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Transient decay from the steady state in the photoconductivity of amorphous semiconductors
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We introduce a modification to the theory developed by G. J. Adriaenssens, S. D. Baranovskii, W. Fuhs, J.
Jansen, and QOktu [Phys. Rev. B51, 9661 (1995] for the initial decay of the photoconductivity in amor-
phous semiconductors. With the same physical model and application of the concepts of multiple trapping we
derive a theory based upon an emission-rate analysis for the decaying free electron density. We obtain an
easy-to-use analytical expression for exponential band tails that links the decay characteristics to the band-tail
parameter. A comparison with results from full numerical solutions confirms the validity of our analytical
approach and the improvement with respect to the results by AdriaenssahdVe also present solutions,
supported by numerical modeling, that relate the power-law exponents for the generation rate dependence of
the steady-state photoconductivity with that of the response time for the J&&#63-18208)06847-1

I. INTRODUCTION g(E)=g(E.)exp(—E/KkTy), 1

In recent publications Adriaenssens, Baranovskii, FUhSwhereg(Ec) is the density of states at the band edigeand
Jansen, and Kii*? showed that the well-known standard kT, is the tail parameter. Note that we take the energy to be
relations for the measured photoconductivity response timgero at the conduction-band edge and increasing towards
TresaNd the steady-state photoconductivity, in amorphous  midgap. Conduction is considered by the free carrier§.at
semiconductors fail to explain the experimentally observegynly, which interact with the band tail via capture and release
different photogeneration rate dependencargf and 75> and the effective density of conduction-band states is
Assuming an exponential density of stal@0S) distribu- (g )T, Recombination is included by a time-independent
tion in the co_ngluctlon_band tail and applying the standar ree-carrier recombination lifetime,. We neglect all carrier
photoconductivity relations developed by Rotads to the o qiiions between localized states and the valence band.

same expression fo_r the power-law exponent in the 9eNnergry ;g the photocurrent response is governed by the following
tion rate dependencies for the steady-state photoconductlwty

. ) . ate equations for the free-electron densit
defined byo,=G?, and for the response time, given by q Y

Te<G #, i.e.,, B=7. However, most experiments show dn(t) n(t) w
generation rate dependencies witk< y. For example, Adri- - Cnn(t)f [g(E)—n{(E)]dE
aenssenst al.report3=0.38 andy=0.76 for an amorphous To 0

silicon carbide sample, measured at 200 K. -

The puzzle of the experiment@l# y results was tackled +f v(E)n{(E)dE, (2
to be solved by Adriaensses al. for low illumination in- 0
tensities by developing a theory on the basis of multiplegng for the localized electron density at each energy
trapping that accounts for the initial decay of the photocur-
rent and predicts a stretched exponential decay. Numerical dn,(E)
modeling, however, which showed deviations with the re- =
sults of this analytic approach, motivated us to introduce a dt
modification of their theory, which results in good agreementn this model the principle of detailed balance requires the
with the numerical modeling. With both the analytic ap- release ratej(E) to depend exponentia”y on enerWE)
proach and the simulation as a base we shall derive the rela- , exp(~E/kT), where the attempt to escape frequengy
tionship betweery andg, which will be seen to depend also js related to the capture coefficienC, via v,
on the value of the generation rate. We note here that the g(E )kTC,.
relation y=1/(1+kT/kTo) from the Rose analysis for  \we applied a numerical program, developed on the basis
steady state photoconductivitshat links y with the tail pa-  of the LsopI packag# for ordinary differential equations, to
rameterk T, of an exponential band tail is a precondition for splve the system of equations for the numerical calculation
the above-mentioned equalify=y to hold. of n(t) and the energetic distribution of the trapped carrier

density.

—v(E)n(E) +Cyn([g(E) —n(E)]. (3

II. THEORY AND NUMERICAL MODELING
A. Physical and mathematical model B. Analytical approximation: review

We employ the same physical model for the amorphous We guide the reader through the theory by Adriaenssens
semiconductor as outlined in Ref. 1. It consists of a conducet al. and introduce some variables that will be needed in the
tion bandtail with an exponentially decreasing density oflater part of this paper. The theory is based on the case of the
states multiple trapping model put forward by Tiedje and Rose and
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others}™" which is often referred to as the TROK model. In N(t) = noW™Y = ngexp( — m(t)]In W), 9)

this model a demarcation energyt) =kT In(y;t) separates

those states that are in quasithermal equilibrium with thevhich is the expression given in Ref. 1. We note that these

conduction band due to repeated emitting and retrappingXpressions are only valie(t) <Ey,, whereEy, is the quasi-

from those states that are too deep for a trapped electron feermi-energy, measured fro.. For the expression for

be emitted yet. Applied to the case after termination ofm(t) Adriaenssenset al. assume that an electron will be

steady-state illumination the trapped electrons abdgteare  trapped and reemitted to the conduction band until it is

distributed according to the Boltzmann function in alignmenttrapped belowe(t), from which it will not be reemitted be-

with the free electron density(t), while the electron density fore time t. The probability W.(t) for an electron to be

below e(t) has not changed yet. They therefore follow atrapped below(t) rather than above is just the ratio of states

Boltzmann distribution that aligns with the initial free- ©

electron densityng=Gry, established in the steady-state, - *

whereG is the steady-state photogeneration rate. W)= e(t)g(E)dE/ fo 9(E)dE. (10
The probability for a free electron to recombine isgl/ ) -

while its probability 1f. to be trapped in the band tail is Therefore a typical electron has to appear at the mobility

proportional to the density of free states in the tail with ~ €dge on average(t) =W (t) = (vot) times before being
trapped belowe(t). Using m(t) in Eq. (9) Adriaenssens

© * et al.come to the conclusion that the photocurrent will decay
1/rc=cnfo [g(E)—m(E)]dEzcnfo 9E)ME. @) ke

Therefore the probability for a free electron to be recaptured
to a localized state rather than to recombig,, is n(t)=ngexp — (vot)*In——m— |. (11
1+ 7./
17, 1
c 5

- 1Ur.+ 17 - 1+ Tc/To' C. Analytical approximation: modification

L . Based on the rate equatiorf8) and(3) tracking the cap-
Now the aim is to get an expression for the free-electron ;.o anq emission rates we derive a different expression than
density at a given time after the switch off. We first intro- o qiaenssenst al. for the typical numbem(t) that an elec-
duce by Nyr[t',e(t)] the density of electrons that are yq, il appear aE, before recombination until time

trapped above(t) at a certain time’ smaller thart. In our Consider again all trapped electrons above a given energy
notation Nyr[to,€(t)] with t,=0 s is the density of elec- e(t)<Eg,. In the TROK model the total release rate of
trons, that are trapped abovét) in the steady state before trapped electrons at the timé, R, is

the switch off. We further introduce bgn(t’) the average

number that an electron out &fyr[tg,e(t)] will have ap- ()

peared at the mobility edge until tinté after switching off Rr(t’)=f v(E)ny(E,t")dE. (12
the photogeneration. Then until timté=t the density of 0

electrons above(t) will have decreased to As introduced by Adriaensseres al, W, is the fraction of

the released electrons that will be retrapped, leavirgh,
to be the fraction that recombines. Thus the total change per

As previously noted in the TROK model the electron dis-unit .“”_‘e of Nyr[t",€(t)] is approximately the release rate
tributions abovee(t) atty and att are approximated by the multiplied by We—1,
corresponding Boltzmann functions. Thus their total densi-

Nyrr[t, €(t)1=Nyrr[to, e() X WO (6)

. d et
ties are ol (D))= | wEmEraex w1,
! 0
€(t) n 1
Nur[to.e(t)]= f 9(E) —eF¥TdE 19
0 N¢ This equation can readily be solved to
9(ExkT 1 1 N[t/ e(t)]=Nyrl to. (t) Jexg m(t’)(W,—1)]
= —n t e 7 MT! ’ MTL'O c ’
NC (1_0) O[(VO ) ] ( ) (14)
and with
e n(t) v JE (BN (E,t")dE
N [t,e(t)]:J g(E)—e¥XTdE m(t’ =J dt”. 15
MT 0 N, =], JEOn(E t")dE 19
g(Ex)kT 1 ew In our approachm(t’) is the average number of emission
= N— (1-a) n(H[(wot)™ " “—1], 8 and thus trapping events until tinté, calculated from the
Cc

time-dependent release r&gin the denominator divided by
wherea=kT/kT,. Combining these two equations with Eq. the time-dependent density of trapped electrons betviizen
(6) leads to and the demarcation energyt), Nyt[t”,e(t)].
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Now we are only interested it [t,e(t)], that is the
trapped electron density aboeét) at timet’ =t because it
is not until timet that the electrons above(t) follow the
Boltzmann distribution and we can use E§) to relateNyr
to n(t). Settingt’ =t, Egs.(14) and (15) become

Nurl[t, €(t)]=Npurlto,e(t) Jexdm(t)(W.—1)] (16)
and

<), (E)n,(E,t")dE
m(t):ftfo v(E)ny(E,t") dv a7

o [&n(E,t")dE

H. CORDES, G. H. BAUER, AND R. BRGGEMANN

PRB 58

Note that sincé\, is close to unity, Eq(16) equals Eq(6),
as can be seen byW'=exgdmin(W,)]=exgdm(W,—1)].
Combining Eq.(16) with Egs.(7) and (8) leads to a similar
expression for the free-electron density development,
n(t)=ngexd —m(t)(1-We)], (18)
as was found by Adriaensseasal., with the important dis-
tinction that we have a different definition fon(t).
Approximating the trapped electron distributions in Eqg.
(17) by the corresponding Boltzmann function, that is, apply-
ing the TROK model, leads to

; fé(t’)yoe— E/kTg(Ec)e— E/kTo [n(t’)/Nc]eE/de E

dt’

m(t):j

!

S(t')g(EC)efE/kTo

c

eE/de E+ff(t)

E(t,)g(Ec)e*E’kTo[nO/Nc]eE’deE

—voKTo[ (vot") ™ *—1]n(t")

dt’.

kT

l1-«a

Unfortunately Eq.(18) with this expression fom(t) cannot
be solved analytically to obtain(t). However, if we substi-
tute the actual densitg(t’) by the initial free-electron den-

sity ng in Eq. (19), which is a good approximation at short

times, we can solve Eq18) analytically. First we get

-

where we can neglectgt’) ¢ in the numerator, because it
becomes small compared to 1 as soont’asv,’. For
<1, we also can neglect the 1 compared #gt()~* in the
denominator leading to

— vk To[ (vot") " *—1]
kT

1-«a

dt’, (20

[(vot)' ™= 1)]

maz(é—l)(vot)“ it a<l, (21)

(19

[(vot)* ™ “no— (wot" ) " *[ng—n(t")]—n(t)]

1 1
n(t)=ngexg —| 1— —|ygt——|, if >1.
® 0 F{ ( a>vol+7'0/7'j *
(24)

Alternatively, we also apply Eq18) by solving

n(t) —ngexgd —m(t)(1-W,)]=0 (25
for n(t), wherem(t) is defined as in Eq(19) and contains
the whole development aif until the inspected time, in-
cluding n(t) itself. In this seminumerical approach we rely
on our analytical expression faor(t) but solve Eq.(25) nu-
merically for its root, using the previously calculated free-
electron decay(t’) with t' <t. For these solutions we shall
use m,(t), where the indexh denotes the numerical treat-
ment for the analytical expressions.

The response time,; 0f the photoconductivity decay can

where the indexa indicates that we get an analytical solution be predicted by calculating the time at whiaft) after Eq.

for n(t) with this expression fom(t). In the opposite case of
a>1 we can neglectit’):~* compared to 1 in the de-
nominator to get

1

maz(l—z)vot it a>1. (22)

The analytical expressions foi(t) with m, are thus

, if a<l,

(23

1
n(t):noex;{ - (2—1> (Vot)aml
ol’c

and

(23) has fallen tol/e of its initial value, yielding

1/
VoTo
1- 01) ’
where we used the relatiorglzvola. Thus the response
time varies with the generation rate like,oc G~ # with

Tres™ Vo 1( (26)

(27)

the same dependence as achieved in Ref. 1.
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FIG. 1. Transient decay of the free electron density calculated F!G- 2. Time-dependent energetic distributions of the trapped
by numerical modelingfull line) and after our two formulagines ~ €léctron density, calculated by numerical modeling and the approxi-
with symbol$, together with the formula of Adriaensseesal. ~ Mate distribution at=0.1 ms used in the TROK model. The de-

(Ref. 1). Results are folT =200 K anda=0.73. marcation energy is also depicted.

significant degree. In contrast, our simulations show that in
the highG regime(see below the maximum ofn; thermal-
A. Transient decay izes together withe(t).

. Good agreement with our analytical approach is also
Figure 1 compares the calculated free electron decays %und if parameter values are changed. Figure 3 repre-

T=200 K and with kT,=23.6 meV, C,=1.45x10 8 16
sents the calculated electron decays fg&= 10 s andG
cm’s ™t and7,=6.6x 10 ° s. These values correspond to the _; yie oy -8¢-1 o

fi ; by Adri | : h cm °s . While the decay after Ref. 1 is too fast, our
It parameterslgwe_r; y_f rlaensseasal. assuming that  gqjutions withm,(t) and m4(t) represent a good fit to the
g(E.)=4x10"* cm3eVv L The photogeneration rate be-

- 6. 3 h numerically calculated decay.
fore the switch off was=10"° cm™>s ™", Figure 4 shows the simulated electron decay for the case
The solid line represents the solution of the discretizedyf o~ 1 with all the parameters as in Fig. 1 buffat 300 K.
rate equation$2) and(3) obtained numerically with the ap- Our two approaches, calculated after E2f), and the ana-
plication of theLsopl package. The square-labeled curve|ytical solution calculated with Eq(24) show good agree-
represents the decay calculated bgt)=ngyexg —m,(t)(1 ment with the numerical results.
—W,)], wherem,(t) is defined as in Eq21) atT=200 K. It
matches with the full numerical solution during the initial
decay, that is as long agt)/ng is not too small.
Salient agreement with the full numerical soluton The photogeneration rate dependence of the numerically
is achieved by solving our analytical expressiart) calculated response times,, which is defined in Fig. 5 as

= noex —my()(1—W,)], wherem,(t) is defined as in Eq. Tve by the time when the free-electron density has decayed
(19), numerically. tong/e, is shown for the same parameters as in Fig. 1. Here

In comparison, the analytically calculated free electronVe @ssumed the free-electron recombination lifetigiérom
G=n/7, to vary with the photogeneration rate like

decay by the formula of Adriaenssersal. given by Eq.
(12) falls off too quickly.

For the parameter set of Figs. 1 and 2 the calculated en-
ergetic distribution of the trapped electron density and its
thermalization behavior aT=200 K is shown. Note the
logarithmic scale of the top abscissa, which illustrates the
drop in the free-electron density within a few microseconds
when e(t), schematically shown by the dashed lines, is still
far away fromE;g,. The thick lines mark the electron density
distributions in the steady state before the switch bfQ 9
and att=0.1 ms after the switch off. The approximated den-
sity distribution used in the TROK model is schematically s |G=10" cm™s™},
shown fort=0.1 ms by the dashed lines that exhibit a step- 101 0® 10° 10°
like shape that follows the numerically calculated trapped
electron distribution. In comparison to the thermalization af-
ter a light pulse it can be seen thgt) is not related to the FIG. 3. The full numerical solution in comparison with our ana-
maximum of the trapped carrier distribution, which remainsjytical and seminumerical approach: transient electron density de-

at a few times 18 cm eV ! until €(t) has reache&,, at  cay for the same parameters as in Fig. 1 but wigk 1072 s and
a time at whichn and thus the photocurrent has dropped to aG=10" cm3s™1.

lll. RESULTS

B. Relation betweeny and B

— numerical
—m,ft) (1-Wc)
—mp(t) (1-We)

free electron density (cm'a)

107 10°
time (s)
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e ' j TABLE |I. Summary of the evaluation fg8 from the numerical
simulation of the electron decay in Fig. 5 where a low and a i@gh-
regime can be identified. The right two columns contain the values
from the analytic theories as discussed in the text and can be com-
pared with the numerical value fg.

-
(=]

free electron density (cm's)

10° | — numerical y G regime B (Fig. 5 1=y« 1-ay
o noe::*::: :::x:: 1 low 0.001 0
L +—ane ™ 1 high 0.283 0.27
0.8 low 0.276 0.274
10* . : i 0.8 high 0.385 0.378
10° 107 10° 107 0.578 low 0.579 0.578
time (s) 0.578 high 0.587 0.578

FIG. 4. Good agreement with the full numerical solution for our
analytical[with m,(t)] and seminumerical approagiith m,(t)]:  are nonexponential in time and follow a power law but that

transient electron density decay®&t300 K anda=1.1. the exponential behavior from the Rose analysis according to
L n(t)cexp(—t/r.9d is a good approximation at short times for
Tox G, (28)  determiningr,. In contrast, at lowe6, . from the Rose

which is often found experimentally. In Fig. 5 we calculated a_r;l?lyss IS no Ionggr varl:d éas can be sgen from (;he large
the response times from the simulated decay curves for dii‘-jl erence compared to the decay times determined numeri-
ferent values ofy from y=1 to y=0.8 to y from the Rose cally and from our approach, which become much smaller.

analysis with The evaluation results from the simulation {8rin Table
| represent low- and higks regimes forB: At low G, B
1 follows B=(1—y)/a as derived with the analytical model
Y It a (29 in Sec. Il C whereas at high the result isg=1—ay.
that is, y=0.58 fora=0.73. IV. DISCUSSION
In the latter case the evaluation of the generation rate ) ) ] ) )
dependence of the response timg from Fig. 5 results in a We would like to point out that our discussion on the time
power law 7,.e<G~# with a constantg for all generation ~dependence an@ dependence is related to the initial decay
rates yielding8=y=0.58. after termination of the photogeneration. We thus concen-

For the higher values of like 0.8 and 1 in Fig. 5, taking trate on the initial time range in which mainly the majority
y# 1/1+ a, we find two different regimes for th& depen-  Carrier properties determine the photoresponse. At longer

dence. The proportionality of . changes from a power law tMmes the minority carriers may also become important,
7..0-G PL at low G to 7,.0cG 2 at high G with 8,< S, which can only be dealt with within a more sophisticated

<. physical model.
It is interesting to see that at high the Rose analysis ]
with the popular relationr,.e~ (14 N,/n) 7, results in the A. Time dependence

sameG dependence as obtained from the numerical analysis We introduced different formulas for calculating the de-

although the absolute value is slightly different. An inspec-cay of the electron density that only differ by the wat) is

tion of the time dependence of the decays shows that thesgfined, wheran(t) stands for the typical number an elec-

tron will have appeared at the conduction band until time
107 . . . . These results can be compared with the full numerical solu-
NG tions that give the correct mathematical solution of the dis-

cussed model in order to increase the confidence into the

validity of the approximations.

Our analytical approach with the results for the decays for
a<1 result in a significant improvement compared to Ref. 1
for the analytical description of the electron decay after ter-
mination of steady-state illumination. The tests in compari-
son with the numerical solutions in Figs. 1 and 3 show good
agreement with the use ofi, on a short time scale for the
. . . . initial decay. This time range is usually accessed in the ex-

107 10® 10® 10® periment. That for longer times the,-decay behavior devi-
generation rate G (cm'ss'1) ates from the numerical solution is ea_lsny under;‘toqd due to

the replacement oh(t) by ny, made in the derivation of

FIG. 5. Generation rate dependence of the response time, givefa(t). This approximation becomes more and more crude as
here by the timery,, for different values ofy. The results for the free electron density decays. Using the seminumerical

T16= (1+N;/n) 7y are only shown for the casg=1 (dashed ling approach of Eq.25 results in good agreement also for
The evaluation of the slopes is summarized in Table I. longer times.

Parameter: y

response time Ty, (S)

0.578

10° L

10
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Figure 4 illustrates that our approach is not only valid for 0.0
a<1 but also fora>1 with Eq.(24). The latter case is of
importance experimentally as amorphous semiconductors
such as hydrogenated amorphous silicon with its steep con-
duction band tail haver values larger than unity for higher
temperatures.

The salient agreement, obtained by using seminumerical
approach withm,(t), shows that the TROK model is a well
applicable approximation to the large-signal photocurrent de-
cay from the steady state. We have detailed the energetic
distributions of the trapped electron density during the decay ‘
in Fig. 2 in comparison with the simplified TROK expres- 0"}015 10'® 10"
sions. These results show the steplike shape for the trapped
electron distributions: The density of trapped electrons below
e(t) is unaffected, betweenr(t) and E. the quasithermal _ o
distribution as expected from TROK is established. ele;'gh Z‘e:S':?e;gfE?nlgeegtl%nleg?nﬂi,oys(t::\tl’gut'lg?es dog t:ﬁr;rjﬁ_ped

No good agreement is achieved by using the formula deéal modelin y 9 ' y
veloped by Adriaensserst al. in comparison with the nu- g
merical solution. Their definition fom(t) differs from our It can be showh?® that analyticallyn(t) decays with a
Eq. (21) just by the factor kk—1 leading to too early a superposition of beingxt¥1~® at mediate times and
decay if a=kT/kTp>0.5, and to too slow a decay &  ocexp(—t/7.) at shorter times. It is only in this short time
<0.5. As described in Sec. Il B, they assume that an electropange with exponential decay that the often employed
will be trapped and reemitted to the conduction band until itassumptiohl that the ratid\h/n is approxima‘[e|y constant is

is trapped belowe(t), from which it will not be reemitted yalid. Nevertheless, we find that.s at high G is well ap-
before timet. Since no transition from localized states to proximated by (& N,/n) .

defects or the valence band is included in the model, the The arguments from the related small-signal decay

trapped electron density belog(t) should increase after the experiment? that a high-enouglG has to be employed in
switch off according to this reasoning. This is not supportedorder to allow a fast enough emission from the quasi-Fermi-
by our numerical modeling as can be seen in Fig. 2 an@&nergy also apply here for the validity of the Rose analysis in
cannot be the case by the following argument: In the steadshe large-signal decay, thus for the hiGhregime in Fig. 5.
state before the switch off those deep traps were in dynamithe emission time fronk, can also be taken as a measure

cal qua.SieqUi“briUm with the conduction band. That iS, thefor the time value at which th& dependence Ofres shows
trapping rate of free electrons into the localized states equal§e turnover.

their emission rate. After termination of the illumination the  \we emphasize that both relatiogs= (1— y)/« for low

free electron density) decreases and so does the trappingg, obtained here and by Adriaenssatsl. [their Eq.(34)],

rate, while the emission rate remains nearly constant. Thugng also the relation from the Rose analygis 1— ay for

we expect a small decrease of the trapped electron densikjgh G, lead to 8=y if one assumesy=1/(1+ a). This is
instead of the increase resulting from the approach in Ref. loonfirmed by our numerical modeling in Fig. 5 and the two
bottom lines in Table I. Thus with this condition, different

B. Generation-rate dependence values of8 and y for materials likea-Si:H or a-SiC:H can-

Comparison between the analvtical val £ our not be explained within the often used physical model for
omparison betwee € anallical values ot ou a.p'amorphous semiconductors with the feature of a single ex-
proach with the numerically calculated response times, Fi

g . .
: ponential band tail.
5 shows excellgnt agrgement at la Whereas.at high gen- We expect the relation foy to be more complicated, such
erations rateg is well fitted by the Rose relation

as just being given by the link to the conduction band tail via
1/(1+KT/kTp). Simulation has shown that the condition for
charge neutrality ira-Si:H is maintained also by the contri-
p=1-ay, (30 bution from charged dangling bonds as well as by the
trapped electrons and holes in the conduction and valence
band tail*** Over a largetG range these simulations show
resulting fromr.=(1+N,/n) 7o, whereN, is the density of  that charge neutrality is maintained by the equality of posi-
trapped electrons. This change foccurs because at high tive and negative dangling bonds. At high®rthe trapped
generation rates the demarcation enegfy) reaches the hole density tracks with the negative dangling bond density
quasi-Fermi-level before the free-electron density has deand for still higherG the densities of trapped carriers in the
cayed to (1¢) n,. valence and conduction band tail become equal. In contrast,
Figure 6 illustrates the trapped electron distribution forfor the validity of y=1/(1+ «) the specific equality of the
such a case. During the initial decay the free-electron densityrapped electron density with the density of recombination
tracks with the maximum ofi, and approximately witiN;.  centers is necessary. Such an equality is not obeyed for the
Thus in the high generation rate regime our theory is nosimulation of the photoconductivity of amorphous
valid for the response time and the Rose analysis should hsilicon®* From temperature-dependent photocurrent ex-
applied to calculaters. periments ona-Si:H and alloy$® it can be concluded that

energy (eV)
o
n

trapped electron density (cm'aeV'1)
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y=1/(1+KT/KT,) is only valid in a limitedT range at lower for thg determination Qf a drift mobility* relgted to phe ratio
T. Also, oura-Si:H samples from plasma-enhanced chemicafNi/n in the highG regime, can be determined. dfis to be
vapor deposition showy values at room temperature be- €valuated one has to make sure whighegime is probed in
tween 0.8 and 1. Any deducedT, values from thesey the experiment. Ifaturnover in thges value Wlth increasing
values are greater than 100 meV, incompatible with experi® Was observed experimentally, can be obtained in both
mental values for the conduction band tail paramk&fgy. regimes anq c_hec_ked for agreement in value and the slqpe of
We have therefore analyzed the relation-pfand 3 in the DOS_d|str|but|on can be deduced from the large-signal
Fig. 5 and Table | by settingg independently to 0.8 and 1, decay. Flnal_ly, our approach may also complement the re-
values that are found experimentally. In such a case the call"flted analysis of the small-signal decdy.
culated values foB are much smaller thary, common to
experimental findings summarized in Ref. 1. Having repro-
duced a general experimental trend, a more detailed compari- We developed an approach resulting in closed-form ana-
son with experimentaB and vy values requires the identifi- lytical expressions for the decaying electron density based on
cation of the experimental high- or lo®B-regime with a a rate analysis after termination of steady-state illumination.
broader currently not available experimental data base. = The improvement in the treatment for the electron decay is
There are other amorphous semiconductorsdikés,Se;  evidenced by the agreement with the numerical results.
that have been shown to have a featureless exponential barfthereby it is also seen that the TROK model is quite appli-
tail.1® The relations put forward here with the simple physi- cable for the photocurrent decay.
cal model can be tested on such a material. Detailed com- Both numerical simulations and our improved analysis
parison with experimental results frora-Si:H with its  show that different values for the exponegsand y in the
steeper conduction band tail and a dangling bond distributiogeneration rate dependence of the response time and the pho-
around midgap can be used to exploit the limits of the modeltoconductivity cannot be explained within the applied physi-
For this semiconductor the quasi-Fermi-level may be shifteatal model with a single exponential band tail for amorphous
through a nonexponentially varying DOS in the deep bandemiconductors, when one assumes the Rose relation
tail or the broad dangling bond distribution. =1/(1+kT/KkTy) to be applicable. The identification of two
The existence of the twG regimes for the decay time in G regimes for the dependence of the decay time u@dry
Fig. 5 assists the experimentalist to apply the relation beeur analysis will assist in the evaluation of experimental
tweeny and 8 for further evaluation. The range of validity data.
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