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Electromigration affected sublimation is a complicated phenomenon, involving surface transport coupled to
a process of atom exchange between the two-dimensional gas of adatoms and the crystal phase. The case of
intensive exchange is theoretically treated and equations of step motion are derived for the case of “nontrans-
parent” steps(kinetics with local conservation of adatomdhe numerical integration of these equations
manifests step bunching formation of step density waveat step-down direction of the electromigration of
adatoms. We studied some properties of the step density waves: the amfiitedeaximum slope of the
bunch and its dependence on the number of steps in the bunch, the kinematic wave velocity and the dynamic
interaction of waves of different amplitudes. The central result of this work is the dependence of the minimum
interstep distancén the steady state shape of the buneh the model parameters. This dependence, extracted
from numerical study, is presented in terms of scaling lays-N""(A/F)Y, whereN is the number of steps
in the bunch A is the magnitude of step-step repulsion, &ds the force, inducing electromigration of the
adatoms. Both scaling exponemtandq depend on the power in the step-step repulsion dependence on the
interstep distancel{=A/I") and, therefore, they are a key to the problem of experimental evaluationfof
striking result of this model is the constant valuelgf, in a wide range of values of the average diffusion
distance\. Thus one cannot relate the temperature dependerigg, @b the temperature dependence\gt
Numerical analysis of the dynamics of steps at a crystal surface of small misorientation angle reveals two types
of dynamic interaction of bunches of steps: “bunch size exchange” and “effective coalescence.” The former
type of interaction is rather interesginr— a smaller(and fasterbunch approaches a larger one and they travel
together until the initially larger bunch achievéy losing stepka size, smaller than the size of its partner, and
runs away of it[S0163-18208)03227-5

[. INTRODUCTION quantitative data for the time evolution of the wide terraces,
separating the bunches, as well as for the interstep distance
The discovery of the direct current heating effect on thein the bunch(this distance depends on the number of steps in
surface morphology of Si wafers revealed a new pathway téhe bunch. The rate of thermal decay of step bunched struc-
study the properties of crystal surfaces. Contrary to the clagures has been measured in both experiments using an indi-
sical studies of surface shape evolution, driven by the redud€ct heating source and experiments using direct current in
tion of the surface free energy, here we deal with a shathe “uphl!l" dyecnon (the latter stabilizes the eqwd'|stant
evolution governed by an external driving force—the easy to>t€P Q'St”buygn at a temperature of 930 °C, used in these
measure and control electric current flowing through the waEXPeriments”* Interesting experiments on step bunching,
fer. In 1989 Latyshev and co-workéreeported an interest- nduced by alternating heating current of very low frequency
ing effect—the step configuration at a vicinal surface of Sihave been reported by Met0|s and Audifffen. .
crystal depends on the direction of the heating current, flows AT‘ attempt to descnbe_the effeg:ft of the' Q|rect current
. N heating on the morphological stability of vicinal surfaces
ing through the crystal. At the step-up direction of the heat-, "~ L e 1013
ing current step bunching occurs in the temperature intervalgtu ;::j%%uglﬂiﬂ?g avt\)I?:r ;_ ?:Srz((jﬂ%nF)a dri?f?,g'igf]agbﬁ aggr:he
1050°—1250° and 1350% 1400 °C, whereas at step-down g
direction of the current bunching occurs in the interval
1250°—1350 °C. Rearrangement of the regular steps into d’ng D¢F dng ng
step bands is a reversible process, i.e., changing the speci- D 1T ax O (1)
men temperature beyond the step bunching temperature
range or reversing the heating current direction one can
transform the developed step bands into a regular system dhis equation describes the diffusion, electromigration, and
steps. Later, the effect of direct current heating on thedesorption of the adatoms, adsorbed on the crystal surface
Si(111) surface structure was observed in many[ng(x) is the concentration of adatoms angdis the average
experiment$-% Williams et al*® reported step bunching at lifetime of an atom in the state of mobile adsorption before
step-down direction of the current for the temperaturedeaving the crystal surfa¢and assumes the hypothesis that a
945 °C and 1245 °C, whereas a formation of step bunches @&pnstant electric forcé= acts on adatoms and induces an
step-up current takes place at 1190 °C. The STM studies aiverage velocity =D¢F/KT , whereDy is the surface dif-
the dc(direct current induced bunching of steps produced fusion coefficientk is the Boltzmann constant afidis the
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Jia Ji | tions on neighboring terraces. As seen from the @gthe

surface flux ak;_4 [on the terrace between the<{1)th and
| ith steqd is related only to the generating power of the (
Xia Xi.q Xi Xis1 —1)th step. No quantities, characterizing the adatom con-
o _ N _ centration and surface flux on the neighboring terrace appear
FIQ. 1. A V|_C|nal surface with a positive slope. The coordinate j, Eq. (2) (in the terminology of Ref. 7 this is “kinetics with
of theith step is denoted by;, whereasn,(x) andJi(x) are the 501" adatom conservativnin fact, in the limitF—0 Egs.
adatom concentration field and the adatom flux onitheterrace (2) and(3) turn into the well-known boundary conditions for
[the terrace between thé-{1)st and theth steg. the equation, describing the surface diffusion in the BCF
. model’® These boundary conditions were proposed b
Fempef?“.”.e- The surface flux and the adatom COrt}[%emrat'od?hernm}"3 to describe theymaterial balance at ?hepstep It i)é
In the vicinity of the steps are related by the equations essential to note that the step kinetic coeffici@aB, or By)
characterizes the atom exchange betweerctstal and the

_ Bunsi— ng(X—1)

X=Xi-1 (2) adlayer, i.e., all atoms that attach to the step edge and later
dng; Fng ab ng(Xi—1) leave it without joining the crystal in a kink position do not
Ds( ~ dx + KT )= e contribute to8. When many atoms behave in this way, the
@ Nsi— Ns(Xi) X=X: step is “transparent” for the migrating adatornfeccording
ab ne(x;) ' S to the terminology, proposed in ReT , this is “kinetics

without local conservation)’ and the use of the boundary

. . . . conditions(2) and ( 3) is not justified, since the silent as-
wherex; is the position of thqeth step(see F!g: 1, By andfy sumption for a lack of correlation between the adatom con-
are the step kinetics coefficients, describing the atom ex:

change(taking place at each stebetween the crystal phase centration fields on neighboring terraces is violated. In a re-
and t%e two-%ifnensional as of adatoms on t%/e hi pher angent paper’ the condition for applicability of the boundary

nal g . 9 onditions(2) and (3) was shown to be
lower terrace, respectively, the prodadi is the area of one

atomic site,ng;(x) denotes the concentration of adatoms on (BIDHNS)=1. @

n+1
ne(x;) =ng exp

0=

the terrace between thée-{ 1)th and thath step(i.e., on the
terrace betweer; -, andx;). Because of the step-step repul- 1 derive this relation one considers the frequency of
sion, the equilibrium concentratianf(x;) depends upon the atom attachmentthe irreversible detachment of an atom
distances to the neighboring stefie calculations are re- from the crystal during sublimation is not a result of a single
stricted to the interaction between nearest-neighbor steps act of detachment, but usually it is the final result of many
according to the expressibh detachments and subsequent attachments of the same atom
| N1 | to the crystgl to a randomly selected atomic site at the
_<_°) +(_0 step edge. This frequency is equal Exng, which re-
Xi+17 X Xi = Xj-1 sults from the multiplication of the hopping frequency
(4 1 exp(—E¢4/kT) and the probabilitynsab to find an ada-
where tom at a single jump distance from the selected atomic site at
the step edgen; here denotes the concentration of adatoms
nabA| YN+ in the step vicinity. It is more complicated, however, to
KT B write an expression for the effective frequency of atom at-
tachment to therystal since this is a result of a sequence of
is a characteristic length, related to the step-step repulsioglementary processegattachment to the step, migration
andng is the concentration of atoms, adsorbed on a vicinaklong the step edge, and attachment to a)kifike net num-
face of constant interstep distance; (;—Xi=X;—Xj_1), ber of atoms detached from the crystal during sublimation
during crystal-vapor equilibrium. The calculations of the en-(per unit length of the step and unit tijnas a result of the
tropic and stress-mediated repulsion between the steps af&rial and error” process is given by the right-hand side of
summarized in Ref. 14 and the resulting interaction energ¥gs.(2) and(3). To arrive at a dimensionality of frequency

per unit length of the step is described by one multiplies the right-hand side of the boundary conditions
. by the lengtha of an atomic site along the step and gets the
U=A/", (6) net number B/b)ng/ni— B/b of atoms, which an atomic

wherel is the interstep distance, the valoe 2 is shown to  FOW perpendicular to the step edge loses in unit timere 8
be relevant for both entropic and stress mediated repulsior$ used instead g8y and B, since the asymmetry of the step
and A is estimated to be around 0.2 eV A. The right handKinetic coefficient is not essential for this consideration; the
side of the boundary conditions slightly differs from the pre-indexi is omitted because of the general validity of the con-
vious treatmerff—we take the relative undersaturation at Siderations The net number of atoms, detached per unit
the particular step, so that the denominator is a function ofime from an atomic row perpendicular to the step can be,
the widths of the two neighboring terradeee Eq(4)]. We formally, at least, considered as a difference between effec-
do not expect this feature of the model to have any signifiive frequencieso gy andw of atom attachment and detach-
cant effect on the step dynamics. ment (one should keep in mind thab; and w are not
Equations(2) and (3) reflect the silent assumption for an frequencies of reaklementaryprocessegs Defined in this
absence of any correlation between the adatom concentraay, the effective frequencies are given byl
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=(B/b)ng/ne and wzz=pB/b. Concerning the physical depend only on the width of the two neighboring terraces,
meaning of the effective frequencies, one can easily see thtt also on the positions of many other stéwe shall return

s, for instance, is equal to the number of atoms attached t& }?ehNolz(;eeres mto?jetlhint ?hec. ]Vbl ¢ aoplicability of th
the crystal(per atomic site and unit timeduring the “trial snouid be noted that e probiem ot applicabiiity ot the

» : ... _boundary condition$2) and(3) emerges only in a presence
and error” process, .whose net resH Itis crystal S‘Ubl'm""t'on'of electrgmigration. Because of the gymmet);y of tr?e classical
Therefore, the equality . =Dsns=wer means that all atoms e of Burton, Cabrera, and Frank there is no discontinu-
attached to the step edgeith a frequencyw  =Dsng) mi- ity of the adatom concentration and the net flux across the
grate along it and attach to a kink position, i.e., the probabilstep is zero, irrespective to the intensity of the crystal-adlayer
ity for an adatom to cross the step is negligittlee “trans-  exchange(a discontinuity of the adatom concentration ap-
parency” of the step is zejoThis is precisely the condition pears, however, in a presence of a Schwoebel éfjedthe
for applicability of the boundary conditior(®) and(3). Sub-  electromigration force breaks the symmetry of the BCF
stituting w4y with (B8/b)ng/nS one arrives at Eq7). Thisis  model and reveals new features of the surface transport lead-
a very useful relation, since it provides a ground to decreasig to specific changes of the shape of the crystal surface
the number of the parameters involved in the equations ofluring sublimation.
step motion. Recently, however, Williams pointed out that The aim of this paper is to study the surface transport in
the basic relatior{ 7) corresponds to the special case wherethe presence of electromigration of the adatoms and to ana-
the diffusion constant for binding to the step edge is the sambyze the resulting changes of the shape of the crystal surface
as the diffusion constant for motion between equivalent site§uring sublimation. The shape of the step density waves and
on the terracéthis situation seems close to reality for diffu- their dynamic interaction in a regime of morphological insta-
sion on metal surfacesFor semiconductors, however, Wil- bility is studied in detail by numerical integration of the

liams suggested the reasonable possibility for an additiondfauations of step motion as well as in the framework of the

energy barrieE,, related to the atom attachment to the stepContlnuum model.

edge, i.e.w, =Dgng exp (—E,/kT) and Eq.(7) turns into IIl. EQUATIONS OF STEP MOTION

In this section, the explicit form of the equations for step

—exp(— motion is derived for the regime of electromigration affected
p (—E4/KT). (8) S ; :

Dsbne sublimation, characterized by strong coupling of the surface
transport to the exchange of atoms between the crystal phase
and the 2D gas of adatoms on the crystal surface, i.e., when
Eq. (7) is satisfied. In this case the diffusion problem on the
crystal surface can be reduced to a diffusion problem on a
single terracdsince the surface transport is effectively inter-

Equations(7) and (8) are not newEq. (7) results from
Eq. (8) in the limit E;=0], although their derivation from
microscopic considerations is original. In their analysis of

stepeT_otions on high-temperqtu_re vicinal surfacgs Pimpine"Mpted at each step by the high rate exchange of atoms with
et al*"introduced a characteristic lengtly, associated with e crystal phageThe equations derived below are not valid
the attachment kinetics. They derived the temperature depegs; the electromigration affected sublimation, characterized

dence ofdg and also explained the physics—instantaneou%y a “high transparency” of the elementary steps, i.e., when
sticking of adatoms to the stept kink siteg impliesds,=a. (BIDbne)<1
S S "

Equation(8) in this paper is identical to Eq13) in the paper
of Pimpinelli et al3! [the left-hand side of Eq8) represents
the ratioa/dg]. Since we are studying the effect of the elec-
tromigration on the stability of the crystal surface, the essen- e e

tial property of the steps is their “nontransparencythis ax Nsi+1(X) = Ns(X)) Nsi(Xi) —Ns(;)

term addresses directly the surface transport, induced by dt ! ns(x;) d ns(x;)
electromigration This property, however, is identical with (9)

the “instantaneous sticking” discussed in Ref. 31. Let us

point out again that the use of a model of BCF class to studyherex; is the position of theth step, whereasg ;. 1(X;)

the effect of the electromigration is justified in the case ofandng;(x;) are the actual concentrations of adatoms in the
“nontransparent” stepginstantaneous sticking of adatoms vicinity of the ith step on the higher and the lower terrace
to the steps The crystal growth and evaporation kinetics in (see Fig. 1

the case of transparent steps has been addressed byThe substitution of the solution of E¢l) with boundary
Noziere$?% by advancing a model that does not belong toconditions(2) and(3) into (9) results in the following equa-
the BCF class—the rate of motion of a given step does nations of the step motion:

The equations of step motion in this regime of negligible
exchange between the adlayers on neighboring terraces are

%: W (X D)[ 1+ va(Xi4D) oy =P _(Xi11)2y4(X) o=V _ (X4 )[ 1= ya(Xit1) @]
dt u W, (Xt )@ (Xir1) =V _(Xi+ 1)@ (Xj+1)

W (X)[1+ yu(Xi—)a ] =P (X)2yu(Xi)a—V _(X)[ 1= yu(Xi—1) ]
W (X)) e (%) =W _(X)e_(X) '

+ By (10)



PRB 58 PROPERTIES AND DYNAMIC INTERACTION OF STEP ... 1593

where 2
\/TSZ FAs Fhs |
Vu(xi)=DSaBbu—:§(Xi), yd(xi)=[):bd—r)§xi), g
@+ (Xi) =1+ ya(X) .+ yu(Xi—1) -+ yu(Xi-1) va(Xi), 1
@ (Xi)=1=ya(X) a— = yu(Xi—1) @+ + yu(Xi-1) va(Xi) iy iy ad

o

Step Position
(=1
Il

[

<

N oy 0.0 50x10°  10x100  15x10°  20x10°  25x10°  30x10°  35x10°  4.0x10°
W (X)) =exd a(X; X|—l)/)\s]r (@) Time
W_(xi)=exf — a(Xi—Xi-1)/\s] 0
O _(x) =exd —F(x;—X;—1)/2kT],
15
d_(x)=exd F(x;—X;_1)/2kT]. -
Equationg10) describe the dynamics of steps during sub- E 7
limation, affected by an electromigration of the adatoms on &
the crystal surface. These equations provide a ground t”
study the impact of the Schwoebel effe@,6 B4), the elec- ™
tromigration of adatomsK# 0), and the step-step repulsion
(Io#0) on the step distribution at the evaporating surface. . Z
Since Eqgs(10) have been derived on the basis of the gener- ' e e e e

alized BCF mode[Eq. (1)] and boundary conditionEgs. (b)
(2) and (3)], their validity is restricted to the region of ex-
perimental conditions, where the Q) is fulfilled (the ada- FIG. 2. Trajectoriesti(7), i=1,2,... M, of the steps during
toms on each terrace obey a local conservation condjtion electromigration affected sublimation obtained by numerical inte-
The importance of the considerations for the applicability ofgration of the equations of step moti¢the values of the dimen-
the generalized BCF model was not realized in the previou§i0“|ess timer are not instructive; the physical time corresponds to
papers in the field and the equations of step motion weréhe evapo_ration of about 80 MLThe values of the parameters
numerically integrated without taking into account the valid-involved in Eq. (10 are FI/2kT=~0.000 06,1/x,=0.0025,

ity condition (7) (see Refs. 19 and 12A more complicated B\s/Dgabn=117 000, andlo_/l_=0.003. The initial conditions
model for the step bunching dynamics in the presence of afiSed t© producéd) are £(0)=i.(i=1.2,....19), £(0)=19.5,
alternating heating current has been developed by Houch!eréasib) was produced by;(0)=i+A¢; whereA§; were pro-
mandzadetet al,?° but they also have not realized that the ducgd ?ﬁ/ ran:jom_r':/lurrlzertgenefrz;tlthor.f.\/vher?tthe trajedigry) S)(()
condition of validity of the model implies a relation between Ctii sottgmvifuf’;; figlﬁl‘be op of the figurgit reappears at=
the parameters, involved in the equations of step motiorg

[since Eq.(7) should be satisfigd

Time

B\s/Dgabrt is, in fact, reduced to selecting a value of the
lIl. MORPHOLOGICAL INSTABILITY OF VICINAL mean diffusion distancg .
SURFACE DURING SUBLIMATION Numerical integration of the equations of step motion
[Egs. (10)] manifests step bunching at the step-down direc-
In the numerical integration one handlé equations tjon of the electromigration of the adatoms, i.e.Fat0. The
with the usual periodical conditiory 1 =X, +MI, wherel jnjtial stages of step bunching are shown in Fig. 2 for differ-
is the average interstep distance, determined by the misorént step configurations &t 0. Equidistant step distribution
entation angle of the wafer. Neglecting the Schwoebel e1‘fec€§i =i ati=1,2, ...,19) with only one stepif 20) deviated
and introducing dimensionless coordinafgs x; /| and time  from its regular site £,,=19.5) is used as a starting step
7= pt/l, one still has 4 parameters in §40). Two of them,  configuration in the numerical integration of EqG&LO),
I/\s and B\¢/Dgabrg, determine the rate of motion of a which produces the step trajectories shown in Fig).2The
train of equidistant steps, wherdggl characterizes the step- step trajectories shown in Fig( have been obtained when
step repulsion, ané|/2kT reflects the impact of the elec- the initial values of; are&=i+ A&, where the deviations
tromigration. Now, one can make use of the conditionA¢; are produced by a random number generator. As seen, a
BIDbNE=1 for a validity of the boundary conditions formation of bunches of steps takes place in both cases, as
(2) and (3) to reduce the parametgi\s/Dsabnf to Ag/a. long as the electromigration forde has a step-down direc-
Sincea (the interatomic distangeand| are well known pa- tion. When, however, the forcE has a step-up direction
rameters in each experiment, selecting values/nf and (i.e., F>0) , the numerical integration of the equations of
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step motion(10) manifests stability of the regular distribu- 2
tion of the steps during sublimation of the vicinal surface. 181

A. Properties of step density wave

Integrating the equations of step motion one can study thi .
properties of the step density waves at a vicinal surface. Th
theoretical results could be compared to the experimente
observations to get quantitative information about some sur ¥ ¢
face phenomena and some physical quantities, characterizir ]
the steps at the crystal surface. Step bunching, induced t
electromigration, is rather promising in this respect, since the
interStep diStanCéb in the bunch is a result of a sensitive 00-0 '21);10*'40;1()*' 60;105'&0;108' 1.ulx10°' 12;10”' 1A4;<10“’I mlxnf" 1Aslx10°' 2.0x10°
balance between the step-step repulsion and the effect of tf ,
force F, inducing electromigration of adatoms. Sirigels a
measurable quantity and, on the other hand, it can be dete ]
mined by numerical integration of the equations of step mo- ;|
tion, it is reasonable to explore this pathway towards extract=,
ing values of the magnituda of the step-step repulsion and 3~ *"7
the electromigration forc& from relevant experiments. ]

The task of the theoretical treatment is to reveal Hgw
depends on the numbél;, of the steps in the bunch, on the
diffusion distancexg, on the magnitudé\ of the step-step
repulsion and the electromigration forEe For this purpose
we started the numerical integration of the equations of ste
motion from an initial surface configuration with only one :
step density wavEFig. 3(@)]. After some integration time the .
step density wave achieved a steady state @izenber of 0 1x10° 210"
steps in the bunghand shape. Then the minimum interstep (b) Time
distancd i, in the bunch was determined after each integra-
tion step and averaged over a considerable period of[Eme
seen in Fig. &) |, is an oscillating function of the subli-
mation time, because of the step detachment from the lea

Step Position

Time

0.14

distance /
(=3
1

0.10 o
0.09

0.08

inimum interstep

0.07 A

FIG. 3. (a) Trajectories of steps on a crystal surface with a
single bunch(a single step density waueThe parameters used in
ét_we integration of Eq(10) have the same values as in Fig. 2. As

. . Seen, single steps detach from the front edge of the bunch whereas
ing edge of the bunch and step attachment to the bundh talla process of attachment of fast moving single steps takes place at

Making use of this procedure we first proved thaf, does 0 ohnosite edgeb) The values of the minimum interstep distance
not depend on the average interstep distanéee., on the .../l are plotted against the sublimation time.

misorientation angle of the waferThe dependence df,,

on the numbeN, of steps in the bunch is shown in Fig. 4

(as seen the numerical results can be approximated by tHefS: 21,22 As seen, the dependencelqf, /I on the elec-
simple relation!,, /I~N"°%8. In the numerical integra- tromigration inducing forcé- clearly shows two branches—
min .

tion of Eq. (10) we used the parameter valuesl/ for F1/2kT>10"° the numerical results can be approxi-
2kT=—-0.00006, /A =0.0025, B\ /D.abré=117 000 mated by the relatioh,;,/I~F 3L whereas in the interval
. 1 S . ) S S )

-6 -5 . _£-0.05 )
andl,/1=0.003, shown in an earlier papéto reproduce the 107°<FI/2kT<107" the relation isl /I ~F~" Follow

experimental observations of Williams and co-workers on
bunching at 1250 °C. Determining the dependendeg,gfon

F at a constanfN, is more complicated because the total
numberM of steps in the system should be appropriately =
adjusted in each integration run with different valueFofin
order to keep the bunch size constant. The results obtaine
for a bunch consisting of 21 steps are shown in Fig).3t

is of interest to note that the values of the parameté2k T
used in the integration runs, carried out to prepare FHia)., 5
correspond to values of the effective charge of the adaton’g %% f
ranging fromz,=0.01 toz,=1.0 of the elementary electric
charge [these estimations refer to a temperatufie [
=1250 °C and take into account that the voltage drop acros: T
the sample is 5 V/cm, and the average interstep distance i 8
|=1300 A (as in the experiments of Williarft9]. In this

way the theoretical data for the dependence gf on F FIG. 4. Minimum interstep distancy,/l in a steady-state
covers almost the whole range of values of the effective elecsunch as a function of the number of steps in the bunch. The values
tric charge of an adatom, reported in various papeee of the parameters are the same as in Figs. 2 and 3.

0.25

‘min

0.125

Distance [

slope: -0.67861+0.0056

um Interstep

Minimi

16 32 64
Average Number of Steps in the Bunch
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~ [ stope: 0.0543 £ 001812 scaling exponent is equébut having the opposite sigro
\.5 1 that appearing in the scaling relatidn,,(F) at FI/2kT
= o ‘ >10"5. Here one should note that the values @fl used in
g B slope: -0.30823 + 0.01771 the integration of the equations of step motion to produce
Zﬁ T data for Fig. %b) correspond to magnitudes of the step-step
= e repulsion in the range frolA=0.025 toA=1.5 eV A [see
g o Eq. (6)].
Foir To study the dependence Igf;, on A g we integrated Eqs.
2 I T (10) using different values of the mean diffusion distange
E T [in all integration runs we hadFl/2kT =-—0.000 06 and
§ o I,/1=0.003, whereas in each integration run the parameter
[ e P . I/\¢ was two times larger than in the previous one, and the
1E6 1E5 1E-4 parameterB\s/DsabnS was two times smaller in order to
(@) FI/2KT satisfy the basic relatiofi7)]. Thus we obtained an almost
03 constant valud ,;,/1=0.12 in the interval 0.000 07%8I/\

/1

=<0.003 for a bunch, consisting of 15 steps. The value of
I min/l was found to sharply increase with the increase of the
parameterl /A when I/\;>0.004. It is essential to note,
however, that nucleation of step bunches does not take place
atl/\s=0.005, i.e., starting the integration of Eq$0) from

an initial configuration of steps, randomly deviated from
their regular positions, we never observed a formation of
step density waves.

It is of interest to study the dependencelgf, on the
mean diffusion distancig in the presence of additional en-
ergy barrier for an adatom attachment to a step edge, i.e.,
00 : v : To0r : 5000 : 008 when Eq.(8) is satisfied instead of Eq7). The activation

energyE, for an adatom attachment to a step edge is, in fact,
an additional parameter. To get some impression of how the
0.10 presence of the barri&r,; modifies the dependencelgf;, on
N\ it is convenient to expreds,; as a fraction of the energy
Eges— Esq (Egesis the activation energy for desorption of an
adatom from a terrace, arif, is the activation energy for
surface diffusiof, which determines the temperature depen-
006 | dence of Ay (A\s=a exp[(Eges— Es9)/2kT]). Substituting

- Ea—=0(Eges— Esd/2 into Eq. (8) one obtains B/Dgbng
004 - =(a/\g)? and therefore the paramet@i /Dabre is re-
duced to fs/a)*~’. Now, for each fixed value of, one can
calculate the value of the parameteB\s/Dsabng
=(\s/a)*"? provided the value of the parameték  is al-

ready selected. As an example we assued.5 and inte-

O e oo o ooos oo ooom grated the equations of step motion for different values of
(© Inverse Diffusion Length [/ Ns. The results show the minimum interstep distahggin

" the bunch to have again an almost constant viee Fig.

FIG. 5. Dependences of minimum interstep distance in the5(c)] . In these integration runs we used much smaller values
bunchl i,/ on (&) the electromigration forc€, (b) the step-step  of the force F (FI/2kT=0.000 001) in order to obtain
repulsion[the parametet,/| is related to the magnitud& of the I min/l=0.08 in a bunch of 15 steps, which is close to the
step-step repulsion by the equatitg=(nabAkT)*"* Y, where  experimentally obtainéd values of the interstep distance in
n=2 is the usual assumptihrand(c) the mean diffusion distance the punches of this size during sublimation of Si Tt
As (in the integration runs carried out to obtain the results shown in_ 1550 °c. On the basis of the above results we conclude
(©) we used much smaller values of the ford&{FI/2kT  hat the model under considerations predicts a constant value
=0.000 001)]. of the minimum interstep distandg,, in a relatively large

range of values okg. The presence of an additional energy

ing the same procedure we determined the dependence bérrier E,; for adatom attachment to a step edge does not
I'min ON the magnitude of the step-step repulsion, i.e., on thehange this conclusion. In the presence of an additional en-
parametero/I. The obtained results, shown in Fig(bh  ergy barrier, however, much smaller effective electric charge
manifest a linear dependencelgf, only/l . Having in mind  of the adatoms is necessary in order to reproduce the experi-
the relations(5) and (6) one can conclude that the depen- mentally observed values of,,. Really, the value=1/2kT
dence ofl ,,;, on the magnitudé\ of the step-step repulsion =0.000 001 corresponds to an effective chargg

can be described by the expresslgp,~A°%3. As seen, the =0.004e|, whereasz,=0.24¢| corresponds to the value

~17 steps in the bunch

|
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FI1/2kT =—0.000 06, used in the integration runs in absence 2
of additional energy barrier for adatom attachment to the stey ]
edge(i.e., E;=0).
1
B. Dynamic interaction of step density waves

To get deeper insight of the surface morphology and the !
instabilities during electromigration affected sublimation we & |
started the numerical integration of the equations of step mo”
tion from an initial surface configuration with two step den- *7
sity waves. The resulting step trajectories, shown in Fig. 6 ]
manifest a solitonlike behavior and two types of dynamic , L

interaction between the step density waves. Figufa 6 00
shows the time evolution of the crystal surface morphology,
when the two waves are identical. As known from the clas-
sical paper of Frank! the bunch gains steps from one side
and simultaneously loses steps from the other side. This pro
cess is clearly manifested in Figs. 3 and 6. As a result the
kinematic wave velocity/,, [the slope of the bunch trajec- 15
tory in Fig. 3a)] is lower than the velocity of steps in the
core of the bunch. According to Frank, is the velocity of
an element of the crystal surface with a fixed density of step
and it is instructive to considar,, as a velocity of the maxi-
mum of the step density wave.

To get quantitative knowledge of the dependence of the s
kinematic wave velocity on the number of steps in the bunch
we integrated Eqs(10) for systems containing different

[

position
O

20x10 4.0x10° 60x10 80x10 1.0x10° 12x10 l4x10 16x10 1.8x10°
(a) Time

n

Step Position
S

numbers of stepfl0<M =<59). In all runs the initial condi- e e B B e B

tions were Se'ected to Correspond to a Configuration W|th 00 20x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10° 12x10° 14x10° 1.6x10° 1.8x10°
only one bunch, containing almost all ste(psst a few steps  (b) Time

are outside the bunghThe obtained results are shown in

Fig. 7. 204

The dependence of the kinematic wave velocity on the
number of steps in the bunch is an essential factor for the
time evolution of the unstable vicinal surface during elec- '3
tromigration affected sublimation. Really, the fast moving
small bunches run down the slowly moving large bunches’
and a dynamic interaction of either the type, shown in Fig. =,
6(b), or the type shown in Fig.(6) takes place. Figure(b)
manifests rather interesting property of the step density
waves, which could be called “bunch size exchange.” As
seen, when the small bunch approaches the large one, tt
former starts to increase, whereas the latter decreases by lo
ing steps. The decrease in the number of steps in the initially
larger bunch leads to an increase of its kinematic wave ve°

locity. On the contrary, the initially smaller bunch increases i 6. Trajectories of steps on a crystal surface with two
and its kinematic wave velocity decreases. As a result thgynches. When the bunches are of equal &zehey travel at the
trajectories of the two bunches start to diverge as clearly seeshme velocity and have a steady-state shape. Dynamic interaction of
in Fig. 6(b). In Fig. &b) the size of the smaller bunch after punches of different size results in either “bunch size exchange”
the dynamic interaction is equal to the size of the smallefp) or “effective coalescence’(c). The parameters in EGL0) have
bunch before the interaction. It is interesting to note that onehe same values as in Fig. 2.

could have arrived at the same configuration if the faster step

density wave had passed through the slower wave and thi3f the initial bunchegin all cases of deviation from the per-
process of passing through had caused some retardation f&fct size exchange, however, the final size of the small bunch
the wave of higher amplitudén the case of step density is smaller than the initial size of the small bunch

waves such a process is impossible for geometrical repasons As seen in Fig. &), the second type of dynamic interac-
The type of dynamic interaction shown in Figbfdoes not  tion of step density waves is not identical with the process of
affect the size distribution and the average bunch size. Itoalescence, but the result is practically the sdthe dy-
should be noted, however, that deviations from the perfectamic interaction of two bunches, containifgy and N,

size exchange occurred very often and the final bunch sizesteps, results in one bunch, containiNg+ N, steps. This
(after the end of the interactipmere different from the sizes type of dynamic interaction, which could be called “effec-

Ste Position

[

<

T T T T T T T T T T T T T T
00 20x10° 40x10° 6.0x10° 80x10° 1.0x10" 12x10° 14x10° 1.6x10° 18x10° 2.0x10°

Time
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under different conditions. Here a partial differential equa-
tion, corresponding to the set of equatiofi®) is derived
[taking into account the basic relatidi)], and applied to
study the steady state shape of a crystal surface having a
single bunch of steps. Precisely the same problem, the shape
of a bunch between two parallel facets, has been analyzed by
Noziere$>*3and scaling relations for the width of the bunch
have been obtained. The model proposed by Nozieres and
the model considered in this paper are different — they con-
tain different physics. The Nozieres model refers to the case
of strong correlation between the adatom concentration fields
at neighboring terraces, i.e., the adatoms easily cross the
P Y E A L steps(in our terminology, the steps are “transparent” and
8 A % & the left hand side of Eq$7) and(8) is much smaller than the
Number of Steps in the Bunch right-hand side The model analyzed in this paper describes
FIG. 7. Kinematic wave velocity as a function of the number the evap_orati_on ki_netics when surface transport, induced by
of steps in the bunch. These results are obtained by numeric&l€Ctromigration, is strongly coupled to the exchange be-
integration of the equations of step motion with the following val- tween the crystal phase and the adlaigetatoms rarely cross
ues of the parametersEl/2kT=—0.000 06,1/A,=0.0025, gr,/  the steps Each model could work in one, at least, of the
Dsabnf=117 000, and,/l=0.003. three temperature intervals, where bunching has been ob-
served(at step-down, step-up, and again step-down direction
tive coalescence,” provides a ground to revive an old idea oPf the heating currejitIn this way, the transition tempera-
ChernoV® to consider the time evolution of the crystal sur- tures(at which the current direction should be reversed to
face as a process of coalescence of step density waves. 18P the surface unstable to bunchioguld reflect a transi-
developed a statistical description of the bunch size distribuion from instability, described by the Nozieres model to
tion (resulting from bunch-bunch coalescenca the basis instability, described by the model, considered in the present
of the scaling ideas, formulated by Todm his analysis of ~Paper. Itis reasonable to mention that the concentration gra-
the colloid rapid coagulatiofmore accessible references on dient, assumed in the Nozieres model, could be created by
the self-preserving solution of the Smoluchowski equatiorfh® €lectromigration forcé®, pushing the adatoms to the
are the papers of Barootfyand Kashchie¥/). A quantity of ~ higher facet. _ _
considerable importance in the Chernov treatment of bunch- Returning to the continuum model equation for the shape
bunch coalescence is the differenééN;,N,)=V,(N,)  ©Of the crystal surface we could state that it provides an ap-
—V,,(N,) between the kinematic wave velocities of bunchegProximate and simplified description of the model. Although
of different size. When the kinematic wave velocity is a ho-ON€ gets some insight in the time evolution of the process,
mogeneous function of the number of steps in the bunciihe interpretation of the experimental data should be based
[V (7N)= 7%V (N)] the relative velocityf(N;,N,) is  On the results obtained from the numerical integration of the
also a homogeneous functiofit satisfies the relation Set of ordinary differential equatior{d0). The basis of the

f(7Ny,7N,) = 7" F(N;,N,)] and the average bunch size derivation is the equation

N, was showr® to increase with the sublimation time as

Na~tY2*X The results, shown in Fig. 7, produce the value Z__4 dx; /dt (11)
k=0.46 and, thereforelN,,~t%5% It is essential to point ot Xi—Xi_1

out, however, that this dependence of the average bunch size _ _ _ _

on the sublimation time refers to a model, assuming only on&'hereh is the height of a single step aa(,t) describes the

type of dynamic interaction of the step density waves — theffystal surface shape in the momentthe — sign on the

existence of dynamic interactions of the type “size ex-Move in the positive direction of theaxis in Fig. 1. Equa-
change,” shown in Fig. @), is a violation of the basic as- tion (11) is precisely that used by Fraffkin developing the
sumption of the model treated by Chernov. That is why thekinematic theory of crystal growth and dissolutiof/(x;
obtained value 0.685 of the time scaling exponent is not™ Xi—1) is the local step density and its product with the rate
relevant to the time evolution of a morphological instability d; /dt of step motion represents what Frank calls step]flux
of vicinal surfaces, where the two types of dynamic interac-Substituting Egs(10) into Eg. (11) and taking the limit to
tions between step density waves take place. In fact, thi§ontinuity results in a partial differential equation fz{ix,t).
subsection provides mainly qualitative insight of the surfacd=or the sake of simplicity one neglects the Schwoebel effect

morphology instabilities, caused by electromigration of the(i.e., one assumeg,=Bq) and considers a vicinal surface
adatoms. with dz/9x>0 (see Fig. 1L As far as the equilibrium con-

centration of adatoms is concerned, it is reasonable to sub-
stitute Eq.( 4) with the more general expressioif(x;)
=n2e*+CDKT where A u(x;) is the local deviatior(due to

A continuum equivalent of Eq$10) has been obtained by the curvaturgof the chemical potential from the value, char-
Misbah and Pierre-Loui€ They derived a nonlinear equa- acterizing the bulk crystal with a flat surface. Assuming
tion for the step density and studied the bunching dynamica u(x;)/kT<1 and making use of the series expansion of

slope: -0.46106 £ 0.01534

Bunch Velocity

IV. RELATION TO THE CONTINUUM MODEL
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V., (x), T_(x), ®.(x), ®_(x) in the case a(x; Ay, i.e., we consider the shape of the crystal surface in
—Xi_1)/\s<1 andF(x;—X;_1)/2kT<1 one arrives at the the absence of any desorption. Thus Ep) turns into
following equation for the time evolution of the crystal sur-
6abA #? [ 9z 9z +2Fb 9z
X gx2 hiox?) |

face during heating with a direct currefie., in the presence 9z Dgng
of electromigration of the adatoms 9 KT

9z Dgng | d?Au  F dApu b( 9%z
KT a2 KT ax R a2 The quasiequilibrium shape of the crystal surface under
consideration will be realized when the step-step repulsion is
J(Au iz ne Ap compensated by the effect of the electromigration inducing
+2F 5(ﬁ 5) —a? ?< 1+ ﬁ) (120  force. To determine this shape we consider @) as mass
s conservation law
where()=abh is the atomic volume. The last term in this 9z 9]
equation describes the decreasezadue to the desorption —=——, (17)
flux ng/ 75 of atoms from the crystal surfagehe equilibrium at X
concentration of adatoms varies along the surface because @where
the dependence of the chemical potential on the crystal sur-
face curvaturg 6abA o [ 9z 7’z b/ 9z
In a recent paper Bonzel and Mqllﬁf?sderived the fol- =T X\ X o —2F H(&) (18
lowing expression for the local deviation of the chemical

potentialA . The quasiequilibrium shapgx) of the crystal surface we

define by the requirement that the macroscopic flux of mass
i be zero, i.e.J=0. Thus we arrived at a nonlinear differential
: (13 . . ; .
cosp x> equation that has a comparatively simple solution. Really,
_ _ _denotingdZ/dx (the quasiequilibrium shape does not depend
wheree is the same parameter that appears in the expressiah time, so thaz is a function of only one variablédy y and

6e sin ¢ 9%z
Ap=—0——""

for the surface free energy: defining the functiomp(y)=(dy/dx)[x(y)] one obtains
f(5)=FO+ fUst g?, (14) dp, , Fh

with s=dz/ 9x=tan ¢. Equation(13) was derived in a small
slope approximation, i.e., the average misorientation aagle
is small, and the local deviation from is also small. The
latter is not fulfilled in the case of electromigration-induced y dy F h

The substitutiorp?= 7 transforms this equation into

step bunching, since the maximum slope in a bunch of 16 oot 15 3zy=0, (20)
. . . ) 2 dy A 3a

steps is 10 times larger than the average slapthe experi-

ments of Williams the minimum interstep distance in awhich has the solution

bunch of 16 steps is 124 A, whereas the average interstep

distance determined by the misorientation angle is 130 A C 2Fh

Therefore one needs an expression &gk with a validity n= ?JF 9A ay, (21)

beyond the small slope approximation used by Bonzel and

Mullins. Assuming that the step-step repulsion is the onlywhereC is an integration constant. It is reasonable to express

reason for the deviatiod x of the chemical potential from the integration constar® through the maximum slopg,,

its value for a bulk crystal with a flat surface one can write = (dz/dx),,, of the bunch by making use of the condition
for an extremum of the functiog(x), i.e., dy/dx=p(Ym)

lo \"1 lo, \""' 6abAJdz 9’z =0 and thereforey(y,,) =p?(ym) =0. On this basis we ob-
Apu=- Xii1—Xi + Xi—%_1]  p2 dx g  tainC= —2Fhy?/9aA and Eq.(21) can be rewritten as
1
15 2Fh |vya y
which is valid under the usual assumptior:2. 7=~ 9aAYm v Vm (22)

Substituting the last expression into E42) one arrives
at an equation foe(x,t). Here we shall considerably sim- Since 7 is positive by definition, the forc& should be
plify this equation and use it to study the quasiequilibriumpaqaiive ‘i e, the electromigration of adatoms should be in
shape of a surface profile that connects two infinitely larggy,o step-down direction(otherwise the quasiequilibrium

terraces at different heights, i.&l,elementary steps are situ- shape of the bunch does not exigissumingF to be nega-
ated in the region &x=<L, and there are no steps®@t0 e one obtains

andx>L,. First, we neglect the relatively small terms con-

taining the product of the electromigration forEeand the 21FIh 2
deviationAu of the chemical potential from its value at a P=\—~——VYnm Im_ Y (23
vicinal surface of zero curvature. Second, we take the limit 9aA y2 Ym
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for the region where the slopel¢dx) of the crystal surface The width Ly, of the bunch can be presented lgs= (N
is an increasing function of and —1)l,, wherelis the average interstep distance inside the
bunch. FolN>1 Eq. (29) can be rewritten as

[2]F|h Yo Y
p=- 9aA Ym o % (24) N_2/3

y lp=

18aA 1/3
) B (30)

IFl

for the part of the crystal surface where the sloge/@x) is

a decreasing function of. Sincep(y)= dy/dx Egs. (23) As seen, the average interstep distance in the quasiequi-

and(24) are easy to integrate differential equations. Thus Wéibrium s_,r;]ape of the blﬁnCh dizplay? the sarr]ne scalingdexpo—
arrive at the following equations for the regions of increasingnems(\’v't respect to t € number o steps the 'mag'mtu. €
and decreasing slopes correspondingly: A of the step-step repulsion, and the electromigration induc-

ing force F) as the minimum interstep distantg,, [calcu-
lated by numerical integration of the equations of step mo-

_ tion (10) and shown in Figs. 4 and]%n a traveling bunch,
=xv2|F|h/9aAy, 25 o . .
XV2|FIn/9aAym @9 under the conditions of considerable desorption. It should be

e
0 y21y2 —yly.
YY" =YY pointed out again that Eg30) is not an exact result. It is an
and approximate form of the solution of E¢19) [the exact so-
lution is given by Eq( 28)] and, on the other hand E(L9)
y dy 2[F[h is an _apprqxi.mate form of Eq12). Finally, Eq.(30) refers to
—j fz(x—xm) \/ﬁym, (26) quasiequilibrium shape of a bunch, whereas the experiments
Ym\Ymd Y = Y/Ym a provide data for the steady-state shape. That is why it is not
recommendable to use E@O) in the interpretation of re-

Its obtained in relevant experiments. The scaling expo-
nents forl ,;, obtained from numerical integration of the set
of equations of step motion are much more reliable. Our
fiumerical results fot,n could be formally presented by an
equation identical to Eq(30) with B=0.63 (this value has
been extracted from Fig.)4

It is essential to note that Nozieféobtained a scaling
law I,~N~Y2(A/F)Y4for the average interstep distance in a
Ym dy L [2|F|h 27) bunch of “transparent” steps. As seen, the Nozieres model,
0 \/yan/yZ_y/ym_ b\ gaa Ym and the model considered in this paper manifest different

values of the scaling exponent. This is not surprising because
the two models describe different regimes of electromigra-
tion affected evaporation of the crystal.

where the values of the integration constants are determin
from the conditionyy=0 atx=0 andy=y,, atx=Xx,,. Now
we are able to write an expression for the total widthof
the bunch by making use of the last equations. Since th
slope @z/dx)=y has a valugy=0 atx=0 andx=L, (in
the model under consideration there are no steps<dt and
x>Lp) and displays a maximum,, at x=Xx,, we can write

Introducing a dimensionless varialfey/y,, results in a
more convenient form of the last equation

1 d¢ \/m V. CONCLUSION
2 0\ —¢ Lo 9aAyy, (28) In the presence of electromigration, the evaporation of a
vicinal surface is an interesting combination of two surface
Since the left-hand side of the last equation does not corProcesses—mass transport and an exchange between the
tain any physical quantitieéhe integral in the left-hand side crystal phase and the adlayer. The mass transport is strongly
is a dimensionless numbewe obtained, in fact, a simple coupled to the crystal-adlayer exchange whgh{sbng) =1
relation between the width, of the bunch, its maximum (in the terminology of Ref. 7 this is “kinetics with local
slopey,,, the electromigration inducing forcE and the adatom conservation” In the case of strong coupling the
magnitudeA of the step-step repulsion. Having in mind that @nalysis of the mass transport on the crystal surface can be
the experimental observations and the results of the numerfeduced to a diffusion problem on a single terrace. The so-
cal integration of the equations of step motidi®) show the  lution of this problem under relevant boundary conditions
average slop&h/L, of the bunch to be quite close to the Provides a ground to derive the explicit form of the equations
maximum slopey,,, we use the approximatiop,~Nh/L, for step motion in the regime of electromigration affected

proximate form step motion reveals that the evaporating crystal surface is

unstable(step bunching appearat the step-down direction
18aA) /3 of the electromigration inducing force. The quantitative
Lb=N1’3( —) B, (290  treatment of the electromigration affected sublimation pro-
[F| vides a ground to study crystal surface properties like step-
step repulsion, surface diffusion, and electromigration.
The central result of this work is the scaling relatiqog,
_ ~(N~2®)(AIF)Y3. A striking result of this model is the con-
B:J 4 ~0.86. stant value ofl ,;, in a wide range of values of the average
0\ 2=¢ diffusion distancen. Thus one cannot relate the tempera-

where
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ture dependence of,, to the temperature dependence\gf are equal, the transition temperature could indicate a change

The dependence of,,, on N can easily be determined from of the sign of the effective electric charge as argued by Kan-

relevant experiments and confronted with the last formula talel and Kaxirag® This conclusion is tempting, but not very

check the validity of the predicted scaling exponent and esreliable. The point is that we obtained the valu@/3 for the

timate the value of the ratié/F. size scaling exponent of the minimum interstep distance in
The scaling relation obtained in this paper provides a rethe bunch, whereas Nozieres obtaittealvalue— 1/2 for the

markable possibility to study the step-step repulsion. Theaverage interstep distan¢i the bunch. In addition, No-

point is that the value of the size scaling exponent dependgieres analyzed a continuum model, whereas our reliable re-

on the value ofn in Eq. (6). We integrated numerically  suits were obtained for a discrete mogitle motion of each

Egs.(10) assumingn=1 and obtained a size scaling relation step is followed by integrating the set of ordinary differential

| min~N"". Therefore the size scaling exponent is a key to thesquations Nevertheless, high accuracy experimental data

problem of experimentally determining the distance depenfor both minimum and average interstep distances in

dence of the step-step repulsion energy. bunches, containing different number of steps, would eluci-
The different scaling exponents, predicted by the modelgjate the step-step interaction as well as the mechanisms of

of “transparent” and “nontransparent” steps open a neWthe surface processes in crystal evaporation.

pathway to study the physics of the transition temperatures

separating the intervals, where step bunching has been ob-

served at step-up and step-down directions of the electric ACKNOWLEDGMENTS
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