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Properties and dynamic interaction of step density waves at a crystal surface
during electromigration affected sublimation
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Electromigration affected sublimation is a complicated phenomenon, involving surface transport coupled to
a process of atom exchange between the two-dimensional gas of adatoms and the crystal phase. The case of
intensive exchange is theoretically treated and equations of step motion are derived for the case of ‘‘nontrans-
parent’’ steps~kinetics with local conservation of adatoms!. The numerical integration of these equations
manifests step bunching~a formation of step density waves! at step-down direction of the electromigration of
adatoms. We studied some properties of the step density waves: the amplitude~the maximum slope of the
bunch! and its dependence on the number of steps in the bunch, the kinematic wave velocity and the dynamic
interaction of waves of different amplitudes. The central result of this work is the dependence of the minimum
interstep distance~in the steady state shape of the bunch! on the model parameters. This dependence, extracted
from numerical study, is presented in terms of scaling lawsl min;N2r(A/F)q , whereN is the number of steps
in the bunch,A is the magnitude of step-step repulsion, andF is the force, inducing electromigration of the
adatoms. Both scaling exponentsr andq depend on the powern in the step-step repulsion dependence on the
interstep distance (U5A/ l n) and, therefore, they are a key to the problem of experimental evaluation ofn. A
striking result of this model is the constant value ofl min in a wide range of values of the average diffusion
distancels . Thus one cannot relate the temperature dependence ofl min to the temperature dependence ofls .
Numerical analysis of the dynamics of steps at a crystal surface of small misorientation angle reveals two types
of dynamic interaction of bunches of steps: ‘‘bunch size exchange’’ and ‘‘effective coalescence.’’ The former
type of interaction is rather interesting — a smaller~and faster! bunch approaches a larger one and they travel
together until the initially larger bunch achieves~by losing steps! a size, smaller than the size of its partner, and
runs away of it.@S0163-1829~98!03227-5#
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I. INTRODUCTION

The discovery of the direct current heating effect on
surface morphology of Si wafers revealed a new pathwa
study the properties of crystal surfaces. Contrary to the c
sical studies of surface shape evolution, driven by the red
tion of the surface free energy, here we deal with a sh
evolution governed by an external driving force—the easy
measure and control electric current flowing through the w
fer. In 1989 Latyshev and co-workers1 reported an interest
ing effect—the step configuration at a vicinal surface of
crystal depends on the direction of the heating current, flo
ing through the crystal. At the step-up direction of the he
ing current step bunching occurs in the temperature inter
1050°21250° and 1350°21400 °C, whereas at step-dow
direction of the current bunching occurs in the interv
1250°21350 °C. Rearrangement of the regular steps i
step bands is a reversible process, i.e., changing the s
men temperature beyond the step bunching tempera
range or reversing the heating current direction one
transform the developed step bands into a regular syste
steps. Later, the effect of direct current heating on
Si~111! surface structure was observed in ma
experiments.2–6 Williams et al.4,5 reported step bunching a
step-down direction of the current for the temperatu
945 °C and 1245 °C, whereas a formation of step bunche
step-up current takes place at 1190 °C. The STM studie
the dc ~direct current! induced bunching of steps produce
PRB 580163-1829/98/58~3!/1590~11!/$15.00
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quantitative data for the time evolution of the wide terrac
separating the bunches, as well as for the interstep dista
in the bunch~this distance depends on the number of step
the bunch!. The rate of thermal decay of step bunched str
tures has been measured in both experiments using an
rect heating source and experiments using direct curren
the ‘‘uphill’’ direction ~the latter stabilizes the equidistan
step distribution at a temperature of 930 °C, used in th
experiments!.7,8 Interesting experiments on step bunchin
induced by alternating heating current of very low frequen
have been reported by Metois and Audiffren.9

An attempt to describe the effect of the direct curre
heating on the morphological stability of vicinal surfac
during sublimation was based on a modification10–13 of the
standard Burton-Cabrera-Frank~BCF! diffusion equation

Ds

d2ns

dx2
2

DsF

kT

dns

dx
2

ns

ts
50. ~1!

This equation describes the diffusion, electromigration, a
desorption of the adatoms, adsorbed on the crystal sur
@ns(x) is the concentration of adatoms andts is the average
lifetime of an atom in the state of mobile adsorption befo
leaving the crystal surface# and assumes the hypothesis tha
constant electric forceF acts on adatoms and induces
average velocityv5DsF/kT , whereDs is the surface dif-
fusion coefficient,k is the Boltzmann constant andT is the
1590 © 1998 The American Physical Society
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PRB 58 1591PROPERTIES AND DYNAMIC INTERACTION OF STEP . . .
temperature. The surface flux and the adatom concentra
in the vicinity of the steps are related by the equations13

DsS 2
dnsi

dx
1

Fnsi

kT D55 2
bu

ab

nsi2ns
e~xi 21!

ns
e~xi 21!

, x5xi 21

bd

ab

nsi2ns
e~xi !

ns
e~xi !

, x5xi ,

~2!

~3!

wherexi is the position of thei th step~see Fig. 1!, bu andbd
are the step kinetics coefficients, describing the atom
change~taking place at each step! between the crystal phas
and the two-dimensional gas of adatoms on the higher
lower terrace, respectively, the productab is the area of one
atomic site,nsi(x) denotes the concentration of adatoms
the terrace between the (i 21)th and thei th step~i.e., on the
terrace betweenxi 21 andxi). Because of the step-step repu
sion, the equilibrium concentrationns

e(xi) depends upon the
distances to the neighboring steps~the calculations are re
stricted to the interaction between nearest-neighbor step! ,
according to the expression13

ns
e~xi !5ns

e exp F2S l 0

xi 112xi
D n11

1S l 0

xi2xi 21
D n11G ,

~4!

where

l 05S nabA

kT D 1/~n11!

~5!

is a characteristic length, related to the step-step repul
andns

e is the concentration of atoms, adsorbed on a vici
face of constant interstep distance (xi 112xi5xi2xi 21),
during crystal-vapor equilibrium. The calculations of the e
tropic and stress-mediated repulsion between the steps
summarized in Ref. 14 and the resulting interaction ene
per unit length of the step is described by

U5A/ l n, ~6!

wherel is the interstep distance, the valuen52 is shown to
be relevant for both entropic and stress mediated repuls
and A is estimated to be around 0.2 eV Å. The right ha
side of the boundary conditions slightly differs from the pr
vious treatment28—we take the relative undersaturation
the particular step, so that the denominator is a function
the widths of the two neighboring terraces@see Eq.~4!#. We
do not expect this feature of the model to have any sign
cant effect on the step dynamics.

Equations~2! and ~3! reflect the silent assumption for a
absence of any correlation between the adatom conce

FIG. 1. A vicinal surface with a positive slope. The coordina
of the i th step is denoted byxi , whereasns,i(x) andJi(x) are the
adatom concentration field and the adatom flux on thei th terrace
@the terrace between the (i 21)st and thei th step#.
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tions on neighboring terraces. As seen from the Eq.~2! the
surface flux atxi 21 @on the terrace between the (i 21)th and
i th step# is related only to the generating power of thei
21)th step. No quantities, characterizing the adatom c
centration and surface flux on the neighboring terrace app
in Eq. ~2! ~in the terminology of Ref. 7 this is ‘‘kinetics with
local adatom conservation!. In fact, in the limit F→0 Eqs.
~2! and~3! turn into the well-known boundary conditions fo
the equation, describing the surface diffusion in the B
model.15 These boundary conditions were proposed
Chernov16 to describe the material balance at the step. I
essential to note that the step kinetic coefficientb(bu or bd)
characterizes the atom exchange between thecrystaland the
adlayer, i.e., all atoms that attach to the step edge and
leave it without joining the crystal in a kink position do no
contribute tob. When many atoms behave in this way, t
step is ‘‘transparent’’ for the migrating adatoms~according
to the terminology, proposed in Ref. 7 , this is ‘‘kinetics
without local conservation’’! and the use of the boundar
conditions~2! and ~ 3! is not justified, since the silent as
sumption for a lack of correlation between the adatom c
centration fields on neighboring terraces is violated. In a
cent paper17 the condition for applicability of the boundar
conditions~2! and ~3! was shown to be

~b/Dsbns
e!51. ~7!

To derive this relation one considers the frequencyv1 of
atom attachment~the irreversible detachment of an ato
from the crystal during sublimation is not a result of a sing
act of detachment, but usually it is the final result of ma
detachments and subsequent attachments of the same
to the crystal! to a randomly selected atomic site at th
step edge. This frequency is equal toDsns , which re-
sults from the multiplication of the hopping frequenc
n exp~2Esd /kT) and the probabilitynsab to find an ada-
tom at a single jump distance from the selected atomic sit
the step edge (ns here denotes the concentration of adato
in the step vicinity!. It is more complicated, however, t
write an expression for the effective frequency of atom
tachment to thecrystal, since this is a result of a sequence
elementary processes~attachment to the step, migratio
along the step edge, and attachment to a kink!. The net num-
ber of atoms detached from the crystal during sublimat
~per unit length of the step and unit time! as a result of the
‘‘trial and error’’ process is given by the right-hand side
Eqs.~2! and ~3!. To arrive at a dimensionality of frequenc
one multiplies the right-hand side of the boundary conditio
by the lengtha of an atomic site along the step and gets t
net number (b/b)ns /ns

e2b/b of atoms, which an atomic
row perpendicular to the step edge loses in unit time~hereb
is used instead ofbd andbu since the asymmetry of the ste
kinetic coefficient is not essential for this consideration; t
index i is omitted because of the general validity of the co
siderations!. The net number of atoms, detached per u
time from an atomic row perpendicular to the step can
formally, at least, considered as a difference between ef
tive frequenciesveff

1 andveff
2 of atom attachment and detach

ment ~one should keep in mind thatveff
1 and veff

2 are not
frequencies of realelementaryprocesses!. Defined in this
way, the effective frequencies are given byveff

1
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1592 PRB 58S. STOYANOV AND V. TONCHEV
5(b/b)ns /ns
e and veff

2 5b/b. Concerning the physica
meaning of the effective frequencies, one can easily see
veff

1 , for instance, is equal to the number of atoms attache
the crystal~per atomic site and unit time! during the ‘‘trial
and error’’ process, whose net result is crystal sublimati
Therefore, the equalityv15Dsns5veff

1 means that all atoms
attached to the step edge~with a frequencyv15Dsns) mi-
grate along it and attach to a kink position, i.e., the proba
ity for an adatom to cross the step is negligible~the ‘‘trans-
parency’’ of the step is zero!. This is precisely the condition
for applicability of the boundary conditions~2! and~3!. Sub-
stituting veff

1 with (b/b)ns /ns
e one arrives at Eq.~7!. This is

a very useful relation, since it provides a ground to decre
the number of the parameters involved in the equations
step motion. Recently, however, Williams pointed out th
the basic relation~ 7! corresponds to the special case whe
the diffusion constant for binding to the step edge is the sa
as the diffusion constant for motion between equivalent s
on the terrace~this situation seems close to reality for diffu
sion on metal surfaces!. For semiconductors, however, Wi
liams suggested the reasonable possibility for an additio
energy barrierEat, related to the atom attachment to the st
edge, i.e.,v15Dsns exp (2Eat/kT) and Eq.~7! turns into

b

Dsbns
e

5exp ~2Eat/kT!. ~8!

Equations~7! and ~8! are not new@Eq. ~7! results from
Eq. ~8! in the limit Eat50], although their derivation from
microscopic considerations is original. In their analysis
step motions on high-temperature vicinal surfaces Pimpin
et al.31 introduced a characteristic lengthds , associated with
the attachment kinetics. They derived the temperature de
dence ofds and also explained the physics—instantane
sticking of adatoms to the step~at kink sites! implies ds5a.
Equation~8! in this paper is identical to Eq.~13! in the paper
of Pimpinelli et al.31 @the left-hand side of Eq.~8! represents
the ratioa/ds]. Since we are studying the effect of the ele
tromigration on the stability of the crystal surface, the ess
tial property of the steps is their ‘‘nontransparency’’~this
term addresses directly the surface transport, induced
electromigration!. This property, however, is identical wit
the ‘‘instantaneous sticking’’ discussed in Ref. 31. Let
point out again that the use of a model of BCF class to st
the effect of the electromigration is justified in the case
‘‘nontransparent’’ steps~instantaneous sticking of adatom
to the steps!. The crystal growth and evaporation kinetics
the case of transparent steps has been addresse
Nozieres32,33 by advancing a model that does not belong
the BCF class—the rate of motion of a given step does
at
to
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depend only on the width of the two neighboring terrac
but also on the positions of many other steps~we shall return
to the Nozieres model in Sec. IV!.

It should be noted that the problem of applicability of th
boundary conditions~2! and ~3! emerges only in a presenc
of electromigration. Because of the symmetry of the class
model of Burton, Cabrera, and Frank there is no disconti
ity of the adatom concentration and the net flux across
step is zero, irrespective to the intensity of the crystal-adla
exchange~a discontinuity of the adatom concentration a
pears, however, in a presence of a Schwoebel effect18!. The
electromigration force breaks the symmetry of the BC
model and reveals new features of the surface transport l
ing to specific changes of the shape of the crystal surf
during sublimation.

The aim of this paper is to study the surface transpor
the presence of electromigration of the adatoms and to a
lyze the resulting changes of the shape of the crystal sur
during sublimation. The shape of the step density waves
their dynamic interaction in a regime of morphological ins
bility is studied in detail by numerical integration of th
equations of step motion as well as in the framework of
continuum model.

II. EQUATIONS OF STEP MOTION

In this section, the explicit form of the equations for st
motion is derived for the regime of electromigration affect
sublimation, characterized by strong coupling of the surfa
transport to the exchange of atoms between the crystal p
and the 2D gas of adatoms on the crystal surface, i.e., w
Eq. ~7! is satisfied. In this case the diffusion problem on t
crystal surface can be reduced to a diffusion problem o
single terrace~since the surface transport is effectively inte
rupted at each step by the high rate exchange of atoms
the crystal phase!. The equations derived below are not val
for the electromigration affected sublimation, characteriz
by a ‘‘high transparency’’ of the elementary steps, i.e., wh
(b/Dsbns

e)!1.
The equations of step motion in this regime of negligib

exchange between the adlayers on neighboring terraces

dxi

dt
52bu

ns,i 11~xi !2ns
e~xi !

ns
e~xi !

2bd

ns,i~xi !2ns
e~xi !

ns
e~xi !

,

~9!

wherexi is the position of thei th step, whereasns,i 11(xi)
and ns,i(xi) are the actual concentrations of adatoms in
vicinity of the i th step on the higher and the lower terra
~see Fig. 1!.

The substitution of the solution of Eq.~1! with boundary
conditions~2! and~3! into ~9! results in the following equa-
tions of the step motion:
dxi

dt
5bu

C1~xi 11!@11gd~xi 11!a1#2F2~xi 11!2gd~xi !a2C2~xi 11!@12gd~xi 11!a2#

C1~xi 11!w1~xi 11!2C2~xi 11!w2~xi 11!

1bd

C1~xi !@11gu~xi 21!a2#2F1~xi !2gu~xi !a2C2~xi !@12gu~xi 21!a1#

C1~xi !w1~xi !2C2~xi !w2~xi !
, ~10!
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where

a5A11S Fls

2kTD 2

, a15a1
Fls

2kT
, a25a2

Fls

2kT
,

gu~xi !5
buls

Dsabns
e~xi !

, gd~xi !5
bdls

Dsabns
e~xi !

,

w1~xi !511gd~xi !a11gu~xi 21!a21gu~xi 21!gd~xi !,

w2~xi !512gd~xi !a22gu~xi 21!a11gu~xi 21!gd~xi !

C1~xi !5exp@a~xi2xi 21!/ls#,

C2~xi !5exp@2a~xi2xi 21!/ls#

F2~xi !5exp@2F~xi2xi 21!/2kT#,

F1~xi !5exp@F~xi2xi 21!/2kT#.

Equations~10! describe the dynamics of steps during su
limation, affected by an electromigration of the adatoms
the crystal surface. These equations provide a ground
study the impact of the Schwoebel effect (buÞbd), the elec-
tromigration of adatoms (FÞ0), and the step-step repulsio
( l 0Þ0) on the step distribution at the evaporating surfa
Since Eqs.~10! have been derived on the basis of the gen
alized BCF model@Eq. ~1!# and boundary conditions@Eqs.
~2! and ~3!#, their validity is restricted to the region of ex
perimental conditions, where the Eq.~7! is fulfilled ~the ada-
toms on each terrace obey a local conservation conditio7!.
The importance of the considerations for the applicability
the generalized BCF model was not realized in the previ
papers in the field and the equations of step motion w
numerically integrated without taking into account the val
ity condition ~7! ~see Refs. 19 and 12!. A more complicated
model for the step bunching dynamics in the presence o
alternating heating current has been developed by Hou
mandzadehet al.,20 but they also have not realized that th
condition of validity of the model implies a relation betwee
the parameters, involved in the equations of step mo
@since Eq.~7! should be satisfied#.

III. MORPHOLOGICAL INSTABILITY OF VICINAL
SURFACE DURING SUBLIMATION

In the numerical integration one handlesM equations
with the usual periodical conditionxM115x11Ml , wherel
is the average interstep distance, determined by the mis
entation angle of the wafer. Neglecting the Schwoebel ef
and introducing dimensionless coordinatesj i5xi / l and time
t5bt/ l , one still has 4 parameters in Eq.~10!. Two of them,
l /ls and bls /Dsabns

e , determine the rate of motion of
train of equidistant steps, whereasl 0 / l characterizes the step
step repulsion, andFl /2kT reflects the impact of the elec
tromigration. Now, one can make use of the conditi
b/Dsbns

e51 for a validity of the boundary condition
~2! and ~3! to reduce the parameterbls /Dsabns

e to ls /a.
Sincea ~the interatomic distance! and l are well known pa-
rameters in each experiment, selecting values ofl /ls and
-
n
to
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ct

bls /Dsabns
e is, in fact, reduced to selecting a value of th

mean diffusion distancels .
Numerical integration of the equations of step moti

@Eqs. ~10!# manifests step bunching at the step-down dir
tion of the electromigration of the adatoms, i.e., atF,0. The
initial stages of step bunching are shown in Fig. 2 for diffe
ent step configurations att50. Equidistant step distribution
(j i5 i at i 51,2, . . .,19) with only one step (i 520) deviated
from its regular site (j20519.5) is used as a starting ste
configuration in the numerical integration of Eqs.~10!,
which produces the step trajectories shown in Fig. 2~a!. The
step trajectories shown in Fig. 2~b! have been obtained whe
the initial values ofj i arej i5 i 1Dj i , where the deviations
Dj i are produced by a random number generator. As see
formation of bunches of steps takes place in both cases
long as the electromigration forceF has a step-down direc
tion. When, however, the forceF has a step-up direction
~i.e., F.0) , the numerical integration of the equations

FIG. 2. Trajectoriesj i(t), i 51,2, . . . ,M , of the steps during
electromigration affected sublimation obtained by numerical in
gration of the equations of step motion~the values of the dimen-
sionless timet are not instructive; the physical time corresponds
the evaporation of about 80 ML!. The values of the parameter
involved in Eq. ~10! are Fl /2kT520.000 06, l /ls50.0025,
bls /Dsabns

e5117 000, andl 0 / l 50.003. The initial conditions
used to produce~a! are j i(0)5 i ,(i 51,2, . . .,19), j20(0)519.5,
whereas~b! was produced byj i(0)5 i 1Dj i whereDj i were pro-
duced by random number generator. When the trajectoryj i(t) ex-
ceeds the valuej5M ~the top of the figure! it reappears atj50
~the bottom of the figure!.
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1594 PRB 58S. STOYANOV AND V. TONCHEV
step motion~10! manifests stability of the regular distribu
tion of the steps during sublimation of the vicinal surface

A. Properties of step density wave

Integrating the equations of step motion one can study
properties of the step density waves at a vicinal surface.
theoretical results could be compared to the experime
observations to get quantitative information about some
face phenomena and some physical quantities, character
the steps at the crystal surface. Step bunching, induced
electromigration, is rather promising in this respect, since
interstep distancel b in the bunch is a result of a sensitiv
balance between the step-step repulsion and the effect o
force F, inducing electromigration of adatoms. Sincel b is a
measurable quantity and, on the other hand, it can be d
mined by numerical integration of the equations of step m
tion, it is reasonable to explore this pathway towards extra
ing values of the magnitudeA of the step-step repulsion an
the electromigration forceF from relevant experiments.

The task of the theoretical treatment is to reveal howl b
depends on the numberNb of the steps in the bunch, on th
diffusion distancels , on the magnitudeA of the step-step
repulsion and the electromigration forceF. For this purpose
we started the numerical integration of the equations of s
motion from an initial surface configuration with only on
step density wave@Fig. 3~a!#. After some integration time the
step density wave achieved a steady state size~number of
steps in the bunch! and shape. Then the minimum interst
distancel min in the bunch was determined after each integ
tion step and averaged over a considerable period of time@as
seen in Fig. 3~b! l min is an oscillating function of the subli
mation time, because of the step detachment from the le
ing edge of the bunch and step attachment to the bunch#.
Making use of this procedure we first proved thatl min does
not depend on the average interstep distancel ~i.e., on the
misorientation angle of the wafer!. The dependence ofl min
on the numberNb of steps in the bunch is shown in Fig.
~as seen the numerical results can be approximated by
simple relation l min /l;N20.68). In the numerical integra-
tion of Eq. ~10! we used the parameter valuesFl /
2kT520.000 06, l /ls50.0025, bls /Dsabns

e5117 000,
andl 0 /l 50.003, shown in an earlier paper17 to reproduce the
experimental observations of Williams and co-workers
bunching at 1250 °C. Determining the dependence ofl min on
F at a constantNb is more complicated because the to
numberM of steps in the system should be appropriat
adjusted in each integration run with different value ofF, in
order to keep the bunch size constant. The results obta
for a bunch consisting of 21 steps are shown in Fig. 5~a!. It
is of interest to note that the values of the parameterFl /2kT
used in the integration runs, carried out to prepare Fig. 5~a!,
correspond to values of the effective charge of the ada
ranging fromze50.01 toze51.0 of the elementary electri
charge @these estimations refer to a temperatureT
51250 °C and take into account that the voltage drop ac
the sample is 5 V/cm, and the average interstep distanc
l 51300 Å ~as in the experiments of Williams4,5!#. In this
way the theoretical data for the dependence ofl min on F
covers almost the whole range of values of the effective e
tric charge of an adatom, reported in various papers~see
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Refs. 21,22!. As seen, the dependence ofl min /l on the elec-
tromigration inducing forceF clearly shows two branches—
for Fl /2kT.1025 the numerical results can be approx
mated by the relationl min /l;F20.31, whereas in the interva
1026,Fl /2kT,1025 the relation isl min /l;F20.05. Follow-

FIG. 3. ~a! Trajectories of steps on a crystal surface with
single bunch~a single step density wave!. The parameters used i
the integration of Eq.~10! have the same values as in Fig. 2. A
seen, single steps detach from the front edge of the bunch whe
a process of attachment of fast moving single steps takes plac
the opposite edge.~b! The values of the minimum interstep distan
l min /l are plotted against the sublimation time.

FIG. 4. Minimum interstep distancel min /l in a steady-state
bunch as a function of the number of steps in the bunch. The va
of the parameters are the same as in Figs. 2 and 3.
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ing the same procedure we determined the dependenc
l min on the magnitude of the step-step repulsion, i.e., on
parameterl 0 / l . The obtained results, shown in Fig. 5~b!,
manifest a linear dependence ofl min on l 0 / l . Having in mind
the relations~5! and ~6! one can conclude that the depe
dence ofl min on the magnitudeA of the step-step repulsio
can be described by the expressionl min;A0.33. As seen, the

FIG. 5. Dependences of minimum interstep distance in
bunch l min /l on ~a! the electromigration forceF, ~b! the step-step
repulsion@the parameterl 0 / l is related to the magnitudeA of the
step-step repulsion by the equationl 05(nabA/kT)1/(n11), where
n52 is the usual assumption#, and~c! the mean diffusion distance
ls ~in the integration runs carried out to obtain the results show
~c! we used much smaller values of the forceF@Fl /2kT
50.000 001)].
of
e

scaling exponent is equal~but having the opposite sign! to
that appearing in the scaling relationl min(F) at Fl /2kT
.1025. Here one should note that the values ofl 0 / l used in
the integration of the equations of step motion to produ
data for Fig. 5~b! correspond to magnitudes of the step-st
repulsion in the range fromA50.025 toA51.5 eV Å @see
Eq. ~6!#.

To study the dependence ofl min on ls we integrated Eqs.
~10! using different values of the mean diffusion distancels

@in all integration runs we hadFl /2kT 520.000 06 and
l 0 / l 50.003, whereas in each integration run the param
l /ls was two times larger than in the previous one, and
parameterbls /Dsabns

e was two times smaller in order to
satisfy the basic relation~7!#. Thus we obtained an almos
constant valuel min /l50.12 in the interval 0.000 078< l /ls
<0.003 for a bunch, consisting of 15 steps. The value
l min /l was found to sharply increase with the increase of
parameterl /ls when l /ls.0.004. It is essential to note
however, that nucleation of step bunches does not take p
at l /ls>0.005, i.e., starting the integration of Eqs.~10! from
an initial configuration of steps, randomly deviated fro
their regular positions, we never observed a formation
step density waves.

It is of interest to study the dependence ofl min on the
mean diffusion distancels in the presence of additional en
ergy barrier for an adatom attachment to a step edge,
when Eq.~8! is satisfied instead of Eq.~7!. The activation
energyEat for an adatom attachment to a step edge is, in fa
an additional parameter. To get some impression of how
presence of the barrierEat modifies the dependence ofl min on
ls it is convenient to expressEat as a fraction of the energy
Edes2Esd ~Edes is the activation energy for desorption of a
adatom from a terrace, andEsd is the activation energy for
surface diffusion!, which determines the temperature depe
dence of ls „ls5a exp@(Edes2Esd)/2kT#…. Substituting
Eat5u(Edes2Esd)/2 into Eq. ~8! one obtains b/Dsbns

e

5(a/ls)
u and therefore the parameterbls /Dsabns

e is re-
duced to (ls /a)12u. Now, for each fixed value ofu, one can
calculate the value of the parameterbls /Dsabns

e

5(ls /a)12u provided the value of the parameterl /ls is al-
ready selected. As an example we assumedu50.5 and inte-
grated the equations of step motion for different values
ls . The results show the minimum interstep distancel min in
the bunch to have again an almost constant value@see Fig.
5~c!# . In these integration runs we used much smaller val
of the force F (Fl /2kT50.000 001) in order to obtain
l min /l'0.08 in a bunch of 15 steps, which is close to t
experimentally obtained23 values of the interstep distance
the bunches of this size during sublimation of Si atT
51250 °C. On the basis of the above results we concl
that the model under considerations predicts a constant v
of the minimum interstep distancel min in a relatively large
range of values ofls . The presence of an additional energ
barrier Eat for adatom attachment to a step edge does
change this conclusion. In the presence of an additional
ergy barrier, however, much smaller effective electric cha
of the adatoms is necessary in order to reproduce the ex
mentally observed values ofl min . Really, the valueFl /2kT
50.000 001 corresponds to an effective chargeze
50.004ueu, whereasze50.24ueu corresponds to the valu
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1596 PRB 58S. STOYANOV AND V. TONCHEV
Fl /2kT 520.000 06, used in the integration runs in absen
of additional energy barrier for adatom attachment to the s
edge~i.e., Eat50).

B. Dynamic interaction of step density waves

To get deeper insight of the surface morphology and
instabilities during electromigration affected sublimation w
started the numerical integration of the equations of step
tion from an initial surface configuration with two step de
sity waves. The resulting step trajectories, shown in Fig
manifest a solitonlike behavior and two types of dynam
interaction between the step density waves. Figure 6~a!
shows the time evolution of the crystal surface morpholo
when the two waves are identical. As known from the cl
sical paper of Frank,24 the bunch gains steps from one si
and simultaneously loses steps from the other side. This
cess is clearly manifested in Figs. 3 and 6. As a result
kinematic wave velocityVw @the slope of the bunch trajec
tory in Fig. 3~a!# is lower than the velocity of steps in th
core of the bunch. According to FrankVw is the velocity of
an element of the crystal surface with a fixed density of st
and it is instructive to considerVw as a velocity of the maxi-
mum of the step density wave.

To get quantitative knowledge of the dependence of
kinematic wave velocity on the number of steps in the bun
we integrated Eqs.~10! for systems containing differen
numbers of steps~10<M<59). In all runs the initial condi-
tions were selected to correspond to a configuration w
only one bunch, containing almost all steps~just a few steps
are outside the bunch!. The obtained results are shown
Fig. 7.

The dependence of the kinematic wave velocity on
number of steps in the bunch is an essential factor for
time evolution of the unstable vicinal surface during ele
tromigration affected sublimation. Really, the fast movi
small bunches run down the slowly moving large bunch
and a dynamic interaction of either the type, shown in F
6~b!, or the type shown in Fig. 6~c! takes place. Figure 6~b!
manifests rather interesting property of the step den
waves, which could be called ‘‘bunch size exchange.’’
seen, when the small bunch approaches the large one
former starts to increase, whereas the latter decreases by
ing steps. The decrease in the number of steps in the init
larger bunch leads to an increase of its kinematic wave
locity. On the contrary, the initially smaller bunch increas
and its kinematic wave velocity decreases. As a result
trajectories of the two bunches start to diverge as clearly s
in Fig. 6~b!. In Fig. 6~b! the size of the smaller bunch afte
the dynamic interaction is equal to the size of the sma
bunch before the interaction. It is interesting to note that o
could have arrived at the same configuration if the faster s
density wave had passed through the slower wave and
process of passing through had caused some retardatio
the wave of higher amplitude~in the case of step densit
waves such a process is impossible for geometrical reaso!.
The type of dynamic interaction shown in Fig. 6~b! does not
affect the size distribution and the average bunch size
should be noted, however, that deviations from the per
size exchange occurred very often and the final bunch s
~after the end of the interaction! were different from the sizes
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of the initial bunches~in all cases of deviation from the per
fect size exchange, however, the final size of the small bu
is smaller than the initial size of the small bunch!.

As seen in Fig. 6~c!, the second type of dynamic interac
tion of step density waves is not identical with the process
coalescence, but the result is practically the same~the dy-
namic interaction of two bunches, containingN1 and N2
steps, results in one bunch, containingN11N2 steps!. This
type of dynamic interaction, which could be called ‘‘effe

FIG. 6. Trajectories of steps on a crystal surface with t
bunches. When the bunches are of equal size~a! they travel at the
same velocity and have a steady-state shape. Dynamic interacti
bunches of different size results in either ‘‘bunch size exchang
~b! or ‘‘effective coalescence’’~c!. The parameters in Eq.~10! have
the same values as in Fig. 2.
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tive coalescence,’’ provides a ground to revive an old idea
Chernov16 to consider the time evolution of the crystal su
face as a process of coalescence of step density waves
developed a statistical description of the bunch size distr
tion ~resulting from bunch-bunch coalescence! on the basis
of the scaling ideas, formulated by Todes25 in his analysis of
the colloid rapid coagulation~more accessible references o
the self-preserving solution of the Smoluchowski equat
are the papers of Baroody26 and Kashchiev27!. A quantity of
considerable importance in the Chernov treatment of bun
bunch coalescence is the differencef (N1 ,N2)5Vw(N1)
2Vw(N2) between the kinematic wave velocities of bunch
of different size. When the kinematic wave velocity is a h
mogeneous function of the number of steps in the bu
@Vw(hN)5h2kVw(N)# the relative velocity f (N1 ,N2) is
also a homogeneous function@it satisfies the relation
f (hN1 ,hN2)5h2kf (N1 ,N2)] and the average bunch siz
Nav was shown16 to increase with the sublimation time a
Nav;t1/(11k). The results, shown in Fig. 7, produce the val
k50.46 and, therefore,Nav;t0.685. It is essential to point
out, however, that this dependence of the average bunch
on the sublimation time refers to a model, assuming only
type of dynamic interaction of the step density waves —
so-called ‘‘effective coalescence,’’ shown in Fig. 6~c!. The
existence of dynamic interactions of the type ‘‘size e
change,’’ shown in Fig. 6~b!, is a violation of the basic as
sumption of the model treated by Chernov. That is why
obtained value 0.685 of the time scaling exponent is
relevant to the time evolution of a morphological instabil
of vicinal surfaces, where the two types of dynamic inter
tions between step density waves take place. In fact,
subsection provides mainly qualitative insight of the surfa
morphology instabilities, caused by electromigration of t
adatoms.

IV. RELATION TO THE CONTINUUM MODEL

A continuum equivalent of Eqs.~10! has been obtained b
Misbah and Pierre-Louis.28 They derived a nonlinear equa
tion for the step density and studied the bunching dynam

FIG. 7. Kinematic wave velocity as a function of the numb
of steps in the bunch. These results are obtained by nume
integration of the equations of step motion with the following v
ues of the parameters:Fl /2kT520.000 06, l /ls50.0025, bls /
Dsabns

e5117 000, andl 0 / l 50.003.
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under different conditions. Here a partial differential equ
tion, corresponding to the set of equations~10! is derived
@taking into account the basic relation~7!#, and applied to
study the steady state shape of a crystal surface havin
single bunch of steps. Precisely the same problem, the s
of a bunch between two parallel facets, has been analyze
Nozieres32,33and scaling relations for the width of the bunc
have been obtained. The model proposed by Nozieres
the model considered in this paper are different — they c
tain different physics. The Nozieres model refers to the c
of strong correlation between the adatom concentration fie
at neighboring terraces, i.e., the adatoms easily cross
steps~in our terminology, the steps are ‘‘transparent’’ an
the left hand side of Eqs.~7! and~8! is much smaller than the
right-hand side!. The model analyzed in this paper describ
the evaporation kinetics when surface transport, induced
electromigration, is strongly coupled to the exchange
tween the crystal phase and the adlayer~adatoms rarely cross
the steps!. Each model could work in one, at least, of th
three temperature intervals, where bunching has been
served~at step-down, step-up, and again step-down direc
of the heating current!. In this way, the transition tempera
tures ~at which the current direction should be reversed
keep the surface unstable to bunching! could reflect a transi-
tion from instability, described by the Nozieres model
instability, described by the model, considered in the pres
paper. It is reasonable to mention that the concentration
dient, assumed in the Nozieres model, could be created
the electromigration forceF, pushing the adatoms to th
higher facet.

Returning to the continuum model equation for the sha
of the crystal surface we could state that it provides an
proximate and simplified description of the model. Althou
one gets some insight in the time evolution of the proce
the interpretation of the experimental data should be ba
on the results obtained from the numerical integration of
set of ordinary differential equations~10!. The basis of the
derivation is the equation

]z

]t
52h

dxi /dt

xi2xi 21
, ~11!

whereh is the height of a single step andz(x,t) describes the
crystal surface shape in the momentt ~the 2 sign on the
right hand side accounts for the decrease ofz when the steps
move in the positive direction of thex axis in Fig. 1!. Equa-
tion ~11! is precisely that used by Frank24 in developing the
kinematic theory of crystal growth and dissolution@1/(xi
2xi 21) is the local step density and its product with the ra
dxi /dt of step motion represents what Frank calls step flu#.
Substituting Eqs.~10! into Eq. ~11! and taking the limit to
continuity results in a partial differential equation forz(x,t).
For the sake of simplicity one neglects the Schwoebel ef
~i.e., one assumesbu5bd) and considers a vicinal surfac
with ]z/]x.0 ~see Fig. 1!. As far as the equilibrium con-
centration of adatoms is concerned, it is reasonable to s
stitute Eq. ~ 4! with the more general expressionns

e(xi)
5ns

eeDm(xi )/kT, whereDm(xi) is the local deviation~due to
the curvature! of the chemical potential from the value, cha
acterizing the bulk crystal with a flat surface. Assumi
Dm(xi)/kT!1 and making use of the series expansion

al
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1598 PRB 58S. STOYANOV AND V. TONCHEV
C1(xi), C2(xi), F1(xi), F2(xi) in the case a(xi
2xi 21)/ls!1 and F(xi2xi 21)/2kT!1 one arrives at the
following equation for the time evolution of the crystal su
face during heating with a direct current~i.e., in the presence
of electromigration of the adatoms!:

]z

]t
5

Dsns
e

kT
VF ]2Dm

]x2
2

F

kT

]Dm

]x
12F

b

hS ]2z

]x2D
12F

]

]xS Dm

kT

]z

]xD G2a2V
ns

e

ts
S 11

Dm

kT D , ~12!

whereV5abh is the atomic volume. The last term in th
equation describes the decrease ofz due to the desorption
flux ns

e/ts of atoms from the crystal surface~the equilibrium
concentration of adatoms varies along the surface becau
the dependence of the chemical potential on the crystal
face curvature!.

In a recent paper Bonzel and Mullins29 derived the fol-
lowing expression for the local deviation of the chemic
potentialDm:

Dm52V
6« sin w

cos4w

]2z

]x2
, ~13!

where« is the same parameter that appears in the expres
for the surface free energy:

f ~s!5 f ~0!1 f ~1!s1«s3, ~14!

with s5]z/]x5tan w. Equation~13! was derived in a smal
slope approximation, i.e., the average misorientation angw
is small, and the local deviation fromw is also small. The
latter is not fulfilled in the case of electromigration-induc
step bunching, since the maximum slope in a bunch of
steps is 10 times larger than the average slope~in the experi-
ments of Williams the minimum interstep distance in
bunch of 16 steps is 124 Å, whereas the average inter
distance determined by the misorientation angle is 1300!.
Therefore one needs an expression forDm with a validity
beyond the small slope approximation used by Bonzel
Mullins. Assuming that the step-step repulsion is the o
reason for the deviationDm of the chemical potential from
its value for a bulk crystal with a flat surface one can wr

Dm52S l 0

xi 112xi
D n11

1S l 0

xi2xi 21
D n11

52
6abA

h2

]z

]x

]2z

]x2
,

~15!

which is valid under the usual assumptionn52.
Substituting the last expression into Eq.~12! one arrives

at an equation forz(x,t). Here we shall considerably sim
plify this equation and use it to study the quasiequilibriu
shape of a surface profile that connects two infinitely la
terraces at different heights, i.e.,N elementary steps are situ
ated in the region 0<x<Lb and there are no steps atx,0
andx.Lb . First, we neglect the relatively small terms co
taining the product of the electromigration forceF and the
deviationDm of the chemical potential from its value at
vicinal surface of zero curvature. Second, we take the li
of
r-

l

on

6

ep

d
y

e

it

ls→`, i.e., we consider the shape of the crystal surface
the absence of any desorption. Thus Eq.~12! turns into

]z

]t
5

Dsns
e

kT
VF2

6abA

h2

]2

]x2S ]z

]x

]2z

]x2D 12F
b

hS ]2z

]x2D G .

~16!

The quasiequilibrium shape of the crystal surface un
consideration will be realized when the step-step repulsio
compensated by the effect of the electromigration induc
force. To determine this shape we consider Eq.~16! as mass
conservation law

]z

]t
52

]J

]x
, ~17!

where

J5
6abA

h2

]

]xS ]z

]x

]2z

]x2D 22F
b

hS ]z

]xD . ~18!

The quasiequilibrium shapez(x) of the crystal surface we
define by the requirement that the macroscopic flux of m
be zero, i.e.,J50. Thus we arrived at a nonlinear differenti
equation that has a comparatively simple solution. Rea
denotingdz/dx ~the quasiequilibrium shape does not depe
on time, so thatz is a function of only one variable! by y and
defining the functionp(y)5(dy/dx)@x(y)# one obtains

yp
dp

dy
1p22

F

A

h

3a
y50. ~19!

The substitutionp25h transforms this equation into

y

2

dh

dy
1h2

F

A

h

3a
y50, ~20!

which has the solution

h5
C

y2
1

2F

9A

h

a
y, ~21!

whereC is an integration constant. It is reasonable to expr
the integration constantC through the maximum slopeym
5(dz/dx)max of the bunch by making use of the conditio
for an extremum of the functiony(x), i.e., dy/dx5p(ym)
50 and thereforeh(ym)5p2(ym)50. On this basis we ob-
tain C522Fhym

3 /9aA and Eq.~21! can be rewritten as

h52
2Fh

9aA
ymF ym

2

y2
2

y

ym
G . ~22!

Sinceh is positive by definition, the forceF should be
negative, i.e., the electromigration of adatoms should be
the step-down direction~otherwise the quasiequilibrium
shape of the bunch does not exist!. AssumingF to be nega-
tive one obtains

p5A2uFuh
9aA

ymAym
2

y2
2

y

ym
~23!
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for the region where the slope (dz/dx) of the crystal surface
is an increasing function ofx and

p52A2uFuh
9aA

ymAym
2

y2
2

y

ym
~24!

for the part of the crystal surface where the slope (dz/dx) is
a decreasing function ofx. Sincep(y)5 dy/dx Eqs. ~23!
and~24! are easy to integrate differential equations. Thus
arrive at the following equations for the regions of increas
and decreasing slopes correspondingly:

E
0

y dy

Aym
2 /y2 2y/ym

5xA2uFuh/9aAym, ~25!

and

2E
ym

y dy

Aym
2 /y22y/ym

5~x2xm!A2uFuh
9aA

ym, ~26!

where the values of the integration constants are determ
from the conditionsy50 atx50 andy5ym at x5xm . Now
we are able to write an expression for the total widthLb of
the bunch by making use of the last equations. Since
slope (dz/dx)5y has a valuey50 at x50 andx5Lb ~in
the model under consideration there are no steps atx,0 and
x.Lb) and displays a maximumym at x5xm we can write

2E
0

ym dy

Aym
2 /y22y/ym

5LbA2uFuh
9aA

ym. ~27!

Introducing a dimensionless variablez5y/ym results in a
more convenient form of the last equation

2E
0

1 dz

Az222z
5LbA 2uFuh

9aAym
. ~28!

Since the left-hand side of the last equation does not c
tain any physical quantities~the integral in the left-hand sid
is a dimensionless number!, we obtained, in fact, a simple
relation between the widthLb of the bunch, its maximum
slope ym , the electromigration inducing forceF and the
magnitudeA of the step-step repulsion. Having in mind th
the experimental observations and the results of the num
cal integration of the equations of step motion~10! show the
average slopeNh/Lb of the bunch to be quite close to th
maximum slopeym , we use the approximationym'Nh/Lb
to rewrite Eq.~28! in the practically more useful~but ap-
proximate! form

Lb5N1/3S 18aA

uFu D 1/3

B, ~29!

where

B5E
0

1 dz

Az222z
.0.86.
e
g

ed

e

n-

ri-

The width Lb of the bunch can be presented asLb5(N
21)l b , wherel bis the average interstep distance inside
bunch. ForN@1 Eq. ~29! can be rewritten as

l b5N22/3S 18aA

uFu D 1/3

B. ~30!

As seen, the average interstep distance in the quasie
librium shape of the bunch displays the same scaling ex
nents~with respect to the number of stepsN, the magnitude
A of the step-step repulsion, and the electromigration ind
ing forceF) as the minimum interstep distancel min @calcu-
lated by numerical integration of the equations of step m
tion ~10! and shown in Figs. 4 and 5# in a traveling bunch,
under the conditions of considerable desorption. It should
pointed out again that Eq.~30! is not an exact result. It is an
approximate form of the solution of Eq.~19! @the exact so-
lution is given by Eq.~ 28!# and, on the other hand Eq.~19!
is an approximate form of Eq.~12!. Finally, Eq.~30! refers to
quasiequilibrium shape of a bunch, whereas the experim
provide data for the steady-state shape. That is why it is
recommendable to use Eq.~30! in the interpretation of re-
sults obtained in relevant experiments. The scaling ex
nents forl min obtained from numerical integration of the s
of equations of step motion are much more reliable. O
numerical results forl min could be formally presented by a
equation identical to Eq.~30! with B50.63 ~this value has
been extracted from Fig. 4!.

It is essential to note that Nozieres33 obtained a scaling
law l b;N21/2(A/F)1/4 for the average interstep distance in
bunch of ‘‘transparent’’ steps. As seen, the Nozieres mod
and the model considered in this paper manifest differ
values of the scaling exponent. This is not surprising beca
the two models describe different regimes of electromig
tion affected evaporation of the crystal.

V. CONCLUSION

In the presence of electromigration, the evaporation o
vicinal surface is an interesting combination of two surfa
processes—mass transport and an exchange between
crystal phase and the adlayer. The mass transport is stro
coupled to the crystal-adlayer exchange when (b/Dsbns

e)51
~in the terminology of Ref. 7 this is ‘‘kinetics with loca
adatom conservation’’!. In the case of strong coupling th
analysis of the mass transport on the crystal surface ca
reduced to a diffusion problem on a single terrace. The
lution of this problem under relevant boundary conditio
provides a ground to derive the explicit form of the equatio
for step motion in the regime of electromigration affect
sublimation. The numerical integration of the equations
step motion reveals that the evaporating crystal surfac
unstable~step bunching appears! at the step-down direction
of the electromigration inducing force. The quantitati
treatment of the electromigration affected sublimation p
vides a ground to study crystal surface properties like st
step repulsion, surface diffusion, and electromigration.

The central result of this work is the scaling relationl min
;(N22/3)(A/F)1/3. A striking result of this model is the con
stant value ofl min in a wide range of values of the averag
diffusion distancels . Thus one cannot relate the temper
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ture dependence ofl min to the temperature dependence ofls .
The dependence ofl min on N can easily be determined from
relevant experiments and confronted with the last formula
check the validity of the predicted scaling exponent and
timate the value of the ratioA/F.

The scaling relation obtained in this paper provides a
markable possibility to study the step-step repulsion. T
point is that the value of the size scaling exponent depe
on the value ofn in Eq. ~6!. We integrated numerically30

Eqs.~10! assumingn51 and obtained a size scaling relatio
l min;N21. Therefore the size scaling exponent is a key to
problem of experimentally determining the distance dep
dence of the step-step repulsion energy.

The different scaling exponents, predicted by the mod
of ‘‘transparent’’ and ‘‘nontransparent’’ steps open a ne
pathway to study the physics of the transition temperatu
separating the intervals, where step bunching has been
served at step-up and step-down directions of the elec
current. Really, if the size scaling exponents in two neig
boring temperature intervals are different, this is an indi
tion for a transition from the Nozieres model32,33 to the
model considered in this paper. If the size scaling expone
ci.
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o
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e
ds
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are equal, the transition temperature could indicate a cha
of the sign of the effective electric charge as argued by K
del and Kaxiras.21 This conclusion is tempting, but not ver
reliable. The point is that we obtained the value22/3 for the
size scaling exponent of the minimum interstep distance
the bunch, whereas Nozieres obtained33 a value21/2 for the
average interstep distance~in the bunch!. In addition, No-
zieres analyzed a continuum model, whereas our reliable
sults were obtained for a discrete model~the motion of each
step is followed by integrating the set of ordinary different
equations!. Nevertheless, high accuracy experimental d
for both minimum and average interstep distances
bunches, containing different number of steps, would elu
date the step-step interaction as well as the mechanism
the surface processes in crystal evaporation.
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