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A self-consistent method for the calculation of the electronic structure of crystalline surfaces is described. It
is based on a semi-infinite geometry with individual surface atomic layers stacked onto an infinite number of
bulk layers. Contrary to models based on slab or superlattice geometries there is no artificial distortion of the
correct asymptotic behavior of the wave functions so that an exact distinction between surface and bulk effects
is possible. Furthermore there are no principal restrictions on the shape of the self-consistent potential. A
special form of wave-function matching is used to construct the discrete surface states as well as the continuum
of bulk states from complete sets of solutions of the Sdimger equation in each single layer. The semi-
infinite substrate is treated as a whole by means of the complex band structure which appears as an easily
obtainable side-product of the theory. The main improvement at this step is the complete avoidance of the
inherent numerical instability which prevented the application of similar matching techniques to other than
very simple materials so far. The layer solutions of the Sdimger equation are obtained by means of the
spline-augmented-plane-wave method providing very accurate wave functions. As a first applicati@ithe
and (111) surfaces of aluminum were investigated. The results obtained include the self-consistent charge
density, the work function, and the complete band structure of the surface states and resonances. All calcula-
tions are found to be in good quantitative agreement with experirfi80L.63-18208)00124-9

I. INTRODUCTION tals based on wave-function matching was proposed by Ap-
pelbaum and Hamanti:2° This approach, however, relied on

For the theoretical investigation of the electronic structurethe propagation matrix meth&d?? which was shown by
of crystal surfaces within the framework of the local densityWachutk&>?*to be not correct in the mathematical sense. In
approximatioh? (LDA), a variety of methods has been de- numerical calculations this mathematical deficit turns out as
veloped so far. According to their underlying model geom-an inherent instability growing exponentially with the num-
etry they can be classified into two main groups. The firstoer of planar plane waves in the ansatz. For this reason,
group to be mentioned here consists of the methods based applications of that method to other than very simple mate-
slab or superlattice geometries, where the influence of theals were not successful so f&r?®
bulk substrate is approximated by means of a finite number Other approaches follow&t*°which were, however, not
of interior atomic layer$='® These models are of great popu- free of restrictions on the wave functions or the potential.
larity, arising from the fact that most of the well-approved Here, first self-consistent results were obtained by Ingles-
techniques for calculating the band structure of a threefield and Benestt by means of the embedded potential
dimensional infinite crystal can be adapted without principaimethod® applied to Al and Ni surfaces.
difficulties. Since the influence of the surface on the charge In order to avoid any of those restrictions, Wachutka re-
distribution is decaying within a few surface layers, theseturned to the ideas of Appelbaum an Hamann and showed
methods are well suited for the calculation of the chargehow to replace the propagation matrix method to achieve
density and related quantities. However, this is not the casmathematical correctne$$The main difference to the origi-
for the investigation of eigenstates and other energy-resolvedal approach was that the single layer problem was treated as
guantities which in general have a much greater spatial exa boundary value problem rather than as initial value prob-
tension and are artificially modified in their decay behaviorlem.
in such models. As a consequence an exact distinction be- In the present work these ideas are generalized, so that the
tween surface and bulk effects is lost. Moreover, the unproblem connected to the boundary conditions vanishes com-
avoidable interaction between the opposite surfaces leads fietely. With the variations described below the approach of
a splitting of all states which may reduce the energy resoluAppelbaum and Hamann now turns out as an efficient tool
tion considerably. The consequences of these shortcomindsr the investigation of layered structures which combines
may be diminished by increasing the number of layers, buthe advantages of a semi-infinite geometry with high preci-
the pay is an enormous increase of numerical expense.  sion.

These drawbacks do not arise with the other group of This treatment also saves a great amount of computer
methods which are based on a semi-infinite geometrytime, as the numerical effort is determined only by the rela-
Within this model, first self-consistent calculations were per-tively small number of atomic layers differing considerably
formed by Lang and Kohn on the assumption of a uniformlyfrom a bulk layer and, moreover, this expense increases only
distributed charge background with some aspects of crystdinearly with that number. This last feature makes the
structure taken into account perturbativéfy® After that, a  method particularly well suited for the investigation of ma-
very general method of treating realistic semi-infinite crys-terials with bad screening properties such as semiconductor
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Bulk Surface layers| Vacuum bounded at one side, this component may also be complex,
n= ., Ny+l N, |Ny-1 .., 1 0 thus leading to the concept of the complex band strutture
/ ~ which describes the total of solutions in this semi-infinite
>—< domain completely.
N R R, - periodic Up to this point the procedure essentially follows the
Q" "\ y ideas of Appelbaum and HamafihHowever, because of the
*ee a T inherent instability of the propagation matrix method used by
! bac(F) these authors the further proceeding has to be altered.
/n) \
d ol
\> A. The single layer problem
a,-periodic |z, 7, z

If A denotes the two-dimensional Wigner-Seitz cell of the
FIG. 1. Model of the semi-infinite crystal. planar periodic crystal with lattice vectoR, then a single
layer is represented by an elementary regiéh=
surfaces or heterostructures which require a greater numbetx [z, ,zg[ and the problem is to find all solutions of the
of individually treated layers than metals. Nevertheless, as &chralinger equation within this layer with the Bloch prop-
first application of the method the low indexed surfaces oferty

aluminum are investigated. R
e(r+Ry,2)=e" gy e(ry,2) 2

Il. SOLVING THE SCHRO DINGER EQUATION for a given planar propagation vectorand energye. How-

In order to obtain the solutions of the Sctimger equa- €Ver, since the application of a variational principle requires

tion the semi-infinite crystal is divided into single atomic the problem stated to have a unique solution, a further
Iayersz(L“)sz<z(F{‘) (n=0.1, ... »: zdenotes the coordinate boundary condition has to be imposed. In the case of the

: 2,33,3 H H H
perpendicular to the layers; the coordinates parallel to Propagation(or transfers****) matrix method this addi-

them) with the semi-infinite vacuum region considered as thdional condition is the specification of the value and the nor-

zeroth layer(Fig. 1). Omitting reconstructions for the time mal derivative ofy atoneside of the layer. This works well

being, all layers are invariant under translations by plana ith one-dimensional, i.e., ordinary differential equations,

lattice vectorsR, . Since only a relatively small number of ut it fails when applied to a partiglelliptic) differential

top layers are affected considerably by the surface, the aéa_quation. To state this problem correctly, the boundary con-

it H H : H 3,24,35
sumption is made that all layers left from an appropriatelyg\'t'onS muit _be enclg_sm%] "et')' mgosed hmigh §|desz. h h
chosen layeNy (including that layeralready have the same ﬁ)ropirc_ oice a.lfr.ed mcthet ﬁuln gry an |t|on§,tr\:v ere t (T
effective potentialV .+ and charge density as the layer in- value ofi/is specified on the whole boundary and the norma

finitely deep inside the crystal: derivative is left free. Slnce“the Blpch,proper@) can b_e_
shown to work as a correct “enclosing” boundary condition

img®, N in the parallel direction&® we are left with the condition
— 0 - b
binade™ 1 < ¢=Ve.p. (D) _
¢, n<Np, (11,20 =20 b @ for Xe{LR}, (3
Il

In the following these identical layers are called bulk layers. X ] o )

It should be emphasized here, that in contrast to the potenti¥fhereb” are the Fourier coefficients of an arbitrary Bloch
the wave functions are not restricted in any way, but keegP€riodic function defined on the layer boundanesk; de-
their correct asymptotic shape also deep inside the crystarl‘.OteS th_e two—d|_menS|onaI remproca_l lattice vectors. Now,
This is an important fact, because in general the effect of thnt-:her‘f< exists a unique and stable solution for any given values
surface on the wave functions has a much greater spati@f P, exactly if there is no nontrivial solution which van-
extension than the effect on the potential or the charge deriShes at both sides of the layer. However, such solutions with
sity which are smoothened by screening effects and the intét oundary value of zero only exist at discrete energes
gration over the Brillouin zone. Thus a much greater numbefixed k) which are equal to the energy eigenvalues of the
of individually treated layers would be necessary—as in thdayer enclosed in an infinitely deep well. Because these en-
case of slab based methods—if the wave functions werr9i€s constitute a set with measure zero they can be ne-
clipped too. glected in connection with energy-integratgghysica)

The solutions of the Schdinger equation are now ob- quantit'ies such as the charge .density, but they may cause
tained by determining the total of partial solutions within nume_rlcal effects when calculating the wave function which
each single layer followed by a matching procedure to givea'® discussed later. o o
the differentiable global wave functions. Inside each single For wave functions) satisfying Eqs(2) and(3), it is easy
layer the Schidinger equation is treated as a partial differ- ©© Show that the Schadinger equation is equivalent to the
ential equation with the energy and the planar propagatioNariational problem
vectork, considered as parameters. Because of the full three- _ :
dimensi”onal periodicity of the potential inside the bulk re- 8P (y,y)=0 for given b7, )
gion, the solutions within this domain can additionally bewhere
classified according to a third propagation vector component
k, perpendicular to the surface. Since the bulk region is D& ) =H(& ) —ESE ) 5)
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and L 1 2 N-2 N-1 R

5(§,¢)1=fﬂ§(r)* y(r)dr,

H(§,¢)1=fﬂ{[Vf(f)*][V¢(f)]+Veﬁ(f)§(f)*lﬁ(f)} d’r L R
(6) 0

in atomic units withzZ=1, me=3, and e?=2. Thus, the ) _ _ )
whole set of solutions within the layer is obtained by solving ~ FIG. 2. B-spline system fo=6 with break points¢;=j.
Eq. (4) for wave functions) subjected to all possible bound-
ary valuesb*. )
In the case of crystal layers this is done by means of a Br(X)= ZO Xj(X)kZO Brjk(X—X)",
spline-augmented-plane-wauSAPW) ansatz, adapted to .
layer structure. This ansatz, standing out for high precision
results in bulk calculation® combines several advantages Yi(X): = 1 xelxp Xl 9)
with regard to the layer problem too. P27710  otherwise.
Forr € ) and—for the sake of simplicity—one atom per ) _ _
elementary regiorithe location of which defines the layer They must be twice differentiable and nonzero only on at

0 ' 2 ' 4 6

N—-1 3

origin), this ansatz reads most four partition interval2®3’ The last property later re-
sults in matrices of band form. For the indices
Ny e{l,... N=-1L,RL',R'} these systems are uniquely de-
l//ku(r):z > AK”)\S)\(Z)el(kHJrKH)rH+@(rMT_r) termined by the requirement of having a minimal supplement
K, X and the conditiongsee Fig. 2
lmax
. Bi(Xx)=d&x, X=L,R,
%3 3 Bl RN Yin(r) =3 Cii(r). A=
' p
(7) By(X))=6\/» Bi(Xp)=—06\r,
It consists of an expansion in planar reciprocal lattice vectors By(x,)=1, A=1,...N—-1 (10

with z-dependent coefficients which is augmented by a mul- . i i .

tipole expansion within a muffin-titMT) sphere to approxi- Accord!ng to thls notation, the |_r1d|_cesandR denote thesg
mate the strong oscillations of the wave function in the vi-tWo splines which have nonvanishing values but zero deriva-
cinity of the nucleus. All sums are finite. Thedependent tives at the boundaries of the intervai [ xg[, while L and
planar Fourier coefficients are represented as sums over R denote those two splines which have nonvanishing de-

M-indexed system of ansatz functiofg(z) with coefficients ~ Tivatives but zero values at the boundaries. All other splines
Ax ». The MT sphere with radiusyy is inscribed into(. ~ have both vanishing values and vanishing derivatives at the
I

TheY,, are real spherical harmonics. Together with the faC_boundanes.

tori _they .a||OW.a real_ valued calculation Ifor lattices with on the intervals #, ,zs[ and [0, [, respectively, with the
(two-dimensional inversion symmetry. Th&® (r) are ap- break points

indexed system of radial ansatz functions, independent of
energy or the propagation vector. The factdr ensures
proper behavior at the origitN, denotes the number of pla-
nar reciprocal lattice vectors amgl,, the maximum value of f=ryr(iIND2, =0 N (11)
| in the ansatz. Finallyp; andC; are a condensed notation of = TN =0, N
the ansatz functions and their coefficients, respectively. | gependent in the latter case, to account for the different
The wave functions are differentiable due to the conditionygiiation strengths of the different multipole components.
According to Eq.(10), the condition(8) is now ensured
by omitting the value® andR’ in the indexp. Since the MT
sphere is inscribed i there is no contribution of the radial
functions to the boundary values of the layer which are sim-
In order to achieve good approximation properties and tgly given by
facilitate the dealing with the boundary conditio(® and
(3) we use cubic B-splines for the functioP%(r) as well as bﬁuzAKHx, (12
for S,(2).
In general, for a given intervak{ ,xg[, such a system is and the condition(3) can easily be fulfilled by fixing these
defined on a partitiofix, =x,<x;<---<xXy=Xg} as a set of coefficients. Variation of the other coefficients then leads to a
piecewise cubic polynomials: homogeneous underdeterminggstem of linear equations

In that manner the spline systerSg and R'p are defined

zj=7 +(zg—2)jIN,, j=0,... Ny,

d
R'p(r)=aR'p(r)=0 for r=ryr. (8)
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~ nonzero only forx =R). In order to maintain differentability
Ei O(¢5,¢))Ci=0 for j#(K;,X), Xe{L,R}, at z;° the index\ =R’ must be excluded in Ed14).

(13) Since in the vacuum region only the left boundary values
ka:CKuL can be chosen arbitrarily, the resulting underde-
which has a R-dimensional solution space correspondingiermined linear system
to the space of possible boundary valb&sand therefore to
the whole set of layer solutions of the Sctiimger equation
within the given ansatz. > ()%, *9Ci=0 for j#(K;,L), (15

Because of the division of the whole crystal in layers :
treated quite independently, the numerical effort of our ¢ only arN,-dimensional space of solutions
method increases only linearly with the number of surface The obvioés way to solve the underdetermihed linear sys-
layers. It is essential for this linearity that the above system§ems(13) and (15) is to separate the part of the coefficients
of equations are independent for each layer. This requires t elonging to the boundary valu&g together with the re-
MT spheres to lie completely within their respective Iayer'spective columns of the matri@(;oi .¢) and put it on the

\';':rwesvri;’l"f% h&?r?nm?ﬁ: fa};ﬁse tvkslgvl\e/lT ;?tdgfs t\rl1ve|:" abnescgt?(ta right-hand side of the equation, leaving a quadratic matrix on
incryease in ogjer tg descrr)ibe the wavz function accurateIO[he left side. This can be solved as a regular linear system for
Yall values ofb*. This works well in almost all cases. How-

This turns out to be tolerable ¢001), (111), or (011) faces, ever, for energies close to the abovementioned values for

where the considerable reduction of numerical effort due tQ/vhich there exist solutions with a boundary value of zero the

the above-mentloned. Ilnea'nty predominates, but may ber'natrix on the left-hand side becomes almost singular. So,
come a problem for higher index faces. L

A possible solution is to keep larae MT spheres and to cu ollowing the simplest way leads to some numerical trouble
P L p larg P : ven in the case of a mathematically properly stated Dirichlet
off the segments jutting out over the layer boundaries. Thes

. . roblem.
segments are then turne_d back into their own layer to tak However, these problems can be completely avoided, if
the place of the penetrating segments of the MT spheres g]be special treatment of the boundary values is
other layers. 'T‘ this case the plane wave part of the ansa andoned—as already suggested by the representation as an
has to approximate only the difference of segments of th%n

radial functions of adjacent layers which requires consider- derdetermined system—and an arbitrary parametrization

L of the solution space is permitted. In this case, the actual
ably less plane waves than an accurate approximation of S€8hoice of columns ofb to be put on the right hand side, can
ments of the radial functions them;elves. H.owever, the\be left to numerical standard procedures which leave an op-
matching procedure Of the wave function O.f adjacgnt Iayer%ma”y conditioned matrix on the left hand side. For this
becomes more complicated since the radial functions NOW, rpose we used a QR-factorization algorithm for rectangu-

contribute to the boundary values, too. Furthermore, it i, avices as described in well-established numerical -

ggr?:rigcqlo lqrnhguesr l?r?:tfalgtlje CE? szwlilnthznm:)tggtn%]g%ﬁ; braries combined with a partial pivot search. Solving the
equation nghave té) erform a least s guares fit of the boun%&near systems for all right-hand sides selected in this manner
9 ' P d ow gives an optimal set of basis vectors of the solution

ary valu_es(and derivative of adj_acent layers. I—!owever, spaces foall energies. If these basis vectors are put together
since this procedure also results in a system of linear equa-

' O columnwise in the matrixG, the coefficients of the general
tions [similar to Eq.(20)], we do not have to change our . ) .

NG solution are given—numerically stable—by
overall proceeding in this case.

In the vacuum region the potential behaves rather _ N, Ny
smoothly, thus a simple planar Fourier ansatz is sufficient. C=GB, peC (16
Since the deviation of the potential from its asymptotic level,ii a generalized parametrizatigh Here, N, denotes the
V(z—=)=0 becomes very small in a short distance frompymper of layer boundaries with variable boundary condi-
the surface, we can neglect the difference on the right of afgns je. N,=1 in the vacuum layer anN, =2 in all other

appropriate chosen boundaz§° and assume the potential to layers.

be exactly equal to the asymptotic level forz5 . In this

case the exact solutions faez5* are given by exponen-
tials. In the vicinity of the surfacez{®<z<z5) the greater " . _ .
deviations from the asymptotic shape are taken into account 1h€ guantities to be considered in the matching procedure

by superposing a B-spline system. Hence, the vacuum ansaiye the vector of the Fourier coefficients of the boundary
reads ’ valuesb* e CNk and the vectob’* defined by

B. The matching procedure

Ny J X i (ky+K
- e 2 _ - ! it Ky
g (1) = ZK” HER,/ Crp S (2)e” 2!, (14) 5z V(120 % biie ' (17

. \/7 : . ' describing the normal derivatives. They are obtained from
= 2_
with KKy*= (ky+K,)"~E. The splmt_e system is defined on the coefficientsC by multiplication with simple projection
quadratically spaced break pointg'®"

o ) _ i =27"+ (g~ matricesPy determined by relations such as Et2). Hence,
Z*)(i/Nyad?, =0, ... Ny, and is continued constantly the boundary values and derivatives of the general solution
for >z according t0S)%(z>z89=S*(z%°9 (which is  of the Schrdinger equation within a layer can be written as
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bX
( b-,x) =:PxC=1IxB (18) Pk
= 924,k
- P+ gy z)
with [Ty: = PyG e C2NeNxNk, _ o
For convenience each single layer is supplied with its owrlieret; andT, are given by Eq(22) for n=Ny in which case
coordinate system, the origins of which are denoted by théhese definitions become independent of and t;

vectorsO(™. Thus, the matching condition for the solutions =gl

=t t( Vi ) (24)
R '

I™L “H 'ZL)

of adjacent layers takes the form This leads to a R-dimensional general non-Hermitian
eigenvalue problem
lp(fwl) lp(ﬂ)
(n+1) = (n) : TllgB=t, 11, B (25)
Y (_o+1) 1)y |\ Iz )
(+ Q=0 zg 7 ) U i :
! (19) providing the—with respect to the ansatz—complete com-
) ) ) ~ plex band structur&/'(k,,E) and the corresponding eigen-
This leads tp a underdete_:rmlned linear system of equat'o%ctors,@“(k“ E), u=1,..., N, for givenE andk;.
for the coefficients3 of adjacent layers: Here, the real eigenvaluds correspond to propagating
{0+ D) g(n+ 1) — 1M g(n) op vave functions and therefore to the usual band structure of
T2 g8 =H6™, (20 the infinite crystal. Because of the periodicity of the inverse
where functionE(k, ) along the real axis the number of réal for
» givenE is—except for discrete energies—always even and is
t(m- — giky(Of" -0t 21 denoted by 2., o, N in the following. The eigenvalues
I (21 y ap, 0p 0 g g

with Im k; <0 correspond to the so calleyanescent waves
which are normalizable in contrast to their infinitely increas-
ing counterparts with Ink,>0. Because of the three-
1. dimensional inversion symmetry of a bulk layer and time
reversal invariance there are as many eigenvalues on the up-
(22)  per as on the lower complex plane, so their number equals

and

T 0

(n). _ . (M) — i ik, (0M—o(M+1)
P ( 0 T(”)) with T'V:=diag {1~

Nk_ Op.
The notation diag\(i) with a quantityA(i) stands for the Thups, the whole set of physically relevant solutions within
diagonal matrix with diagonal elememni). the bulk is described by the matrix
Within the bulk we can take advantage of the additional
periodicity in the third direction described by the vectar 20p Ny—op
=0MW—-0"* Y n=N, which allows the classification of BWNe) = (’f;\ B ) € 2Nk X (Ny+op)
the solutions in this region according to a third Bloch vector P

(26)
where the columns oB,, are the 2r, eigenvectorsg* cor-
responding to propagating solutions withe R andB, con-
l//kaL(rquasn Z+ a&):eikuasueikﬁa ‘/IkaL(rH!Z)- sists of fthe eigenvectors corresponding to the evanescent

(23  Wwaves with Imk; <O.

S Starting from the general solution within the bulk which
In contrast to the infinitely extended crystal, the range of;gn pe parametrized according to

values to be taken into account for also includes the lower

complex plane in the case of the semi-infinite bulk. Since the BMNo)=BNo) g (No) - (Nb) & N+ op (27)
exponential increase of such wavefunctions inzlrection

is cut at the bulk boundary, those wave functions remairby means of a N+ o)-dimensional vector"b) we can
normalizable with respect to the semi-infinite bulk and maynow match the i, — 1)th layer via Eq(20) to the bulk and
therefore contribute to global physical solutions. Thus, thehave again aN+ o,)-dimensional solution space. This can
whole set of solutions within the bulk is described com-in turn be parametrized by a vectafNo~2). This procedure

componenk, :

pletely (only) by the complex band structur®. can be continued up to the vacuum layer and leads to an
The condition(23) is equivalent to a boundary condition iterative linear system of homogeneous underdetermined
posed onto one representative bulk layer equations for the construction of the overall solution
Nitop NN,
@ () oy (2"
n n n -
(tll "I+ By, —HLn) =0 eC* (28)
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., p Eﬁe;gy [eYJ p (current normalizationand discrete surface states according
N(E )30 ©
Ve e dr=0(k{ ki) &8y,
OWW ihi'=1,... 0, (32

T

: where o denotes the degree of degeneracy of the latter.
L : , Finding surface states and resonancéke discrete ener-

|

1

T

gies of the surface states can be found reliably by looking at

MN(E) =g the residue on the right-hand side of E28) for n=0, i.e.,
2], &3\7 . . 5 the mismatch between the surface and the vacuum:
o, =
bR (1) bL (0)
FIG. 3. Mismatch eigenvalues;(E) of Eqg. (36) and surface Ab;:t|<0>T(20>(b‘, R) _(t;’L =Fx, (33

density of state39) of AlI(001) for k,=(28M + X)/29 (a.u) with
Nx=24. There are two surface states in the band gap aroung, ... F:z(tﬁO)T(ZO)H(Rl)B(l),_H(LO)), X:=(§E;;). With the

—0.1 eV and a sharp surface resonance at 0.58 eV. The eigenvalues .. -
ormalizing condition

bR 1)]2 bL
_, + _/
which has to be solved far=N,—1, . ..,0.Obviously the H(D R) (b -

numerical effort increases only linearly with the number of\\hareM is determined by the definitiond8) and (30), we
surface layers\, . As in the case of Eq13) the stability of  gptain 4 measure of the mismatch which is independent of

the numerical solution of E428) can be guaranteed by stan- pe particular parametrization of the various solution spaces:
dard procedures. The basis vectors of the solution space of

are symmetric with respect to 1. Most of them are almost constartt

and accumulate in the broadened horizontal lines. ) \

(0) !
=:x"Mx=1, (34)

the nth equation are put together columnwise to form a ma- A(E):= min ||Ab|?2. (35
YU S A . , —
trix (g(:) ) which defines the matriB(™ for the next equa- xTMx=1
tion. The coefficients With this, the energy eigenvalues of the surface states are
determined byA (E) =0. The minimization of Ab||? leads to
CNe*t 9 for n>0, a general hermitian eigenvalue problem
aMe o ‘ _0 (29
’ or n==u, (FTF—AM)x=0, (36)
then parametrize the solutions of E@8) according to with eigenvalues.; which are the extremum values [pf b||?

under the conditior{34). Moreover, the corresponding mis-

match vectors fulfil the orthogonality relation

Nici o, { a(n+l) A(n+1)
e

,B(n) B(M

NLme {
Abl-Abj=1;3;. (37)

After solving the complete system, only the coefficient vec-H€Nce,A is given by the smallest eigenvalg,, _
tor &%) e 7 remains undetermined and parametrizes finally As is demonstrated by Fig. 3 the best way to find the

a op-dimensional space of overall solutiong e, | zeros ofA(E)_ls to obve_rve the course of all eigenvalues
. . =] separately. Since the eigenvalues turn out to be smooth func-
=1,... 0p(kjE). Thus, we obtain the familiar fact that one

; danted stat icts f " tina b Iions of E, their zeros can be detected without problems by
surtace adapted state exists for every two propagaling bulg merical standard methods. The correct assigning of the
solutions. Within the bulk bands this results in a continuum

; eigenvalues at different energies can be performed by mean
of surface adapted bulk states, the so-called projected bal genvaiies I gles P y S

) o Eq. (37) which is approximately valid also for slightly
structure.for fixedk, . Within the bu”f bandgaps, on the other igterent energies oAb; andAb;. The essential advantage
hand,o, is zero and the last equati@®8) for n=0 is regu- o —

lar, so that there exist nontrivial solutions—the pure surfaceOf this procedure is, that in the case of degenerate or almost

) tegenerate surface states, these states are—for orthogonalit
states—at most at discrete energi€s Therefore, we have g g Y

. o reasons—indicated by different eigenvectors of &8#), so
an unambiguous distinction between surface and bulk Stat&fere is no risk of overlooking one of them

in a natural way. A major shortcoming of slab based methods The method described above is also applicable to the de-

is the lack of th!s criterion. . . tection of surface resonances—narrow peaks of the surface
The states within the continuum are normalized accord'n%ensity of states within the continuum of bulk statehere
a,>0)—which turns out below to be a critical point in the
calculation of the charge density. An appropriate measure for
3‘/’?5/;/‘/’5 Ej d3r= 52(ku’ —K)S(E'—E) &, the distinction of a surface resonance is obwous!y the small-
r3 l ness of the contribution of propagating waves in the bulk.
Therefore, if we temporarily omit these propagating bulk so-
j,J'=1,...0p, (31) lutions, we expect the residue in E@®8) or A to have a

to
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minimum at the point of a resonance which allows its reli-the Jacobian determinant of the transformatidn-E, the
able detection as above. Of course, the propagating wavegove condition is—as expected—equivalent to the corre-
are only omitted for the purpose of finding the resonancessponding relation for the infinite crystal. As the equation
After their detecti_on the propagating solutions are fully takenand therefore the Fermi energy, joanly depends on pure
Into account again. _ _ bulk properties there is na priori constraint on the charges
The propagating waves can simply be excluded by inserty, the surface layers, so these quantities are free to be deter-
ing the matrixBéNb) of Eq. (26) instead ofB™ into Eq.  mined in the course of the self-consistency procedure.
(28). Since its solution space then loses,2dimensions, an The k; integrations in the above expressions are per-
iterative definition of matrice8(" for <Ny in analogy to ~ formed in the usual manner by summing over an irreducible
Eq. (30) and their insertion into Eq28) are consistent. Pro- grid of special point$*® specified, e.g., by Cunninghaff.
ceeding in this manner we are left with an overestimatedn the case of A001) and A111) a number of ten and eight
equation fom=0, the nonvanishing residue of which can be points, respectively, proved to be sufficient. However, the
treated as in the case of surface states. The correspondigfjergy integration which has to be executed before, turns out
eigenvalues of Eq(36) are shown in Figure 3 too. This !0 be not so simple because of some unpleasant properties of
picture also demonstrates that—in contrast to thdhe integrand. The first problem to cope with arises from the
eigenvalues—the surface density of states is not an appropian Hove singularities appearing at the edggf the real
ate means to detect surface resonances. Unless the enelyyk bands(whereo, changes its valye For fixedk, these
range is scanned in very small, time consuming stéese  singularities behave aE—E¢|*Y2 in layers in finite dis-
some meV there is only a small chance to encounter antance from the surface and #s—E.| Y2 in the infinite re-
indication of the extremely narrow peak of the surface denmote bulk layef! They can be integrated accurately after the
sity of states by looking only at the surface density of statessubstitution E—t=|E—E|? of the integration variable
which transforms these singularities into polynomials. How-
IIl. CHARGE DENSITY AND EFFECTIVE POTENTIAL ever, before this is possible, one actually has to find all of
those edge points what turns out to be the main problem,
Thek-resolved local density of stategk, ,E,r) is given  particularly in the case of narrow bands. To overcome this
by the contributions of the normalized bulk and surfacedifficulty, a method based on the pursuit of the curvature of
statesy” and 4°, respectively, as the complex band structure proved to be very reliable. Be-
” cause the real band edges are exactly the points where the
n(k, E.r)= E” R ()2 complex bands branch off,one has to search for the zeros
e TkE of Imk, in that case. The advantage of looking at the com-
plex bands lies in the fact that all of these lines—even if
s s s 5 connected with the narrowest real bands—are extended over
+§i: 5[E_Ei(k\|)]zl [ ei(DI° (38 the whole energy range for compldx ,%2 thus indicating
. each crossing with the real axis in a distance sufficient to be

The layer density of statg&DOS) is then defined by detected by standard algorithms.
Nevertheless, in the case of the very narrow core bands
(n) i 3 this expense would not be reasonable. Because the corre-
Nk E): f ")n(k” B dT, 39 sponding charge density is only slightly affected by the pres-

ence of the surface, it is favorable to take this part of the
density from a separatself-consistentbulk calculation and
freeze it during the self-consistency procedure for the sur-
face. In case of aluminum, the two lowest core states can be

and the charge densifyis obtained as usual by integration
over the occupied states

2A E
p(r)= "2 f f Fn(k‘I ,E,r) dEdk,. (400  treated in that manner with a relative error of less than one
(2m) BZ,J —x=
percent.
Here the Fermi energf. is determined implicitly by the The other problem connected to the energy integration is

requirement of charge neutrality for the whole crystal. How-due to the surface resonances, the peaks of which often show
ever, because of their predominance only (indinitely re-  an extremely small width, typically in the range of 1/100 eV
mote bulk layers do contribute to this term. This leads to the@nd below(also see Fig. B By applying usual integration

following neutrality condition: grids these peaks either remain undetected or—the worse

case—accidentially run into a grid point and add a consider-

i AL able random contribution to the charge density destroying

lim J'Qm)P(r) d°r= 2m)3 any possible convergence of the self-consistency procedure.
oo

In the present approach this problem is remedied, somewhat
£ 20p | coarsely, by simply inserting a sufficient number of addi-
XJ F 2 dEdk, = Z(nkﬂ)c tional grid points into small intervals around each resonance

BZ,J —op=1 peak which can be localized reliably by scanning the
(41) fsmoothly varying eigenvalues in E@36) as described be-
ore.
where the second expression is obtained from the first, after With the exceptions mentioned above, the integrand be-
some calculation, taking into account the asymptotic behavhaves rather smoothly, so that no loss of precision is ex-
ior of the wave functions inside the bulk. Singgk!| is just ~ pected with further integration. In the case of aluminum, a

K-
OE
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total number of 80 energy grid points proved to be sufficient TABLE I. Valence charge distribution over individual layers in

to achieve an accuracy of three digits. electrons.

A more elegant way of performing the energy integration
would be to take advantage of the analytic properties of the alal e ala+al) a%a
density of states and to integrate mste_ad over a contour in thEI (001) 0360 2 630 2990 2974
complex energy plane Where the integrand varies O.m},lb\l(lll) 0.252 2744 2996 3.060
smoothly. However, the handling of complex energies which
appears quite natural in a formalism based on Green'’s func-
tions would require more elaborate investigations in the
present approach. > eiKu~ru(e+\Kn\Zw§_f‘K> +e“K”‘Zw(R”K) )+EMz+ DM,

As a consequence of the mixed ansatz of the wave func- K; ! '
tions (7) the charge density consists of a Fourier and a mul- (45)

tipole contribution with constantsw$ , E™, and D™. What remains is to

calculate these constants from the electrostatic part of the
p(=:3 o DK TES o (NYi(To)s T, single layer potentials at their layer boundaril{f”)(zx),
Ko fm which is a straightforward task. Again, the details of compu-
(42)  tation can be found in Ref. 42. Here, the infinite number of
bulk layers with identical charge densifaccording to Eq.
with pym(r=rp7) =, pim(r =ry7) =0. (In the vacuum layer (1)] contribute as a geometric series which is convergent
pim=0.) While the first sum is finite, the second is not and because of their neutralit41). However, due to Friedel os-
therefore needs to be truncated in numerical calculationillations, the individually treated surface layers need not to
Below, a maximum value of=8 is used. Except for the be completely neutral. Since there is no compensating net
energy integration discussed above, the calculation of thesgharge within theby assumption neutrebulk layers, each
components is straightforward but lengthy and is therefordack of neutrality of the surface layers as a whole would
not given here. For details, see Ref. 42. cause a small, but in the end unlimited linear increase of the
Given the charge density, the effective potential is calcupotential forn— or z— — oo, respectively. In a real crystal,
lated according to the Hohenberg-Kohn-Sham formdlism an unlimited increase of the potential would be prevented by
as a sum of the electrostatic Potentiglof the electrons and small compensating charges within the bulk. In our case, we
nuclei and the exchange-correlation potendgl, where the assume these compensating bulk charges as being all con-
latter is approximated by a local function pfsuggested by centrated at the boundary between bulk and surface layers, so

Gunnarsson and Lundgviét that the bulk layers remain neutral. This assumption leaves
the potential of the surface layers untouched and removes
V(D) =Vo(1) 4V p(F)]. 43) just the bothering linear increasing term of the bulk potential.

The redistribution of the compensating bulk charges

. . causes some shift of the bulk potential which actually affects
However, for reasons of numerical stability of the _self- the work function. The error made can be estimated by look-
"ﬁ?g at the total charge of the surface layers as a whole which
has to be compensated by these bulk charges. A value which
R too high indicates that more surface layers need to be
included. In our casésee Table )l this total charge is obvi-
ously small enough to be neglected in the calculation of the
bulk potential or the work function, respectively.

The Kohn-Sham equatiohsvere considered to be self-

iS. possible to calculate the potential Contrib_utions of eacQonsistent when the potential matrix elements of two succes-
single layer separately using standard technitiusd sum sive iterations have a relative difference of less than®10

them up after\{v:_slrds. This leads to amore flexible gnd distirmi’his guantity also demonstrates the numerical stability of the
way of organizing the computation. Given the single Iayeremire procedure

effective potentialsv{, the total potential within theath Remarks on the total energy and the surface enohgy.
layer is then written as cording to the LDA formalism, the following expression for
the total energy of the whole crystal can be derived:

which may generate arbitrary high fluctuations of the elec
trostatic potentidf in the course of the self-consistency pro-
cedure.

Because/, is linear inp andV,. is local by assumption it

VIR =V (r)+ k;n vOM-—0®+r), req™,

1

Eo=2 EO(Er—E)—5 f p(NVe(r)d®r
(44) !
The electrostatic parts of the single layer potentials are fixed + f {Exdp(N]=Vid p(NTp(r) d’r,  (46)
by the conditionV{"(z—):=0. Now, since the contribu-
tion of the exchange-correlation potential of the second termvhich allows an easy separation of the surface-specific part
is zero within thenth layer, this term is a solution of a of the total energy from the bulk part. Here, the sum on the
homogenous Poisson equation. Thus,ferQ(™, it can be  right hand side runs over all occupied one particle states, i.e.,
represented as it comprises an integration over the continuum of bulk states



1628 WERNER HUMMEL AND H. BROSS PRB 58

and a sum over the discrete surface states. As usijal,
stands for the exchange-correlation energy according to He{ \
din and Lundqvist and

Vacuum

V, .= E,.+ ﬁ: (47
Xc xcp5p-

The surface-specific part of the total energy is then given by
the above expression with the sum restricted to the discrete
surface states and the spatial integrals restricted to the regio
of the surface layers. All these restricted terms are finite.

From this we obtain the surface energy as the difference
between the total energy of the surface layers and the tota|
energy of the same number of bulk layers. This is also the
starting point for the calculation of forces or surface recon-
structions. We have not carried out explicit calculations of
the surface energy so far, but we think that the problems to
cope with are similar to those encountered with the calcula- FIG. 4. Valence charge density of the(801) surface. Increas-
tion of the charge density, so that the integration methodsg contour lines are cyclically marked in the order dotted, dashed,
described there are also applicable to Eif). solid and differ by 0.4 electrons per bulk unit cell.

IV. RESULTS FOR Al (001) AND Al (111) it_is a correct solution _for a potential which differs o_nly
slightly from a self-consistent one. In particular, the obvious
As a first application th€001) and(111) surfaces of alu- similarity of this layer to the bulk layer exhibits the strong
minum were calculated self-consistently. To simplify the po-screening of the perturbations induced by the surface. This
tential calculation, the higher multipole moments=(l) of  also applies to the long range Friedel oscillations which are
the potential within the MT spheres were neglected in thisheavily suppressed as a consequence of the high free electron
first approach(Nevertheless, the multipole components of density*® Hence, the consideration of only one individual
the charge density were still included up Ite 8)) Outside  surface layer seems justifi@dposteriori
the MT spheres, however, the potential was still fully taken Considerable charge transfers are essentially limited to
into account(warped-muffin-tin approximationAs the MT  the right side of the first layer. Analogously to the uniform
radius of our layer geometry is smaller than in the bulk casebackground modéf*® a surface barrier is established as
the error was expected to be tolerable. It should be notedsome charges are leaking out into the vacuum region. The
that there is no other reason than convenience for this sindistribution of the valence charges over the individual layers
plification. In particular, it is one of the advantages of theis shown in Table |. The good screening properties of Al are
SAPW method to allow an immediate inclusion of the mul- demonstrated again, as the sum of the charges within the first
tipole contributions, once they are calculaf@Because of layer and the vacuum is almost equal to the bulk value of
the high density of almost free electrons in aluminum thethree electrons. The slightly greater deviation in the second
influence of the surface is screened within a short distdhce. layer is probably due to its lack of self-consistency.
Hence, it seemed reasonable to treat only the first layer as Figure 4 is in very good agreement with the LAPW re-
individual surface layer and class all other layers as belongsults of Krakaueet al!* obtained for a nine-layer slab. The
ing to the bulk, thusN,=2. So, the numerical effort was corresponding results of Inglesfield and Ben&slon the
essentially determined by two linear systefd®) of rank
250 and one linear syste(i5) for the vacuum of rank 190,
to be solved for each value df, and E. Except for the
calculation of the charge density which required about 30% |
of the total computer time, all other equations are ranked
much lower, so that their numerical expense was negligible.
Therefore, the numerical effort is fairly small, especially
with respect to the precision achieved.

A. Charge density

Figures 4 and 5 show the self-consistent valence charge
density of the A(001) and Al111) surface, respectively,
where the first two layers are depicted together with the in-
finitely remote bulk layer which is separated by a dashed |,
line. Here, the charge density of the second layer is shown ag
calculated from the asymptotically correct wave functions,
that is before it is replaced by the density of the bulk layer
according to Eq(1). Though the second layer is not self- FIG. 5. Valence charge density of the(AL1) surface. Same
consistent in the original sense, it bears physical relevance asits as in Fig. 4.
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other hand obtained for a semi-infinite geometry by means otrated by the fact that the error is considerably smaller in the

the embedded-potential method show some deviations whicAl (001) case, where the MT radius and therefore the region

are probably due to restrictions imposed on parts of theiof the potential restriction is smaller than in the &11) case

potential. (see also, Ref. 6Thus, it is expected to obtain more accu-
In case of A(111) the charge density obtained by other rate values for the work function, even in the framework of

authorg124548differ slightly from Fig. 5, as they do among the LDA formalism, if the potential is fully taken into ac-

one another. This is partly due to the lack of symmetry of thecount.

ansatz functions, which are subject only to the two-

dimensional planar symmetry, while inside the bulk the ac-

tual symmetry gradually becomes fcc. In the course of the C. Surface band structure

self-consistency procedure the cubic symmetry of the bulk The main advantage of considering a semi-infinite me-
layers becomes therefore a little blurred. This is only & nuyiym instead of a slab of finite thickness becomes particu-
merical and no physical effect caused by the lack of cubiqgqy significant with the calculation of energy resolved
symmetry of the ansatz functions. But since the charge denganiities such as the band structure, as this model allows a
sity is distributed rather uniformly between the ion cores, thejefinjte distinction between discrete surface states and con-
relative error is still rather small. In th@01) case the planar tjnuum states. Moreover, since all surface states and reso-
symmetry is better adapted to the cubic symmetry, so th@ances are reliably detectable by means of the techniques

effect is less distinct. A conceivable way to avoid this yescrined above. the surface band structures 304 and
drawback—reserved for future calculations—is to force any| (111), shown ih Figs. 6 and 7, are expected to be com-

explicit cubic symmetrization of the bulk charge density af'plete.

ter each self-consistency cycle. The bands are embedded in the projected band structure
which is depicted as vertical lines indicating the energy in-
B. Work function tervals of the contiuum states. The surface resonances within

the energy continuum are distinguished according to their
sharpness by different symbols. Figure 8 gives an idea of the
relation between the marking symbols and the sharpness of
the resonance peaks. To avoid confusions, only clear peaks

A first test for the quality of the self-consistent charge
density is the precision of the calculated work function,
given (exactly by the difference of the asymptotic vacuum
level and the Fermi ener8y ¢=V.—Eg. Here, we ob- are marked
tained a value ofp=4.505 eV for A(001) and 4.491 eV for The band structures agree well with the dispersion curves
Al(111. These results differ from the experimental values of . . ) o
4.41 eV(001) (Ref. 48 and 4.26 eM(111) (Ref. 49 by 2 and experimentally obtained so far: @01) A, 3: Refs. 50 and
5 %, respectively, which seems to be quite good—in view o2 Al(111) X: Ref. 53, and around AL1l) K: Ref. 57.
the numerical effort—compared to other relevant calcula/Moreover, our results fundamentally confirm the theoretical
tions summarized, e.g., in Ref. 5. band structures of Heinrichsmeier al > which are extracted

In both cases the experimental results are overestimate§Om elaborated pseudopotential calculations for slabs con-
This can mainly be attributed to the warped-muffin-tin ap-Sisting of 25 and 39 layers, respectively. The only differ-
proximation where the neglection of the dipole contribution€nces of their results to ours, worth mentioning, are the miss-
of the potential increases the charge transfer into the vacuuffig continuation along th€001) A direction of the surface
and therefore the work function. This relation is also demon-state atX—4.48 eV belowEg which was also found in Ref.

HE[TFH A THATHE T\,

f FIG. 6. Surface band structure
TH: THHITHIT and projected band structure of
- AI(001). Surface states are marked
-2 =11 = with dashes, resonances according
" T e to their sharpness with, X, A,

I LT andO, indicating the value ok .,
-4 WH— from Eq. (36) being less than
-6

Energy [eV]

0.0025, 0.01, 0.04, or 0.09, respec-
tively. The thickness of the lines
of the projected band structure in-
dicates the value ofr, i.e., the
-8 number of independent solutions.
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— ity m FIG. 7. Surface band structure
> and projected band structure of
S LT TP Al(111). Symbols as defined in
S Fig. 6.

-6

-8

-10

r b M T K T r

24 and partly in Ref. 55, a surplus resonance band along the In Fig. 8 the LDOS of the surface layer is depicted as a
(111)-X’ direction about 0.4 eV above the lower valencefunction ofE andk, . This figure clearly shows the transition

band edge, neither reported by other authors, and finally thef the surface states & into two sharp resonances the

pair of surface states crossing the Fermi energy ot@0&-  |ower of which gets wider and finally “decays.” On the

Y direction just before th& point which was regarded only other hand the surface state coming from the bottom right
as a single state by these authors. In the present work thiisappears without leaving any trace in the LDOS. This is
double nature of this last-mentioned state is clearly revealedjue to the fact that this state—lying on an imaginary loop of
For the A(001) surface the non-self-consistent results ofthe complex band structure—spreads into the bulk while get-
Wachutkd" obtained by means of an earlier version of ourting closer to the band edges. Hence the localization of the
method exhibit perfect qualitative agreement. The selfyyaye function and therefore the LDOS decreases and finally
consistent A{111) band structure of Benesh and Liyan#ie yanishes. In contrast to this, the first-mentioned surface

on the other hand, also obtained for a semi-infinite crystal; oo merge with a bulk band of other symmetry than the
agree on the dispersion of the surface states but differ in th@omplex loop, so there is no spreading and rapid hybridiza-
dispersion of several resonances. . tion is prevented. These two extreme examples exhibit the

Other surface band structures published so far are less

complete than those mentioned above. They are discussed ?é'cr:acgzlt;eﬁg?n;imivgﬁtﬁ:?'t::rl}? égtra\t?neucf% behavior of sur-
the above mentioned works. ging '

X  * * % x * x X X A0
N—
M : = m=a A N
\ % FIG. 8. Kkj-resolved surface
density of statetdl™(k, ,E) of the
r10 framed area in Fig. 7 in atomic
units. The lines correspond to the
L samek; vectors as the lines in Fig.
kll 7. Symbols also as defined therein.
\ = \ >
T \ I\
g
o
— \ 0
2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0

Energy [eV]
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TABLE II. Comparison of the surface state energies df08l) at the high-symmetry points with experi-
mental and other theoretical works. Energies are given in eV with respégt.tdhe values marked witk
are taken from depicted graphs.

K Thiswork  Expt?  Ref. 3P 24° 11¢ 5 55 39

r -2.67 —-275  —265 ~-26 ~-29 -267 -—281 -273

X —4.48 —454  —461 ~-46 —455 —463 —471
1.37 15 1.63 ~11 1.36 ~13 1.65
1.79 1.72 ~18 1.81 ~19 1.98

®Refs. 50,51,52,53,54.

bEmbedded potential, semi-infinite crystal.
CABCM, semi-infinite crystal.

4 APW, 9 layers.

®Pseudopotential, 25 layers.
fPseudopotential, 9 layers.
9Pseudopotential, 13—-39 layers.

Figure 8 also resolves the debate about some experimentalithors as well. This interpretation is now strongly supported
observations concerning the structure of a surface resonanday Fig. 8 which clearly exhibits the different character of the
Initially, Hansson and Flodstno®® concluded from their sharp resonance and a broad increase of the LDOS with op-
angle-resolved photoemission experiments the existence offdsite dispersion.
surface resonance within this area with a dispersion opposite In Tables Il and lll the energies of the surface states at
to that in Fig. 8. This interpretation, however, was ques-high symmetry points are listed and compared with both the
tioned by Grepstad and Slagsv®idand later by Hofmann €xperimental and the theoretical results of other authors. The
and Kamb& who detected some properties difficult to rec- Comparison shows a good agreement with experiment within

oncile with surface resonances. Therefore, they interprete@ "an9¢e r?f g'l ev. Besti)des thdat, the _energiclals of the su_rfalce
this structure as caused by bulk transitions. In spite of thabiates Which are not observed experimentally yet, precisely

. . . . . 5 .
Grepstad and Slagsvéfisstill observed some indications for cONfirm the values predicted by Heinrichsmestral” As is

interpretation of these results was given by HeinrichsmeieP4 method is the comp_letenes_s an_d unamblg_uny of the spec-
trum which can be achieved with little numerical effort.

et al> who attributed the structure observed in Ref. 52 to a
so called “broad resonance” that is a continuum of bulk
states with increased amplitude near the surface. In addition

they found a true sharp resonance of opposite dispersion We have developed an effective method for calculating
within the same area explaining the observations of the lattesthe self-consistent electronic structure of realistic crystal sur-

V. SUMMARY

TABLE IIl. Comparison of the surface state energies of1All) at the high-symmetry points with
experimental and other theoretical works. Energies are given in eV with respEgt to

K Thiswork  Expt?  Ref. 48 7 1 5 46 589
T —4.44 —4.56 —4.58 —4.68 —460 —4.49 —4.69
M 1.24 1.20 1.09 1.11
1.28 1.30 1.22 1.29
K —2.78 -2.7 -2.71 —2.81 —2.78
—2.25 —2.50 —258 —2.4 —257 —2.04 —2.64
—0.55 -0.7 —0.60 -065 -058 —-069 —0.95 —0.67
3.14 3.08
3.21 3.19 3.52
3.25 3.21

*Refs. 56,57,53.

PEmbedded potential, semi-infinite crystal.
‘LCGO, 18 layers.

9ILAPW, 9 layers.

®Pseudopotential, 36 layers.
fPseudopotential, 12 layers.
9Pseudopotential, 13—-33 layers.
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faces or general interfaces within thb initio LDA scheme. unstable. Instead, as a generalization of the ideas of
The underlying model of a semi-infinite medium allows anWachutka®* we used a technique essentially based on the
exactdistinction between interface and bulk effects. A sec-solution of homogeneous underdetermined linear equations
ond advantage is that the numerical effort is determined onlyvhich makes those numerical problems disappear com-
by the small number of interface layers differing consider-pletely. Within this scheme interface states and resonances
ably from a bulk layer and that it increases ohhearly with are uniquely identifiable and reliably localizable by looking
that number. Because of this linear behavior the method iat the eigenvalues of a “mismatch matrix,” thus the inter-
especially suited for the investigation of interfaces of mateface band structures obtained are expected to be complete.
rials with bad screening properties such as semiconductors or First self-consistent results are obtained for (p@1) and
insulators which require a greater number of individually (111) surfaces of Al. Because of the good screening proper-
treated interface layers. The method is based on wavdies of the conduction electrons it turns out to be sufficient to
function matching as proposed by Appelbaum and Harftann consider only one surface layer as independent from the
but in contrast to these authors the propagation matribulk. Within this configuration the theoretical results are in

techniqué® is not used as it turned out to be numerically very good agreement with the experiments.
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