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Lattice-gas model for electron-hole coupling in disordered media
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We study an effective lattice-gas model for electron-hole coupling in disordered semiconductor structures.
Despite its simplicity, the model turns out to be quite rich. It possesses several crossover regimes between
phases of bound electron-hole pafexcitong and unbound electrons and holes. It has been shown that a
sufficiently strong disorder promotes dissociation of bound electron-hole pairs and may decrease considerably
the range of existence of exciton gaS0163-182@08)05948-1

I. INTRODUCTION than the exciton binding enerdy,. This situation may oc-
cur in sufficiently thin QW’s. For instance, as small as 0.1
There is considerable research interest in systems of extm thickness variationrSL in a GaAs QW of an average
citons in semiconductor quantum wel@W’s). This interest  thicknessL=3 nm (this corresponds to the experim@nt
is connected with the important role excitons play in light-would result in the variation of the electron confinement en-
matter interaction processes in light-emitting devices angrgy m%26L/(m.L3)~30 meV, which is considerably
semiconductor microcavities. Another reason for the regreater than the exciton binding energy. In general, electrons
search interest is related to a possibility of Bose-Einsteirand holes in semiconductors are subject to different varia-
condensation of excitons in QW!sIn this respect, special tions of their potential energied/¢(r) and V(r), respec-
attention is attracted to spatially indirect excitons formed bytively. Moreover, the correlation betweary(r) and V,(r)
spatially separated electrorie) and holes K).? Due to a may be rather weak. The difference in the electron and hole
strongly enhanced annihilation time of spatially indirect ex-random potentials influences the internal degrees of freedom
citons, these systems are especially attractive with respect tf an e-h pair. Our task is to investigate under which cir-
the search for collective phenomena. There is a rapidly ineumstances this may lead to the exciton dissociation.
creasing amount of publications devoted to both An exciton created at an arbitrary place is not in the most
theoretical® and experimentaf investigations of indirect favorable—lowest potential energy—state of il pair. At
e-h coupling; see also references 4—6 and 8. Some experiarge (as compared to the exciton binding engrgnd non-
mental evidence has been repoftddr a stable excitonic correlated random-potential variations there is a good chance
ground state in a strong magnetic field, which favors thefor the electron and the hole to find lower energy positions
stability of the excitonic phase. that may be quite far from each other, so that at first glance,
One of the intrinsic physical problems one meets wherthee-h pair should dissociatesee Fig. 1L On the other hand,
dealing with excitons in semiconductor nanostructures is théor finite and finite-size correlated potentials, there is always
presence of a disorder that hinders manifestation of colleca possibility for thee-h pair to find a position that corre-
tive or coherent effects of exciton-exciton or exciton-light sponds to the minimum of botti.(r) andV,(r). Electron-
interaction. The disorder corresponds to structure imperfechole coupling in the vicinity of this point and the formation
tions unavoidable in the course of fabrication. For thin QW’sof the exciton state leads to an additional lowering of the
and, especially, in the case of indirect excitons, the disordegnergy. Thus, speaking about thermodynamically equilib-
is mainly determined by an interface roughness and a thickium states one might come to the opposite conclusion that
ness variation of QW'’s. The presence of a moderate disordehe disorder may have only a little influence on the existence
results in scattering of excitons and is responsible for relaef excitons. However, the latter reasoning relates to a single
tively small values of the exciton diffusion coefficient. With exciton. But a single exciton cannot survive even in an or-
an increase of the disorder excitons may become localizedlered macroscopic sample at thermal equilibrium with a
[With respect to two-dimension&PD) systems a more cor- nonzero temperatufg it will unavoidably dissociate into an
rect statement is that the exciton localization length is beelectron and a hole. AT>0, only a finite-density gas of
coming small as compared to the system gizéowever, bounde-h pairs coexisting with a gas of free electrons and
even in this “strong-localization” regime, typical variations holes may be in the “ionization equilibrium!® The subject
V, of the random potentiaV/(r) may be still small with  of the present study is the influence of a random potential on
respect to the exciton binding enerBy, so that the internal the ionization equilibrium condition foe-h pairs. We shall
structure of excitons is weakly affected by the disorder.  restrict our consideration to the case of low electron and hole
The question addressed in this paper relates to the oppadensities when we may neglect screening effects.
site case when the random potential variatignis greater The quantum-mechanical problem of a particle subjected
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A the effective Rydberg energy Ey). Within the model Eq.

V, (1) this restriction is effectively described by the Fermi sta-
tistics of electrons and holes occupying the effective lattice
sites. The quantitie¥4(1) are effective random potentials at

R+ the space region that corresponds to the effective lattice site
[ | (it is implied that the original physical potentials are either
fM relatively smooth on the microscopic scale or they are aver-
/

- aged over the exciton-size boyeAssuming the absence of
Unstable exciton ! any correlation between the random potentials at different
E . effective lattice sites we arrive at the model that allows an
> ? Posifion analytical treatment.
Stable exciton We do not take clearly into account the electron-hole an-
‘ nihilation. Instead, we assume that the system is in a contact

' J i with electron and hole reservoirs so that the electron-hole
ﬂ ) system in the sample is described by the grand-canonical
b \ ensemble with chemical potentials, and u,,, respectively.
J J

This corresponds to a quasi-equilibrium stationary regime at
equal pump and annihilation ratesesh pairs. Our aim is to

V, calculate an averaged density of the bound electron-hole
pairs in the limit of small average@imensionlessdensities

i i 1
FIG. 1. Electrons and holes in random potentials. n,= < <NE| na(|)> > <1, a=eh @)

to a strong random disorder is very complicate even for non- )

interacting particles. The presence of an interaction that i§f €lectrons and holes. We consider an electron and a hole as
sufficiently strong to form bound statésence, it cannot be @ bound pair if they occupy the same lattice site, so that
treated perturbatively makes the above problem even more 1

fqrm@gble. To proceeq, we restrict our consideration to a n2:<<ﬁ2 ne(|)nh(|)> > (3)
simplified model that still has some important features of real [

systems. The major simplification stems from neglecting they ¢ ;rse; even in the absence of the electron-hole coupling,
particle kinetic energy. This does not make the model meany are is a finite probability to find “accidentally bound”

‘F‘g'ess as Iong.as we consider only .thermodynamic equ_“.ib'states, however their density will be given by the product
rium and not kinetic processes, which lead to the equilib- ny,, which is considerably smaller than batg andn;,. In

. . . e y .

rium. The system considered resembles lattice-gas models. gqs.(Z) and(3) \is the total number of the lattice sites and

quantum _coun_te_rpart of the problem will be accounted for bythe averaging is performed both with respect to the thermal
the Fermi statistics of electrons and holes. We shall demo istribution and realizations of the disorder:

strate that even such a simple model has a surprisingly ric

behavior characterized by several crossover regimes. We

shall show that the presence of disorder may influence <<A>>=f {dVeH{d Vit P({Ve,Vi})
strongly the ionization equilibrium condition fa-h pairs.

< TI’{A exd — B(H—ueNe— MhNh)]}

Il. MODEL HAMILTONIAN Q(Ve,Vy) ! ()

We take the following model Hamiltonian: where 8=1/T, N, is the total number of carriers of type
and

H= 2 Vaana(D=Eo2 ne(hm(). () Q(Ve Vi) =Tr{exd — B(H— ueNe— N Th. (5)

Heren,(I) takes values 0 or 1 and is the number of electrong' © Simplify the following expressions we consider the case
(a=e) or holes &=h) occupying the sitd of an effective of a neutral system Wlth equ_al (_alec_tron and _hole edensmes
lattice; Eo>0 is the binding energy for an electron-hole pair Me=Nh=" and coinciding distribution functionsP(V)
occupying the same lattice site. The local nature of the= Py (V)=P(V) for the local-random potential¥¢(l) and
electron-hole coupling implies that the effective lattice con-Vn(l), with no correlations between them. Under these sym-
stant should be identified with the exciton size of the undermetric conditions we have

lying qguantum-mechanical problem, this size is proportional

to an effective Bohr radius of the medium. Our consideration He= Mn=H ®)

is restricted to temperaturdssmall compared té,, which  (the last equality should be applied only to final expressions
is a necessary condition for the formation of coupket
states. This allows us to exclude from the system Hilbert
space also the states that correspond to the presence of sev-
eral electrons or holes within the same exciton-size box in Due to the local nature of the Hamiltonian Ed) and the
the real spacétheir interaction would be comparable with random potentiald/¢(I) and V(l), the expression for the

Ill. BASIC EXPRESSIONS
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averaged thermodynamic potent@l=(Q(V.,V,)) factor-
izes and we obtain

Q=-NT(In[1+ e BVere) + @ B(Vh—n)
+ e AVe Ve i), (7)
where

e=exp( BEy). (8)
The remaining averaging in Eql) is performed over the

random potential¥/, andV,,. The quantities of interest Egs.

(2) and(3) are given by

__ 10
Nloue M= Mp= M
_|yexp(—BVe)+ ey’ex — B(Ve+ Vp)]
- 2(Ve Vr) ®
and
] __3{@ _<ey2exp[—ﬁ<ve+vh>]>
* Mk, _, _, 2(Ve Vi) '
(10)
Here, we introduced
y=expBu) (11
and
Z(Ve,Vh)=1+yexp — BVe) +y expl— BVy)
+ ey? exf — B(Ve+Vp)]. (12)

We shall study a dependence of the system state on the ¢

rier densityn so that the value of the chemical potential
should be found from Eq9) and put into Eq(10). Equa-

tions (9) and(10) describe completely the ionization equilib-

rium between bound and unboueeh pairs for the model
Eq. (2).

IV. ANALYSIS OF THE BASIC EQUATIONS
IN PARTICULAR CASES
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parametek Eq. (8) is of the order of unity, we find from Eq.
(13): n,~n?<n, which just corresponds to the density of
“accidentally” formed electron-hole pairs in the noninteract-
ing system; the interaction plays a negligible role in this
trivial “high-temperature” limit. We are mostly interested in
the opposite, low-temperature case, wlkenl. The inequal-
ity Eq. (23) is only necessary but still not sufficient condition
for an efficient electron-hole coupling. Indeed, in the limit of
an ultralow-carrier density<1/e we haven,~ en?. Though
the number of bound-h pairs(excitong in this case exceeds
considerably the number of sites accidentally occupied si-
multaneously by an electron and a hola{>n?), the frac-
tion of bound pairs is still relatively smalhg/n=en<1).

In the opposite limitn>1/e the exciton densityn,~n
coincides with the total density of electrofisoles, which
means that most of the carriers are in the bound state. The
crossover between the two regimes may be determined by a
condition

n=1/, (14

which separates the two density regimes 1/e (unbound
pairg andn>1/e (bound pairgat a given temperature obey-
ing e>1. On the other hand, E¢l4) determines a crossover
temperature T, for a given density of carriers:Tg
=Eq/In(1/n). Note that for the considered low-density case
n<1 this temperature is considerably smaller thBg.
Equation(13) is a particular form of a general “ionization
equilibrium” condition'® applied to the model Eq1).

B. Noninteracting (E;=0) particles in a disordered potential

Obviously, there are ne-h pairs in this case except those
that are associated formally with lattice sites occupisd-
tistically independently by an electron and a hole. This is

asily seen from Eq10), which factorizes into the product
n,=ngn,=n2. Equation (9) reduces in this case to the
Fermi-distribution function averaged over the disorder

P(V)dV. (15)

_f 1
=) exd V=) +1]

At this point, we should specify the distribution function
P(V) for the site disorder. We are interested in the case

For further comparison, we describe first two simplestWhe” the magnitud¥® of the typical variation of the disor-

particular cases(a) the case of an ordered system.EV,,
=0) and(b) the case of noninteractindgeg=0) patrticles in
a disordered potential.

A. An ordered system(V.=V,=0)
From Eqgs.(9) we find the quantity=exp(Bu) and put it

der potential is considerably greater than the temperature:
BVo>1. We shall count energies from the minimal value of
the disorder potential taken as the origin of the energy scale.
The inequality BVo>1 means that only the low-energy
range of the distributio® (V) contributes to Eq(15) and the
concrete form of the distributioR(V) at BV>1 is not im-
portant. Here we consider the case of a uniformly distributed

into Eq.(10). As a result we obtain the following exact con- disorder potential with

nection between the total density of electrdhsles and the
density of bound pairs:

2en?

T1t2n(e-1)+ (1-2n) 2+ den(i_n)

(13

n;

We are interested in the case of a low-carrier densig/1.
Consider some limiting situations. For temperatufesom-
parable to or exceeding the binding eneHyy i.e., when the

1
P(V)=g-0(V)6(Vo—V), (16)
Vo
whered(x) is the step function. UsingVy>1 and Eq.(16)
we obtain for Eq.(15):

n=i|n[1+exp(,6’,u)]. 17

BVo
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or, respectively, u=(1/B8)In[ exp(BVon)—1]. The density VI. ANALYTICAL CONSIDERATION
valuen=nc, For an analytical treatment of Eq21) and(22), we shall
In2 assume the case of a strong disorfig<V,, and reduce our
nCZT’ (19 consideration to the case of a nondegenerate system of car-
BVo riers wheny<1. It may be shown that for the considered

separates nondegeneratet<(n., w<0) and degenerated range of parameters the syst¢a1) and(22) takes a simpli-
(n>n;, w>0) Fermi gases. This value describes a relativefied form
fraction of “available” sites, i.e., those with site energies not

exceeding the temperatufe Y 2

This fulfills our consideration of the limiting physical n= BV0+ (BVO)ZF(ey ), (24)
situations. In the next section, we consider the case of the
simultaneous presence of the electron-hole interaction and
the disorder. n,= F(ey?) (25)

2 Y°),
(BVo)?
V. ELECTRON-HOLE COUPLING IN THE PRESENCE where
OF A DISORDER

To perform averaging in Eqs(9) and (10) over the F(x):fx Mdg; (26)

random-potential distribution Eq(16) for electrons and 0 3

holes it is convenient to introduce new integration variable

X, = exp(— V) andx,=exp(—AV;). We obtain F(x)~x atx<1; andF(x)~(1/2)IX(x) atx>1.

Note that the second term on the rhs of E2f}) coincides
with the densityn, of bound pairs Eq(25), therefore, the
1
ne J j [1+ eyxp] dxydx, (190 first termy/(BV,) should be interpreted as the density
(BVo)?) Jxo Xo[ 1+ Yy(X1+Xp) + €y?X1%o] =n—n, of unbound carriers. Our task is to investigate vari-
ous regimes described by Eq24) and (25). We are inter-
ested in the dependence f on n. Thus, we should find a

and

ey? 1 dx.dx solutiony=y(n) to Eq.(24) for a givenn and put this value
n,= f f 1772 , (200 into Eq.(25. Because Eq(24) does not allow an analytical
(BV0)?) Jxg 1+y(X1+Xp) + €y°X1X, solution in a general form, we have to restrict ourselves to a

qualitative analysis of limiting situations. Below we shall
consider consecutively different cases; the results of this
somewhat long consideration are summarized at the end of

where xo=exp(—BVy)<1l. In Eq.(20) we may straightfor-
wardly take the limitxo— O, which corresponds to neglecting
exponentially small contributions from the high-energy part

. L this section.
of the disorder distribution Eq16). However, one should be ) 2
more careful with the part that corresponds to the first term (1) First, we suppose, thaty?<1, so thaty<1/\e [the

. 2 . . . .
in the nominator of Eq(19). This part contains a singularity CPPOSite casey>1 will be studied in(2) below]. With the

H 2\ o 2
at smallx, so that the corresponding contribution should beusedof '_[he expz_1n5|foﬁ(syh)~eyl ’ _Eq.. (24) reduces to a
extracted before taking the above limig—0. As a result, duadratic equation foy with a solution:
we find the following expressions for the density of carriers i+ den—1
y=,8Vo—2 ' (27)

In(1+y) y(e—1) (1 dx €
n= +

BVo (BVo)? Jo (1+yx)(1+eyx) which leads to the following expression fop Eq. (25):

1
np=— V1+4en—1]° (29

We should provide the compatibility of ER7) with the
(22 above assumptiog<1/\/e. We shall do it in two opposite
limiting situations, en<1 [item (1A)] and en>1 [item
1B)].

These equations determine completely the ionization( ()1]A) At en<1 we havey~ BV,n, andn,~en?, so that
equilibrium between bound and free carriers for the mode}, /n~ en<1. This caserf<1/e) corresponds to a system of
Eq. (1) in the presence of both interaction_ and disorde(. Thernbound carriers. The condition< 1//e leads to an addi-
(énly ?Zsls)umF:jU?any) Wh'tchh has be?.': mzide m_the de<<r|1va|t|on Oional restriction for n< 1/(\/2,3Vo), thus we requiren

as-. an is the inequalityxo=exp(~Vo)<1. In min{ 1/, 1/(J'eBV,) }. Comparison of the two terms in

:Ez Islrysltg?(;:%szncg (vzaér;|?2(;T1%e|r;t?£aétéc£(|ai;)e;£((f EO ):_r;%] the curly brackets shows thatek 1/(v/e8V,) atT<T,, and
' 2o on the contrary, ¥>1/(\eBV,) at T>T,, where

respectively. Our task is to study the solution to E@l)
and (22) for the range of parameters given by Eo

T=o—2> .
n<l, 1<e 1<pV,. (23 ¢ 2In(Vo/Eyp)

X{In[1+y+xy(1+ey)]—In[1+yx]} (21)

and for the density of bound pairs:

1+y+xy(l+ey)
1+yx

ye fl dx
n,= n
2 (BVo)2Jo 1+ eyx

(29
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The appearance of a new characteristic crossover tempergran the quantity 14(e3V,) on the lhs of Eq(32), so that
ture T, Eq. (29) is a peculiar feature of the considered dis- the resulting inequality looks like
ordered system.

Thus, we have the following range for carrier densities 21 \/E/(,GVo)]
which corresponds to the considered céb) of unbound T ayaz n< 1/(BVo). (39
carriers: n<1/e at T<T,; andn<1/(\eBV,) at T <T. (BVo)

(1B) At en>1 we havey~pVoyn/e, andny~n. This |, w0 concidered limif T<T,—(8Vg)2<e], the left
case corresponds to a system of bound pairs. The Cond't'%rm in Eq. (35 may be approximated
y<1/\Je leads to the restrictiom<1/(8V,)?, so that to- as AIn[el (BVo) 112/(BVo) 2<n~2[In(ye) 12/ (BV,)2

gether with the inequalityen>1 we have: 1¢<n 212102 L
<1/(BV,)?. To be compatible, the latter double inequality +OL(In(BVo)/(BVo)"1~Eg/(2Vg). The compatibility of two

requires 14<1/(8V,)?, which leads toT<T,. Hence, we inequalities in Eq(35) reads a£§/Vy<1/(BV,), which is

have the following range for carrier densities which corre-Valid under condition,<T, where
sponds to the considered cadd) of bound pairs T<T,;

2
Ve<n<1/(BV)>2. T 36
(2) Suppose now thaty?>1, so that Eq(24) looks like 2V,
In2( ey?) is a new characteristic temperature of the system. Evidently,
y + €y =ny+n,. (300 Tm<T.. Thus, an additional range where the carriers are

" BVo  2(BVy)? mostly unbound is determined by the following conditions:
Tm<T<T., E3¥(2V3)<n<1/(BVy).

(2B) We continue to analyze the casg?>1 but here we
shall study the limitn;<<n,~n [which is opposite to one
considered in2A)]. In this regime of bound pairsng~n)
To solve the transcendental E0), below we consider the we have from Eq(30): 2n(BV,)?=In%(ey?), so that
following limiting situations: n,<n; [item (2A)] and n,

>n, [item (2B)]. y= expyn(BVy)?2/2

The solution fory should obey

1/e<y<1. (3D

(2A) Assumen,<n;, hencen;~n (the regime of un- \/; (37)
bound carriers This means thay=8Vyn and the above
range fory corresponds to the following interval for This quantity must obey the restriction E®1), as well as
the assumed inequalityn;=y/(BVy)<<n,~n, i.e., y
1U(\eBVo)<n<1(BVy). (32 <npV,. As follows immediately from Eqs(31) and (37),
Besides this restriction, the solution fgrshould also obey values ofn are restricted to the interval
the above assumptiam,<<n;~n, which means 1 BV)2<n<el(BV,)?, (39)
(1/2)In’[ (BVon)?]<n(BVo)?. (33 while the inequalityy<nBV, may be represented in the
. 2 i
Further analysis splits into two variants, depending on thdom: VnBVo<In[e(Von)?]. Similar to what has been done
temperature rangeT(<T or T<T,). in the previous section, we represent the rhs of the last in-

(i) T.<T, which means that<(8V,)2. In this case we €quality as I/e/ (Vo) 1+In[n(BVo)’] and neglect the sec-
have an estimate for the logarithm argument &8V,n)2  ond term as compared to a much greater vafogV, on the
<(BVy)*n?, i.e., the Ihs of Eq(33) is greater than 1 but less hs of the inequality. The latter takes the fornsV,
than 2 Iin(BVy)2]. Therefore, Eq.(33) is equivalent to <IN[Ve/(BVo)], which means, in particular, that 1
an inequality n(BVo)?, i.e., 1/(8Vo)?<n. Together with > e€/(BVy), i.e., T<T;. Thus, we arrive at the following
Eq. (32 this leads to an inequality: mék(\eBV,), inequality:
1(BVo)?t<n<1/(BVy). At T.<T the first term in the
curly brackets prevails, so that we find the density range for Inz[\/zl(ﬁvo)] Eg
the realization of the unbound carrier regime: T, n<(,3\/—)2~ﬁ' (39
<T, 1U(JeBVo)<n<1/(BVy). 0 0

(i) T<T., which means thatgV,)?<e. In this case, Eq. where the approximation is in neglecting a small ratio
(33) may be represented as ~IN2(BVR)I(BVo)>. It is easily seen that Eq39) imposes a

stronger restriction than the right inequality in E@S),
{In[ e/ (BVon)]+In[n(BVo)21}2<n(BVy)2, (34  therefore, we obtain the following conditions for the realiza-

tion of the considered cag$@B) of the bound pairsregime:
where the argument of the first logarithm in the curly brack—T<Tc’ 1/(/8V0)2<n<E§/%2V%). P g

ets is large. Therefore, we may neglect the second term

In[n(BVy)?] in the curly brackets in E(34) as compared to _ _

a greater quantity(8V,)2. Hence, we arrive at an inequal- Summary of the analytical analysis

ity 2{In[\/E/(,8V0)]}2/(,8V0)2<n, which must be fulfilled in Combining the results of the above analytical consider-
addition to Eq.(32). Note that for the considered rande ations, we obtain the following qualitatively different sce-
<T. the quantity on the lhs of the new inequality is greaternarios shown schematically in Fig. 2.
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T<<T A class “a” of siteswhere theV .+ V,,—E;<0. The den-

" sity n, of these sites is estimated ag=(1/2)(Eo/V,)?.
unbound \// bound For the considered temperature range<E,<V,) the
camers N\ pairs . R densityn, of a sites is considerably greater thap. How-

1/e N, n_ ever the relation betweem, and n. depends on the
temperature—as is easily seen, a&<T, (T>T,) n
(Q) . ; . -
<n, (n;>ny). This explains the physical origin of the
crossover temperaturg,, (36). Consider subsequently the
T.<<T<<T, temperature intervals corresponding to Fig. 2.

T<T(<T.), Fig. 2a). The range of ultralow carrier
unbound \\/ bound \x/ unbound densitiesn<n, corresponds to the situation where the carri-
carriers N\ pairs /.\ cariers ers are distributed mostly over the sites (of the lowest

1/e (Eo/ Vo) n- energy. As the potential variation ob sites is of the order
(o) of T, i.e., small compared to the exciton binding enekgy
this case corresponds to the limit of an ordered system and
therefore the crossover between the regimes of free carriers
To<<T and of bound pairs is governed by the relatior 1/e [see
unbound < Fig. 2@]. With an increasing carrier density all theb sites
cariers \\ become filled with bound pairs aredandc classes enter the
Ne n game. As occupied witle-h pairs a sites are energetically
more preferable thaasites, andh,>n., most of the carriers
() fill a sites forming bound pairs. This lasts until all theites

are filled with e-h pairs. The presence of a relatively low
FIG. 2. Phases of the electron-hole system in the presence efensity ofc sites does not influence the distribution of carri-
disorder. ers. This qualitative scenario explains completely the phase

L states at Fig. @).
At very small temperatures3T,, the situation is similar T, <T<T,, Fig. Ab). The range of ultralow-carrier den-
to one considered in the Sec. IV A for an ordered system: the m €y 2 '

betw th : £t ; d b ftiesn<n,=nZ does not differ from that considered in the
crossover between the regimes of free carriers an Our’kSJrevious item. However, at higher densities we deal with

._quite a different situation due to the fact that noy<n..
Fhis means that whea sites are occupied with bound pairs,

of fte.t?mperg-tutre Lntervarl'§<Tm).T€T<T find that a further increase of the carrier density results in filling
intermediate temperatures,, c, WE T a single-particlec sites. Asn,<n., the density range,<n

the regl][ne OT b%und _[;)_ags/ e<i<|st<<s %nlva'tzhm ar?llntertm_zdlate< n. corresponds to the situation when an overwhelming ma-
range of carrier densi ig e<n (Eo/Vo)“], while outside jority of carriers sit atc sites; thus, the regime of unbound
this density range the carriers are mostly unbound, Fig. 2 carriers fi,<n) is recovered, Fig. ®)

At relatively high temperatures KT (<1/E,), the re- 2 e

. : . . o (Tm<<) T.<T (<Egy), Fig. 2c). In this temperature
glbn;s/sorh?eoruenqdui?ggserit?i)no;igng:)at afithe density still rangen,<1/e, hence the low-density regimes=n, corre-

We see, that the presence of disorder strongly inﬂuenceS onds to unbound cqr_riers. This regime will take_ place also
the ionizati,on equilibrium between boumdh pairs and un- r intermediate denS|t|egb<n<na. TO prove this state-
bound carriers in the considered model. An explanation an ent, we make the opposite gssumptlon, € .that this density
discussion of the obtained results will be done in the neannge corres_ponds to the regime .Of _bound pars, and come to
section pontra}dmtlon. C;ompare a stat|st|cql wglgM)~e of a
: pair, which occupies one of the low-lyirgysites, and a sta-

tistical weight Wi~ (ns/n)? of two charges on sites that
form a shell of energetic widtAE=Eg+/n/n,, the density

Despite the simplicity of the considered lattice-gas modehs of these sites isms=AE/V, [the above estimate fakE
Eq. (1), the system possesses a quite rich behavior, which i®llows from an expression for the fraction efsites occu-
characterized by several regimes with corresponding crosgied with pairs of density: n/n,=(AE)%Ej]. The assump-
over temperatures. Our present task is to give a physicdlon W,/Ws>1 is equivalent to ¥<n. In the considered
explanation to the obtained results. For this aim we introducelensity rangen<<n, this would imply that 1lé<n,
several classes of lattice sites. = ES/(ZV%), which contradicts the considered inequallty

A class “c” of siteswhere the site potential for an elec- <T. Therefore, aff.<T the intermediate density rangg
tron (V) or for a hole (V,) does not exceed temperatife  <n<n, also corresponds to the regime of unbound carriers.
For the distribution Eq(16) the density 2. of these sites is  And finally, for densitiesi,<n, when the density, of sites
estimated according to.=T/V, [compare with Eq(18)]. occupied with pairs is small compared to the total density

A more narrow class “b” of sitesvhere the site poten- of carriers, the regime corresponds, evidently, to unbound
tials for an electron¥,) andfor a hole (/) do not exceed carriers. Thus, the temperature interfak T corresponds to
temperatureT. The densityn, of these sites isn,=n?  unbound carriers for alllow) densities, at which the system
=(T/Vg)?<n,. of carriers remains nondegenerate; Figr)2

VII. INTERPRETATION OF THE RESULTS
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Here we have presented a simple physical explanation foof bound electron-hole pairgexcitong and may decrease
the scenarios and crossover parameters found in the qualitaensiderably the range of existence of exciton gas. This find-
tive analysis of the equations of state, which has been carrieidg might be relevant for interpreting recent experiments on

out in the previous section. indirect excitons in thin GaAs/AGa,_,As quantum wells.
As is knowr effects of disorder are quite important in these
VIIl. CONCLUSION systems; in particular, there is a drastic reduction of the ex-

. ] citon diffusion coefficient. An additional warning, which
We have presented an effective lattice-gas model Oftems from the above analysis is that even the presence of

electron-hole coupling in disordered semiconductor strucayciton phase itself in strongly disordered nanostructures
tures. This model is based on the assumption of a thermahoyid be a subject of an examination.

(quas) equilibrium in the electron-hole gases, therefore, it is
mainly applied to systems of spatially separated electrons
and holes(or indirect excitonswhere electron-hole annihi-
lation processes are strongly suppressed and the exciton life- The work of V. I. Yu. was supported by the Center of
time is much longer than in bulk samples. Despite its sim-Chemical Physics, University of Western Ontario; partial
plicity, the model turns out to be quite rich. In particular, it support was provided by the grants “Solid State Nanostruc-
possesses several crossover regimes characterized by the dores” from the Russian Ministry of Sciend®lo. 97-107%
responding temperatures, suchTas (36) and T, (36). This  and RFFI(No. 96-03-34048 M.S. is thankful to NSERC of
is a peculiar feature of the considered disordered system. Canada for financial support. The authors are also thankful to
It has been shown that the disorder promotes dissociatioW. Lau for preparing the figures.
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