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Lattice-gas model for electron-hole coupling in disordered media
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We study an effective lattice-gas model for electron-hole coupling in disordered semiconductor structures.
Despite its simplicity, the model turns out to be quite rich. It possesses several crossover regimes between
phases of bound electron-hole pairs~excitons! and unbound electrons and holes. It has been shown that a
sufficiently strong disorder promotes dissociation of bound electron-hole pairs and may decrease considerably
the range of existence of exciton gas.@S0163-1829~98!05948-7#
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I. INTRODUCTION

There is considerable research interest in systems of
citons in semiconductor quantum wells~QW’s!. This interest
is connected with the important role excitons play in ligh
matter interaction processes in light-emitting devices a
semiconductor microcavities. Another reason for the
search interest is related to a possibility of Bose-Einst
condensation of excitons in QW’s.1 In this respect, specia
attention is attracted to spatially indirect excitons formed
spatially separated electrons~e! and holes (h).2 Due to a
strongly enhanced annihilation time of spatially indirect e
citons, these systems are especially attractive with respe
the search for collective phenomena. There is a rapidly
creasing amount of publications devoted to bo
theoretical3–6 and experimental7,8 investigations of indirect
e-h coupling; see also references 4–6 and 8. Some exp
mental evidence has been reported8 for a stable excitonic
ground state in a strong magnetic field, which favors
stability of the excitonic phase.9

One of the intrinsic physical problems one meets wh
dealing with excitons in semiconductor nanostructures is
presence of a disorder that hinders manifestation of col
tive or coherent effects of exciton-exciton or exciton-lig
interaction. The disorder corresponds to structure imper
tions unavoidable in the course of fabrication. For thin QW
and, especially, in the case of indirect excitons, the disor
is mainly determined by an interface roughness and a th
ness variation of QW’s. The presence of a moderate diso
results in scattering of excitons and is responsible for re
tively small values of the exciton diffusion coefficient. Wit
an increase of the disorder excitons may become locali
@With respect to two-dimensional~2D! systems a more cor
rect statement is that the exciton localization length is
coming small as compared to the system size.# However,
even in this ‘‘strong-localization’’ regime, typical variation
V0 of the random potentialV(r ) may be still small with
respect to the exciton binding energyE0 , so that the interna
structure of excitons is weakly affected by the disorder.

The question addressed in this paper relates to the o
site case when the random potential variationV0 is greater
PRB 580163-1829/98/58~24!/16202~7!/$15.00
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than the exciton binding energyE0 . This situation may oc-
cur in sufficiently thin QW’s. For instance, as small as 0
nm thickness variationdL in a GaAs QW of an average
thicknessL53 nm ~this corresponds to the experiment8!
would result in the variation of the electron confinement e
ergy p2\2dL/(meL

3);30 meV, which is considerably
greater than the exciton binding energy. In general, electr
and holes in semiconductors are subject to different va
tions of their potential energies,Ve(r ) and Vh(r ), respec-
tively. Moreover, the correlation betweenVe(r ) and Vh(r )
may be rather weak. The difference in the electron and h
random potentials influences the internal degrees of freed
of an e-h pair. Our task is to investigate under which ci
cumstances this may lead to the exciton dissociation.

An exciton created at an arbitrary place is not in the m
favorable—lowest potential energy—state of thee-h pair. At
large ~as compared to the exciton binding energy! and non-
correlated random-potential variations there is a good cha
for the electron and the hole to find lower energy positio
that may be quite far from each other, so that at first glan
thee-h pair should dissociate~see Fig. 1!. On the other hand
for finite and finite-size correlated potentials, there is alwa
a possibility for thee-h pair to find a position that corre
sponds to the minimum of bothVe(r ) andVh(r ). Electron-
hole coupling in the vicinity of this point and the formatio
of the exciton state leads to an additional lowering of t
energy. Thus, speaking about thermodynamically equi
rium states one might come to the opposite conclusion
the disorder may have only a little influence on the existe
of excitons. However, the latter reasoning relates to a sin
exciton. But a single exciton cannot survive even in an
dered macroscopic sample at thermal equilibrium with
nonzero temperatureT, it will unavoidably dissociate into an
electron and a hole. AtT.0, only a finite-density gas o
bounde-h pairs coexisting with a gas of free electrons a
holes may be in the ‘‘ionization equilibrium.’’10 The subject
of the present study is the influence of a random potentia
the ionization equilibrium condition fore-h pairs. We shall
restrict our consideration to the case of low electron and h
densities when we may neglect screening effects.

The quantum-mechanical problem of a particle subjec
16 202 ©1998 The American Physical Society
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PRB 58 16 203LATTICE-GAS MODEL FOR ELECTRON-HOLE . . .
to a strong random disorder is very complicate even for n
interacting particles. The presence of an interaction tha
sufficiently strong to form bound states~hence, it cannot be
treated perturbatively!, makes the above problem even mo
formidable. To proceed, we restrict our consideration to
simplified model that still has some important features of r
systems. The major simplification stems from neglecting
particle kinetic energy. This does not make the model me
ingless as long as we consider only thermodynamic equ
rium and not kinetic processes, which lead to the equi
rium. The system considered resembles lattice-gas mode
quantum counterpart of the problem will be accounted for
the Fermi statistics of electrons and holes. We shall dem
strate that even such a simple model has a surprisingly
behavior characterized by several crossover regimes.
shall show that the presence of disorder may influe
strongly the ionization equilibrium condition fore-h pairs.

II. MODEL HAMILTONIAN

We take the following model Hamiltonian:

H5 (
l; a5e,h

Va~ l!ana~ l!2E0(
l

ne~ l!nh~ l!. ~1!

Herena( l) takes values 0 or 1 and is the number of electro
(a5e) or holes (a5h) occupying the sitel of an effective
lattice;E0.0 is the binding energy for an electron-hole pa
occupying the same lattice site. The local nature of
electron-hole coupling implies that the effective lattice co
stant should be identified with the exciton size of the und
lying quantum-mechanical problem, this size is proportio
to an effective Bohr radius of the medium. Our considerat
is restricted to temperaturesT small compared toE0 , which
is a necessary condition for the formation of couplede-h
states. This allows us to exclude from the system Hilb
space also the states that correspond to the presence o
eral electrons or holes within the same exciton-size box
the real space~their interaction would be comparable wit

FIG. 1. Electrons and holes in random potentials.
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the effective Rydberg energy;E0). Within the model Eq.
~1! this restriction is effectively described by the Fermi s
tistics of electrons and holes occupying the effective latt
sites. The quantitiesVa( l) are effective random potentials a
the space region that corresponds to the effective lattice
l ~it is implied that the original physical potentials are eith
relatively smooth on the microscopic scale or they are av
aged over the exciton-size boxes!. Assuming the absence o
any correlation between the random potentials at differ
effective lattice sites we arrive at the model that allows
analytical treatment.

We do not take clearly into account the electron-hole
nihilation. Instead, we assume that the system is in a con
with electron and hole reservoirs so that the electron-h
system in the sample is described by the grand-canon
ensemble with chemical potentialsme andmh , respectively.
This corresponds to a quasi-equilibrium stationary regime
equal pump and annihilation rates ofe-h pairs. Our aim is to
calculate an averaged densityn2 of the bound electron-hole
pairs in the limit of small averaged~dimensionless! densities

na5K K 1

N(
l

na~ l!L L !1, a5e,h ~2!

of electrons and holes. We consider an electron and a ho
a bound pair if they occupy the same lattice site, so that

n25K K 1

N(
l

ne~ l!nh~ l!L L . ~3!

Of course, even in the absence of the electron-hole coup
there is a finite probability to find ‘‘accidentally bound
states, however their density will be given by the produ
nenh , which is considerably smaller than bothne andnh . In
Eqs.~2! and~3! N is the total number of the lattice sites an
the averaging is performed both with respect to the ther
distribution and realizations of the disorder:

^^A&&5E $dVe%$dVh%P~$Ve ,Vh%!

3
Tr$A exp@2b~H2meNe2mhNh!#%

V~Ve ,Vh!
, ~4!

whereb51/T, Na is the total number of carriers of typea
and

V~Ve ,Vh!5Tr$exp@2b~H2meNe2mhNh!#%. ~5!

To simplify the following expressions we consider the ca
of a neutral system with equal electron and hole densi
ne5nh[n and coinciding distribution functionsPl

e(V)
5Pl

h(V)[Pl(V) for the local-random potentialsVe( l) and
Vh( l), with no correlations between them. Under these sy
metric conditions we have

me5mh[m ~6!

~the last equality should be applied only to final expression!.

III. BASIC EXPRESSIONS

Due to the local nature of the Hamiltonian Eq.~1! and the
random potentialsVe( l ) and Vh( l ), the expression for the
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16 204 PRB 58V. I. YUDSON AND M. R. SINGH
averaged thermodynamic potentialV5^V(Ve ,Vh)& factor-
izes and we obtain

V52NT^ ln@11e2b~Ve2me!1e2b~Vh2mh!

1ee2b~Ve1Vh2me2mh!#&, ~7!

where

e5exp~bE0!. ~8!

The remaining averaging in Eq.~1! is performed over the
random potentialsVe andVh . The quantities of interest Eqs
~2! and ~3! are given by

n52
1

N F ]V

]me
G

me5mh5m

5 K y exp~2bVe!1ey2exp@2b~Ve1Vh!#

z~Ve ,Vh! L ~9!

and

n252
1

N F ]V

]E0
G

me5mh5m

5 K ey2 exp@2b~Ve1Vh!#

z~Ve ,Vh! L .

~10!

Here, we introduced

y5 exp~bm! ~11!

and

z~Ve ,Vh!511y exp~2bVe!1y exp~2bVh!

1ey2 exp@2b~Ve1Vh!#. ~12!

We shall study a dependence of the system state on the
rier densityn so that the value of the chemical potentialm
should be found from Eq.~9! and put into Eq.~10!. Equa-
tions ~9! and~10! describe completely the ionization equilib
rium between bound and unbounde-h pairs for the model
Eq. ~1!.

IV. ANALYSIS OF THE BASIC EQUATIONS
IN PARTICULAR CASES

For further comparison, we describe first two simple
particular cases:~a! the case of an ordered system (Ve5Vh
[0) and~b! the case of noninteracting (E050) particles in
a disordered potential.

A. An ordered system„Ve5Vh[0…

From Eqs.~9! we find the quantityy5exp(bm) and put it
into Eq. ~10!. As a result we obtain the following exact con
nection between the total density of electrons~holes! and the
density of bound pairs:

n25
2en2

112n~e21!1A~122n!214en~12n!
. ~13!

We are interested in the case of a low-carrier densityn!1.
Consider some limiting situations. For temperaturesT com-
parable to or exceeding the binding energyE0 , i.e., when the
ar-

t

parametere Eq. ~8! is of the order of unity, we find from Eq
~13!: n2'n2!n, which just corresponds to the density
‘‘accidentally’’ formed electron-hole pairs in the noninterac
ing system; the interaction plays a negligible role in th
trivial ‘‘high-temperature’’ limit. We are mostly interested i
the opposite, low-temperature case, whene@1. The inequal-
ity Eq. ~23! is only necessary but still not sufficient conditio
for an efficient electron-hole coupling. Indeed, in the limit
an ultralow-carrier densityn!1/e we haven2'en2. Though
the number of bounde-h pairs~excitons! in this case exceed
considerably the number of sites accidentally occupied
multaneously by an electron and a hole (en2@n2), the frac-
tion of bound pairs is still relatively small (n2 /n5en!1).

In the opposite limitn@1/e the exciton densityn2'n
coincides with the total density of electrons~holes!, which
means that most of the carriers are in the bound state.
crossover between the two regimes may be determined
condition

n51/e, ~14!

which separates the two density regimesn!1/e ~unbound
pairs! andn@1/e ~bound pairs! at a given temperature obey
ing e@1. On the other hand, Eq.~14! determines a crossove
temperature T0 for a given density of carriers:T0
5E0 /ln(1/n). Note that for the considered low-density ca
n!1 this temperature is considerably smaller thanE0 .
Equation~13! is a particular form of a general ‘‘ionization
equilibrium’’ condition10 applied to the model Eq.~1!.

B. Noninteracting „E050… particles in a disordered potential

Obviously, there are noe-h pairs in this case except thos
that are associated formally with lattice sites occupied~sta-
tistically independently! by an electron and a hole. This i
easily seen from Eq.~10!, which factorizes into the produc
n25nenh5n2. Equation ~9! reduces in this case to th
Fermi-distribution function averaged over the disorder

n5E 1

exp@b~V2m!11#
P~V! dV. ~15!

At this point, we should specify the distribution functio
P(V) for the site disorder. We are interested in the ca
when the magnitudeV0 of the typical variation of the disor-
der potential is considerably greater than the temperat
bV0@1. We shall count energies from the minimal value
the disorder potential taken as the origin of the energy sc
The inequality bV0@1 means that only the low-energ
range of the distributionP(V) contributes to Eq.~15! and the
concrete form of the distributionP(V) at bV@1 is not im-
portant. Here we consider the case of a uniformly distribu
disorder potential with

P~V!5
1

V0
u~V!u~V02V!, ~16!

whereu(x) is the step function. UsingbV0@1 and Eq.~16!
we obtain for Eq.~15!:

n5
1

bV0
ln@11exp~bm!#, ~17!
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or, respectively,m5(1/b)ln@ exp(bV0n)21#. The density
valuen5nc ,

nc5
ln 2

bV0
, ~18!

separates nondegenerated (n,nc , m,0) and degenerate
(n.nc , m.0) Fermi gases. This value describes a relat
fraction of ‘‘available’’ sites, i.e., those with site energies n
exceeding the temperatureT.

This fulfills our consideration of the limiting physica
situations. In the next section, we consider the case of
simultaneous presence of the electron-hole interaction
the disorder.

V. ELECTRON-HOLE COUPLING IN THE PRESENCE
OF A DISORDER

To perform averaging in Eqs.~9! and ~10! over the
random-potential distribution Eq.~16! for electrons and
holes it is convenient to introduce new integration variab
x15exp(2bVe) andx25exp(2bVh). We obtain

n5
y

~bV0!2E E
x0

1 @11eyx2# dx1dx2

x2@11y~x11x2!1ey2x1x2#
~19!

and

n25
ey2

~bV0!2E E
x0

1 dx1dx2

11y~x11x2!1ey2x1x2

, ~20!

where x05exp(2bV0)!1. In Eq. ~20! we may straightfor-
wardly take the limitx0→0, which corresponds to neglectin
exponentially small contributions from the high-energy p
of the disorder distribution Eq.~16!. However, one should be
more careful with the part that corresponds to the first te
in the nominator of Eq.~19!. This part contains a singularit
at smallx2 so that the corresponding contribution should
extracted before taking the above limitx0→0. As a result,
we find the following expressions for the density of carrie

n5
ln~11y!

bV0
1

y~e21!

~bV0!2 E0

1 dx

~11yx!~11eyx!

3$ ln@11y1xy~11ey!#2 ln@11yx#% ~21!

and for the density of bound pairs:

n25
ye

~bV0!2E0

1 dx

11eyx
lnF11y1xy~11ey!

11yx G . ~22!

These equations determine completely the ionizat
equilibrium between bound and free carriers for the mo
Eq. ~1! in the presence of both interaction and disorder. T
only assumption, which has been made in the derivation
Eqs. ~21! and ~22! is the inequalityx05exp(2bV0)!1. In
the limiting case of vanishing interaction@e5exp(bE0)→1#
the system~21! and ~22! reduces to Eqs.~17! and n25n2,
respectively. Our task is to study the solution to Eqs.~21!
and ~22! for the range of parameters given by

n!1, 1!e, 1!bV0 . ~23!
e
t

e
nd

s

t

n
l

e
of

VI. ANALYTICAL CONSIDERATION

For an analytical treatment of Eqs.~21! and~22!, we shall
assume the case of a strong disorderE0!V0 and reduce our
consideration to the case of a nondegenerate system of
riers wheny!1. It may be shown that for the considere
range of parameters the system~21! and~22! takes a simpli-
fied form

n5
y

bV0
1

1

~bV0!2
F~ey2!, ~24!

n25
1

~bV0!2
F~ey2!, ~25!

where

F~x!5E
0

x ln~11j!

j
dj; ~26!

F(x)'x at x!1; andF(x)'(1/2)ln2(x) at x@1.
Note that the second term on the rhs of Eq.~24! coincides

with the densityn2 of bound pairs Eq.~25!, therefore, the
first term y/(bV0) should be interpreted as the densityn1
5n2n2 of unbound carriers. Our task is to investigate va
ous regimes described by Eqs.~24! and ~25!. We are inter-
ested in the dependence ofn2 on n. Thus, we should find a
solutiony5y(n) to Eq.~24! for a givenn and put this value
into Eq. ~25!. Because Eq.~24! does not allow an analytica
solution in a general form, we have to restrict ourselves t
qualitative analysis of limiting situations. Below we sha
consider consecutively different cases; the results of
somewhat long consideration are summarized at the en
this section.

~1! First, we suppose, thatey2!1, so thaty!1/Ae @the
opposite caseey2@1 will be studied in~2! below#. With the
use of the expansionF(ey2)'ey2, Eq. ~24! reduces to a
quadratic equation fory with a solution:

y5bV0

A114en21

2e
, ~27!

which leads to the following expression forn2 Eq. ~25!:

n25
1

4e
@A114en21#2. ~28!

We should provide the compatibility of Eq.~27! with the
above assumptiony!1/Ae. We shall do it in two opposite
limiting situations, en!1 @item ~1A!# and en@1 @item
~1B!#.

~1A! At en!1 we havey'bV0n, andn2'en2, so that
n2 /n'en!1. This case (n!1/e) corresponds to a system o
unbound carriers. The conditiony!1/Ae leads to an addi-
tional restriction for n!1/(AebV0), thus we requiren
! min$ 1/e, 1/(AebV0) %. Comparison of the two terms in
the curly brackets shows that 1/e!1/(AebV0) at T!Tc , and
on the contrary, 1/e@1/(AebV0) at T@Tc , where

Tc[
E0

2 ln~V0 /E0!
. ~29!
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The appearance of a new characteristic crossover temp
ture Tc Eq. ~29! is a peculiar feature of the considered d
ordered system.

Thus, we have the following range for carrier densit
which corresponds to the considered case~1A! of unbound
carriers: n!1/e at T!Tc ; andn!1/(AebV0) at Tc!T.

~1B! At en@1 we havey'bV0An/e, and n2'n. This
case corresponds to a system of bound pairs. The cond
y!1/Ae leads to the restrictionn!1/(bV0)2, so that to-
gether with the inequality en@1 we have: 1/e!n
!1/(bV0)2. To be compatible, the latter double inequal
requires 1/e!1/(bV0)2, which leads toT!Tc . Hence, we
have the following range for carrier densities which cor
sponds to the considered case~1B! of bound pairs: T!Tc ;
1/e!n!1/(bV0)2.

~2! Suppose now thatey2@1, so that Eq.~24! looks like

n5
y

bV0
1

ln2~ey2!

2~bV0!2
5n11n2 . ~30!

The solution fory should obey

1/Ae!y!1. ~31!

To solve the transcendental Eq.~30!, below we consider the
following limiting situations: n2!n1 @item ~2A!# and n2
@n1 @item ~2B!#.

~2A! Assumen2!n1 , hencen1'n ~the regime of un-
bound carriers!. This means thaty5bV0n and the above
range fory corresponds to the following interval forn:

1/~AebV0!!n!1/~bV0!. ~32!

Besides this restriction, the solution fory should also obey
the above assumptionn2!n1'n, which means

~1/2!ln2@e~bV0n!2#!n~bV0!2. ~33!

Further analysis splits into two variants, depending on
temperature range (Tc!T or T!Tc).

~i! Tc!T, which means thate!(bV0)2. In this case we
have an estimate for the logarithm argument: 1!e(bV0n)2

!(bV0)4n2, i.e., the lhs of Eq.~33! is greater than 1 but les
than 2 ln@n(bV0)

2#. Therefore, Eq.~33! is equivalent to
an inequality 1!n(bV0)2, i.e., 1/(bV0)2!n. Together with
Eq. ~32! this leads to an inequality: max$1/(AebV0),
1/(bV0)2%!n!1/(bV0). At Tc!T the first term in the
curly brackets prevails, so that we find the density range
the realization of the unbound carrier regime: Tc

!T, 1/(AebV0)!n!1/(bV0).
~ii ! T!Tc , which means that (bV0)2!e. In this case, Eq.

~33! may be represented as

$ ln@Ae/~bV0n!#1 ln@n~bV0!2#%2!n~bV0!2, ~34!

where the argument of the first logarithm in the curly brac
ets is large. Therefore, we may neglect the second t
ln@n(bV0)

2# in the curly brackets in Eq.~34! as compared to
a greater quantityn(bV0)2. Hence, we arrive at an inequa
ity 2$ ln@Ae/(bV0)#%2/(bV0)2!n, which must be fulfilled in
addition to Eq.~32!. Note that for the considered rangeT
!Tc the quantity on the lhs of the new inequality is grea
ra-

s

on

-

e

r

-
m

r

than the quantity 1/(AebV0) on the lhs of Eq.~32!, so that
the resulting inequality looks like

2 ln2@Ae/~bV0!#

~bV0!2
!n!1/~bV0!. ~35!

In the considered limit@T!Tc→(bV0)2!e#, the left
term in Eq. ~35! may be approximated
as 2$ ln@Ae/(bV0)#%2/(bV0)2!n'2@ ln(Ae)#2/(bV0)2

1O@(ln(bV0)/(bV0)
2#'E0

2/(2V0
2). The compatibility of two

inequalities in Eq.~35! reads asE0
2/V0

2!1/(bV0), which is
valid under conditionTm!T, where

Tm5
E0

2

2V0
~36!

is a new characteristic temperature of the system. Eviden
Tm!Tc . Thus, an additional range where the carriers
mostly unbound, is determined by the following conditions
Tm!T!Tc , E0

2/(2V0
2)!n!1/(bV0).

~2B! We continue to analyze the caseey2@1 but here we
shall study the limitn1!n2'n @which is opposite to one
considered in~2A!#. In this regime of bound pairs (n2'n)
we have from Eq.~30!: 2n(bV0)25 ln2(ey2), so that

y5
expAn~bV0!2/2

Ae
. ~37!

This quantity must obey the restriction Eq.~31!, as well as
the assumed inequalityn15y/(bV0)!n2'n, i.e., y
!nbV0 . As follows immediately from Eqs.~31! and ~37!,
values ofn are restricted to the interval

1/~bV0!2!n!e/~bV0!2, ~38!

while the inequalityy!nbV0 may be represented in th
form: AnbV0! ln@e(bV0n)2#. Similar to what has been don
in the previous section, we represent the rhs of the last
equality as ln@Ae/(bV0)#1 ln@n(bV0)

2# and neglect the sec
ond term as compared to a much greater valueAnbV0 on the
lhs of the inequality. The latter takes the form:AnbV0

! ln@Ae/(bV0)#, which means, in particular, that 1
@e/(bV0), i.e., T!Tc . Thus, we arrive at the following
inequality:

n!
ln2@Ae/~bV0!#

~bV0!2
'

E0
2

2V0
2

, ~39!

where the approximation is in neglecting a small ra
; ln2(bV0)/(bV0)

2. It is easily seen that Eq.~39! imposes a
stronger restriction than the right inequality in Eq.~38!,
therefore, we obtain the following conditions for the realiz
tion of the considered case~2B! of the bound pairsregime:
T!Tc , 1/(bV0)2!n!E0

2/(2V0
2).

Summary of the analytical analysis

Combining the results of the above analytical consid
ations, we obtain the following qualitatively different sc
narios shown schematically in Fig. 2.
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At very small temperatures T!Tm , the situation is similar
to one considered in the Sec. IV A for an ordered system:
crossover between the regimes of free carriers and bo
pairs is governed by the relationen;1, Fig. 2~a!. The pres-
ence of the disorder in this case results only in the restric
of the temperature interval (T,Tm).

At intermediate temperatures Tm!T!Tc , we find that
the regime of bound pairs exists only within an intermedi
range of carrier densities@1/e!n!(E0 /V0)2#, while outside
this density range the carriers are mostly unbound, Fig. 2~b!.

At relatively high temperatures Tc!T (!1/E0), the re-
gime of bound pairs does not exist at all~if the density still
obeys the requirementn!1), Fig. 2~c!.

We see, that the presence of disorder strongly influen
the ionization equilibrium between bounde-h pairs and un-
bound carriers in the considered model. An explanation
discussion of the obtained results will be done in the n
section.

VII. INTERPRETATION OF THE RESULTS

Despite the simplicity of the considered lattice-gas mo
Eq. ~1!, the system possesses a quite rich behavior, whic
characterized by several regimes with corresponding cr
over temperatures. Our present task is to give a phys
explanation to the obtained results. For this aim we introd
several classes of lattice sites.

A class ‘‘c’’ of siteswhere the site potential for an elec
tron (Ve) or for a hole (Vh) does not exceed temperatureT.
For the distribution Eq.~16! the density 2nc of these sites is
estimated according tonc5T/V0 @compare with Eq.~18!#.

A more narrow class ‘‘b’’ of siteswhere the site poten
tials for an electron (Ve) and for a hole (Vh) do not exceed
temperatureT. The densitynb of these sites isnb5nc

2

5(T/V0)2!nc .

FIG. 2. Phases of the electron-hole system in the presenc
disorder.
e
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e
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A class ‘‘a’’ of siteswhere theVe1Vh2E0,0. The den-
sity na of these sites is estimated asna5(1/2)(E0 /V0)2.

For the considered temperature range (T!E0!V0) the
densityna of a sites is considerably greater thannb . How-
ever the relation betweenna and nc depends on the
temperature—as is easily seen, atT!Tm(T@Tm) nc

!na (nc@nb). This explains the physical origin of th
crossover temperatureTm ~36!. Consider subsequently th
temperature intervals corresponding to Fig. 2.

T!Tm(!Tc), Fig. 2~a!. The range of ultralow carrier
densitiesn!nb corresponds to the situation where the car
ers are distributed mostly over theb sites ~of the lowest
energy!. As the potential variation onb sites is of the order
of T, i.e., small compared to the exciton binding energyE0 ,
this case corresponds to the limit of an ordered system
therefore the crossover between the regimes of free car
and of bound pairs is governed by the relationn;1/e @see
Fig. 2~a!#. With an increasing carrier densityn, all theb sites
become filled with bound pairs anda andc classes enter the
game. As occupied withe-h pairs a sites are energetically
more preferable thanc sites, andna@nc , most of the carriers
fill a sites forming bound pairs. This lasts until all thea sites
are filled with e-h pairs. The presence of a relatively lo
density ofc sites does not influence the distribution of car
ers. This qualitative scenario explains completely the ph
states at Fig. 2~a!.

Tm!T!Tc , Fig. 2~b!. The range of ultralow-carrier den
sitiesn!nb5nc

2 does not differ from that considered in th
previous item. However, at higher densities we deal w
quite a different situation due to the fact that nowna!nc .
This means that whena sites are occupied with bound pair
a further increase of the carrier density results in filli
single-particlec sites. Asna!nc , the density rangena!n
!nc corresponds to the situation when an overwhelming m
jority of carriers sit atc sites; thus, the regime of unboun
carriers (n2!n) is recovered, Fig. 2~b!.

(Tm!) Tc!T (!E0), Fig. 2~c!. In this temperature
rangenb!1/e, hence the low-density regimen<nb corre-
sponds to unbound carriers. This regime will take place a
for intermediate densitiesnb!n!na . To prove this state-
ment, we make the opposite assumption, i.e., that this den
range corresponds to the regime of bound pairs, and com
a contradiction. Compare a statistical weightWp;e of a
pair, which occupies one of the low-lyinga sites, and a sta-
tistical weight Ws;(ns /n)2 of two charges on sites tha
form a shell of energetic widthDE5E0An/na, the density
ns of these sites isns5DE/V0 @the above estimate forDE
follows from an expression for the fraction ofa sites occu-
pied with pairs of densityn: n/na5(DE)2/E0

2]. The assump-
tion Wp /Ws@1 is equivalent to 1/e!n. In the considered
density rangen,,na this would imply that 1/e!na

5E0
2/(2V0

2), which contradicts the considered inequalityTc

!T. Therefore, atTc!T the intermediate density rangenb
!n!na also corresponds to the regime of unbound carrie
And finally, for densitiesna!n, when the densityna of sites
occupied with pairs is small compared to the total densitn
of carriers, the regime corresponds, evidently, to unbou
carriers. Thus, the temperature intervalTc!T corresponds to
unbound carriers for all~low! densities, at which the system
of carriers remains nondegenerate; Fig. 2~c!.
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Here we have presented a simple physical explanation
the scenarios and crossover parameters found in the qu
tive analysis of the equations of state, which has been ca
out in the previous section.

VIII. CONCLUSION

We have presented an effective lattice-gas model
electron-hole coupling in disordered semiconductor str
tures. This model is based on the assumption of a ther
~quasi! equilibrium in the electron-hole gases, therefore, it
mainly applied to systems of spatially separated electr
and holes~or indirect excitons! where electron-hole annihi
lation processes are strongly suppressed and the exciton
time is much longer than in bulk samples. Despite its s
plicity, the model turns out to be quite rich. In particular,
possesses several crossover regimes characterized by th
responding temperatures, such asTm ~36! andTc ~36!. This
is a peculiar feature of the considered disordered system

It has been shown that the disorder promotes dissocia
-

.

v

or
ta-
ed

f
-
al

s

fe-
-

cor-

n

of bound electron-hole pairs~excitons! and may decrease
considerably the range of existence of exciton gas. This fi
ing might be relevant for interpreting recent experiments
indirect excitons in thin GaAs/AlxGa12xAs quantum wells.
As is known8 effects of disorder are quite important in the
systems; in particular, there is a drastic reduction of the
citon diffusion coefficient. An additional warning, whic
stems from the above analysis is that even the presenc
exciton phase itself in strongly disordered nanostructu
should be a subject of an examination.
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71, 738 ~1976! @ Sov. Phys. JETP44, 389 ~1976!#.

3X.M. Chen and J.J. Quinn, Phys. Rev. Lett.67, 895 ~1993!; H.C.
Tso, P. Vasilopoulos, and F.M. Peeters,ibid. 70, 2146~1993!; L.
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