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A theory for a Fermi-liquid-like state in a system of charged bosons at filling factor 1 is developed, working
in the lowest Landau level. The approach is based on a representation of the problem as fermions with a system
of constraints, introduced by Pasquier and Haldampublishedl This makes the system a gauge theory with
gauge algebraV,,. The low-energy theory is analyzed based on a Hartree-Fock approximation and a corre-
sponding conserving approximation. This is shown to be equivalent to introducing a gauge field, which at long
wavelengths gives an infinite-couplingl) gauge theorywithouta Chern-Simons term. The system is com-
pressible, and the Fermi-liquid properties are similar, but not identical, to those in the preyibuShérn-
Simons fermion theory. The fermions in the theory are effectively neutral, but carry a dipole moment. The
density-density response, longitudinal conductivity, and current density are considered explicitly.
[S0163-182698)04748-1

I. INTRODUCTION speculations concerning the phase transitions between the
quantized Hall plateatiéSmay be an exception. The situation
The so-called composite-particle view of the liquid stateschanged, however, following the discovery of an anomaly in
of electrongor other charged particlgs two dimensions in  the surface acoustic wave propagation at filling facters
a high magnetic fieldhas been developed gradually over (and less strongly at other filling factors, suchiaand$).®
more than a decade!? Girvin? proposed to develop a This result speeded the development of a thEofio be
Ginzburg-Landau theory of the fractional quantum Hall ef-referred to as HLRfor a case not included in the above list,
fect, with an action for a complex scalé@voson field and  in which fermions(electrong are mapped to fermions at zero
containing a Chern-Simon&€9) term to enforce the condi- magnetic field and form a Fermi sea. In the simplest cases,
tion that the quantized vortices carry a fractional chargethis occurs for filling factow=3, 2, £, ... . The Fermi sea
Girvin and MacDonaldl introduced a singular gauge trans- was predicted to be a compressible state that does not pro-
formation, and exhibited algebraic long-range order in aduce a Hall plateau, and the experimental result of a longi-
bosonic field. This transformation, which attack&fsinction  tudinal conductivity increasing linearly with wave vedtor
flux tubes to particlegvia a CS term in the action of the field was explainetf. The Fermi surface, at which the fermions
theory) and so in general changes the statistics of the parexist as genuine low-energy excitations, was observed
ticles as in the theory of anyondwas then used in several through geometric resonance effects atose to3 in further
theories, in conjunction with the mean-field approximationsurface acoustic wave experiméefitéas predicted explicitly
of replacing the gauge field strength by its expectation valuein Ref. 11), and in other experiment$:?? (We should point
to obtain a system in a different magnetic field. Thus anyorout that for other filling factors in the fermion description,
superconductivity was discovered by mapping anyons inthe fermions are dressed to become the fractionally charged,
zero magnetic field to fermions filling Landau levels in a fractional-statistics quasiparticlé$,*®?3and so are not ob-
magnetic field* the Laughlin staté§ were described by served as fermions.
mapping fermions to bosons in zero net magnetic field and In this paper, we return to the basic theory of the Fermi-
then Bose condensing thehthe Laughlin and hierarchy*®  liquid-like state. Recent wofR=2° has raised the possibility
states were reinterpeted by mapping fermions to fermions if changes in the way we think about the theory of the low-
a reduced magnetic field and then filling Landau le¥€lthe  energy excitations near the Fermi surface. In particular, these
hierarchy states and the anyon superconductors in zero maguthors find constraints not mentioned in any earlier papers
netic field were redescribed by hierarchical extension of th&known to the present author. At the same time, we may be
mapping to bosons, using duality methddat the same motivated by trying to avoid the seemingly artificial CS ap-
time, a lowest-Landau-level(LLL) treatment of the proach, which begins with a singular gauge transformation.
Ginzburg-Landau idea was developed, without using Ultimately, it would aid our understanding to have more in-
Ssfunction flux tubes, by attaching vortices to electrons totuition about what drives the formation of the Fermi-liquid-
convert them to bosons; in this case, the bosons condensike (and othey states. There are no flux tubes attached to the
and have true long-range order. particles in reality; the background magnetic field remains
It has to be admitted that these ways of viewing the frac-essentially uniform in these states of matter. The approach
tional quantum Hall effect produced little in the way of dis- begun in Ref. 10 was intended to head in this direction. It
tinctive experimental predictions or explanations that werauses LLL states only, so is valid in thigot entirely realistic
not already known by other methods, though interestindimit of interactions weak compared with., and bindsvor-
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ticesto the electrons to lower the energy, thus forming the A. U(1) Chern-Simons fermion theory
composite particles. Several implications of this approach |, this approach the particles are represented as fermions
were pointed out in Ref. 12 for the Fermi sea and the BOSGyi, 5 s function of flux attached, whose strength is an inte-

condensate. ~ }
The approach taken in the present paper avoids the Cgral numberd of flux quanta®,. Then the underlying par-

approach. While it is perhaps not as simple minded as onfcles must be bosons whehis an odd integer, and fermions
would want, it does make close contact with the work justwhen ¢ is even(for noninteger¢, the underlying particles
cited!? Here we start from the approach of Pasquier andnust be anyons We will reserve the term “particles” for
Haldane?®?’ that gives an exact representation of the LLL these original particles, and refer to the transformed particles
problem in the case of charged bosons in a magnetic field a&s “fermions” or “quasiparticles.” The imaginary time ac-
v=1, where a Fermi-liquidFL) state is possible. Although tion (see, e.g., Ref. 11, to be referred to as HL&(in the

our paper is long and fairly detailed, we can give a succincgauge wheré/-a=0)

summary of our resultsThe low-energy, long-wavelength

theory is a FL coupled to a gauge fie{dot to be confused

with the physical electromagnetic figldin contrast to the S:f dr d2r
scenario arisintf in the CS(singular gauge transformatipn
approach,there is no CS term in this low-energy theory
Consequently, the gauge field is said to be ‘“strongly
coupled,” and one of its effects is to enforce constraints that
agree with those of Refs. 24—26. This in turn has the effect
of making the fermions uncharged, but they are left with a X (r) ¢ (r")(r") y(r). (2.3

subleading coupling to electromagnetic fields through a di- . , .
pole moment. The interplay of this moment with the trans-Here ¢ is the field operator for the fermions, rather than that

verse part of the gauge field leads to a finite compressibility/" the underlying particles, which could be fermiofesec-

in spite of the neutrality of the particles. It also leads to CS{TONS or bosons. We will use the notatidnote the use of

equations that relate the curl of the vector potential to théh€ Summation convention for repeated Greek indices

density, and a similar equation for the current, still valid in

spite of the absence of a CS term in the action, in agreement a\b=g,,a,b, (2.2

with Ref. 12. In general, the good agreement with ) ) )

experimentally-observed phenomena achieved in the theof{r @ cross product of vectoesandb in two dimensionsy,

of HLR is not spoiled in the present theory. Nonetheless, thé» - - - =X,y 10 label the two components, and,,

detailed structure of this FL-like theory is modified. While = ~&wu,» &xy=1 for the two-dimensional alternating tensor.

the theory is developed here for-1 bosons, there are many We have sefi=1 and, starting with Gaussian units, we have

indications that the results are more general. These includ@PSorbed—e into the scalar potential and electric field, and

the derivation in Ref. 24 for general number of attached flux(—€/c) into the vector potential and magnetic field, so the
Section Il contains a more detailed review of previouscharge of the particles is one and the flux quantunwisThe

work, and a more detailed overview of the paper. In Sec. |1l Uniform background magnetic field /\A=B>0, which

we explain the formalism due to Pasquier and Haldane thatorresponds to the negative direction (in the three-

will be used in this paper. In Sec. IV, we perform explicit dimensional sengén conventional units. We choose the unit

calculations of response functions, including those for theof length so that the magnetic Ieng(l@zszl. It will also

constraint operators, and interpret the results in terms of e convenient to writé\a for the vector whose components

strongly coupled gauge field. In Sec. V we outline the extenare (\a) ,=¢,,a,; thena-/\b=a/\b.

sion of the results to all orders, and provide some general Varying a, in the action leads to

discussion. Section VI is the conclusion. Appendix A dis-

cusses some details of the formalism, including the noncom- ~

mutative Fourier transform, and Appendix B indicates how a VAa=—27dp, 2.3

Hubbard-Stratonovich transformation can be used. where p(r)=¢'(r)¥(r) is the number density both of the
Il REVIEW AND OVERVIEW Chern-Simons fermions and of the underlying particles.

When the filling factorv=2mp/B is 1/¢ (wherep is the
In this section, we review some of the background necesaverage densily there is no net field for the fermions, and,

sary for the discussion in this paper. We begin with ti&)U  within a mean-field approximation, a Fermi sea ground state
CS fermion approach developed in Ref. 11. The Fermis possible.
liquid-like state proposed in that paper is the main topic of The leading approximation for the linear-response func-
the present work; however, we will not review the relation totions is the random phase approximati®PA), in both the
experiments. In Sec. IIB we review “physical” pictures gauge fielda,, a, and the Coulomkior othe) interaction
which are based on consideration of the wave functions of/(r). In Fourier space the full density-density response
the system, as opposed to field-theoretic methods. In Segunction is then! before any approximation,
Il C, we review recent work which attempts to push th@U
CS approach down to a low-energy effective theory in the Xirr
LLL. Finally, in Sec. Il D, we give a brief overview of the Xop= S
main results and of the layout of the remainder of the paper. 1+V(ax,,

1 . ’
Ut | (—iV=a=A)yl

aT 0T K

i 1
———=apVAN\a +—j dr d?r d?r’ V(r—r’)
27 2

(2.9
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and in the RPA’(ZL: X', where when both the long-range parts of the interaciiidany) and
of the Chern-Simons gauge field are extracted, by consider-
- Xo ing responses irreducible with respect to both the interaction
Xo :1_ AT IS (2.9 and the gauge field as above, the remaining effects can be
(27 ) XoXo/ handled to all orders by renormalizing parameters, and the

Here ¥ is the response function which is irreducible with leading long-wavelength effects expressed in terms of Lan-
respect to the interactiok’ only (i.e., diagrammatically, it dau interaction parametefs, and an effective masm*.
does not become disconnected when a single interaction lingince the system is translationally and Galilean invar{ant
is cu, while x, is the density-density response for the non-the absence of impuritigsthe latter mass must satisfy the
interacting sea of fermions of mass (the bare or band usual relatioft"*?
mas$, and x; is the transverse current-current response, of m* /m=1+F (2.10
the same Fermi sea, including the constant “diamagnetic 1 '
current” term. In the limit where first the frequeney and  (details of our two-dimensional normalization of the Landau
then the wave vecta tend to zero, we have parameters such &, are given later In addition, in the
limit where the cyclotron energy.= 1/m is large compared
Xo=m/2, 26 with the typical interaction strength between particles,

N ) V(p~?), (e.g., aamn—0), the dynamics should be governed
Xo~ ~Q°/12mm, 27 entirely by the interactions, and soni/ should scale with
and hence the interaction strength, and be of order the typical interac-
tion strength up to numerical factors.
an _ m/2 This expectation that the theory would be a renormalized
= lim x;.(9,0)= —- (2.8 Fermi liquid, coupled to the long-range interaction and the
K q-0 1+¢°16 gauge field, turned out to be too naive, however. The fluc-
tuations of the gauge field have singular effects that appear
to cause a partial breakdown of the Fermi-liquid picttire.
The effects of such fluctuations were evaluated in leading

place ofX‘;;.) Thus the theory predicts that the system isorder in the RPA gauge field propagator in HiRe small

compressibleNote, however, that the approach describes th@@rameter beings, with the background magnetic field be-
properties that the system has if it is in the phase described!d adjusted such that the net field seen by the fermions on
For a highly correlated system such as particles in the lowegverage was zero for any value ¢f i.e., the filling factor
Landau level, it is difficult to find any approach that canwas always 1p; recall that for generic values af the par-
accurately predict, for a given Hamiltonian, in which phaseticles are anyons The main effects were, first, that the
the system will be. For example, an alternative phase that ipropagator itself shows the appearance of a mode at the cy-
possible at the same filling factors as the Fermi liquid is theclotron frequency Ih, which carries all of theé-sum rule
Pfaffian staté® which is believed to be incompressiBfe. spectral weight to ordeg?. Thus this mode is the physical
Nevertheless, the question of the properties of the Fermieyclotron mode. The virtual excitation of this mode, which is
liquid state—which has a Fermi surface in the excitationthe longitudinal part of the gauge field, led, in first order, to

(For a long-range potential, i.e. one that is divergengas
—0, this is the appropriate definition of the compressibility
an/du. For a short-range interaction, one would ygg in

spectrum for the fermions—is well defined. - a contribution to the fermion self-energy that was logarith-
For the conductivity, the general stateni@ris that the  mically infrared divergent. The effect could plausibly be ex-
resistivity tensors add, ponentiated to give, for the quasiparticle residfie of a

fermion at the Fermi wave vectd-,
pP=pcstpy, (2.9 _
~ - . o Ze~L" %2 2.1
where pcg,,=2me,,, coincides with the Hall resistivity F (219
atv=1/¢, andp,,,, is the resistivity tensor of the fermions, whereL is the system sizéor, presumably|k—kg|#2 ask
the inverse of the conductivity tensor which is related to theapproache&g for infinite L). This would correspond to the
current-current response function that is irreducible with re-Girvin-MacDonald(GM) power law® generalized to the fer-
spect to both the interaction and the gauge field. In the RPAmion case; in particular, the exponent should be exact. This
using the Drude approximation to include impurities, oneis supported by further analysis of these fluctuations
has, takingg— 0, thenw—0, p,,= 6,/ yxx, Whereo .,  which, similarly to the boson cask lead to a factor

field with impurity scattering. There is also an unusual scatfnction of the fermiongthe result for the fermion case is
tering mechanisrit=* in which the fermions scatter off the \yidely known, but does not appear to have been explicitly
static vector potentiada induced in the Chern-Simons gauge published. This in turn leads to the GM power #? as a
field by a variation in the density of pzirtlcles produced by thefactor in the equal-time Green’s function of the fermin
impurity potential, sincé//\ a= — 2w Sp. ’
The effects of interactions and gauge field fluctuations <¢//(r)z//T(O)>~r*<3’2+‘~ﬁ’2>sin(kFr—7-r/4), (2.12
beyond the RPA would be expected to have a variety of
effects. By analogy with the Landau-Silin treatment of fer-and correspondingly to the above result Zor (see also Ref.
mions with a long-range interaction, one would expect thaB5). (The GM power law in the composite boson case has



PRB 58 LOWEST-LANDAU-LEVEL THEORY OF THE QUANTW . .. 16 265

also been recovered field theoretically in Ref.)3elated above, and thus retains the CS structure present in the RPA.
effects were also found in the work of Shankar andFor the density-density response, the respongeand Xé
Murthy,?* to which we shall turn shortly. In the work of HLR  that appeared in the RPA will therefore be replaced by renor-
and others, it was assumed that the vanishing quasipartici@alized versions, and, according to this scenario, we then
residue for the original CS fermions was of little signifi- expect that, in the limit that givetfor example the com-

cance, since as with many similar effects in field theory, iny eqgipility, v, and y that appeared in the RPA will be
particular 'gh(_a n_ons_ln_gular qua5|part|cle _reS|due in an ordl-replaced by renormalized versioms*/[2m(1+F¢)] and
nary Fermi liquid, it is canceled in physical response func- 5" : . .

tions that measure quasiparticle properties. However, the ret Xd respectively, vyherexd IS a renorm_ahzed _Iong-
cent results to be reviewed below, and those of the preseNfavelength Landau diamagnetic susceptibility, which is a
paper, suggest that things are not quite so simple, and rath@pn-lz'ermphqwd qu'armty as it involves derivatives at the
than just ignoring these effects on the assumption that thefy€rmi surface. Explicitly, we expect

cancel, the longitudinal mode should be integrated out “ex-

actly” to obtain an effective field theory, before proceeding 5_” _ m* (2.13

to the effects of the other lower-energy fluctuations, such as w21+ Fo)— (2md)2xim* '

the transverse fluctuations.

The fluctuations in the transverse part of the gauge fieldWe expect thaF, diverges the same way as", so that the
have received more attentigdue to the CS term, there are renormalized version of, remains finite"**9 Thus the sys-
also cross-terms that mix the longitudinal and transverséem remains compressible in this scenario.
fluctuations; however, these are assumed to have some inter-
mediate significange The first-order self-energy contains B. Physical pictures
power-law infrared-divergent terms for the case of a short- . . _ . .
range interaction, which are weakened by the presence of a [n this su_bsectlon, we review aspects discussed in Ref. 12,
long-range interaction because the latter suppresses densi{jich was in part an elucidation of Ref. 18ee also Ref.

fluctuations which correspond to fluctuations of the trans*"): The approach is based on the wave functions of the

verse CS vector potential For the 1¥ Coulomb interaction, particles, which are assumed from the beginn_ing to be in the
the effects become logarithmic, and for an interaction whicHOWest Landau level. To lower the repulsive interaction en-
is longer range than dthey become finite. In the Coulomb €rgy, €ach particle would like to bind i vortices, which at
case, the structure of the effects is similar to those in ann=1/¢ leaves no vortices left(Note that in the LLL, the
electron gas coupled to the transverse part of the ordinargumber of zeros in the wave function of each particle is
electromagnetic fieldsince there is no CS term in this case, equal to the number of flux quanta threading the relevant
these effects are not weakened by the Coulomb interactiorrea, and that a vortex means a simultaneous zero in the
but are always logarithmic—however, they are extremelywave function of every particle other than the one under
weak in practice®*® In both of these systems, it can be consideration.For the same choices of statistics of the par-
argued by treating the self-energy self-consisténfiy*°that ticles and filling factor as before, the bound states behave as
the effects lead to an effective mass diverging adermions in a zero net magnetic fielthis statement again
m* ~ — In|k—kg|, a quasiparticle  scattering rate involves the mean-field assumption that the average density
~—|ex — u|/Injef —u| (wheree is the dispersion relation of particles is uniform, as we will sge
that corresponds to the stated behavior of the effective mass To make the idea concrete, we may consider trial wave
nearkg), and a quasiparticle residug ~ — 1/Ink—kg| (the  functions in which the fermionic bound states occupy a
latter would be in addition to the effect of the longitudinal Slater determinant of plane waves, or spherical harmonics on
fluctuations described aboveThese results suggest that the spher (these resemble Jain’s trial wave functires-
while the effective mass diverges lat, the quasiparticles cept that the fermions are in zero effective magnetic field
remain just marginally well defined due to the reciprocal
quarlthm in .the_ d?cay rate, and thus_ the sy;tem is a “mar- V(zy, ... 20 =Py detM;, H (Zi—Zj)‘/’. (2.14
ginal Fermi liquid.” For longer-range interaction, there is no i<]
such breakdown of Landau Fermi-liquid theory, and for the
extreme case o¥/(r)~Inr, the scattering rate recovers its
usual form~(e,— u)? (all these results are for zero tem-
perature.

There are many other studies of tA?s*® often with con-
flicting results. We believe that the correct results are thos

N . X . 12 2\ —(N,+2)/2 H in-
that agree with the above scenario of HLR for the behaviofli(1+12i|*/2R%) "T¢™ % and this must be done before in
of the effective mass, etc. tegration of thez; coordinates over the complex plane to give

If we are not too concerned about the latter effects oftN€ correct integration measure, in particular when applying

transverse gauge field fluctuations, for example if we conihe LLL projection operatof,, . In the limit where the
sider an interaction longer range than the Coulomb interad2diusR and the numbeN,,, of flux quanta through the sur-
tion, or in the Coulomb case neglecting the logarithmic ef.face of the sphere go to infinity with the field strength £|xed,
fects in view of how slowly they diverge &, then we are the nonpolynomial factor approaches the ugaig%il=1",

led to a physical picture of what to expect from the system toM;; are the spherical harmonics of angular momentum
all orders in the fluctuations. It is essentially the LandaulL;, M; for the jth particle, or can be replaced by plane
theory with due regard to the long-range effects, as describegavese'’i 'i in the planeL;, M; (or k;) can be chosen to fill

Here we write the wave function on the spHéraith z,
=2Ruv;/u;, the complex coordinate of particlein stereo-
graphic projection to the plane. Only the polynomial part of
the wave function is shown, as indicated by the tildedon
a’he full wave function is recovered by multiplication by
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the Fermi sea to obtain a trial ground st#teDifferent Second, if we accept that the fermions are neutral, then
choices of the sets df;, M; do not give orthogonal states their leading coupling to the electric potential is through a
in general, except when the total angular momenta differdipole moment/\k. It is important to realize that the wave
Note that apart from the projection to the LLL, the wave vectors of the fermions contribute to the total momentum of
functions have the form that would be expected from the CShe system, which is a conserved quantity. One might imag-
approach, on including the fluctuations at the RPA level thatne that the dipole moment could be renormalized by effects
produce the amplitude of the Laughlin-Jastr@w) factor in  not yet included, or that the vortices might not all be at the
the wave function, as noted above. same point as we have implicitly assumed. Indeed, when the
The fermionic bound states or “quasiparticles” describedunderlying particles are fermions, the wave function must

here are created by operators of the fauiu ¢ where l//l have one vort_ex gxactly on every particle, because of anti-
creates a particle in the LLL, ardi(z) =11;(z,— 2) is Laugh- ~ Symmetry. This will not affect the dipole moment, because
lin's quasihole operatdf which creates a vorteX. As for ~ the plane-wave factors must produce the displacement
the wave functions; this differs from the CS fermion operatorshown, and, when the particles are fermions, this is accom-
4" by including the amplitude of the quasihole operator, andPlished by d|spIaC|ng_the other vortices further to compen-
not just the phasélike the wave functions, it should also Sat€ for the one that is not_d|spla_ced at all. Also, _|f the vor-
include a nonpolynomial factor iz, which we have sup- tces are viewed as point objects_, then their relative
pressed heje Consequently, like the corresponding bosondisplacements can only produce multipole moments of even
operator® its equal-time Green’s function is not expected to order, and not a contribution to the dipole moment, which is

include the GM power-law factar“;’z; this has been con- determined by the dlspl_acement of the p_art|cle from the_: cen-
ter of mass of the vortices. Thus the dipole moment is not

. . 4 - _ i~ ~ B .
firmed by ca_lculatlor?. Since atv=1/¢ the ¢ vortices in-  renormalized. A more rigorous version of this argument will
duce a hole in the density of the other particles that containgq given later in this paper.

a deficiency in the particle number of exactly unity, there has . ~ . . .
always been a temptation to say that the bound states formed Third, when theg vortices are dragged around adiabati-

this way are neutral objects. This should be contrasted witﬁa"y’ they pick up a Berry phase fac‘f?)rw_hlch can be in-
the CS fermions and bosons, which carry particle numbe erp_reted as a vector and Sca'af potential 90"?“.”6" by the
unity ' particle number and number drift-current densitigsand

+ 10,12,47 H . . . .
The plane-wave factors, in the flat space limit, can be![i'On © t-{]re"selrgst?grsn;har:ettrx faer:é“l&omce)?ogr?gnig(;%égadd'
rewritten using®*° (see also Appendix A given by g 0, €Xp 0

ik-R

Kot o 2 ~
P e 1Py =6k Riem (WK (2.19 VAa=—-2nwd¢p, (2.19

whereR; is the guiding-center coordinate of partic¢jevhich
has no matrix elements between states in different Landau

levels. The operatoK;=—/\R; is the pseudomomentum . : .

that generates magnetic translations of particl&éhus the Thersc()aaghavg tthfi Tsr.lmﬂ (grtt:rft fgueargoﬂzs'.netrlﬁastsh;er?;m;

plane-wave factors in the Slater determinant can be replace%ggn obtaylin;(ﬂ”llz"lwv:/ithpout the use of?%funlcftion fluxesyat v
ik-R; : : .

by e and each such factor displaces fie particle by tached to the particles, and that they still involve the physical

Ak (in units where the magnetic length |$]’10m its vorti- éiensity and current, which cannot be identified with the den-
ces. This picture of particles bound to vortices but displaced. .
Sity and current of the fermions because the latter (are

by Ak from their center has several consequertées.
may be neutral.

The first consequence is that, if we consider the interac- In Ref. 12, these were used as an alternative approach that

tion of the particle with the vorticegr correlation holgto was stated to be equivalent to the CS approach, and the neu-

which it is bound(neglecting the exchange effects due to thetrality of the quasiparticles was not invoked. It was felt that,

latter being constructed from other particles, indistinguish- : .
able from the firgt then, fork=0, the particle is precisely although the fermions and bosons appear neutral, the situa:

. . . o tion might be like that in the usual electron gas problem with
gir; tr;cggrgs/?sk aé(;?];geu:%ghlt'r?eséiteef’ agr?oifjﬁ()irzllzasea Coulomb interaction, where at low energies the quasiparti-
X ; " q Y, nergy sn : tles are neutral in their couplings to external longitudinal
and the interaction between the particle and its vortices be

comes an effective kinetif.e., k-dependentenergy for the electric fields because of screening; however, in the Fermi-
; L N P energy liquid viewpoint, one nonetheless views the fermions as hav-
fermion, which is the origin of the effective mass at the

; . . ing charge unity, and the low-energy behavior of the Fermi
Fermi wave vector, and scales inversely withA formula g 9 y 9y

liquid itself produces the screening effects in the liraitg

for this energy can be found for the analogous boson case N75 i the response functions. In the opposite limitq

Ref. 10. Notice that the displacements |n~the I.:errr.u sea_m, the charge of the quasiparticles does show up in the
ground state are bounded above ky=1/2/p, which is conductivity (and also in the transverse response in both re-
much less than the typical distance between neighboring pagimeg. However, recent work to be discussed in Sec. I C,
ticles which is of order~ \/z Thus for$> order 1, which  and the work in the present paper, suggests that in the quan-
is the case of interest when the particles are bosons or fetum Hall effect context, we can in fact obtain a consistent
mions, not anyons, the displacements do not unduly perturpicture in which the quasiparticles have only dipolar cou-
the bound states. plings to external fields. The obvious question is then

—a—Vay=2m¢/\j. (2.1
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whether the Fermi liquid is still compressible. We will an- pression for the densityq=;—V- P, where the polarization

swer this question in the affirmative. P is that due to a dipole moment dfk on a fermion of wave
vectork (this semiclassical way of describing it will be quite
C. Recent approaches to the LLL useful; compare the discussion of fermions with a fairly

Several recent works have taken up the outstanding issu&éell-defined wave vector and position in Fermi-liquid
discussed in the previous subsections. They are concerné€ory, which can be better described formally by the
with obtaining results for the Fermi-liquid state, including Wigner distribution functiop .
the effects of all the particles being in the lowest Landau A result for the effective mass was obtained as follows.
|eve|, or, as would seem to be at least rough|y equivalent,Beginning from the interaction Hamiltonian that is all that is
including the effects of the amplitude of the correlation fac-left when the kinetic energy of the particles has been
tors produced by the zero-point fluctuations of the cyclotronduenched,
frequency longitudinal modes of the CS gauge field. The aim )
of such work is, of course, to test the validity of the results of _ ZEJ d°q V(q):p(q)p(—q): (2.20
HLR. Different approaches have been used. Shankar and 2 (2m)2 -pl@p(=a)- ’
Murthy (SM) (Ref. 24 based their work on the @) CS

fermion field theory approach; however, they worked in awhgre ;olons~:~-: represen_t normal ordering; the normal or-
Hamiltonian formalism, and aimed to eliminate the cyclotrondering is then dropped as it produces only a constant propor-

variables by canonical transformation, rather than by resumional to the number of particles. The density is then replaced
mation of perturbation theory. The cyclotron modes are repPY the form in Eq.(2.19. When this is written in first quan-
resented as oscillators whose zero-point motion produces tr{#ation it becomes

amplitude of the LJ factor in the ground-state wave function. 1 o2

However, when fermions are excited to differé&ngtates, the = . )

oscillators must adjust to a displaced ground state, and this Hin ZiEj: f (ZW)ZV(q)q/\qu/\kJ. 229
seems to reproduce many of the effects of the correlation ) o ) . .

hole discussed in Sec. Il B, as well as other effects connecteg {@king thei=j term of this expression, they obtain an
with the cyclotron mode and the projection to the lowest€ffective kinetic energy due to interactions,

Landau level. Le® used duality methods, which are good

for representing vortices. In his approach, the particles are 2 ki2/(2m*), (2.22
fermions atv=3, but, in view of the single vortex exactly on [

each particle because of Fermi statistiics LLL wave func-
tions), they can be represented as bosong=al. In these
two works, only the leading long-wavelength effects can be lf d2

where the effective mass is given by

n v, (2.23

that is valid only for¢p=1 (that is, the particles are bosons at (2)

v=1), and represents the LLL problem exactly, throughwhich has the form of the dipole moment squared term in the
equations valid for all wavelengths. A version of their self-interaction energy of a dipole; if thieintegral is cut off
method will be described in Sec. Ill and used extensively inas in SM, the density profile is smeared as it would be in the

treated. Pasquier and Haldafi®H) (Ref. 26 used a method 1/m* =3

this paper. correlation hole. It is therefore similar to the proposal of
All these groups arrive at the following points in com- Refs. 10 and 12.
mon. The LLL physics is described by Fermi fieldandc For the density-density response function, these authors

with canonical anticommutation relations, and the physicafound, using the dipolar form of the density,
states must obey the operator constraints for each wave vec-

tor q: Xpr(@.0)=(p(a)p(~a)) =a*(PP)=a%pm* +0(q*).
S L (2.24
f —zcl(1,2)qu+(1/2>q<1——ik/\q +0(g?) In the last step, the transverse momentum-momentum re-
(2m) 2 sponse function of the Fermi gas with effective magswas

— ) used. In these calculations, constraif®s18 were either
—p(2m)°5(q)=0. (218 ignored? or were handled by introducing functional-integral
In SM and Lee, theD(g?) terms are unknown, and in SM representations of functions of the constraints, which were
the constraints are further restricted to apply onlyddess  then treated in the RPARef. 24; the results take the form
than a cutoffQ whch is chosen to equiik. In PH, the terms ~ Stated in either case. . -
higher order |nq are known. The physica| partide number- If this last result is taken SerlOUS|y, It Implles that the

density operator reduces to the form system is incompressible. However, SM stated some reser-
vations about the calculation, because of the way the con-

_ d? straint was handled. They suggested that the symmetry of the
p(q)=p(2m)?5(q) + J (2m)? ik/\G Gl (172.4Ck+ (1/2)q Hamiltonian under translations of the wave vectors of all the

particles could lead to cancellations and to factors of 1/
(2.19 that could restore a finite compressibility to the system. This

again to leading order ig on using the constraints. Note that proposal is very close to the results that will be obtained in

this is the Fourier transform of a dipolar or polarization ex-the present paper by a systematic treatment of the con-
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straints. While this paper was being completed, a shorcalar potential couples #/\g. The irreducible density re-
comment" and a revised version of Ref. 25 appeared whichsponse contains two parts. The first part is from the trans-
used the same symmetry just mentioned, and obtained resulierse momentum-momentum response function of the gas
very similar to some of ours below, including the fact thatwith massm®*; it is the part found by SM, Lee, and PH
the system is compressible. We will comment further on thgRefs. 24—2% (Lee has since revised this reslt The sec-

relation of the symmetries being used in Sec. V. ond is the response of the same gas to the induced vector
potentiala. (In both responses, the constant “diamagnetic
D. Overview of the results of the present paper current” term is absent.Thus
Here we describe results of the present paper. First we Xi;;):(;'F m* xg)(g?m* +iqéda, ), (2.31

give a simple discussion of our central result for the density-Where in the last factor the two terms arise from the two parts

density response function. With the benefit of hindsight, USs (st described, anda, is the response in the transverse vec-

ing arguments that are justifed by the more detailed and. fo for potential to the perturbation, and is therefore given by
mal calculations below, the results can in fact be obtameé '

fLom the results of Sec. Il B. Then we describe the results of iqoa, :XZL/; (2.32

this paper. . . '

The dipolar form of the density in Sec. 1l B can be ex- From these self-consistent equations we find

pressed as Xim=—p(p+m* x3) /x5, (233
p(r)=;—V/\g, (2.25 which is exactly the result we obtain in this paper. This

. T T2 %
whereg(r) is the momentum density of the fermions, sincey'*elds for the compressibilitdn/du=—p%/x3 >0, where

_ Xxg§ is the diamagnetic susceptibility for this fermion gas.
P=/\g. On the other hand, we also have This result differs from that in the scenario based on tk® U
T TS CS approach, described at the end of Sec. Il A. Several other
=p—pVA(a+A). 2.2 - .
p(N)=p=pV/A(@at+A) 2.29 observables are similarly in close, but not always exact,
This suggests that we write agreement with the scenario based on HLR, described above.
_ In this argument, we neglected the Landau parameters.
at+A=gdlp (227 These can be included without significantly changing the re-

gults. However, the Landau parametef should not be
added, since it is already included in the gauge field effects.
The strongly coupled gauge field in the Fermi liquid is
equivalent to a Landau parameter;F —1, providedm*
>0.52 Thus we are led to a scenario in which the Fermi-

in general, even though the above argument only implies thi
for the transverse part @ This equation suggests there is a
gauge-invariant currefif, which is not the physical current,
such that(for excitations near the Fermi surface

iRef—ilretve—(vehel=(atrAet * liquid-like state has many FL properties in common with the
JF={ilelve=(Vehe] ~ (a+ Ajcieh/m theory of HLR, including a finite compressibility, yet differs
=[g(r)—(a+A)pR]/m*, (2.2  in that there is no CS term for the gauge field, while the
L ) . ) physical density is dipolar ofusing an equation of motign
which is required to V@lsh,Rzo. Assuming that the “den- is —;V/\a
sity” pR=c'c is just p, this is equivalent to Eq(2.27. In the rest of the paper, we follow a different argument

Indeed, a vanishing current would be consistent with such &om that just presented. We give a detailed microscopic
constraintpR= p, if they together obey a continuity equation derivation, in which the relationship(r) = — pV/\a appears

R CR_ only at the end; thus we do not rely on the Berry phase

dp"lot+V-J7=0. (229 argument. The starting point is an approach of Pasquier and

This involves the longitudinal part of the current, so we haveHaldane, described in Sec. Ill below. In this approach, which
an argument for both parts of E(.27). The conditionp®  works for =1 only, that is bosons at=1, each fermion is

= p should of course be viewed as the long-wavelength verdescribed by two coordinates, which we term “left” and

sion of the constraint found by SM, Lee, and PH. “right,” but the available states are those of a particle in
The gauge-invariant form of the “currenf® encourages zero magnetic field, because the wave functions are complex
us to consider an effective Hamiltonian analytic in the left and antianalytic in the right coordinates.

The left coordinate is that of the underlying particle con-
1 5 ) 5 tained in the fermion, while the right coordinate represents
Heﬁ:ﬁf d*r [(—iV—a—A)c|*+---, (230  an attached vortex, as in the pictures in Sec. Il B. The system

must obey a constraint of fixed densipff=p in the right

which, apart from higher covariant derivatives andc?, coordinates. Since the separation of the left from the right
contains no other terms ia not even a CS term. We view coordinate is"\k when the fermion is in a plane-wave state
Her @s @ Hamiltonian foc andc™, but as a Lagrangian for of wave vectork, the physical density is dipolar. In order to

a. Thusaiis a strongly coupled gauge field, and varyidgs ~ maintain the constraint, the longitudinal part of the curjént
with respect taa yieldsjR=0. Then, neglecting other terms of the vortices(right coordinates must vanish, as argued

in He¢, we can use the RPA, or the following self- above. In Sec. IV, we consider a conserving approximation
consistent-field argument, to find the density-density refor observable response functions. We show that the con-
sponse function. From the form of the density, an externattraints are satisfied in this method. We calculate the density-
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density response, its spectral density, the longitudinal conwhich defines a subspace of states that will be identified with
ductivity, the scattering of the fermions by a potential, andthe physical Hilbert space. By taking the trace, we see that
the current-density operator. From the results we deduce ththhiese imply that the (1) generator or fermion number op-
the system can be described in terms of the strongly couplegrator[which is common to U{)g and UN),],

gauge field mentioned above. The gauge invariance is a
manifestation of the constraint. The gauge fields obey the CS
equations even though there is no G8rmin the action. In
Sec. V, we indicate the form we expect for the exact results
to all orders in the interactions, and give arguments that thes@ust have an eigenvalue equal Xo Thus, in the allowed
are correct. We conjecture that a certain sum rule for théubspacel is both the range of the indices, and the number
spectral density is exact. While at present this approackf fermions. The remaining right generators generate
works for g=1—that is, for bosons at=1—we expect that S_U(N)R, _and physical states must be singlets under the ac-
the conclusions are more general, as the results and argfion of this group. The other group SNJ, is not used for

ments of the previous subsections and the beginning of thigonstraints, and will be broken by the Hamiltonian to a sub-
one are. group that represents translations and/or rotations on the

two-dimensional manifoldsay, the sphere, torus, or infinite
plane on which the physical particles move. At the same
time, the generatorﬁanm, will represent the physical density

In this section we reviewwith a few variations of our on this manifold.
own) the method of PH3 which works only for =1, The physical states that satisfy the constraints can be writ-

though the filling factor does not necessarily have to be 1. A€n as linear combinations of
similar method works for fermions with one vortex attached,

N=>, ¢! Cmn. (3.6
mn

Ill. PASQUIER-HALDANE APPROACH FOR ’(?)=1

mapping them to composite bosons. Since the formalism haS|\Pml"'mN>: 2 PUITRRRRLY g m g e g |0,
not appeared elsewhere in the form in which we will use it, it = P™® Ny, 1M1 122 NN
will be presented in self-contained fashion. 3.7

We b_eg!n _abstractly, labeling arbitrary smgle—partlcle where|0) is the vacuum containing no fermions. These states
states with indices. Hopefully the later development in coor-

dinat thouah | L will | bstract containN fermions and are clearly singlets under 8§
Inate space, though [ess general, will Seem 1ess abstract agf, .o they are antisymmetric in time(right) indices. On the

giye more physical in_sight, and clearly show the connec_tiorbther hand, the anticommutation of tb&s implies that they
with compos!tes part|cle_s and-the LL_L' .We take fsrmmn are symmetric in the remaining (left) indices. Thus these
operators which are matrices with two indiceg, andCnm,  states can be viewed as basis states for a systirbosons,
with canonical anticommutation relations each of which can be in any one bfsingle-particle states.
t Such a boson system could be described by basis states
{Cmnicnrmr}zémm’énn' (3.1

(and others vanighwherem, m’, n, andn’ run from 1 toN
(this case of square matrices is convenient forithd boson where[am,aL,]= 8wy » and others vanish. Each such state

?’rhoem:r?t]"c\:)vglme r?;;%ﬂgrtélgt'?r?str:ﬁ: .\r']VO:rli rtl)te unS:err Ig.n%)é eni_s obtained in this way, which proves that the fermion system
: utati atl invarl under INAePeNye < \with the constraints is equivalent to the unconstrained
dent unitary transformations on the left and right indices

under which 'boson system. If we define a filling factor as the particle
number divided by the number of available orbitals,Ns
—oo, then in our case we clearly have bosons at filling factor

ap, ---ah [0), (3.8

c—U LCUR! v=1
We note that in the larger Hilbert space without the con-
ct—utctul (3.2) - i :
R ' ' straints, which is just the Fock space of g, each fermion

H 2
whereU, andUg are unitaryNX N matrices. These trans- can be in any oN” states, so there are

formations are generated by the operators N2
R ™ a9
- t
,=2, ConCrmnr » 3.3 ) ) . .
Prn zm: nm-mn 33 linearly independent states fof fermions. The states satis-

fying the constraints form the Fock space of the bosans

which contains only
L t
Py = En, CpmCmin- (3.9

2N—1)

N (3.10

The right generatorgR generate the group ) of unitary
matrices. These are used to specify a séiotonstraints on

linearly independent states.
the system Y P

The left indicesm can run over any range, and this can be
R used to represent any filling facter The constrained system
(P~ Oan )| Wpnyd =0, (39 can also be set up using canonicammutatiorrelations for
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thec’s, and a similar argument then shows that the physicalittle extra difficulty, be done in coordinate space. A third
states represei¢rmions (e.g., electronsat v<1. alternative would be to use the analog of the Fourier trans-
So far we have only a way of representing bosons byform, involving spherical harmonics, on the finite-size
fermions(or vice versa and the technique is reminiscent of sphere. This is more tedious. Introducing the Fourier trans-
the methods used for quantum spin systems, in the case offarm in the plane, then we notice that the pair of coordinates
single quantum spiitsee e.g., Ref. 541f we now viewm 7 andw for each particle or field operataris replaced by a
and n as indices for lowest Landau-level states, say on a&jngle ordinary two-dimensional wave vectar This makes
sphere where there alNg, + 1 such states faN, flux quanta  sense because, by choosing equal and opposite field strengths
through the spher®, then for the case where both indices for the basis functions in these coordinates, the particles ef-
range from 1 tdN, we haveN=N,+ 1, and the filling factor  fectively “see” zero magnetic field for our filling factor
v agrees with that defined 8N, asN—z. We canintro- - _ 151 Note that, because the functions are analytig, in
duce coordinate space wave functions for the left index — . :
which are just those of the physical bosons. We do the sam¥& (Fhe LLL restrlcfuor), we do not effecnvely have four real
for the right indicesn, except that they are complex conju- variables per particle, as we would if the ba_S|s states had pot
gated so that the field strengtor the charggis effectively been_restncted to the LLL. The transformation of the matrix
reversed. Using orthonormal single-particle LLL basis state§(z,W) into a plane-wave operator is similar to that for the

Um(2), e write in analogy with the usual field operators, density operator, say", which can clearly be traded for its
Fourier componentésee, e.g., GMP

In terms ofc, andcl, which are defined in Appendix A,

C(Z,W) = 2, Un(2) Un(W)Crun, and which satisfy
B {c,cl }=(2m)28(k—k'), (3.14
c'(w,2)=2 up(W) up(2)chp, (3.1
mn we have

which are adjoints of each other. Note that we @sefor

“left” indices, corresponding tan's (which however appear pR(q):f d?k e~ (112ikAq of c

on the right inc™) andw's for “right” indices, correspond- (21)2 k=(L2a=k+(112)a>

ing to n's. The appearance of two coordinates ®and c' (3.19
means that they behave like operators on the LLL single-

particle Hilbert space, just like the matrix structure they had d2k _

in index notation. A formalism for handling such operators pH(q)= f —2e<1’2)'kAq CI_<1,2)qck+(1,2)q, (3.16
as integral kernels is given in Appendix A. For the sphere, (2m)

we can writel,(z) 2", form=0, ... ,N,=N—1,andthe znd we can show that

factor (1+2|%/4R?)~ (Ne*2)/2 myst be attached before inte-

gration. Following this convention we will write only the [pR(a),p"(q")]=0, (3.17

polynomial part in the following wave functions.

In the z, w variables, the densities become , I , ,
[p"(@),p%(a")]=—2i sinza/\q’ p¥(q+q"), (3.18

proww= [ dzdwaezw). 612 [p4(Q).pH(a")]=2i sinta/d’ pH(a+q"). (319
- o - The Lie algebra commutation relations defined by G819
pL(Z,Z')Zf d’w cf(w,z")c(z,w). (3.13  appeared in GMP and in Ref. 55, and the algebra so defined
has become known a#/,, [the defining relations are often

Matrix multiplication has been replaced by integration, sodiven in a different basis of the Lie algebra, essentially the
that all operators in the single-particle Hilbert space of LLL expansion of oup‘(z,z’) in angular momentum eigenstates
functions ofz andw become integral kernelsee Appendix z™ and z'™. In the notation of GMP, ourph(q)
A). One can see thai'(z,2) is the LLL-projected density =e®lal°5(q). (The following algebraic comments will not
operator denote¢p by Girvin, MacDonald, and Platzman be used in the following.From our point of view\V.,, is just
(GMP),*° and pR is analogous. a certain limit of SUN) asN—«o. It is also helpful to note

Passing to the thermodynamic limit at fixed field strengththat if the 2 sidq/\q’ is replaced byy/\q’ in the commuta-
and density equal te, the radius of the sphere goes to tion relations(for example, becausgandq’ or the magnetic
infinity, the system becomes flat locally, and we may usdength are sma)] then the resulting algebra is that of “area-
Fourier transforms. The version of the Fourier transform represerving diffeomorphisms,” or equivalenttfor the corre-
quired is defined in Appendix A. To avoid discussion of sponding Poisson bracket relatiprisourier components of
global issues, which would distinguish this thermodynamicfunctions on classical phase spaéé, can then be viewed as
limit from that of a torus, we will view the use of Fourier a quantum deformation of the latter, thus as “diffeomor-
transforms as a technique for handling local calculations, ipphisms of the quantum analogue of phase space,” a fairly
which we could include damping factors which tend to unity familiar view of the LLL. The connection o¥,, with the
at the end. Alternatively, every calculation could, with only aquantum Hall effect has often been remarR&@ur interest



PRB 58 LOWEST-LANDAU-LEVEL THEORY OF THE QUANTW . .. 16 271

here is in the isomorphic algebra generated by pfis, Since the right coordinates of the fermions become, in
which are the constraints of our problem. the trial wave functions after projection, the locations of the
The constraints become vortices, it seems natural to refer to them as such even before
_ projection. Thus we can say thahch fermion consists of a
[pR(q)—p(277)25(q)]|\lfphys)=0. (3.20 particle (boson) at the left coordinate z, and a vortex at the

Thus states can be built up in the “large” Hilbert space asright coordin_ate w and so as a whole i§ effectively neutral
combinations of The constraints demand that the dengifyof vortex coor-

dinates is fixed, as an operator statement. This seems natural
if the vortices are thought of as forming a two-dimensional
cllO) (3.21 plasma(in view of the LJ factor and Laughlin’s plasma
{ki} mappind?, since the plasma is in a screening phase and
suppresses long-wavelength density fluctuations; indeed, in

(where the product is indexed tys in a set of N wave ethis case ofv=1, there are no fluctuations in the LLL density
vectorsk;), and then projected to satisfy the constraints. Th ) - .
) pro) fy t all in the Laughlin statéthe full LLL or Vandemonde

effect of projection can be more easily appreciated in term&

of wave functions in coordinate space, by returning to thefeterminant In retrospect, this condition on the vortices
finite-size system. seems to be the main effect that was left out in Refs. 10 and

— 12.
In coordinate space, the constraints require thainthue- N . : I ;
i ow we finally specify the Hamiltonian appropriate to
pendence of wave functions be that of a full LLL, y specify pprop

bosons in the LLL av=1. In terms of the boson operatas
introduced earlier, we have, assuming a potential interaction

q,phys(zl,wl, coZWa) =z, - 'ZN)L[J' (V_Vi_wj)’ between the bosons,
(3.22
_ H= % 2 lem2 ;m3m4a;la:rn2am4am3: (3.29
because the LJ factor in the’s is the unique totally anti- M. .- Ma

. . . . R, . i ) X A
symmetric function annihilated by the™s, since the full  \yhere the matrix elements of the interaction in the LLL4re
LLL has no density fluctuations. Hendeis a symmetric

polynomial in thez;’s, as appropriate for bosons. Projection

of the wave function of any state in the “large” Hilbert lemz;m3m4:J d?ry d%r 5 U, (1)U, (Z2) V(11— T2)
space to this physical subspace, where states can be charac-

terized just byf, is accomplished by multiplying byl (w; Xums(zl)um4(zz). (3.2

—w;) and integrating over thev;'s with the appropriate

measure, leaving a symmetric functibm thez;’s (possibly ~ The corresponding operator in the large Hilbert space, where
zerg. If as a family of examples we take stat€&21), or it commutes with the constrainis?, and so projects tél in
their analogs on the sphere, in first quantization they becomed. (3.24), is

Slater determinants def, v (z;,w;)], where theYy(z,w)

are spherical harmonics projected to the LLL, which corre- H=% > lemz;mam“cg m C; m,Cm,n,Cmgn, -
spond to the plane waveg in the plane, defined in Appen- my,..m, n e
dix A. Then the projection gives Ng.ny
(3.26
f=f IT d?w, T (wi—w;)detr, v (z ,w;) Then using the definition af(z,w), we obtain
K i) i
1 2 2 _ LL S\ AL S\
:PLLLdetYLiMi(Qj)H (zi—z), (3.23 H—zf drdroV(ri—ry)ip(21,21)p(22,2)1,
(3.27

that _is, Fhe pSrlojtectié)nt to t_he LtLt_L of Otrr?inﬁ% srf[heri_;_:rz]il har- where the normal ordering is with respect to the vacuum of
monics in a Slater determinant imes the actor. 1hese arg, C's, |0). Thus this is simply a potential interaction written

just the trial wave functions described in Sec. Il B. Thus the; "o "ot the LLL-projected density". In Fourier space
formalism not only describes bosons:at 1, but the fermi- this becomes
ons are closely related to those in the “physical” approach,

where the amplitude of the LJ factor is automatically in- 17 2
cluded in the trial wave functions. Contrast this with the CS H= _f q V(Q):p (@) p (- ), (3.28
approach, where the trial wave functions satisfying the CS 2) (2m)?

constraint of one flux attached to each particle consist of the _ 5
Slater determinant times only the phase of the LJ factor, anwhere V(q) =e~“2ld%v(q) absorbs a factor left from the
no LLL projection. Note also that while the projection into a definition of the Fourier transform gf-, andV(q) is the
strictly smaller subspace implies that states described by digtsual Fourier transform

tinct sets ofk; before projection may not be orthogonal after
projection, they do not usually vanish, except in some excep-

— 2 —iq-
tional cases noted in Ref. 48. V(Q)_I d*re V(). (3.29
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The interaction Hamiltonian breaks the symmetry groupenergy and is consistent with a stable Fermi sea as the
from SU(N), (in the absence of interactipno SUW2) (for  ground state. The treatment of the constraints will be exten-
the sphergor to magnetic translations and rotations in thesively discussed in Sec. IV B, and the formalization of the
case of the plane. It still commutes with the “constraint op-exchange part of the self-energy as the saddle point approxi-
erators” mation to a functional integral, valid in some sense in a
_ largeM limit (in a generalization of the model #d compo-
G(a)=p"(q)—p(2m)*5(q). (3.30  nent fermiong is left to Appendix B.

Our expression for the Hamiltonian differs somewhat from  The problem foré=1 using the PH approach is described
that in the paper of PH. They work on the torus, which is aby the Hamiltonian(3.28), which can be written
relatively unimportant difference, and write the Hamiltonian

using the constraints to make the ansatz explained in Sec. 21 dzkldzkzdzqv( e M2iky - (12ik;A\q

Il C, which results in a one-body term that gives the fermi- ) (27)® q

ons an effective kinetic energy coming from the interaction.

In our approach we do not wish to make such a substitution Xle(1/2)qcl2+<1/2>qckz*<1/2>qu1+(1/2>q’ (4.2)

since the commutator dfl with the G(qg) would not vanish .

identically, but only on using the conditior®(q)=0. The  subject to the constraint&(q)=p=(q)—p(27)?5(q) =0,

reason for our insistence on retainiplg,G(q) =0 will be  that isN=N, and

discussed in Sec. IV. Of course, if everything is done cor-

rectly, the results should be the same, in the end, since the J, d2k
(

starting point is the same. ?)267(1’2“kAqu_(llz)quHl/z)q:O 4.2

V. HARTRi'E;:F?g;QANﬁOC'\?SNSERVING for q# 0. Notice that when the phase factor containkityq
is expanded in a Taylor series, @(q?) it takes the same

In this section, which is the central one of the paper, weform as the constraint found by SM and L¥€® as men-
develop an approximate solution for our system that descibei{oned in Sec. Il C.
the FL state. We begin in Sec. IV A with the Hartree-Fock ~The HF approximation for a translationally invariant sys-
(HF) approximation, which yields a dispersion relation for tem takes the energy eigenstates to be Slater determinants of
the fermions. Then in Sec. IV B we explain how the con-plane waves, that is plane-wave-occupation-number eigen-
straints can be included. We choose a gauge such that, fétates in the second-quantized formalism, and the energy of
nonzero frequencies, they must be satisfied without any aguch a state is taken to be the expectation valu.oks is
sistance from integration over auxiliary fields that imposewell known, for the excitation spectrum, this is equivalent to
them explicitly. This is achieved in Sec. IV C by use of replacingH by an effective one-body Hamiltonian with an
conserving approximations, a familiar method of many-bodyeffective energye, for each plane-wave state whereey
and quantum-field theory. In the present case, such an agepends self-consistently on the occupation numbgrsin
proximation consistent with the HF approximation is thethe present case, we must also include the constraints by the
generalized or time-dependent HF approximation, whictuse of Lagrange multipliers, and minimize
sums ring and ladder diagrams. We show explicitly that the
constraints are obeyed in our approximation. In Sec. IV D d’q —
we investigate the asymptotics of the ladder series that ap- H—uN-— f ———AG(—q) (4.3
pears in Sec. IV C, for use in the following calculations. In (2m)
Sec. .IV E we _apply th_e approach to the p_hy5|cal reSponSE;y respect ton to find the ground state. When almost all
functions, beginning with the density-density response. We | o . o= )
show that the system is compressible and that the longitudRarticles are in the Fermi sea, are zero by translational
nal conductivity relevant for the surface acoustic wave exSymmetry, except at|=0, where\, absorbs the chemical
periments, which is a certain limit of this response, is givenpotential x, consistent with the fact that the constraints fix
by exactly the same expression as in HLR. We also exhibit he particle number and hence we are actually in the canoni-
sum-rule-like relation for the high-frequency response, or forcal, not grand canonical, ensemble. Consequently one has
the first moment of the spectral density, which we will Iater)\q:(27r)2)\ 6(q), and\ + u is determined by the condition
argue is exact. We consider the scattering of a fermion by an the total particle number. One arrives therefore at the
scalar potential perturbation, and interpret the result in termsotal-energy expectation value
of a vector potential related to the density by the CS relation
discussed in Sec. Il. We calculate the longitudinal conduc- 1
tivity due to impurity scattering. Finally, we consider the EZ—ZE frcr NN (4.4
physical current density, which we relate to the stress or 2L e
momentum flux tensor of the fermions, and so recover thgin which we have used the conventional notation for a finite

other CS relation. system in a square box of sidle with discretek values, and
o n, are the expectation values of the occupation numbers for
A. Hartree-Fock approximation the corresponding statesvhere

In this subsection, we use the HF approximation, which is _ _
quick and is the simplest one that gives an effective kinetic frer=V(0)—V(k—k'). (4.5
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The functionfyy. plays the role of the Landau interaction tions. For a Coulomb interactiovi(q) = 2me?/|q|, there is a
function whenk andk’ are restricted to the Fermi surface. logarithmic singularity atk| =Kk :

The effective single-particle Hamiltoniad=H—(u +f) N

is d
ngkr—lnlk—kFl. 4.9
Ker= 2 &ClCk., (4.6 This | imi interaction i
n is is very similar to that for the Coulomb interaction in the
. three-dimensional electron gas at zero magnetic field treated
whereé,=¢e,—u—\ and in the HF approximation. In that case, the divergence is un-
physical and is removed by replacing the bare Coulomb in-
- d’k’ d%k’ - 0 teraction in the exchange term by the screened one, which
Sk:V(O)J (Zw)znk’_f (ZW)ZV(k—k )N (47 leaves a finite effective mass and heat capa€ity~yT

~m*kgT. This conclusion of course depends on the pres-
in which the first term is the direct or Hartree term, equal toence of screening due to the nonzero compressiblity of the

V(0)p, and the second is the exchange or Fock term, whicl/ectron gas. In the present problem, the existence of such a
is responsible for thek dependence of,. Also, in the —compressiblity is one of the points we wish to study, so we
ground state at zero temperatumq?: O(ke—Kk) and ke must return _to this !ater. Note,'howe_ver, that replacing the
— /2 in our units andﬁfis chosen so thal, =0. Notice unscr_eened interaction by the dipolar interaction als_o cuts off
' ) e P the divergence in the present problem. As mentioned al-
that the phase factors in the Hamiltonibinhave turned out (gady, this will also be left for later discussion. For the time
to be unity in the HF expressions, which are identical tOpeing, we may consider an interaction of shorter rafege
those of the usual Fe~rmi gas, except that the bare kinetigaying as a faster powethan the Coulomb interaction, and
energy is zero, and that(q) replacesv(q) for reasons con- the effective mass is then finite within the HF approximation.
nected with the LLL. This formula fog differs from that of The question may be raised of whether a charge-density-
other authors, discussed in Sec. Il C, in that it depends exvave (CDW) instability could take place due to the absence
plicitly on the occupation numbers of the otHestates, and of a bare kinetic energy. However, the constraipf§q)
does not reduce to the self-interaction of a dipole even foe=0, though not the same dsl%k CI—(l/z)qu+(1/2)q:0: may
smallg=k—k" in the integral in the exchange term. Qfif  have a similar effect in maintaining the uniform density of
obtains itsk dependence from the exchange effect, while thethe fluid within the HF approximatiote CDW in the under-
interaction of the particle with the correlation hole that sur-lying particles cannot be ruled out at some filling factors,
rounds it(due to the vorticesis a “Hartree-like” term(and  especiallyr<1, but may not be describable within the HF
not simple Hartree (see Ref. 10, where exchange effectsapproximation for the fermionsAnother possible instability
were explicitly neglected Thus the exchange effect found js to pairing as in BCS theory. This was argued by%iw,ho
here in the simplest approximation seems to be complemefound numerically that bosons at1 tend to form a ground
tary to the interaction with the correlation hole, and probablystate with high overlap with the Pfaffian state, a paired state
both terms would be present in a better approximation. Asyvhich is presumably incompressible. However, for some in-
for the dipolar form of density, we will see that the density teractions, such pairing may either not occur, or be very
does take on this form, and this could be included in theyeak so that it occurs only at very low energies, and then the
exchange self-energy, but this would necessitate a compliresent results for the “normal” Fermi-liquid-like state will
cated self-consistent calculation which could not be doneiill apply at higher energies, temperatures, or wave vectors.
analytically. In any case, the dipolar effect changes the fornkor the state of electrons at 3, experimental and numerical
of the interaction at smatj, while intermediatey values are  results both indicate that pairing must be either extremely
important in the exchange self-energy. Thus the expressiofeak or absent, so there would seem to be a regime to which
here is a convenient starting point, and not badly wronghe theory would apply, assuming that it can be extended to

physically, at least in some cases, as we will see shortly. Zﬁ>1 We return to the issue of pairing in Sec. V
The zero-temperature HF dispersion relation can be stud-~ = o

ied in detail. Apparently, no difficulties are caused by the

absence of a bare, term. For any repulsive interaction B. Constraints

v(q)=ef(1/2)lq|2\/(q)>o' &y increases monotonically with In this subsection we begin a fuller and more systematic
k| for all k. At |k|=k, analysis which begins from the HF approximation but entails
a careful study of the role of the constraints. In the present

ke & d2k’ oV sgbsection, we explain a functional intggra_l method for han-
—*Em=—f , —Zm(k'—k) dling the constraints exactly. Approximation methods are

m K <ke(27) discussed beginning in Sec. IV C, where the starting point is
ke [ de— once again the HF approximation. The present subsection

V(k'—k)cos 6 (4.8  could be skipped on a first reading, but does explain why
many statements later in the paper are restricted to nonzero

(note that 6, parametrizes the angle betwekh and k  frequencies.

which are both on the Fermi surfaceFor a &function The constraint operatoG(q) obey

(short-rangg potentialV(q) =V(0), 1/m* is positive and fi-

nite. Thus the system is stable against single-particle excita- [G(q),G(q")]=—G(g+q’)2i sin3g/\q’, (4.10

:Z 2
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[H.G(a)]=0. 419 Z=f D[C,CT][U_ldU],B%exr{—JﬁdT[TrcTichH
27 0 dr
These relations have the property that if &@(q) are re-
placed by zero throughout, as stipulated by the constraint,
then they are still true. Constraints with this property are
termed first class, while others are termed second cfass. R
Second-class constraints lead to modified commutation relawhereH, N, andG, are given by the standard forms in terms
tions given by “Dirac brackets” in the constrained subspace of the Grassman variables, (1), cﬁm(r), and the trace in
and are generally more awkward to handle. An example ishe exponent is on the ) indices. The commutation prop-
the constraint of being in the LLL, applied to one or more erties(4.11) were used in obtaining this expression. Thgs
charged particles in a magnetic field, which when imposed irand A o= 6/ 8 now play the role of time-independent scalar
the obvious way is second class, and consequently the coogpotentials in the sense of gauge theory. The functional inte-
dinatesx andy of the particlés) end up not commuting when gral results from gauge fixing a manifestly gauge-invariant
projected into the LLL. By contrast, systems with only first- version,
class constraints can be viewed as gauge theories, and there

are ver ell-developed methods b hich they can be B
very, wer-aeveop st z=f1>[c,cT]D[¢] ex;{—f dr[—Tr
0

, (4.19

—uN=i> )\aGa—i)\O(N—N))

d

handled® The advantage of the PH approach is that, while g e cc+H
the fields are in the LLL from the beginning, the only con-
straints involved are first class. .

The importance of the first-class property of the con- _I“NJF')‘ONH' (418
straints is thats(q) form a Lie algebra, SW{) or W,,, and
are constants of the motiottG(q)/dt=0 for all g. Thus, in which ¢ stands for all the\.’s in NXN matrix form, is
before considering them as constrair@€q) can be viewed dependent, and is functionally integrated over th&lJ(ie
as generators of a symmetry algebra of the Hamiltonian. Aslgebra. Under a UW{) gauge transformation U,
constants of the motion, the conditio@§q) =0, if imposed  ¢—>U"1pU+U1dU/dr. This reduces to the previous in-
at the initial time, would hold for all other times. Our proce- tegral(4.15 by imposing the conditiod ¢/d7=0 inside the
dure, which is a version of the Faddev-Popov functional in-functional integralwe are neglecting Faddeev-Popov deter-
tegral method, will differ somewhat from this, however. To minants. This condition is not the same a&s=0 (which is
find thermodynamic properties and correlation functions, weoften used instead which cannot be reached by a gauge
begin with the partition function transformation from an arbitrarg, since gauge transforma-
tions must be periodic ir with period 8. Thusfdr ¢ can-
not be gauged away to zero. The holonomg/47¢ (P
denotes that the integral is path orderadhich is an element
of the group UN), remains. This holonomy is the combina-
where the trace is restricted to states satisfying the cortion Ue'? of the earlier integration variables. Under a
straints. This can be written formally as 7-independent gauge transformation it is not invariant,

Z:TrG=0 eiﬂ(HiﬂN), (412

A peliT¢su-tpelitey, (4.17)
Z=Tre PH-uN 5. 4, (4.13 , , o
' and so only the set of eigenvalues of this matrix is gauge
. . . invariant.(Note that there are gauge transformations that per-
where the trace is taken in the Hilbert space, the Fock SPaCE e the eigenvalugsThe integgralgin Eq(4.15 is over thep

9f the ferrrAuonsc, with no restriction on the fermion number holonomy, but can be further gauge fixed to leave integration
N. (The uN term is included to make this look conventional, gyer the eigenvalues only:

even though the constraints fiX=N, so the constrained
ensemble is canonical, not grand canonjcghe § function,
which imposes all the constraints, can be given a Fourier
representation which essentially, for a non-Abelian group,

f [U~ldU]e/" S \,G,

N
means integration over the group manifold. Here we return 1 (emls dn, IT |8 r—elfo2
to the UN) notation that we had for finitél N 0 a=127 By<s © ©
ifdr S G,
1 . . Xe , (4.18
— - I - . . .
5G,o—f (U "dU] Ufo € . (414 with the measure well known in, for example, random matrix

theory (which here has no connection with the similar-

looking LJ factors.
where the firs? integration is over SNJ with the invarian'g The reduction of the constraint integrals to only zero-
(Haap normalized meaSUf@EJ_ldU]: and the second is frequency fields shows that at low temperatures, the integra-
over W1) and imposes N=N. We can write U tion over these fields is relatively unimportant, since zero-
=g Yl aCa [wherea=1, ... N2—1 runs over a basis of frequency is of zero measure in integrals over frequency that
the SUN) Lie algebrd and convert the unrestricted Tr to a appear in a diagrammatic treatment, as will be used in the
functional integral in the standard way to obtain following. The non-zero frequency part of the constraints
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G(gq,w)=0 will have to come out automatically without mation as it stands. The easiest way to see this isGlig)
help from an integration over a field that enforces it directlydoes not annihilate the HF ground state, which is just the
[as in the totally gauge unfixed version, £4.16]. In Sec.  Fermi sealFS). Thus this state does not satisfy the con-
IV C, it will be demonstrated that this occurs. straintsG(q)|FS)=0 for g#0. It is also clear that the HF
Finally we note that when developing the HF approxima-effective Hamiltonian[Eq. (4.6], does not commute with
tion as in Sec. IV A(or when taking the saddle point of the theseG(q). The solution to this problem will have to use the
functional integral as in Appendix)Bthe Lagrange multi- conserving approximation appropriate to our HF approxima-

plier \ is the saddle point value o, so the saddle point tion. Since there is a conserved quantity for g, the re-
value Of)\o is imaginary. This phenomenon is common in sults will be even more Striking than in cases such as the
such treatments. BCS theory where only a global symmetry was broken. We
note that the Fermi sea can be made invariant by projecting
to an invariant subspace as in H8.23. However, such a
projection necessitates that further work be numerical. Ana-
In this subsection we return to the approximate treatmenlytical work, and thus conceptual understanding, can be
begun in Sec. IV A, consider response functions, and addresghieved only by persevering with the gauge theory ap-
the question of whether the constraints are satisfied. The ceproach. Rather than give up the Fermi sea trial state and the
tral issue is the use of a so-called conserving approximatiortlF energies, and searching for some other, invariant, starting
that is an approximation that satisfies the relevant Ward iderpoint, we keep it and take care of the constraints by the
tities, which express the symmetry underN)(or W,, gen-  following conserving approximation.
erated by the constraint operat@$q). The conserving approximation will be illustrated here by
The appropriate conserving approximation to use for, saythe calculation of theR—pR, pR—p", andp-—p' imaginary-
the density-density response in a normal Fermi liquid, detime response functiorisnore precisely, the generalized sus-
pends on the approximation used for the one-particle propeeptibilities, defined in Fourier space by
erties, that is, the conserving property involves consistency

C. Conserving approximations

of approximations for different properties. It is well-known Xij(q,wn)(zﬂ)25(CI+Q'),35wn+wn,,o
that the random-phase approximation corresponds in this i [
sense to the Hartree approximation, and perhaps less well =(p'(9,00)p (", 0n1)), (4.19

known that the generalized RPA, also called the time4n whichi andj can beRor L, o, are the usual Matsubara
dependent HF approximation, corresponds to the HF aprequencies, and it is implicit that the connected part of the
proximation (for discussion of conserving approximations, fynction is taken, thus dropping&function term containing
see, e.g., Refs. 59 and 60; for the generalized HF approx,;iy's. The conserving approximation that corresponds to the
mation in a FL, see Pines and Nome, Chap. b These are  {E approximation takes the form of the sum of all ring and

sometimes stated in terms & derivability, that is approxi- - |adder diagrams. The Green'’s function lines in the diagrams
mations that can be derived by making an approximatiornyre the HE Green’s functions

once and for all for the free energly (or for the thermody-
namic potentigl in the presence of source fields that couple Gk,w,)=(w,—&) L. (4.20
to the observables of intere&uch as the densityand then

obtaining response functions in the same approximation b he usual Dyson-equation argument leads to formulas in
taking functional derivatives with respect to the sources erms of the one-interaction irreducible susceptibilies, as dis-
guaranteeing the same sort of consistency cussed in Sec. Il A, defined as those diagrams that do not

The importance of the conserving approximation depend ecome Q|sconnected when one mteractlonillne is(ate
on the nature of the problem. In the example of a normafnat we disregard the Hartree self-energy diagrams that are

Fermi liquid, the basic symmetry is conservation of total!MPliCitly included in our HF Green's functions, which
particle number, which is not broken by Hartree or HF ap_means we are treating the diagrams here as skeleton dia-

proximations. The conserving approximation is then neede@MS: such terms would be abser]t.ln any case for a long-
to ensure that the Fermi-liquid relations are satisfied, provid/ange interaction due to the neutralizing backgrc)ufmese

ing detailed relations among physical quantities. By contrastomulas, which are completely general, &aé x's have the

in a BCS superconductor, the simplest approximatiohich ~ SaMe arguments, w,)

can be viewed as an extension of the HF approximation -

violates the conservation of the particle number, and the con- XLL 4.21)

serving approximatiot not only restores gauge invariance XLL 1+\~/(q)XiL”L’
(number conservatigrbut also leads to the prediction of a
collective mode, the Anderson-Bogoliubov mog@ehich is Xirr
the Goldstone mode connected with the spontaneous symme- XRL=——= RE_ (4.22
try breaking in the case of short-range interactjofitius the 1+V(aQ)xiL
use of a correct approximation has much greater physical
consequences in the latter case. i V(q) irr
Turning now to the present problem, the HF approxima- XRR™ XRR_XRLmXLR' (4.23

tion of Sec. IV A does not break conservation of the total

particle numberN. However, the symmetry generators Note also thaty, g(Q,®n) = xri(—,— @,). The conserving
G(q)=pR(q) for g+0 are not conserved by the HF approxi- approximation is now the statement that the varigliss are
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to be calculatedfor w#0) as the sum of the ladder dia- with no kinetic-energy term. This could be phrased by saying
grams, with the HF Green’s functions. Singeis the physi-  that there is the ordinary, Galilean-invariant kinetic-energy
cal density,x|| is the one of most physical interest for long- term with zero magnetic field, but the masg is infinite.
rangeV(q), such as Coulomb interactions. We call this latter model the zero-field, infinite-mdZ&IM)

We begin WithXiFrerR, so as to show that at#0 the fluc- Model. Note that the HF approximations in the two models
tuations in the constraint3(q) vanish in our approximation. also coincide, because the phase factors disappeared there
The Feynman rule for the interaction can be read off in thealso. In the ZFIM model[p(q),H]=0 for all g, so the
standard way’ it includes the wave-vector-dependent phasemodel possesses a gauge symmetry, whether or not we wish
factor as well a¥/(q). Also, there is a phase factor in tp8  t0 impose a constraint= const. In fact, if such a constraint
vertices, as in Eq(3.15. Note that those in the interaction Were imposed in this model, there would be no states that
arise from the phase factors in the physical dengitfEq.  satisfied it at all. The reasdim classical languages that in
(3.16)]. In the ladder diagrams fOX'” the structure of the @ continuum model, any configuration of point particles
momenta is such thall the phase factors cancehs the clearly has a nonconstant density. In a similar model on a
industrious reader will verify. Note that this is an exact statelattice, solutions to the constraint exist only if the value of
ment, and not only valid at small wave vectors, whetherthe particle number required by the constraint at each site is
internal or external, so the exponential defining the phasan integer, since these are the eigenvalues of the number
factor was not expanded in a Taylor series. Consequdntly, operator for each site. This cannot be satisfied if we take the
the ladder diagrams fo;s('" only, the ladder series is iden- continuum limit(zero lattice spacingat a fixed average den-
tical to the same approximation to the irreducible susceptisity. In our system representing the LLL, which is in the
bility in the usual density continuum, many solutions to the constraint do exist, pro-
vided we choosédsimilarly to the lattice ZFIM modelthe
constrained value of the total number to be the same as the
range of the right indicen, as we have done. Therefore, in
the ZFIM model, we will consider the gauge symmefoy
conservation ofp(q)], but not require a constraint to be
satisfied.

Explicitly, we can writexig (or x'™ in the ZFIM mode)
in terms of the ladder sum, which is the solution to an inte-

gral equation(we define here various quantities to be used
X Cuy (1126Ck; + (112 425 afterwards

d?k +
P(Q)IJ(ZT)zCk(1/2)qu+(1/2)q, (4.24

in a model with Hamiltonian

d2k1d2k2d2q~
=—f— (Q)Ckl (1/2)qu2+(1/2

2 (2m)°

ITTR(qu

G

1
k+ 2q ,ont o, g(k—iq,wn)

(2m)

d?k o Fkr g — F(Ek—129)
— A(k
f(277)2 (k.giw,)

(4.26

kv (12g— Sk—(pq— 10,

Here A(k,q,iw,) is a one-particle irreducible vertex function,

1 1
ky+ Eq,wn+ w, g( ki— EQ-wn)F(kl'k'q’in)

1 %k,
A(kQva) 1- ,EE ,fﬂ

d?k, FCék +waq) — Tk —(12q)
=1- f L L P (kg ko gio,), (4.29
(27)2 €k, +(12q k- (12g~ 10,

which we have written in terms of the particle-hole scattering settes ladders with external Green’s function lines re-
moved,

1 ~
I'(k,k',qiw,)=V(k - k)——E f F(k ki,0,iw,)G| ky+ 2q ,wpt o, Q(kl— Eq,wn)V(kl—k’)

Mo rae) 1y -wodly | (4.29

V(k'—k) fdzkl I'(k,ky,Qiw,)
= —-k)— | —=T'(k,k;,0,iw, :
(2)? 14 Ex + (129~ €k —(12g 1,
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(Note that, in this approximation, the scattering function de-mass is finite, so the system is not unstable, and moreover is
pends only on the difference, of the Matsubara frequen- held right at this point by this symmetry. We take it as im-
cies in the external fermion lines, and this is why we are ablelying that the ladder series must be analyzed with even
to perform the frequency sums explicifly. greater attention than usual to the linst—0, q—0, par-
Before analyzing these equations in detail, we pause tticularly for the /=1 angular mode. We also point out a
point out that forq, w=iw, small and real, they have the contrast with HLR, where this formula was invoked, but with
form standard in Fermi liquid theofgee Pines and Nozies  the bargor band massmin place ofm,, and was connected
(PN),! and especially Nozres®? for the full, formal treat-  with Kohn’s theorem and th&sum rule. There the interest-
men{, with the approximation that thg,, function on the ing limit was m—0 (to send the cyclotron mode to infinite
Fermi surface is taken to be the lowest-order approximatiorfirequency, rather tharre. The present discussion is clearly
as already given in Eq4.5), for spinless fermions, and this distinct, though it must be related at some deeper level.
is just the content of the generalized HF approximatsee In Fermi-liquid theory, relations like that above are de-
PN, Ch. 5. The Landau parameteFs, are then given by rived through Ward identities connected with symmetries of
the problem, and the symmetries are global, so the relations

=MO)f,, (429 are most useful only at smail or . Next we will derive a
Ward-identity relationship betweeh and the self-energ}
f/zj d G fkk’COS/akk’v (4.30 within thg HF approximation, in a way more directly con-
2w nected with the symmetry generated by #fés, and valid

for all w#0 andq.
First we express the HF approximation as a pair of self-
consistent equations:

for /=0, where, as beforeé -k’ =k2cos6. for |k|=|k’|
=kg. In particular, we naotice that, since the density of states
at the Fermi energyW(0)=m*/27, and since the bare ki-

netic energy is zero, comparison with £4.8) yields Q(k,wn)z[iwn—(E(k)—f—,u)]*l, (4.33

Fi=-1. (4.31)
This is a particular case of the relation 3 (k)= DG(Ky, @)
m*/my=1+F; (4.32
in ordinary two-dimensional Galilean-invariant Fermi liquids — f dzkl V(k—k)f(&) (4.34
with bare massn,. We can view the ZFIM model as such a (2m)?

system but withmg=, from whichF,= —1 follows. This

is the value that would usually be interpreted as the bordenwhere &, =3 (k) — u— \ as before(the direct term has been
line of stability of the system; however, usually this view is dropped as it plays no role in the following, for the one-
taken because the bare mass is finite and the effective masgeraction irreducible functions; it is absent anyway for the
vanishes, and the latter causes instability. Here the effectiviong-range interaction caserhen

1 ( 1 ) 1E d?k, ( 1 ) ( 1 )
2(k+§q -3 k_iq —iw,=—iw, _,En (2m)? Eq—kl k__q ky||G(k1,@n)
1 d?k, 1
:—|wV— E; f( )Zv(k kl)g(k1+ q,wn-i-w,,
1 1 _ 1
X[ 2| ky+ Eq)_z(kl_ Eq)—lwv g(kl—iq,wn) (4.39

after shifting dummy variables. But from Eqé4.27) and  should vanish sincgR(q) commutes with the Hamiltonian.
(4.28, —iw,A(k,q,iw,) obeys the same inhomogeneous in-This implies that, ifA is viewed as the scattering amplitude
tegral equation, the solution of which should be unique, sdor a fermion scattering off a potential coupling8, or for
we conclude that creating or destroying a particle-hole pair, then the amplitude
vanishes if both particles are on shell, that is if their frequen-
K— } ) ciesiw, satisfyiw,= §&. This suggestsfollowing a similar
argument in Ref. 63, that was inspired by Ref) 8#at in the
Ciw—¢ ny (4.36 on-shell stategenergy eigenstatgsif they satisfy the con-
v Sk+(12g " Sk=(112)q» : straints G(g) =0, then the latter property is actually pre-
which is the desired Ward identiticompare Ref. 59 The  served in the time evolution, in spite of its apparent violation
left-hand side is the vertex function fapR(q)/dr, which  in the HF states. This of course is because the calculation we

+3

1
iw,,A(k,q,iw,,)=iw,,—E( k+ Eq
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have done is not the naive one of looking at the states athe ladder series at smajl and w,,, first to elucidate the
noninteracting particles; rather we used the conserving apnechanism behind the vanishing gfx, and then, in Sec.
proximation. It appears that the fermi@xcitationscan be |V E, the results are applied to the calculation of the physical
viewed as real physical excitations after all, satisfying thedensity-density response functionf!, .
constraint conditions on physical states, even thouglofhe The equation fol” can be rewritten
erators ¢ are not gauge invariant and so would connect
invariant to noninvariant states. These physical fermion ex- d?k, ~
citations, which are dressed by the fluctuations around the J [(277)25(k'—k1)+V(k’—k1)
HF states, are the physical composite(as we shall see (2m)?
neutral fermions discussed in Ref. 12 and in Sec. Il B. f(& )= (¢ )

Now we return to our original goal of calculatings in kyt (1129 ki~ (112 )

ik, + (129~ k- (12g~ 1 @,

the ladder approximation. Using the Ward identity and Eq.
(4.26, and assuming»# 0, we find

xT(k,ky,0,iw,)=V(k—k"), (4.39

2
XhR(Qiw,)= iJ' d—kz[f(gk+(l,2)q)—f(gk,u,z)q)]:o. which shows that it is a Fredholm integral equation, where
lw, ) (2m) the integral kernel appears in the curly brackets on the left-
(437 hand side, and contairgg and », as parameters. It implies
Another response function containip§ that should vanish thatT is V times the inverse integral operator. The inverse
is Y (g.iw,). In this case, the appearancegbfin place of  could be calculated by finding the eigenvalues and eigen-
one pR implies that the phase factors do not all cancel, andunctions of the integral operator on the left.

on using the Ward identity for thgR vertex we obtain At iw,=0 (which could be viewed as the limitw,
—0), one zero eigenvector can be found forcaly use of
. d?k . the Ward identity proved in Sec. IVC; it is,
; _ A J (1/2)q
Xru(iw,) = 2 S ) — F(Ec (1) 1€ — &k (12)q [s€€ Eq(4.35]. Thus for smalliw,, we expect
v ’77) q . .
to have, for allg’s, an eigenvector approximate§ , (1/2q
=0, (4.39 — &k (129, With an eigenvalue tending to zero with , . If

. . 1 g—0 also, we obtain
since shiftingk by * 5qg has no effect on the phase factor.

As promised, we have shown that the conserving approxi- _ ~q.
mation guarantees that there are no fluctuations3), at ficraza™ Sk-pa™ 9 Vic 449
least for nonzero frequency. For zero frequency, thewherev, =V, ¢, . At smallq, the nontrivial part of the inte-
Lagrange multiplier fields\(q) (or the subset of diagonal gral kernel becomes
elements, according to the final gauge-fixed fpenter to

give the same result, but we will not show this explicitly. o of
Similar issues were addressed extensively in the literature on V(k'— kl)% ' (4.41)
slave bosons and heavy fermions in the 196&@&=, for ex- &

amplt_a, Refs._65,63 and 66-6@nd later in connection with which for zero temperatur@ is concentrated at=Kkg (in-
theories of hight. superconductors and quantum magnetSyeeq for allg, the difference of Fermi functions is nonzero
These problems also involve constraints, but these are usg—my in a shell of width of ordeq aroundke). But this limit

ally Abelian and generate only (). It is still frequently ¢ 4he Kemel is independent gf so in addition to the eigen-

§tated mcorrectly.ln the literature that in the fuTCt'ona"function just found, which is proportional to cég on the
integral saddle-point approach to such problems, “the conpg surface, there is another proportional to &in Note

str:ﬁlnkts aretsat|sf|ed lonlykon thehavert?]ge._t Ig fa?;, as Wathat these eigenfunctions, in the spirit of a Fermi-liquid
me i Tgwntho nggéa \t/¥10r erésuri R?DSA ?\E'.e authgris analysis in terms obn, or a deformation of the Fermi sur-
€ field in the S, the correc oNl{i.e., conserv- face, are just rigid displacements of the Fermi sea, respec-

ing) treatment of fluctuations yields just the same sort Oftively parallel and perpendicular tp The second eigenfunc-

results we have just derived, namely the vapishing Of.th%ion is not a zero mode fay+#0, so is expected to acquire an
vertex function for, and of all correlation functions contain- eigenvalue that is nonzero &s,— 0, but vanishes ag—o0.

ing, the constraint operatofke our G(q)], to all orders in For general values of the rati@, /q the integral equation

:Ee fluctutatl_ort15. Thgﬁr:;hgvr?rage of, tﬁ”? ti” fluctu?tn_)nts N, and the eigenvalue problem are not easy to analyze, even for
€ constrainis vaniswhich means that the constraints areiww g small, where the eigenvalue equation takes the form

satisfied in every order of approximation, when this is set up

correctly. (The extension to all orders for the present prob- 2
: ) . dok; ~
lem will be discussed later. AK, Qi )+f Vik—kjy)
It remains to examine|| . This will be undertaken in . (27)?
Secs. IVD and IVE.
Q-Vk, of .
) . X————1 A(ky,0,iw,)
D. Asymptotics of the ladder series q-Vg, 1w, e ;
k1

In this subsection we continue the analysis of the conserv-
ing approximation of Sec. IV C. We examine the behavior of =NQ,iw,)AK,q,iw,). (4.42
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This form of equation is standard in Fermi-liquid theory, is the transverse “current-current” response function of the
with V(k—k,) replaced by —f, . At T=0, df/de same Fermi gas, including thee, i w,-independent contact

1 T H RT) H H
= —6(§,) and the equation can in principle be solved kor ( d|a_magnet|c ) term. xo arose in a S|m|larlway from t_he_
on the Fermi surface, arttiese values of the eigenfunction longitudinal current-current response, on using the continuity

determine it elsewheré\ccordingly we might expand both ?gllﬁgﬁtn?' lt\:%ts ri;\tltlj?;tiﬁvea ar:;::i'gg g;:t ‘t‘gebnes'itg;nand
andV in terms of Fourier modes co$6,, sin/6,, /=0, ¥ g PP X

. ; tified with the physical density and current.
1,... for|k|=kg. Foriw,/|qglve#0, the Fourier modes are - i :
mixed by the integral kernel, so that all components of The above expressions faf and x, are valid for anyg

andiw, . On the real frequency axis, al/qug andq small,
o they become
~V(k=k')=fo+2>, f,c0S/ Oy
i Xo(G,w+i0")=A(0) +iMO)wl(qug), (4.4

[’

= + / ,// ’
fot2 2 f(cos/bcos/ 6y (o0 =2k +iwke /(2mq).  (4.48

+sin Z6ysin 7 6icr) (4.43 Here x5 is the diamagnetic susceptibility of the Fermi gas

are involved. We have seen that tHe=1 mode andf; are  with dispersion&,. It is a non-Fermi-liquid property that
crucial to the analysis and must be kept. The other Landainvolves derivatives ofv, at kg; if & were =(k?
parameterd=, take no special values, and merely produce—k2)/2m*, theny’ would be= — 1/(12rm*). These imply
finite renormalizations of the response functigesme iden-  that the eigenvalues of the longitudinal and transverse eigen-
tities are implied by the existence of the zero mode fogall modes of the integral kernel above vanish in the ways pre-
but these bring in derivatives @f and thus parameters that dicted in this limit. This involved the cancellation of the
lie outside of Fermi-liquid theojy We propose just to drop diamagnetic term in the current-current response in both
these effects so as to obtain the simplest possible approximaases; this cancellation is well known in normal fluide.,
tion that is still conserving. This can be done by replading nonsuperfluids
for /#1 by zero, or more accurately by assuming that the We can now show that even this further approximation is
only eigenfunctionsA that are needed are jugtv,/q, conserving in the sense discussed in Sec. IV C. Using the
Av/q (which are the correct continuations di|=kg). above form ofl" we can calculate
We will actually use this even to higher ordergnas we will
see is necessary.

With this further approximation, the eigenvalues corre-

sponding to the two eigenfunctions can be evaluated. The . I
figal res?JIt forT is 9 where the second term is the contributionlgffor all g and

iw,#0. In this calculation, the transverse modd'irid not

XHr=Xo— Xo(X0) ‘x0=0, (4.49

q- Vi - Vs a4/ \Vy 9/ \V,r contribute. A similar calculation shows thgli,=0. An ex-
I'(kk',q)iw,)=— e act treatment of the ladder series in the reginlgu <1
wXo(Aiw,) G (Qiw,) and q<kg yields the same form with alj,’s replaced by
(4.44 xo/(1+F;), and the cancellation still occurs, in agreement
where with Sec. IV C.
2 _
Xo(Qhiw,)= _f d°k f(kar(l/Z)q) f(§k7(1/2)q) E. Physical response functions
(2m)% &+ (120~ Ek-(12 w’i4.45) In this subsection we calculajg” , the physical density-

density response function, and its limits, the compressibility
is the “density-density” response function of a Fermi gasand longitudinal conductivity. We also consider the scatter-
with dispersioné,, and ing of the fermions by an external potential, and the expres-
sion for the current density.

) 1
Xo(aiw,)= = 5M0)vE N .
1. Density-density response function

d%k [g/\vy 2f(gk+(1/2)q)_f(gkf(m)q) As alregdy remarked, the fact tha_t the vertex contains

- 22\ ] 3 —& o the opposite phase factor from thatgft means that not all
(2m) F(20 Sk=WAa T he phase factors cancel 7, ; instead, those at the two
(4.4 vertices at the ends of the ladder are doubled. We have

|
, d?k d’k’ f —f(&_ f(& —f(&_ . s
X[rL:XoJFJ . (&k+12q) — F(& (1{2)q)F(k,k',q,in) (& +12)9) — F(&k (1{2)q) kAo Aa (450
(2m)* Ek+waq Sk-(uaq— 1w, & v (g~ & — (g0,
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irr irr irr

However, by comparison witlgr=xr.=XLr=0, this simplifies to

irr

d’k y
XLL:_I(ZW)Z(eIkM_l)(e kha_1q)

f(€k+(129) — F(€k—(1129)

Ek+(12q~ Sk-(12q— 1@,

I'k.k',0,iw,)
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f(€kt (129) — F(€k—(129) +f d?k d?k’ (e"\a1)
kv (129~ Sk—(12q— 10, (2m)*

f(& —f(& _ -,

€k + g — F(& —(129) (e WNa_1). (4.5

&+ (12g™ €k — (g~ T,

For smallg, we now expand the phase factor. The first termthe approximate form fof", our result is exact within the

is then the form found in Refs. 24-26. It is the same adadder(conserving approximation.

putting p-— pR in place of pb, which goes as~ik/\q at To obtain the low-frequency longitudinal conductivity,
small nonzeraq. The second term is the ladder series withrelevant to the surface acoustic wave experiments, we define
the insertion k/A\q)(k’/\q) at the two vertices. This exhibits a relevant limit:

the effectively dipolar nature of the coupling of an external

scalar potential to the physical density: the fermions carry a i

dipole moment/\k, as found in Refs. 12 and 24-26 and To(@= lm lim ——x{1(q0+i0") (4.56
discussed in Sec. II. Iif", only the transverse mode now a0 e

contributes, and we obtain R
for g parallel tox (the conductivity should always be viewed
as the response to the total electric field, so it is related to the
irreducible respongeHere “lim” means that we keep the
leading nonzero term. This limit corresponds to considering
2 m* ol Liey a long-wavelength sound wave, is small <kr and w
aplp+m Xo(q'lw”)]/f)(q’lw»' (452 =|q|vgs, and thegn taking the souri:j?ji velocity, to zZro(i.e.,
Note that in the numerator, the's occur because of the vs<vg). Then we obtain
absence of a “diamagnetic” term to cancel them, and in
writing the remainder of the numerator g§ we have ne-
glected the difference betwedsim* andv,, which affects
the coefficient of the term imé guadratic ing. This term can
be neglected anyway in the following. In the small(qug),
g region we then have

94 p+m* xg(aiw,)]?
xo(diw,)

irr

XL =0?m*[p+m* x5(q,iw,)]—

5 27q q

ox(Q)=p ke :2_7Tk|:' (4.5

in exact agreement with HLRor ¢=1. There a different
procedure was used to defiag,(q), as given by HLR Eq.
(B4.9]. That and the present definition give the same result
;2 both in the RPA of HLR and in the present approximation.
(4.53  This result was expected to be very robust on Fermi-liquid
grounds, within the scenario discussed in Sec. Il A, since it
This is similar in form to the result obtained by HLR, or the corresponds to the transverse conductivity of an ordinary
renormalized version of it according to the scenario dis-Fermi liquid, which is unrenormalized in Fermi-liquid

cussed in Sec. Il A, if we note tha_1t= 1/(27$) in general theory. Remarkably, it is the same here, in spite of other

(andd=1 herd, except that the 1 in the denominator in Eq. differences in the structure of the expressions. This result is

. H 24 H
(2.5) has been dropped. That 1 came from the Chern-Simongm obtained from expressidd.54).“" It is also remarkable

term, which couples longitudinal and transverse fluctuations?W the factorp, which came from a standard gauge-

by contrast, in the conserving approximation in the presen'ﬂqvariance result for the usual Fermi quuid,_here plays one of
approach, the ladder propagatbr does not couple these the roles played in the CS theory by, (= p in our units.
modes. Note that the first term in the first line of E452 is  This effect, that the “current” response ai/q—0 of a
essentially the result of Refs. 24—26, Fermi gas to a scalar potential coupled to the dipolar expres-
sion for the density gives the Hall conductivity, was pointed
out by Stomer® _

Finally the spectral density foy|'| (q,») implied by Eq.
(4.53, is, at low frequency,

irr

xtL(q0+i0")=

— X4 —ioke (27G°)

XL=am* [p+m* xg(giiw,)], (4.54
which behaves differently at low andq, as we will see.

We now take various limits of this expression. As
—0, we obtain ka?/(zqu)

Xa 24 w2k|2:/(27Tq3)2

irr n

XLL

(g,w)= (4.58

N i X (q,0=—p%Ix5,
dILL |q|—>0

(4.595

[but vanishes fotw|/(qug)>1], and has a peak, an over-
which is finite and positive, so the system is compressible adamped mode ab~|q|3, similar to the result of HLR. As

in HLR, though again the expression differs from that in themany physicists have noticed, this implies for the various
scenario of Sec. Il A, as given in E@.13. Though we used moments, ag|—0,
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j* irr "o~ g3 n=1 ment, one finds;~?/(q)‘1 for a long-range interaction, as
0 XL ' usual in a compressible system. Tine 0 moment behaves
s asq’In 1/q again, and gives the LLL “static’(equal time
~@’In 1/g,n=0 structure factos(q). It does not go ag*, as GMP suggested
~constn=—1. (459 it should in any liquid state. This is because compressible
] liquids have both low-energy modes and long-range correla-
Forn<—1, the moments dlvergg as usual. tions that produce nonanalytic behaviorsgf}). GMP con-
Then=1 moment can be obtained exactly, because of th%Iuded that fluids in the LLL should be incompressible, but
Kramers-Kronig relation this argument is invalid(this point was also made by
Haldané’). The n=1 moment goes ag® as argued by
GMP, and using the high-frequency behavioryef (g, ),

: * dw'’ irr ,w,
x'[[(q,w+io+):f do’ (o)

—= T @' —(0+i0") and becaus¥(q) is less singular thag ™,
—1(~ do’ ’ irr//( /) d d
Ty — @x Qe = do’ ’ ” ’ = do’ r ity ’
w? e T fﬁwzw Xl (q,o ):f,mﬁw Xt (g, @)
(4.60
. 4,2
asw— . The high-frequency behavior gf'| at smallg can _a Kep(1+F2) (4.62
be obtained by returning to the integral equation FofEq. 8m* ’
(4.39]. To leading order inque/w, T'(k,k’,0w)=V(k
—k'), and, from Egs(4.43 and(4.51), we obtain to leading order irq._GMP found a formula for this moment
42— in terms ofV(q) ands(q), so we obtain a relation among the
irr +iot)~ —akep(1+F>) 4.6 guantitiesm*, F,, ands(qg). The result for then=1 mo-
xLL(d,0+i07) > x . (4.61 i ) :
4do‘m ment of x| can also be viewed as a sum rule for the leading

part at small g of the longitudinal conductivity
ir n

(The same result except that is replaced by zero is ob-
Pl Tk 5 Tepacee Y Rea(d,0) = wx{}"(q,0)/o?.

tained using our earlier approximation fbr) This can be
compared with the result in a usual Fermi liquid, which is
—%p(1+F)/(0?*m*)=—q°p/(w?m) on using HF,
=m*/m. We return in Sec. V below to the question of the We now consider the scattering of the fermions by an
general validity of our result, beyond the ladder approxima-external potentiaV/,,(r,t). The scattering of a fermion from
tion. wave vectork+3q to k—3q is given in the same ladder

The moments of the spectral density of the full responsealiagram approximation by the vertex function, similarAo
function x| can now also be obtained. For thee —1 mo-  earlier except for a phase factor,

2. Fermion scattering vertex

d?ky ik

(2m)2 &k, + (1129~ Sk —(2)g 1@,

A f(&k,+2q) — F(&k - (120)

AL(k,q,iw,,)zeikAQ—f [(ky,k0iw,) (4.63

after removing the same phase on the external lines a& for gitudinal response purely in the form of a vector potential,
(only the irreducible part is shownlf the phase factors are because we chose the gauge such that the scalar potential in
replaced by 1, we obtain, so we will first reconsider this the functional integral vanishes at nonzero frequencies. Thus

briefly. for gauge-invariant response functions, suchygg that we
Earlier we showed that, in the smajltimit, considered earlier, these terms produce complete cancella-
tion, as we saw earlier in the example. This should also be
A=1-q-vi/(iw,). (4.64  truein other calculations, such as for the effect of an external

“impurity” potential on the conductivity, if it coupled teR
In terms of the asymptotics df, the second term is the instead of top- as it would in fact(such an “impurity”
correction produced by the longitudinal mode. While the firstpotential would be static, but as usual the same effects would
term is the bare scalar coupling to the external potential, thée found there as for all nonzero frequencies, thanks to the
second term couples to the fermions through their velocityzero-frequency Lagrange multiplier or scalar potential field
that is to the “current”(in the same sense as befprand so Since the vertex functiond and A differ only by the
can be viewed as describing a longitudinal vector potentialphase factor, we conclude that the phase factorsdiked
Because of the factar/i w, , the vector potential cancels the can be replaced bg'*\9—1 when usingA‘. To first order
direct effect of the scalar potential, if we consider the electridn q, this gives the dipolar coupling/\q with dipole mo-
field they produce. The system responds by producing a lorment/\k. The first term inA" is thus the direct coupling of
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Vex: to the dipole moment of the fermions. This should bethe rate from the mechanism of Sec. IVE 2, but this makes
contrasted with the direct, minimal coupling to the fermionslittle difference. At g=0, we have
with charge 1 in the scenario for the low-energy behavior in R N
the approach of HLR , described in Sec. Il A. In the second ) iop(p+m*xq) 46
term inA‘, where the ladder seriéscontributes, the dipolar oxx(0.0) = 1 ' (4.69
. . . - . Xo
coupling brings in the transverse mode in the ladder series,

as in the calculation O/(/L“L . This Coup“ng givesi essentia”y’ and, in the Drude approximation, I’eca”ing that the current-
current response is isotropic @t= 0,

AA\Vilp+m* xg(aiw,)]/ xp(aiw,) (4.65 iwpr
at smallg, i®,, which is a coupling to the transverse cur- Xo(0,w+i0%)= (4.69
rent, and is similar to that found in HLR and also in Ref. 31
in connection with the effects of an impurity potential, that is Then
theiw,=0 limit. As there, the external potential couples to _
the density, which induces a transverse vector potential, oxx(0,0)=pm* /7= 0y, (4.70
which, because it_is singular qt=(_), scatt_er; the fermions independent ofv. This can be viewed as the usual form of
much more effectively than the direct minimal coupling to ™~ " . — el
the potential, let alone the dipolar coupling. The scatterindezs'St'V't,y of the fermions,p,,=(pr/m*)"", divided by
produced can be simplified by comparison with the physicaPxy: SO iS consistent for smafi,, with the result of the CS
densityp" induced by the samezexternal potential, which iszgeg;]r%_r?]f afddlng the fe(rjmlon é':\nd CS re|3|st|V|t[esz.eei E?- "
R : —(1/4 ; : .9]. The frequency independence is also consistent wi
{p )= p=xiLVed Qi ®,)e wola . This shows that if the this, if in the CS approach one useg in place ofm, and
induced transverse vector potential is denaed\, then we . . . ! . :
have includes FL corrections as in the scenario _descnbed in Sec.
IlA. The effect of the latter corrections is to replace 1
_ L ~ L —iwT by 1-iworm/m* (see PN, p. 191 As m/m* —0,
VAa==(p")lp==2m¢{p"), (466 Lith m*, 7 fixed, the result above is obtained.
which is exactly the equation in the CS theory. This shows For a finite wave vector, we will consider only the small-
thatthe fermions experience a vector potential that obeys Eqw and g region. With impurities presen is analytic in
(4.66), wherep is the physical charge densitgyen though g2 and o,
there is no CS term in the effective gauge field coupling and .
the fermions behave as dipoles. This agrees with the use in Xé(q,w+i0*):q2){§ +iwpr/m*. 4.77
Refs. 10 and 12 of the Berry phase argument of Ref. 23 t . N -
obtain the vector potential seen by the fermions, which in ngNe then obtain the longitudinal conductivity
way assumed that there are flux tubes attached to the par- i
ticles, unlike the CS approach. Note that, since we also have oe(qo+i0")= —
io—Dq

which exhibits a diffusion pole, with a diffusion constant

m*(1—-iwr)

WO

(4.72
pt=p—VAg, (4.67)

this is consistent witta+A=g/p for the Iongitudinfll part. D=—m* XE/(;T), 4.73
There should also be an equatiena— Vay=2m¢/Ajt,
wherej' is the physical current density. The problem of theand o obeys the Einstein relatiom,=D dn/d .
form of jb in the present approach will be considered in Sec. _ )
IV E 4. 4. Physical current density
We turn here to a calculation of the expression for the
3. Effect of impurities physical current density within linear response. The most
Here we consider the effect of impurity scattering on the®PVious way to obtain the current is by projecting the usual
density-density response and the longitudinal conducitivityXPression to the LLL, as was considered by GMP. This
The HF and ladder approximations can be reconsidered withields
impurities present. Here we neglect the mechanism of Sec. . L
IVE2, and take only direct scattering by the impurities, Je=/\Vp™/(2m), @.74
analogously to the bare HF appproximation considered swhich involves the bare mass, and describes the current due
far. The average self-energy should contain an impurity lindo the cyclotron motion of the particles. Since it clearly
(the self-consistent Born approximatjprand the ladders obeysV-j.=0, and gives zero when integrated across a sec-
contain both impurity lines and interactions as the rungs ofion with a boundary condition of zero density, it does not
the ladder. The effective mass and the diamagnetic susceptiontribute to transport. This current, when coupled linearly
bility will generally be renormalized by the impurity effects, to a change in the vector potentid\; j., describes a mag-
but we will not distinguish them from their counterparts in netic moment on each particle, which should be recovered in
the pure system. Calculations are straightforward, and ththe U1) CS approach, as argued by the authors of Ref. 71,
results can be written down using well-known formulas. Theand obtained by SM?
scattering rate ¥/is given by the usual expression, but con- We are concerned with transport and with response func-
tainsm* from the density of stateshis could be replaced by tions, and this part of the current contains explicit deriva-
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tives, so is of less interest at long wavelengths. We therefore », 114 241y= g(ke— k= % al)= — q cos . 5(k— k

turn to the current due to drift motion of the guiding centers (ke = [kt20) = 0(ke—| 2a)) q 0 (4%9)

of the cyclotron orbits of the particles, due to both the exter- A '

nal one-body potentiah, and the interparticle two-body in- for q in the x direction, and after some algebra we obtain

teraction. We will not consider fully the response to a change

in the physical vector potentiah. The existence of both d%k d?k’ -
i i : Y@= | ——— i\ (k=k")V(k—k")c] c

parts of the drift current was recognized by GMP and in Ref. irr (2m)* k=(1/2q~k+(1/2)q

10; for further discussion, see Refs. 72 and 73. In principle,

!

they can be obtained by carrying the calculation of the pro- X[—qcos b (k" —kg)]

jected current to higher order ind{ (the cyclotron current ,

jc being the leading term, of ordes;), by considering vir- _ dk

tual excitation of the particles to higher Landau levels. This (Zw)z['Akq'k(LL F)/m*

was carried out in Ref. 74; it yields two types of terms of

order ? in the matrix elements of the current within the +i/\q k,Z:(Fo—Fz)/(2m*)]cl,(l,z)qckﬂl,z)q,
LLL, for an external potentiaV/,,;. The first of these, called (4.80
ji, can be written as a series of derivatives of the LLL- _ o
projected potentiaV/,, and of the density': the series can where the Landau parametdfs were defined earller in Eq.
be further divided into a series of exponential form that(4-43. We assumed that only values bfnezarkF will be
agrees with the “Noether current” of Martinez and Stone Used, which is true for linear respongus kg =k?).

and another series, beginning with a third-order derivative, INterpreting ¢} _ 1,,Cu+(u2q as dn(a) in FL theory,
that is of the form of an integral of an exponential. Thewheredn,(r) is the departure of the distribution of occupied
second type of terfit consists of the modification of the k values atr from the ground state, and is assumed to be
cyclotron current by the effective LLL Hamiltonian to order nonzero only fork nearkg, this can be identified as

wc_l, so is more complicated. The general expression for the L _

current is thus by no means simple. However, to find the net Ja(@ir=—Te 1T (), (4.8
current for transport purposes, we require only the sipall- ywhere

limit, and for this the result is just

d%k 1
JL:—pL/\VAO (4.75 H/“’Zf (ZT)Z (k’ukv—zkzﬁﬂy (1+F5)/m*
for a slowly varying po_tentiaA(,:Vext, which exhibits the
Hall conductivityaxyfp in our system. _ . + Lk25uv(1+ Fo) |on(a) (4.82
For the smallg drift current due to the interaction, we m*

have, in Fourier space, . . .
P is the stress or momentum flux tensor of the FL; it is equiva-

d2q’ lent to that in Ref. 75, modified to two dimensions. Since we
JL(Q)=f SiAG'V(a):pHa+a)pH(—a'):. have identifiedp™(r)=p—V-P andP(r)=/\g(r), we expect
(2m) a term in the currerjt, = P(r).?® But, by momentum conser-
(4.7 vation,

Diagrammatically, one can see that to calculate the linear 5
response current to a scalar perturbation within the conserv- 9u +,11,,=0, .83

ing approximation, it will be sufficient to take the operator at
itself in the HF approximation. Sincg)=0 in the unper-
turbed ground state, the leading term is obtained by replacin
a pair of operators' andc by their expectation value in the
ground state,

and so we find Eq(4.81). Since we also wish to identifg
grA=g/p, we find

jk=p/\a, (4.84)

<Cllck2>:(2ﬂ-)25(kl_ k2) O(ke—kq), (4770 which is essentially the other CS-like equation.

_ ) ) ) We should also add to the Hamiltonian the potential terms
in all possible ways; that is, two “direct” and two “ex-

change” terms. Of the direct terms, one vanishes and the d2q _
other is seen to give the Hall current produced by the field f —z[ao(q)pR(—q)JerpL(—q)], (4.8H
due to the interaction with the average density of particles at (2m)
wave vectorq, where a, is the scalar potential introduced earlier, which
L CiAGSY L 47 implements the constrainif=p, and for which we chose
J (q)direct_ I/\q p (Q)p (Q) ( . & the gaugei0=0, and’Ao(Q)=e_(l/4)q2Ao(Q)=veXI(Q) is the
In calculating the irreducible response to the total field, thisexternally applied potential. Then the right-hand side of the
term is clearly included automatically. Therefore we can turnmomentum conservation equation becomes
to the exchange terms which alone give the irreducible re- _ L
sponse. Since is small, we use —[pVag+p=(r)VAq] (4.86
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at |ong Wave|engths_ Here the Coefficie_narises fron’pR on find the part of théongitudinal current linear in a Change in
using the constraint. There is also a similar Hall contribution®. Which should be correct at long wavelengths, is to add a
to — p/AVA, to the current densitj-. Expressing the total term — oA+ _[wherejL(O) is the exact expressio@.76
physical currenf in terms ofg=é/E we obtain of zeroth order in the pe_rtur_batlo@A] to the Ham|It9n|an,
then calculate the longitudinal current through first-order
terms in SA by commutingp" with H. The resulting first-
order term can be seen to give the correct high-frequency
limit of the response, because it is given by a double com-
mutator ofH with p“(*q), which is what appears in the
sum rule for the first moment of the spectral densityf ,
and we have seen that it is also related te-@,)/m*. Thus
the correct term is obtained, and must be used in the longi-

ishing current was already invoked in Sec. Il D. It can be, .
: . : . * tudinal current-current response for allq to ensure agree-
interpreted by breaking the current into the piegds* and . ; .

ment with the density-density response.

(a+A)p/m* shown there. The first term represents the ve- \ye now consider the full conductivity tensorget0. The

locity of the fermions, while the second represents the usughgitudinal part has already been considered. The full con-
backflow correction in a FL, which in the present case Ofductivity tensor can be written in the Kubo form

F,=—1 exactly cancels the first part. The same effect oc-
curs in the ZFIM model: the total current carried by each
fermion is k/mgy by Galilean invariance, anthy=~, so it
vanishes(In the presence d,, we findjR=p/\Va,, a Hall i(0+i0")
current. This does not affect our argument in Sec. 1l D, (4.89
which uses only the irreducible part of the current, from _
interactions. A similar calculation can be given fgt. The  where the first term is the Hall conductivity, apyﬁf L is the
P

velocity term and the leading part of the backflow are thegrrent-current two-point function for the irreducible part of

same as fo®, and so cancel. The subleading terms thenye cyrrent. This form was proposed by L‘8aVe may also
give the result as calculated above. This cancellation of the,nsider the conductivity tensor when impurities are present.
leading terms is(perhaps not surprisinglysimilar to what  ngte that theg? term inj does not contribute wheg=0,
occurred inRthe formula for the densipy on using the con-  eyen when impurities are present. However, we expect an
straint onp™. L _ _ additional contribution toj~ from the impurity potential,
The irreducible longitudinal current density-density re-hich we have not explicitly calculated. Because averaging

irr

sponse funCtiOD(;rlx-rpL should bew/q times x| . This can be (using Gaussian disordeproduces diagrams like those for

verified in terms of the ladder series expressions for both, ifiteractions, except that no frequency is transferred along
one consistently either keeps or drops the Landau parametefgpurity lines, it should be similar to that derived above. It
F, for /#1 in both the ladder series and the- vertex. In ~ Will represent the loss of conservation of momentum when

particular, in the smalty/ » limit, the (1+F,)/m* term inj-  disorder is present. Only the off-diagonal part,\f'grij, or
rep.roduces that iy . However, if we con;ider the longi- the corresponding transverse response to a scalar perturba-
tudinal current-current  response, which should betjon, has not so far been calculated. Because the ladder dia-
»?/q? times x|, we see that the two-point current correla- grams in the interaction and impurity lines do not violate
tion function starts at higher order oy » than the required parity (reflection symmetry there can be no off-diagonal
term (two-point correlation functions always vanish as  terms unless the impurity current vertices that we have not

— o). A similar difficulty is familiar in the usual Fermi lig- calculated contain pieces both parallel and perpendicular to

ui(i and is resolved by the presence of a term in the currerﬁ_ If such terms are absent, the,=p, unaffected by im-
—pAlm (the “diamagnetic current)’ that is linear in the purities in this approximation. As emphasized by Eeéhis
applied vector potential perturbation, so that the responsdiffers from the result of the (1) CS approach mentioned in
function (Xg in the noninteracting cageonsists of a con- Sec. Il A. It was argued in Ref. 76 that in thg1) CS fer-
stant plus the two-point function of the current without the mion approach, applied to the=3 case, particle-hole sym-
term. A similar effect should occur here. The term requiredmetry implies thatrxy=% exactly, which is only satisfied by
in jb is of orderg?. One might attempt to find such possible the scenario described in Sec. II Adf,,, of the CS fermi-
terms by making the stress tensor expresgigq. (4.82]  onsis— 3. Assuming our results also apply te=3, there is
gauge invariant by replacing all's (including kﬁzkz) by clearly no problem with particle-hole symmetry in our self-
k—a—A. This does not affect the other calculations done upconsistent Born approximatioSCBA). We should point

to now because, in the absence of a perturbation in the exut, however, that in this or the similar approximation for the
ternalA, the neta+A does not contribute in linear response. U(1) CS approach, the results do agree at leading order in
But further work is required to check the form of this tensor, p xx/pxy, and the conditiomwxyz—% is only needed to
since the gauge invariance under S)(or W,, reduces to guaranteeaxy:% to all orders in this expansion. Thus the
conventional W1) gauge theory only at long wavelengths, contrast between the naive SCBA resuif,,=0 and the
while this expression foj* is higher order in derivatives. In required o, = —1 is not such a dramatic singular correc-
any case, such minimal coupling terms do not produce th&on as it might appear at first sight. At higher orders there
necessary factors af, and so should be absent. A way to will of course be other correction terms not included in the

j'=p/\(a+Vay), (4.87)

which is manifestly gauge invariant and of the CS form.

If we consider the current in the right coordinatgs,in a
similar way, we find that in the absence & it vanishes
identically, becausp® commutes witHH. This result of van-

7,0, +i0%)=ps,,+ X}’l{jt(o,mio*),
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SCBA, which can drive the system into the critical regimea logarithmic divergence im*, which is very weak.
representing the transition between quantized Hall plateaus. For such interactions, we again separate in the response
functions the “direct” or reducible diagrams, which repre-
sent the long-range self-consistent field produced by the ex-
pectation value of the density. The remaining diagrams are
analyzed in terms of the fermion-hole irreducible scattering
In this section, we consider the extension of the results ofrfertex, which atg, w—0 is nonsingular and defines the pa-
Sec. IV to all orders in the interaction, and describe the strucrameters , and hencd,=m*f //27r. A Ward identity, now
ture of the results we expect, in a scenario which replaces thealid to all orders, implies that,;=—1. In fact an identity
previous U1) CS scenario described in Sec. Il A. First we for the pR vertex, like that in Sec. IV C, is valid to all orders
consider a more complicated conserving self-consistent amnd for all g and w,#0, and expresses the fact that
proximation, with special attention to long-range interac-[ pR H]=0. In the general diagrams that contribute to these
tions. Then we explain the FL theory structure for suffi- vertex functions, the phase factors in the interaction vertex
ciently long-range interactions. do not all cancel, so the system is not equivalent to the ZFIM
In the HF and generalized HF approximations of Sec. IV,model. The results nonetheless have the same structure as in
the exchange diagrams contained the bare interattio, Sec. IV, and at long wavelengths can be interpreted in terms
and this led to a vanishing* at kg for Coulomb or longer-  0f an infinitely strongly coupled gauge field, coupled to the
range interactions. An obvious improvement to make is td-L. There are no parity violating effects in the long-
insert the ladder series into the Coulomb vertex, as in Seavavelength dynamics of this systemecause the Landau in-
IV E 2. The longitudinal part of the ladder seriEsrenders teractionfy. is even under exchange kfandk'. The only
the coupling to the fermions dipolar at long wavelengths parity-violating effects come in the coupling to external elec-
which removes the divergence inni¥ for interactions less tromagnetic fields, where the Hall effect appears, and the
singular than I°. At the same time, we can insert the ladder Physical density and current obey the CS-like equations. The
series inside the interaction line itself, thus screening thé&elf-consistent field produced by the long-range interaction
interaction. We can alsceplacethe interaction line in the (the reducible termsalso produces Hall currents, but there is
exchange diagram b. Finally, we make this approxima- NO parity violation because interactions within the system
tion self-consistent by making these replacementsafoin-  couple to the density at both ends. The fluctuations in the
teraction lines, including those if, thus iterating to self- longitudinal part of the gauge field can be reconsidered by
consistency. This approximation, applied to responséhanging to the gaugé-a=0, in which it is the scalar po-
functions as well as the self-energy, is once again conservingghtiala, that fluctuatesat all frequencies This absorbs the
in the same sense as in Sec. IV C, and the conclusions therig, we had previously, and the conditipff= p is maintained
which follow from F;= —1, still apply. through an effectivé-, that is now infinite(the Landau pa-
This approximation is clearly not as tractable as that oframetrization is not gauge invarianThe longitudinal part of
HF, but we can still make some general statements. The sythe ladder series at low/q gives an effective interaction
tem should still be compressible for all interactions consid-between the fermions, which is of order the inverse density
ered(those less singular thandf/ asq—0). The longitudi-  of states, that is the LandaAy parametei\,=Fy/(1+ F,)
nal mode in the ladder just produces the dipolar coupling=1 (this is similar to effects in the local Fermi liquid in the
effects already mentioned, which do not cause a breakdowiondo problem; see Ref. 85Because the leading “mo-
of FL theory, though the effect of the exchange self-energynopolar” part of thep" density fluctuations is suppressed by
that containdl” in place ofV has not been calculated. The this, the leading nontrivial part is described by the sublead-
transverse mode i’ produces singularities in the self- ing, dipolar part of the exact density expressior note that
energy for Coulomb or shorter-range interactions. The selfthis subleading coupling is not described by the minimally
consistent summation proposed here is the same as regamtsupled long-wavelength Hamiltonian in equati@30]. A
the transverse mode as that studied in Refs. 11 an@&”3® noteworthy feature of our approach is that this is not ob-
similar to that in Ref. 3Y We have nothing to add here to tained separately from the transverse gauge field effects, nor
the previous discussion of this case, except to emphasize thiaserted at the beginning, but emerges later. The dipole mo-
these singular effects should be treatdter the other FL  ment/\k on each fermion is not renormalized, because the
renormalizations discussed in this paper, and that, in relatiomomentum is a conserved quantity. This really deserves an
to the U1) CS approach, the effects incorporated in thisexplicit proof, but it will be omitted because of the similarity
paper are related to the longitudinal, not transverse, C%o results in standard FL theofgee, e.g., Nozie$?); quite
gauge field fluctuationgsee Sec. Il A For interactions generally, conserved guantities are not renormalized.
longer range than Coulomb, there is no breakdown of FL The compressibility is given by
theory, sincem* remains finite and the quasiparticle decay

V. EXTENSION TO ALL ORDERS
IN THE INTERACTION, AND DISCUSSION

rate vanishes faster than the renormalized excitation energy dn ;2
& ask—kg, though not as fast ak ¢ kg)?. —=——, (5.1
We can now discuss the general structure expected in the du Xd

results to all orders in the interaction; some of this is implicit

in the foregoing discussion. We consider only interactionsvhereyy is the fully renormalizedirreducible diamagnetic
longer range than the Coulomb interaction, so there is nsusceptibility, and is the only non-Fermi surface quantity to
breakdown of FL theory. For the Coulomb interaction, themake an appearance in the response in the regime of gmall
results are probably still useful, since the only other effect isand w. The other quantities mentioned in Sec. IV are given
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by the same forms as there, when written in termp,of=,  Unpublished evidence that it does occur for bosons-=at
m*, F,, andy} . In particular, we mention the longitudinal for some interaction$>?’ If pairing does occur, the system
conductivity in the regime®<w<qug, relevant to surface will become incompressible at low energies and long wave-

acoustic waves. The result, which is identical to that of HLR’Iengths, essentially because of the Meissner effect in the su-

is exact in the same way, and for the same reason, as ﬂpeerflwd Fermi system: the diamagnetic susceptibility now

* 2 . . .
low-frequency transverse conductivity of the usual FL. Also,ge;'jwes haS(d th 1/ t Whlc.h’ mserted.tl)r; o#]'resrllj It fo:h ¢
the high-frequency behavior, ar=1 moment of the spectral /Cu, SNOWS the System IS Incompressible. ThiS SHows ta

density. of the irreducible densitv-density response. is iveri1t is not just the symmetries of the Hamiltonian that make the
Y, Y y resp 15 9 round state compressible in the FL-like state, but it is the

by the same sum-rule-hlfe f_orm asin Sec. VE1, as Iopg 3Jact that the state is assumed to be a norfnahsuperfluid
we consider only excitation of a single qua5|part|cle-|iquid

quasihole pairin the FL sense If multiple quasiparticle- Assuming the system is a FL, the scenario we have de-
hole”p_alrs do not contribute at this ordergnthen this “sum  geriped here and in Sec. I D is essentially a FL coupled to an
rulg is exqct. In the usual FL, m_ultlple 4qua5|part|c!e-hole infinitely strongly coupled gauge fieldhat represents, =
pairs contribute to spectral densities@q’), by consider-  —1)  with no CS term. The central point was the Ward
ations of phase space, and thsum rule is for theg® part  jgentity that gaveF,;=—1. We connected this with the
(and hlgher_-o.rder terms.agtually vanish in this partlculz_argauge invariance under N, or equivalently with conser-
cas@. Thus it is not certain in our case that our sum rule isygtion of G(q). Other authors have very recently com-
exact. The same phase-space considerations apply, and if Weanted on “translational invariance in momentum
assume that the squared matrix element of the depSitg space,?*?75%%53n( its relation to some sort of gauge sym-
of order g* (i.e., dipolaj for matrix elements to multiple metry. We will try to make this more precise. The Hamil-
guasiparticle-hole excitations, as we have seen it is for S'ng|§mian[Eq. (4.1)] is invariant under shifts of the wave vec-

quasiparticle-quasihole excitations, then these other contrigs of all the fermions by: k;—k; + Q. The generator of a

butions can be neglected. This seems likely to be correct, bytansiation of the wave vectors of all fermions is

as we do not have a proof, we will leave it as a conjecture

that Eq. (4.62) is an exact relatigrwhich we call the ‘F, 1 d2k

sum rule,” and that it holds for both the irreducible and —if(z—)z[cleck—(chl)ck]. (5.2
w

reducible responses, as in the generalized HF approximation. 2

If correct, we also obtain a relation of {1F;)/m* to the  |n first quantization and in position space, it is simgly; .

LLL structure factors(q) andV, as noted already in Sec. This is related to Galilean invariance in ordinary systems
IVE 1. with finite bare massn,. If we rescale the generator of
When impurities are included, an improved approxima-Galilean transformatidfi to obtain shifts ink; instead of in
tion is obtained by treating them diagrammatically similarly v;=k; /m,, we obtain
to the interaction lines as described at the beginning of this

section. In this Drudefor SCBA-)-like approximation, the

conductivity takes the same form as in Sec. IV E 3. Based on Z (fi =tpi/mo), 53
the existing result$*2° we also expect that similar results
hold for > 1, with ;: 2md)~t and the second term can be dropped wimgr-c. However,

in this limit we obtain the ZFIM model, and the Galilean
symmetry is enlarged to the local gauge symmetry generated
y p(q), already discussed. In our system, by contrast, the
auge symmetry is generated p§(q),

We expect that the direct interaction of the particle with
its correlation holgor attached vorticgsdescribed in Refs.
10, 12, and 24-26 is contained in this description, but ma)p
not be easily obtainable diagrammatically. If it is obtained inY
some approximation, the effects stemming frém=—1 42K
will still be present when the approximation is conserving. pR(q):J' e~ (12ikAggt

One other way that the FL picture could break down is by (2m)°? k
a pairing instability as in the theory of superconductivity.

The interaction in the quasiparticle-quasiparticle channel N d’k 1 "

with quasiparticles of wave vectoks —k can be considered - N+f f (272 Eq'['/\kckck

using the ladder approximation. The dipolar nature of the

coupling gives rise to an attractive interaction, as noticed by +clViek— (Ve e, (5.9
the authors of Refs. 26 and 27. Since the system is compress- ) ) ) o

ible, this interaction is screened. In addition, the ladder seriekeepingall terms to linear order im. Using the similar ex-
T, representing transverse and longitudinal gauge field flucP@nsion ofp=(q), the ge_:ngratcir of shifts ik can be written
tuations, can be exchanged between the fermions, and tt@ the first-order term ip™+ p". The other, unused, pieces
transverse part can be combined with the interactioifthe  are the particle numbeN and the momentumfkcﬁck,
transverse gauge field is believed to be pair-breaking whewhich are also conserved quantitie®te that the terms ip-
included in an Eliashberg-equation treatmérithe longitu-  andpR linear inq, are generators of magnetic translations in
dinal part gives an extra repulsive short-range interactionthe left and right coordinates, respectively, written in mo-
which also suppresses pairing, especially ingfreave chan-  mentum spade Thus the “shifting” symmetry is part of the
nel. Therefore the question of whether pairing is actuallygauge symmetryin combination with other global symme-
expected to occur requires careful consideration. There iies, and not just part of the gauge symmetry as stated by

—(1/2qCk+(1/2)q
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SM. Even so, for some purposes, viewing it just as part ofrequency longitudinal conductivity that agrees with that in
the gauge symmetry can be useful, as we saw in Sec. Il OHILR. The gauge field obeys the same Chern-Simons equa-
and will again in the next paragraph. tions relating it to the physical density and current as in the
In unpublished work! Haldane proposed to write the ef- U(1) Chern-Simons fermion approach of HLR. Because
fective Hamiltonian of the quasiparticles, for the case of athere is no CS term in the action, the results nonetheless
finite system on a torugsay a square torus of sidg, as differ in form from those in the scenario for the fully renor-
malized theory based on HLR. Although the gauge theory
reduces to an ordinary () theory at long wavelengths, this
- > (ki—k))?, (5.5  has to be supplemented by the expression for the density,
4m=N - which is a nonminimal coupling from the(ll) point of view.
which possesses the shifting symmetry. In this system, shift] e form of the expression for the physical current intimates
ing all the momenta by the smallest possible amoumtL2 that this is not the vyhole ;tory, anq we expect that. the full
changes the total momentum byr®/L, and gives a state W- gauge group will be '”VO"ggd in general. In view of
equivalent to the original on.The latter fact is assumed in €XiSting results of other authof$°the results obtained here
numerical calculations, and such calculations seem to corfor ¢=1 (bosons atv=1) are also expected to apply for
firm this form of the Hamiltonian. We may identify this other cases of the FL-like state, when written in terms of

Herr=

Hamiltonian as similar to our =(2mw¢$)~* and other parameters. There are many possible
extensions and applications of the present methods, to which
> (ki—a—A)%(2m*), (5.9  We hope to return elsewhere.
i
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we obtain a Hamiltonian like that in SM, except that we have

the effective masm*, whereas in their work it appears at a
stage where they instead have the bare masbhis Hamil-
tonian is also the starting point for the arguments of Ref. 51.

APPENDIX A: NONCOMMUTATIVE GEOMETRY
FOR PEDESTRIANS

In this appendix we explain the formalism we use for
VI. CONCLUSION states in and operators acting in the Hilbert space of a single

. particle in the lowest Landau level, in the simplest case of

In this paper we have developed a truly lowest-Landautne infinite plane with uniform magnetic field, and a mag-
level theory for the Ferml-l!qwd—llke stat_e of charged b_osonsneﬂC length equal to see also Ref. 49 This is equivalent
atv=1. We used a formalism of Pasquier and Halddrie {5 the “noncommutative plane” in noncommutative geom-
which the composite fermion fields depend on two compleXetry |n particular we explain the “noncommutative Fourier
coordinates, one of which is the coordinate of the boson, angansform” which we use extensively.
the other is in effect the coordinate of a vortex in the wave  The pormalized basis states in coordinate representation
function of the other bosons, attached to the boson. Thg, ine symmetric gauge are
wave functions in both these coordinates are restricted to the

lowest Landau level, and there are operator constraints which _ 2

) o : o M= (142

fix the density in the vortex coordinates. The constraints im- _ Al
: ; Um(2) : (A1)

ply that the system is a gauge theory. The effective theory V272™m!

for low-energy, long-wavelength phenomena is a Fermi lig-

uid in which the fermions couple to a gauge field, for which A general state in the Hilbert space thus has wave function
there are no bare terms in the actiriThe ladder series ,ﬂ(z)zf(z)e*(lm)\ﬂz, wheref is a complex analytic function
treatment in Sec. IV, with the approximate form B4.44,  that does not grow too fast at infinity, so thdy|2 is finite.

is equivalent to the RPA applied to this gauge field. Sincea|| gperators can be written as integral kernels, so that an

there is no Chern-Simons term in the gauge field action, th - = .
longitudinal and transverse modes decouple. The Iongitudi?-)perator{jl is represented by the kerna{z,2’), which acts

nal part, within the RPA, gives rise to an effective scalar”" states/(2) as

interaction at small momentum exchange of order the inverse

density of states. This enforces the fixed-density constraint. aw(z):f dzz’a(z,?)zp(z’), (A2)
The transverse part couples to the physical density, the first

nontrivial term in which is dipolar in form and parity violat- o

ing. Each fermion carries a dipole moment equal to its waveand matrix products become the “star produci*b, the
vector. The result is a finite compressibility, and a low- integral kernel of which is
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where the integral is defined fjo=Trb= [d?z b(z,Zz). The
inversion theorem for this transform is easily proved by

Gaussian integration. We note the orthonormality and com-
The operators themselves can, of course, be expanded as pleteness relations,

a*b(z,z')= J d?z, a(z,2,)b(z,,2'). (A3)

0

a(z,?)=m;_0 amnUm(2) un(z"), (A4) f T T =2mo(k+K'), (A11)
so thata,, are elements of infinite matrices. d2k . . i .
Arbitrary operators in the larger Hilbert space of states in 2—Tk(z,z’)7,k(W,w’): 8(z,w')é(w,z").
a

all Landau levels, that is all square-integrable complex func- AL2
tions in the plandreally, sections of the appropriate bunklle (A12)

can be projected to the LLL. In particular, the identifr  The “noncommutativity” of the transform shows up when
—r’) has matrix elements,, in the orthonormal basis, and gne has convolutions where the relati@®8) must be used.

the corresponding operator as an integral kernel is In the main text the above formalism is applied to second
quantized operators, c', p“, and pR, where it concerns
5(2'?)52 Um(Z)UrnT their dependence on tlreandw variables, and has nothing to

do with the Fock space in which they act as operators. In the

case studied in this paper, the Fourier transform can be ap-
_ iexp{ _ 1|z|2— E|2,|z+ Ez? (A5) plied to ¢ and c' because the net magnetic-field strength

4 4 2 vanishes forv=1/¢=1. (For v#1, one would require the

full set of Landau-level states in the net, effective magnetic
field ® projected to the andw variables, in place of the plane
waves which project tay . The Fourier transform would still
apply top- andpR, of course). For v=1 we define

As befits the identity, this obeysy=y, 5*a=a*s=a.
This operator also implements projection to the LLL.

Another operator is defined by multiplication by the plane
ik-r

wavee'“'". Its projection to the LLL is
- _ — d%k _
f d0%2,6(2,2,) €™ "18(2,,7') c(z,w)= f (2maTEW), (AL3)
:5(2’?)6(1/2)i(Fz+k?)—(1/2)|k|2, (A6)
o o | o= (2m2[ Ty (A14)
where, in this appendix=Kk,+ik, (elsewhere in the paper

k=k| for all vectorsk). It is convenient to define the normalization has been chosen so as to obtain the con-

ventional anticommutators in E¢3.14). For p- and p® we
use the normalization given above for an arbitrér;and the

Thus ;k:eik-fQ, the adjoint of which isr_,, so rk(z’,?) properties of ther,'s lead to Egs(3.16 and(3.15. We also

— . note that for the diagonal values-z',
=7_y(z,2'). The operatorr, has the effect of magnetic g

rk(z,?)z 5(2’?)e<1/2)i(?z+k?)—(1/4)|k|2_ (A7)

translation (i.e., translation which commutes with the 42

Landau-level indexby —ik or Ak in the plané® It obeys Ly ) — 4L gyeiar—(1ag?
. : ’ p~(2,2) ;p(g)e :

the well-known magnetic-translation relation (2)

Skl o (1/4)(Kk’ —kK')
T T = Tk € . (A8) pL(q)Ze(lm)lq‘zf dzl‘pL(Z,?)eiiq'r,
Here:(kk’ —kk’)=3ilmkk’ = 3ik/\k’, which isi times the
(signed area of the triangle formed by, k', —(k+k"). and similarly forpR. This exhibits the connection with GMP.

7 are the natural functions for use in defining a “non-  Finally we note that other formulas of noncommutative
commutative Fourier transform.” The motivation is that geometry can be obtained in the integral kernel formalism.
functions(like the operator kernel®f zandz’ are like wave  For example, the commutator in the star product,
functions for a single particle in zero magnetic field, for
which the plane waves make sense. For such a function a*b—b*a=[a"D], (A15)
a(z,z'), we write ’

defines the “Weyl-Moyal bracket” that generalizes the Pois-

— d?k — son bracket of functions on the classical phase space to the
a(z,z')= j Zaka(sz')’ (A9)  quantum case. It is usually written as an infinite series of
derivatives. Our integral kernel formulation avoids such se-
and, for the inverse transformation, ries and allows generalization to oth@.g., compagtRie-

mann surfaces, or to nonuniform field strengths. In all cases,
one can begin with an orthonormal set of LLL states, i.e.,

ak:f T, (A10) holomorphic sections of the appropriate bundle. A crucial
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operator is the “reproducing kernel” ana|ogous &OZ,?) In other prOblemS, such a saddle pOint and Gaussian fluc-

This can be easily obtained for the sphere and the torus, fdHations are the leading terms in aMlexpansion, wher#/
a uniform field strength. is the number of components of a field corresponding to our

candc’. We may introduce such components here, and then
setM=1 at the end, by replacing,,, by ¢y, Where «
=1, ... ,M. The interaction is taken independentaf so

the system has SW{) symmetry. Then Eq(B1) now has
Here we show how to reproduce the results of the HF andhe form

ladder approximations as the saddle-point and Gaussian fluc-
tuations in a Hubbard-Stratonovich field. First, one may re- M
place the interaction term in the imaginary-time action by

APPENDIX B: HUBBARD-STRATONOVICH
TRANSFORMATION AND THE 1/ M EXPANSION

t 1 2
> cle Vot SM| lol?v (B3)
a=1
4

2, retis 5. B _ o
il;[l 02 [€1(21,2)C(25, 24V (12~ 13)0(24,23,22,21) schematically. This appears suitable foM1éxpansion, but
there is a problem with the constraints. The latter must still

(B1) be taken to be

(the 7 dependence and integration is implicif where o

is a fourth-rank tensor field, written in the coordinate nota-
tion using LLL orthonormal functions as for, c'; it is
Hermitian,

+30(24,23,2,21)| V(1= 13) ],

M
z % Cgmacmn’a: Onn’

a=1

(B4)

- — N — in order to reproduce aM-component system of bosons,
0(24,23,22,21) = 0(21,22,23,24), (B2)  whatever the filling factor. To obtain a zero net field for the

and is integrated over functionally. Performing the latterfermions, we must be at total filling facter=1, so we must
functional integral reproduces the interaction term. The fielchavep=1/27, that is of ordeM®, not M. Therefore not all

o decouples the interaction in the exchange channel. Ththe terms in the action are of orddf, and we can expect
saddle-point approximation for theintegral(along with the  problems with the M expansion. These are not necessarily
Lagrange multipliersreproduces the exchange, but not thecompletely fatal, however; an expansion can sometimes be
Hartree, part of the Hartee-Fock interaction. Gaussian flucebtained even in such cas@ee Ref. 65 It is not possible to
tuations ino around the saddle point reproduce the ladderescale or redefine the model to avoid this problem. It could
series. Thus the ladder series becomes the RPA inothe be avoided if we could attach NI/ of a vortex to each par-
field. It should be possible to identify part of thefluctua- ticle (which would now be anyons, so that still creates
tions as the gauge field, in a manner similar to that in soméermions, as in the Y1) CS approach® However, this is not
lattice models? possible in the present PH formalism.

6, Halperin, Phys. Rev. Let62, 1583(1984).

175, Kivelson, D.-H. Lee, and S.-C. Zhang, Phys. Rev@32223
(1992.

18R L. Willett et al, Phys. Rev. Lett65, 112 (1990.

R L. Willett et al, Phys. Rev. BA7, 7344(1993.

20R.L. Willett et al,, Phys. Rev. Lett71, 3846(1993.

2y, Kanget al, Phys. Rev. Lett71, 3850(1993.

22y J. Goldman, B. Su, and J.K. Jain, Phys. Rev. Lé&. 2065
(1994.

2D, Arovas, J.R. Schrieffer, and F. Wilczek, Phys. Rev. L5%.

1For a review see, e.gThe Quantum Hall Effecnd ed., edited
by R.E. Prange and S.M. Girvi(Springer-Verlag, New York,
1990.

2S.M. Girvin, in The Quantum Hall EffectRef. 1).

3S.M. Girvin and A.H. MacDonald, Phys. Rev. Le8i8, 1252
(1987.

4R.B. Laughlin, Phys. Rev. Let60, 2677(1988.

5s.c. Zhang, T.H. Hansson, and S. Kivelson, Phys. Rev. B&ft.
82(1989.

63.K. Jain, Phys. Rev. Let3, 199(1989; Phys. Rev. B40, 8079

(1989; 41, 7653(1990.

A. Lopez and E. Fradkin, Phys. Rev.4l, 5246(1991)).

8D.-H. Lee and M.P.A. Fisher, Phys. Rev. Le8B, 903(1989.

°N. Read, Bull. Am. Phys. So&2, 923(1987.

10N, Read, Phys. Rev. Let62, 86 (1989.

11B.I. Halperin, P.A. Lee, and N. Read, Phys. Rev4R 7312
(1993.

12N, Read, Semicond. Sci.
cond-mat/9501090.

BF. Wilczek, Phys. Rev. Letd9, 957 (1982.

R.B. Laughlin, Phys. Rev. Let0, 1395(1983.

15F.D.M. Haldane, Phys. Rev. Le1, 605 (1983.

Technol9, 1859 (1994;

722(1984).
2R. Shankar and G. Murthy, Phys. Rev. Let9, 4437 (1997);
cond-mat/9802244unpublishegl
25D .-H. Lee, Phys. Rev. LetB0, 4745(1998.
26y, Pasquier and F.D.M. Haldane, Nucl. Phys586, 719 (1998.
2F.D.M. Haldane(private communication
2G. Moore and N. Read, Nucl. Phys. 30, 362 (1997).
2N, Read and E. Rezayi, Phys. Rev5B, 16 864(1996.
30 B. loffe and A. Larkin, Phys. Rev. B9, 8988(1989.
3ly. Kalmeyer and S.-C. Zhang, Phys. Rev4B, 9889(1992.
323, Simon and B.I. Halperin, Phys. Rev.4B, 17 368(1993.

33C.L. Kane, S. Kivelson, D.-H. Lee, and S.-C. Zhang, Phys. Rev.



16 290 N. READ PRB 58

B 43, 3255(199)); S.-C. Zhang, Int. J. Mod. Phys. B, 25
(1992.

34M. Milovanovic and N. Readunpublishest M. Milovanovic,
Ph.D. thesis, Yale University, 1996npublished

35J.K. Jain and N. Read, Phys. Rev4B, 2723(1989.

365.-C. Zhang, Int. J. Mod. Phys. & 25 (1992.

37T. Holstein, R. Norton, and P. Pincus, Phys. Rev8B2649
(1973.

38M.Y. Reizer, Phys. Rev. B9, 1602(1989.

39, Polchinski, Nucl. Phys. B22 617 (1994).

40¢, Nayak and F. Wilczek, Nucl. Phys. 817, 359 (1994; 430,
534 (1994).

41D.V. Khveshchenko and P.C.E. Stamp, Phys. Revi®B5227
(1994); D.V. Khveshchenkoibid. 49, 16 893(1994.

423, Gan and E. Wong, Phys. Rev. Léti, 4226(1994.

431B. loffe, D. Lidsky, and B.L. Altshuler, Phys. Rev. Leff3,

472 (1994; B.L. Altshuler, L.B. loffe, and A.J. Millis, Phys.

Rev. B50, 14 048(1994.

44y B. Kim, A. Furusaki, X.-G. Wen, and P.A. Lee, Phys. Rev. B

50, 17 917(19949; Y.B. Kim, P.A. Lee, and X.-G. Wenipid.
52, 17 275(1995.

“SA.D. Stern and B.I. Halperin, Phys. Rev.®, 5890(1995.

46H.-J. Kwon, A. Houghton, and J.B. Marston, Phys. Rev5B
8002(1995.

4TN. Read, Surf. Sci361/362 7 (1996.

48E, Rezayi and N. Read, Phys. Rev. L&2, 900(1994); 73, 1052
(1994.

493.M. Girvin and T. Jach, Phys. Rev. 2, 5617 (1984).

(1989; J. Math. Phys31, 1088(1990; D.B. Fairlie and C.K.
Zachos, Phys. Lett. B24, 101(1989.

%8For a review of the algebra, see, e.g., I.I. Kogan, Int. J. Mod.
Phys. A9, 3887(1994); For some applications to the quantum
Hall effect, see S. Iso, D. Karabali, and B. Sakita, Phys. Lett. B
296, 143(1992; B. Sakita,ibid. 315 124 (1993; A. Cappelli,
C.A. Trugenberger, and G.R. Zemba, Nucl. Phys3®5, 465
(1993; Phys. Lett. B306, 100(1993; Nucl. Phys. B448 470
(1995; A. Cappelli, G.V. Dunne, C.A. Trugenberger, and G.R.
Zemba,ibid. 398 531(1993.

S’A. L. Fetter and J. D. WaleckaQuantum Theory of Many-
Particle SystemgMcGraw-Hill, New York, 1971.

%83ee, e.g., M. Henneaux and C. Teitelbofpuantization of Gauge
SystemsPrinceton University Press, Princeton, 1892

59J.R. Schrieffer,Theory of SuperconductivityAddison-Wesley,
Reading, MA, 196} pp. 227-233.

80G. Baym and L.P. Kadanoff, Phys. Reb24, 287 (1961).

51D, Pines and P. Nozies, The Theory of Quantum Liquids, Vol. 1:
Normal Fermi Liquids(Benjamin, New York, 1966

62p Noziees, Theory of Interacting Fermi System@ddison-
Wesley, Reading, MA, 1964

53N. Read, J. Phys. @8, 2651(1985.

64p, Berg and P. Weisz, Nucl. Phys. Bl6 205 (1978.

%5N. Read and D.M. Newns, J. Phys.16, 3273(1983.

56A. Auerbach and K. Levin, Phys. Rev. B, 3524(1986.

57A.J. Millis and P.A. Lee, Phys. Rev. B5, 3394(1987.

%8p_Coleman, Phys. Rev. 85, 5072 (1987.

%9A. Houghton, N. Read, and H. Won, Phys. Rev.3B, 5123
(1987.

505 M. Girvin, A.H. MacDonald and P.M. Platzman, Phys. Rev. B "°H. Stamer (private communication

33, 2481(1986.
51B.1. Halperin and A.D. Stern, cond-mat/9802061.

52\We note that an infinitely strongly coupled1) gauge field does

1S H. Simon, A. Stern and B.l. Halperin, Phys. Rev58 R11
114 (1996.
72Quantum Hall Effectedited by M. StonéWorld Scientific, Sin-

not contribute any transverse photons to the elementary excita- gapore, 1992

tion spectrum, since as the coupling is taken to infinity, the’3J. Martinez and M. Stone, Int. J. Mod. Phys.7B4389(1993.
photon states, even though they have finite energy, go off td*R. Rajaraman and S. Sondhi, Mod. Phys. Let8,B065(1994.
infinite field values and disappear from the functional integral.”>E.M. Lifshitz and L.P. PitaevskiiPhysical Kinetics(Pergamon
The elementary excitations are the fermionic quasiparticles near Press, Oxford, 1981p. 315.

the Fermi surface, with gauge interactiof@nd constrainjsas
described in the text.

"8D.-H. Lee, Y. Krotov, J. Gan, and S. A. Kivelson, Phys. Rev. B
55, 15 552(1997).

53The treatment here, which is an alternative to that in Ref. 26, was’N. Bonesteelprivate communication

explained to us by Haldan@ef. 27.

>N. Read and S. Sachdev, Nucl. Phys3B5, 609 (1989; Phys.
Rev. B42, 4568(1990.

55p.B. Fairlie, P. Fletcher, and C.K. Zachos, Phys. Let218B 203

8K, Gottfried, Quantum Mechanics, Vol. 1: Fundamentals
(Benjamin/Cummings, Reading, MA, 1966. 252.

SFE.D.M. Haldane, Phys. Rev. Le5, 2095(1985.

803, M. Girvin (private communication



