking the current into the piecesg/m* and
(a1A) r̄/m* shown there. The first term represents the
locity of the fermions, while the second represents the us
backflow correction in a FL, which in the present case
F1521 exactly cancels the first part. The same effect
curs in the ZFIM model: the total current carried by ea
fermion is k/m0 by Galilean invariance, andm05`, so it
vanishes.~In the presence ofa0 , we findjR5 r̄`¹a0 , a Hall
current. This does not affect our argument in Sec. II
which uses only the irreducible part of the current, fro
interactions.! A similar calculation can be given forjL. The
velocity term and the leading part of the backflow are
same as forjR, and so cancel. The subleading terms th
give the result as calculated above. This cancellation of
leading terms is~perhaps not surprisingly! similar to what
occurred in the formula for the densityrL on using the con-
straint onrR.

The irreducible longitudinal current density-density r
sponse functionx j

x
LrL

irr
should bev/q timesxLL

irr . This can be

verified in terms of the ladder series expressions for both
one consistently either keeps or drops the Landau param
F l for l Þ1 in both the ladder series and theq• jL vertex. In
particular, in the small-q/v limit, the (11F2)/m* term in jL

reproduces that inxLL
irr . However, if we consider the longi

tudinal current-current response, which should
v2/q2 timesxLL

irr , we see that the two-point current correl
tion function starts at higher order inq/v than the required
term ~two-point correlation functions always vanish asv
→`). A similar difficulty is familiar in the usual Fermi liq-
uid, and is resolved by the presence of a term in the cur
2 r̄A/m ~the ‘‘diamagnetic current’’! that is linear in the
applied vector potential perturbation, so that the respo
function (x0

' in the noninteracting case! consists of a con-
stant plus the two-point function of the current without theA
term. A similar effect should occur here. The term requir
in jL is of orderq2. One might attempt to find such possib
terms by making the stress tensor expression@Eq. ~4.82!#
gauge invariant by replacing allk’s ~including kF

25k2) by
k2a2A. This does not affect the other calculations done
to now because, in the absence of a perturbation in the
ternalA, the neta1A does not contribute in linear respons
But further work is required to check the form of this tens
since the gauge invariance under SU(N) or W` reduces to
conventional U~1! gauge theory only at long wavelength
while this expression forjL is higher order in derivatives. In
any case, such minimal coupling terms do not produce
necessary factors ofq, and so should be absent. A way
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find the part of thelongitudinalcurrent linear in a change in
A, which should be correct at long wavelengths, is to ad
term 2dA• jL(0) @where jL(0) is the exact expression~4.76!
of zeroth order in the perturbationdA] to the Hamiltonian,
then calculate the longitudinal current through first-ord
terms indA by commutingrL with H. The resulting first-
order term can be seen to give the correct high-freque
limit of the response, because it is given by a double co
mutator of H with rL(6q), which is what appears in the
sum rule for the first moment of the spectral density ofxLL

irr ,
and we have seen that it is also related to (11F2)/m* . Thus
the correct term is obtained, and must be used in the lo
tudinal current-current response for allv/q to ensure agree
ment with the density-density response.

We now consider the full conductivity tensor atq50. The
longitudinal part has already been considered. The full c
ductivity tensor can be written in the Kubo form

smn~0,v1 i01!5 r̄«mn1
1

i ~v1 i01!
x j

m
L j

n
L

irr
~0,v1 i01!,

~4.88!

where the first term is the Hall conductivity, andx j
m
L j

n
L

irr
is the

current-current two-point function for the irreducible part
the current. This form was proposed by Lee.25 We may also
consider the conductivity tensor when impurities are pres
Note that theq2 term in jL does not contribute whenq50,
even when impurities are present. However, we expect
additional contribution tojL from the impurity potential,
which we have not explicitly calculated. Because averag
~using Gaussian disorder! produces diagrams like those fo
interactions, except that no frequency is transferred al
impurity lines, it should be similar to that derived above.
will represent the loss of conservation of momentum wh
disorder is present. Only the off-diagonal part ofx j

m
L j

n
L

irr
, or

the corresponding transverse response to a scalar pert
tion, has not so far been calculated. Because the ladder
grams in the interaction and impurity lines do not viola
parity ~reflection symmetry!, there can be no off-diagona
terms unless the impurity current vertices that we have
calculated contain pieces both parallel and perpendicula
q. If such terms are absent, thensxy5 r̄, unaffected by im-
purities in this approximation. As emphasized by Lee,25 this
differs from the result of the U~1! CS approach mentioned i
Sec. II A. It was argued in Ref. 76 that in the U~1! CS fer-
mion approach, applied to then5 1

2 case, particle-hole sym
metry implies thatsxy5

1
2 exactly, which is only satisfied by

the scenario described in Sec. II A ifscxy of the CS fermi-
ons is2 1

2 . Assuming our results also apply ton5 1
2 , there is

clearly no problem with particle-hole symmetry in our se
consistent Born approximation~SCBA!. We should point
out, however, that in this or the similar approximation for t
U~1! CS approach, the results do agree at leading orde
rcxx /rxy , and the conditionscxy52 1

2 is only needed to
guaranteesxy5

1
2 to all orders in this expansion. Thus th

contrast between the naive SCBA resultscxy50 and the
requiredscxy52 1

2 is not such a dramatic singular corre
tion as it might appear at first sight. At higher orders the
will of course be other correction terms not included in t
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SCBA, which can drive the system into the critical regim
representing the transition between quantized Hall platea

V. EXTENSION TO ALL ORDERS
IN THE INTERACTION, AND DISCUSSION

In this section, we consider the extension of the results
Sec. IV to all orders in the interaction, and describe the str
ture of the results we expect, in a scenario which replaces
previous U~1! CS scenario described in Sec. II A. First w
consider a more complicated conserving self-consistent
proximation, with special attention to long-range intera
tions. Then we explain the FL theory structure for suf
ciently long-range interactions.

In the HF and generalized HF approximations of Sec.
the exchange diagrams contained the bare interactionṼ(q),
and this led to a vanishingm* at kF for Coulomb or longer-
range interactions. An obvious improvement to make is
insert the ladder series into the Coulomb vertex, as in S
IV E 2. The longitudinal part of the ladder seriesG renders
the coupling to the fermions dipolar at long wavelengt
which removes the divergence in 1/m* for interactions less
singular than 1/q3. At the same time, we can insert the ladd
series inside the interaction line itself, thus screening
interaction. We can alsoreplace the interaction line in the
exchange diagram byG. Finally, we make this approxima
tion self-consistent by making these replacements forall in-
teraction lines, including those inG, thus iterating to self-
consistency. This approximation, applied to respo
functions as well as the self-energy, is once again conser
in the same sense as in Sec. IV C, and the conclusions th
which follow from F1521, still apply.

This approximation is clearly not as tractable as that
HF, but we can still make some general statements. The
tem should still be compressible for all interactions cons
ered~those less singular than 1/q2 asq→0). The longitudi-
nal mode in the ladder just produces the dipolar coupl
effects already mentioned, which do not cause a breakd
of FL theory, though the effect of the exchange self-ene
that containsG in place ofV has not been calculated. Th
transverse mode inG produces singularities in the sel
energy for Coulomb or shorter-range interactions. The s
consistent summation proposed here is the same as re
the transverse mode as that studied in Refs. 11 and 39~and
similar to that in Ref. 37!. We have nothing to add here t
the previous discussion of this case, except to emphasize
these singular effects should be treatedafter the other FL
renormalizations discussed in this paper, and that, in rela
to the U~1! CS approach, the effects incorporated in th
paper are related to the longitudinal, not transverse,
gauge field fluctuations~see Sec. II A!. For interactions
longer range than Coulomb, there is no breakdown of
theory, sincem* remains finite and the quasiparticle dec
rate vanishes faster than the renormalized excitation en
jk ask→kF , though not as fast as (k2kF)2.

We can now discuss the general structure expected in
results to all orders in the interaction; some of this is impli
in the foregoing discussion. We consider only interactio
longer range than the Coulomb interaction, so there is
breakdown of FL theory. For the Coulomb interaction, t
results are probably still useful, since the only other effec
s.
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a logarithmic divergence inm* , which is very weak.
For such interactions, we again separate in the respo

functions the ‘‘direct’’ or reducible diagrams, which repre
sent the long-range self-consistent field produced by the
pectation value of the density. The remaining diagrams
analyzed in terms of the fermion-hole irreducible scatter
vertex, which atq, v→0 is nonsingular and defines the p
rametersf l and henceF l 5m* f l /2p. A Ward identity, now
valid to all orders, implies thatF1521. In fact an identity
for therR vertex, like that in Sec. IV C, is valid to all order
and for all q and vnÞ0, and expresses the fact th
@rR,H#50. In the general diagrams that contribute to the
vertex functions, the phase factors in the interaction ver
do not all cancel, so the system is not equivalent to the ZF
model. The results nonetheless have the same structure
Sec. IV, and at long wavelengths can be interpreted in te
of an infinitely strongly coupled gauge field, coupled to t
FL. There are no parity violating effects in the long
wavelength dynamics of this system, because the Landau in
teractionf kk8 is even under exchange ofk andk8. The only
parity-violating effects come in the coupling to external ele
tromagnetic fields, where the Hall effect appears, and
physical density and current obey the CS-like equations.
self-consistent field produced by the long-range interact
~the reducible terms! also produces Hall currents, but there
no parity violation because interactions within the syst
couple to the density at both ends. The fluctuations in
longitudinal part of the gauge field can be reconsidered
changing to the gauge¹•a50, in which it is the scalar po-
tentiala0 that fluctuates~at all frequencies!. This absorbs the
F0 we had previously, and the conditionrR5 r̄ is maintained
through an effectiveF0 that is now infinite~the Landau pa-
rametrization is not gauge invariant!. The longitudinal part of
the ladder series at lowv/q gives an effective interaction
between the fermions, which is of order the inverse den
of states, that is the LandauA0 parameterA05F0 /(11F0)
51 ~this is similar to effects in the local Fermi liquid in th
Kondo problem; see Ref. 65!. Because the leading ‘‘mo
nopolar’’ part of therL density fluctuations is suppressed b
this, the leading nontrivial part is described by the suble
ing, dipolar part of the exact density expressionrL @note that
this subleading coupling is not described by the minima
coupled long-wavelength Hamiltonian in equation~2.30!#. A
noteworthy feature of our approach is that this is not o
tained separately from the transverse gauge field effects,
inserted at the beginning, but emerges later. The dipole
ment `k on each fermion is not renormalized, because
momentum is a conserved quantity. This really deserves
explicit proof, but it will be omitted because of the similarit
to results in standard FL theory~see, e.g., Nozie`res62!; quite
generally, conserved quantities are not renormalized.

The compressibility is given by

dn

dm
52

r̄2

xd*
, ~5.1!

wherexd* is the fully renormalized~irreducible! diamagnetic
susceptibility, and is the only non-Fermi surface quantity
make an appearance in the response in the regime of smq
andv. The other quantities mentioned in Sec. IV are giv
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by the same forms as there, when written in terms ofr̄, kF ,
m* , F l , andxd* . In particular, we mention the longitudina
conductivity in the regimeq3,v,qvF , relevant to surface
acoustic waves. The result, which is identical to that of HL
is exact in the same way, and for the same reason, as
low-frequency transverse conductivity of the usual FL. Als
the high-frequency behavior, orn51 moment of the spectra
density, of the irreducible density-density response, is gi
by the same sum-rule-like form as in Sec. IV E 1, as long
we consider only excitation of a single quasipartic
quasihole pair~in the FL sense!. If multiple quasiparticle-
hole pairs do not contribute at this order inq, then this ‘‘sum
rule’’ is exact. In the usual FL, multiple quasiparticle-ho
pairs contribute to spectral densities atO(q4), by consider-
ations of phase space, and thef-sum rule is for theq2 part
~and higher-order terms actually vanish in this particu
case!. Thus it is not certain in our case that our sum rule
exact. The same phase-space considerations apply, and
assume that the squared matrix element of the densityrL is
of order q2 ~i.e., dipolar! for matrix elements to multiple
quasiparticle-hole excitations, as we have seen it is for sin
quasiparticle-quasihole excitations, then these other co
butions can be neglected. This seems likely to be correct,
as we do not have a proof, we will leave it as a conject
that Eq. (4.62) is an exact relation, which we call the ‘‘F2
sum rule,’’ and that it holds for both the irreducible an
reducible responses, as in the generalized HF approxima
If correct, we also obtain a relation of (11F2)/m* to the
LLL structure factors̄(q) and Ṽ, as noted already in Sec
IV E 1.

When impurities are included, an improved approxim
tion is obtained by treating them diagrammatically simila
to the interaction lines as described at the beginning of
section. In this Drude-~or SCBA-!-like approximation, the
conductivity takes the same form as in Sec. IV E 3. Based
the existing results,24–26 we also expect that similar resul
hold for f̃.1, with r̄5(2pf̃)21.

We expect that the direct interaction of the particle w
its correlation hole~or attached vortices!, described in Refs
10, 12, and 24–26 is contained in this description, but m
not be easily obtainable diagrammatically. If it is obtained
some approximation, the effects stemming fromF1521
will still be present when the approximation is conserving

One other way that the FL picture could break down is
a pairing instability as in the theory of superconductivi
The interaction in the quasiparticle-quasiparticle chan
with quasiparticles of wave vectorsk, 2k can be considered
using the ladder approximation. The dipolar nature of
coupling gives rise to an attractive interaction, as noticed
the authors of Refs. 26 and 27. Since the system is comp
ible, this interaction is screened. In addition, the ladder se
G, representing transverse and longitudinal gauge field fl
tuations, can be exchanged between the fermions, and
transverse part can be combined with the interactionV. The
transverse gauge field is believed to be pair-breaking w
included in an Eliashberg-equation treatment.77 The longitu-
dinal part gives an extra repulsive short-range interact
which also suppresses pairing, especially in thes-wave chan-
nel. Therefore the question of whether pairing is actua
expected to occur requires careful consideration. Ther
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unpublished evidence that it does occur for bosons atn51
for some interactions.26,27 If pairing does occur, the system
will become incompressible at low energies and long wa
lengths, essentially because of the Meissner effect in the
perfluid Fermi system: the diamagnetic susceptibility n
behaves asxd* ;21/q2, which, inserted in our result fo
dn/dm, shows the system is incompressible. This shows
it is not just the symmetries of the Hamiltonian that make
ground state compressible in the FL-like state, but it is
fact that the state is assumed to be a normal~nonsuperfluid!
liquid.

Assuming the system is a FL, the scenario we have
scribed here and in Sec. II D is essentially a FL coupled to
infinitely strongly coupled gauge field~that representsF15
21), with no CS term. The central point was the Wa
identity that gaveF1521. We connected this with the
gauge invariance under U(N)R , or equivalently with conser-
vation of G(q). Other authors have very recently com
mented on ‘‘translational invariance in momentu
space,’’24,27,51,25and its relation to some sort of gauge sym
metry. We will try to make this more precise. The Ham
tonian @Eq. ~4.1!# is invariant under shifts of the wave vec
tors of all the fermions byQ: k i→k i1Q. The generator of a
translation of the wave vectors of all fermions is

1

2
i E d2k

~2p!2
@ck

†¹kck2~¹kck
†!ck#. ~5.2!

In first quantization and in position space, it is simply( ir i .
This is related to Galilean invariance in ordinary syste
with finite bare massm0 . If we rescale the generator o
Galilean transformation78 to obtain shifts ink i instead of in
vi5k i /m0 , we obtain

(
i

~r i2tpi /m0!, ~5.3!

and the second term can be dropped whenm0→`. However,
in this limit we obtain the ZFIM model, and the Galilea
symmetry is enlarged to the local gauge symmetry gener
by r(q), already discussed. In our system, by contrast,
gauge symmetry is generated byrR(q),

rR~q!5E d2k

~2p!2
e2~1/2!ik`qck2~1/2!q

† ck1~1/2!q

5N̂1E E d2k

~2p!2

1

2
q•@ i `kck

†ck

1ck
†¹kck2~¹kck

†!ck#, ~5.4!

keepingall terms to linear order inq. Using the similar ex-
pansion ofrL(q), the generator of shifts ink can be written
as the first-order term inrR1rL. The other, unused, piece
are the particle numberN̂ and the momentum*kck

†ck ,
which are also conserved quantities~note that the terms inrL

andrR linear inq, are generators of magnetic translations
the left and right coordinates, respectively, written in m
mentum space!. Thus the ‘‘shifting’’ symmetry is part of the
gauge symmetry,in combination with other global symme
tries, and not just part of the gauge symmetry as stated
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SM. Even so, for some purposes, viewing it just as part
the gauge symmetry can be useful, as we saw in Sec.
and will again in the next paragraph.

In unpublished work,27 Haldane proposed to write the e
fective Hamiltonian of the quasiparticles, for the case o
finite system on a torus~say a square torus of sideL), as

Heff5
1

4m* N
(
i j

~k i2k j !
2, ~5.5!

which possesses the shifting symmetry. In this system, s
ing all the momenta by the smallest possible amount 2p/L
changes the total momentum by 2pN/L, and gives a state
equivalent to the original one.79 The latter fact is assumed i
numerical calculations, and such calculations seem to c
firm this form of the Hamiltonian. We may identify thi
Hamiltonian as similar to our

(
i

~k i2a2A!2/~2m* !, ~5.6!

in the case of a spatially constanta1A, since~by an equation
of motion! a1A5g/ r̄5( ik i /N. The shift transformation is
a gauge transformation~up to caveats just discussed! that
does not change the physical states; this fact goes beyon
simple symmetry property possessed by Eq.~5.5!. Our
Hamiltonian is preferable because, whena is allowed to vary
spatially, it represents a local interaction, unlike Eq.~5.5!.
Integrating outa, and using the constraint on the densityrR,
we obtain a Hamiltonian like that in SM, except that we ha
the effective massm* , whereas in their work it appears at
stage where they instead have the bare massm. This Hamil-
tonian is also the starting point for the arguments of Ref.

VI. CONCLUSION

In this paper we have developed a truly lowest-Land
level theory for the Fermi-liquid-like state of charged boso
at n51. We used a formalism of Pasquier and Haldane53, in
which the composite fermion fields depend on two comp
coordinates, one of which is the coordinate of the boson,
the other is in effect the coordinate of a vortex in the wa
function of the other bosons, attached to the boson.
wave functions in both these coordinates are restricted to
lowest Landau level, and there are operator constraints w
fix the density in the vortex coordinates. The constraints
ply that the system is a gauge theory. The effective the
for low-energy, long-wavelength phenomena is a Fermi
uid in which the fermions couple to a gauge field, for whi
there are no bare terms in the action.52 The ladder series
treatment in Sec. IV, with the approximate form Eq.~4.44!,
is equivalent to the RPA applied to this gauge field. Sin
there is no Chern-Simons term in the gauge field action,
longitudinal and transverse modes decouple. The longit
nal part, within the RPA, gives rise to an effective sca
interaction at small momentum exchange of order the inve
density of states. This enforces the fixed-density constra
The transverse part couples to the physical density, the
nontrivial term in which is dipolar in form and parity violat
ing. Each fermion carries a dipole moment equal to its wa
vector. The result is a finite compressibility, and a lo
f
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frequency longitudinal conductivity that agrees with that
HLR. The gauge field obeys the same Chern-Simons eq
tions relating it to the physical density and current as in
U~1! Chern-Simons fermion approach of HLR. Becau
there is no CS term in the action, the results nonethe
differ in form from those in the scenario for the fully reno
malized theory based on HLR. Although the gauge the
reduces to an ordinary U~1! theory at long wavelengths, thi
has to be supplemented by the expression for the den
which is a nonminimal coupling from the U~1! point of view.
The form of the expression for the physical current intima
that this is not the whole story, and we expect that the
W` gauge group will be involved in general. In view o
existing results of other authors,24,25the results obtained her
for f̃51 ~bosons atn51) are also expected to apply fo
other cases of the FL-like state, when written in terms or̄

5(2pf̃)21 and other parameters. There are many poss
extensions and applications of the present methods, to w
we hope to return elsewhere.
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APPENDIX A: NONCOMMUTATIVE GEOMETRY
FOR PEDESTRIANS

In this appendix we explain the formalism we use f
states in and operators acting in the Hilbert space of a sin
particle in the lowest Landau level, in the simplest case
the infinite plane with uniform magnetic field, and a ma
netic length equal to 1~see also Ref. 49!. This is equivalent
to the ‘‘noncommutative plane’’ in noncommutative geom
etry. In particular we explain the ‘‘noncommutative Fouri
transform’’ which we use extensively.

The normalized basis states in coordinate representa
in the symmetric gauge are

um~z!5
zme2~1/4!uzu2

A2p2mm!
. ~A1!

A general state in the Hilbert space thus has wave func
c(z)5 f (z)e2(1/4)uzu2, wheref is a complex analytic function
that does not grow too fast at infinity, so that* ucu2 is finite.
All operators can be written as integral kernels, so that
operatorâ is represented by the kernela(z,z̄8), which acts
on statesc(z) as

âc~z!5E d2z8a~z,z̄8!c~z8!, ~A2!

and matrix products become the ‘‘star product’’â* b̂, the
integral kernel of which is
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â* b̂~z,z̄8!5E d2z1 a~z,z̄1!b~z1 ,z̄8!. ~A3!

The operators themselves can, of course, be expanded

a~z,z̄8!5 (
m,n50

`

amnum~z! un~z8 !̄, ~A4!

so thatamn are elements of infinite matrices.
Arbitrary operators in the larger Hilbert space of states

all Landau levels, that is all square-integrable complex fu
tions in the plane~really, sections of the appropriate bundle!,
can be projected to the LLL. In particular, the identityd(r
2r 8) has matrix elementsdmn in the orthonormal basis, an
the corresponding operator as an integral kernel is

d~z,z̄8![(
m

um~z! um~z8 !̄

5
1

2p
expS 2

1

4
uzu22

1

4
uz8u21

1

2
zz̄8D . ~A5!

As befits the identity, this obeysd̂c5c, d̂* â5â* d̂5â.
This operator also implements projection to the LLL.

Another operator is defined by multiplication by the pla
waveeik•r. Its projection to the LLL is

E d2z1d~z,z̄1!eik•r1d~z1 ,z̄8!

5d~z,z̄8!e~1/2!i ~ k̄z1kz̄8!2~1/2!uku2, ~A6!

where, in this appendix,k5kx1 iky ~elsewhere in the pape
k5uku for all vectorsk!. It is convenient to define

tk~z,z̄8!5d~z,z̄8!e~1/2!i ~ k̄z1kz̄8!2~1/4!uku2. ~A7!

Thus t̂k5eik•R̂, the adjoint of which ist̂2k , so tk(z8,z̄)̄
5t2k(z,z̄8). The operatortk has the effect of magneti
translation ~i.e., translation which commutes with th
Landau-level index! by 2 ik or `k in the plane.80 It obeys
the well-known magnetic-translation relation

t̂k* t̂k85 t̂k1k8e
~1/4!~ k̄k82kk̄8!. ~A8!

Here 1
4 ( k̄k82kk̄8)5 1

2 i Imk̄k85 1
2 ik`k8, which isi times the

~signed! area of the triangle formed byk, k8, 2~k1k8!.
tk are the natural functions for use in defining a ‘‘no

commutative Fourier transform.’’ The motivation is th
functions~like the operator kernels! of z andz8 are like wave
functions for a single particle in zero magnetic field, f
which the plane waves make sense. For such a func
a(z,z̄8), we write

a~z,z̄8!5E d2k

2p
aktk~z,z̄8!, ~A9!

and, for the inverse transformation,

ak5E â* t̂2k , ~A10!
n
-

n

where the integral is defined by* b̂5Tr b̂5*d2z b(z,z̄). The
inversion theorem for this transform is easily proved
Gaussian integration. We note the orthonormality and co
pleteness relations,

E t̂k* t̂k852pd~k1k8!, ~A11!

E d2k

2p
tk~z,z̄8!t2k~w,w̄8!5d~z,w̄8!d~w,z̄8!.

~A12!

The ‘‘noncommutativity’’ of the transform shows up whe
one has convolutions where the relation~A8! must be used.

In the main text the above formalism is applied to seco
quantized operatorsc, c†, rL, and rR, where it concerns
their dependence on thez andw variables, and has nothing t
do with the Fock space in which they act as operators. In
case studied in this paper, the Fourier transform can be
plied to c and c† because the net magnetic-field streng
vanishes forn51/f̃51. ~For nÞ1, one would require the
full set of Landau-level states in the net, effective magne
field,6 projected to thez andw variables, in place of the plan
waves which project totk . The Fourier transform would stil
apply torL andrR, of course.! For n51 we define

c~z,w̄!5E d2k

~2p!3/2
cktk~z,w̄!, ~A13!

ck5~2p!1/2E ĉ* t̂2k ; ~A14!

the normalization has been chosen so as to obtain the
ventional anticommutators in Eq.~3.14!. For rL andrR we
use the normalization given above for an arbitraryâ, and the
properties of thetk’s lead to Eqs.~3.16! and~3.15!. We also
note that for the diagonal valuesz5z8,

rL~z,z̄!5E d2q

~2p!2
rL~q!eiq•r2~1/4!uqu2,

rL~q!5e~1/4!uqu2E d2rrL~z,z̄!e2 iq•r,

and similarly forrR. This exhibits the connection with GMP
Finally we note that other formulas of noncommutati

geometry can be obtained in the integral kernel formalis
For example, the commutator in the star product,

â* b̂2b̂* â5@ â,
* b̂], ~A15!

defines the ‘‘Weyl-Moyal bracket’’ that generalizes the Po
son bracket of functions on the classical phase space to
quantum case. It is usually written as an infinite series
derivatives. Our integral kernel formulation avoids such
ries and allows generalization to other~e.g., compact! Rie-
mann surfaces, or to nonuniform field strengths. In all cas
one can begin with an orthonormal set of LLL states, i.
holomorphic sections of the appropriate bundle. A cruc
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operator is the ‘‘reproducing kernel’’ analogous tod(z,z̄8).
This can be easily obtained for the sphere and the torus
a uniform field strength.

APPENDIX B: HUBBARD-STRATONOVICH
TRANSFORMATION AND THE 1/ M EXPANSION

Here we show how to reproduce the results of the HF
ladder approximations as the saddle-point and Gaussian
tuations in a Hubbard-Stratonovich field. First, one may
place the interaction term in the imaginary-time action by

E )
i 51

4

d2zi @c†~z1 ,z̄2!c~z3 ,z̄4!V~r22r3!s~z4 ,z̄3 ,z2 ,z̄1!

1 1
2 us~z4 ,z̄3 ,z2 ,z̄1!u2V~r22r3!#, ~B1!

~the t dependence andt integration is implicit! where s
is a fourth-rank tensor field, written in the coordinate no
tion using LLL orthonormal functions as forc, c†; it is
Hermitian,

s~z4 ,z̄3 ,z2 ,z̄1!5s~z1 ,z̄2 ,z3 ,z̄4!, ~B2!

and is integrated over functionally. Performing the lat
functional integral reproduces the interaction term. The fi
s decouples the interaction in the exchange channel.
saddle-point approximation for thes integral~along with the
Lagrange multipliers! reproduces the exchange, but not t
Hartree, part of the Hartee-Fock interaction. Gaussian fl
tuations ins around the saddle point reproduce the lad
series. Thus the ladder series becomes the RPA in ths
field. It should be possible to identify part of thes fluctua-
tions as the gauge field, in a manner similar to that in so
lattice models.54
or

d
c-
-

-

r
d
e

c-
r

e

In other problems, such a saddle point and Gaussian fl
tuations are the leading terms in a 1/M expansion, whereM
is the number of components of a field corresponding to
c andc†. We may introduce such components here, and t
set M51 at the end, by replacingcmn by cmna , wherea
51, . . . ,M. The interaction is taken independent ofa, so
the system has SU(M ) symmetry. Then Eq.~B1! now has
the form

E (
a51

M

ca
†caVs1

1

2
ME usu2V ~B3!

schematically. This appears suitable for 1/M expansion, but
there is a problem with the constraints. The latter must s
be taken to be

(
a51

M

(
m

cnma
† cmn8a5dnn8 ~B4!

in order to reproduce anM-component system of boson
whatever the filling factor. To obtain a zero net field for th
fermions, we must be at total filling factorn51, so we must
haver̄51/2p, that is of orderM0, not M. Therefore not all
the terms in the action are of orderM, and we can expec
problems with the 1/M expansion. These are not necessar
completely fatal, however; an expansion can sometimes
obtained even in such cases~see Ref. 65!. It is not possible to
rescale or redefine the model to avoid this problem. It co
be avoided if we could attach 1/M of a vortex to each par-
ticle ~which would now be anyons, so thatc† still creates
fermions!, as in the U~1! CS approach.43 However, this is not
possible in the present PH formalism.
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