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Anomalous pinning behavior in an incommensurate two-chain model of friction
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Pinning phenomena in an incommensurate two-chain model of friction are studied numerically. The pinning
effect due to the breaking of analyticity exists in the present model. The pinning behavior is, however, quite
different from that for the breaking of the analyticity state of the Frenkel-Kontorova model. When the elasticity
of chains or the strength of interchain interaction is changed, pinning force and maximum static frictional force
show anomalously complicated behavior accompanied by a successive phase transition and they vanish com-
pletely under certain conditiongS0163-182@08)03947-3

[. INTRODUCTION frictional force for the two-chain model becomes larger than
that for the FK model with the same strength of the inter-
In recent years, the study of friction has been attractingchain interaction. Furthermore, they discussed the relation-
much attention in physicsNanoscale frictional phenomena ship between the strength of the maximum-static frictional
have been examined experimentally using frictional forceforce and the velocity dependence of kinetic frictional force.
microscope$,quartz microvalance techniqugand so on. In In this paper, we revisit the two-chain model of friction
theoretical studies, the Frenkel-Kontoroff&k) modef and ~ €mployed in Ref. 15 and examine the frictional phenomena
its related ones have been employed as a promising model 8 & wide range of model parameters. In particular, pinned
such nanoscale friction by several researchetsthe FK states_ are mvestlgate_d_ thoroughly in connection Wlth'the
model, in general, consists of an atomic chain on a substraf¥®@king of the analyticity state due to the Aubry transition.
with periodic potential. In the chain harmonic force works !t tUrns out that the maximum-static frictional force shows
between neighboring atoms. When the mean atomic distan@&@®MPplicated behavior against the change in elastic param-
and the period of the potential is incommensurate, the FKeters and vanishes completely in certain conditions. This
model shows a phase transition, which has been discussed @°malous pinning behavior is discussed in relation to the
detail by Aubry and co-worket'® Hence this phase transi- static lattice str_uctgres. We also fogus on .the velocity depen-
tion is called the Aubry transition. The Aubry transition has dence of the kinetic frictional force in sliding states.
the following features. When the amplitude of the substrate
potential is _smgller'than a certain critical value, the Iovye;t Il. TWO-CHAIN MODEL OF FRICTION
phonon excitation is gapless and, therefore, a free-sliding
mode appears. This means vanishing maximum-static fric- The two-chain model of friction employed here is sum-
tional force. Above the critical amplitude, however, the at-marized in the following® We consider two atomic chains,
oms in the chain are pinned strongly nearby the potentiale., an upper chain and a lower chain. Each atom has a
minima and a finite gap exists in the phonon excitation. Thisone-dimensional degree of freedom parallel to the chain. In-
state is called the breaking of the analyticity state. Then finitédrachain interaction with harmonic form and interchain inter-
energy is needed to slide the chain, and, therefore, thaction are taken into consideration. The effects of energy
maximum-static frictional force becomes finite. The ex-dissipation are assumed to be proportional to the difference
tended FK model, which consists of interacting two deform-between the velocity of each atom and that of the center of
able chains, also have been investigated so far. The statgravity of the chain. The upper chain is driven by the exter-
structural properties of two-chain models have been investinal force parallel to the chain. Assuming overdamped mo-
gated in Refs. 11-14, where each chain is often treated astimn, we get the equations of motion of the atoms in the
continuum elastic line. The continuum approximation worksupper and the lower chains given by
effectively in the study on the commensurate-
incommensurate transitid. However, the pinning effect

that arises from the discrete nature of lattices are smeared out Mg Ya(Ui —(Uii) =Ka(Ui 1+ Ui 1= 2Uj)
inevitably. In other words, the Aubry transition never occurs Ny

in. the _continuum .models. On the basis of a two-chain model +> F(u; —v;)+Fex, (1)
with discrete lattice structures, Matsukawa and Fukuyama jeb

investigated the static and the kinetic frictional forée&
The model proposed in their study consists of two atomic . .
chains, where interchain atomic force works between atoms Mo ¥b(Vi = (Vi)i) =Kp(vis1+vi-1—20))

in one chain and in another and harmonic force works be- Na
tween neighbor atoms in each chain. In some cases of elastic + 2 Fi(vi—u)—Kg(vi—icy), (2
parameters of chains, they found that the maximum static jea !
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whereu; (vi), My (Mp), va (7)), Ka (Kp), andN, (Ny) are  where the ratio is determined by using a continued-fraction
the position of theth atom, the atomic mass, the parameterexpansion of the golden mean to emulate incommensurabil-
of energy dissipation, the strength of the interatomic forcejty. Throughout the present study we set the values of the
and the number of atoms in the upgkawern) chain, respec- Mmodel parameters as

tively. K denotes the strength of the interatomic force be- _ _ _ _

tween the lower chain and the substrate, which is necessary Na=144, N,=233, c,=1618..., =1,
to bind the lower chain( ); represents the average with re- m=my=1, K,=1, y,=7,=1. 8

spect toi. F, andF, are the interchain force between the We control the elasticity of chains by changing the spring

2

two atomic chal_ns and t_he_external force, respv.actlvely. Th%onstantsKs andK,, and the strength of interchain interac-
interchain atomic potential is chosen as follows:
3) atomic configuration where atoms are located at regular sites
' periodically. During the RK steps the chains are relaxed to
the mean atomic spacing of the lower chain. The interatomigection with pinning behavior.
force is given byF|(x)=— (d/dx) U,. The time-averaged = We employ the following numerical criterion and meth-

tion by K .
K N In numerical simulations we mainly employ an initial
|
U= > exp{ 4( o
) ] ) ) stable states and finally reach there. In Sec. IVA5 we will
whereK; is the strength of the interchain potential, and  refer to the effect of the initial atomic configuration in con-
total frictional force of the present model is given by ods in the calculations of several quantities.u|f and v;
calculated during the RK steps satisfy a velocity condition,

Na Np N T
Fic= = > (Fy(0i=U))e=Na(Feo:. 4) VIENa () 2+ 30 (0,)2]/ (N, + Np) <1010, the RK calcu-
ifcajeb lation is stopped, and the state obtained then is considered to

) ) o . . . be static. The phonon frequency is calculated using a dy-
This expression of the frictional force is valid for both static 5 mical matrix for this stationary state. The maximum-static
and kinetic ones. The form of interchain forc&,(x) frictional force is evaluated as the critical force above which
=~ (d/dx) U, , is approximated in the following two limit- * the velocity condition is not satisfied. Using the criterion, the
ing cases. When the atoms in the lower chain are rigid and gifference between pinned and sliding states is distinguish-
fixed at the regular sites, which corresponds to the case Qfple. The frictional force is calculated according to E.or
Kp/Ka— or Ks/Ka—, the interchain force that acts on the method used in Ref. 15. In a sliding state, after the sys-
the upper chain is approximated by one term in a Fouriefem reaches a steady state, the temporal average is performed
Series: in calculating the kinetic frictional force over a time period
much longer than a time during which the center of gravity

Np
. Uj of the system moves by the system len =NyCp).
> Filui—v)) :—0.47K|S|n(27rc—'). (5) y y y BT, (=Npcp)
e vi=1e ° IV. RESULTS
Then the two-chain model is reduced to the FK model. In the A. Pinned states

opposite limit, when the upper chain is fixed at the regular
sites K,/K,>1), the interchain interaction that acts on the

lower chain is also described by one term in a Fourier series: [N this section we investigate the pinning effect of the
two-chain model in the absence of external force. To inves-

v tigate the feature of pinned states, we first calculate the

~ —O.8C~K|sin( 217_1) , (6) lowest-phonon frequency, which is a significant quantity be-
Ca cause finite lowest phonon frequency, i.e., the phonon gap,

means the presence of pinning and its square is proportional

where ¢, is the mean atomic spacing of the upper chain.to the restoring force due to pinning effects.

These approximations on the interchain force are valid only For the comparison with the two-chain model, we first

in the above two limiting cases on elastic parameters, andhow the squared lowest-phonon frequenoﬁpfo of the FK

they may break in intermediate cases. This is a crucial poininodel described by Egsl) and(5) with K;=1 in Fig. 1. In

1. Lowest phonon frequency

Na
;E;j Fi(ui—v;)

Ui:ICa

in the following discussion. this case the elastic parameteKig only, and there exists its
critical value. Below the criticaK,, wﬁ)f becomes finite,
IIl. NUMERICAL METHOD corresponding to the appearance of the breaking of the ana-

lyticity state due to the Aubry transition. Above the critical
For the numerical simulation of the model, the RUnge-Ka, wﬁ)f vanishes. The Change afﬁ)f is continuous at the

Kutta (RK) formula is employed to solve the equations of critical point. Such behavior ob2, for the FK model was
motion. The periodic boundary conditions are employed inenorted in Ref. 10. In the prespent study on the two-chain
both chains. Hence, the ratio;/c;, is equal ©oNy/Na,  model we have another elastic parameter in the lower chain.
whereN, andN,, are the numbers of atoms in the upper andyence, we focus on the effect of the elastic relaxation of the
lower bodies. lower chain, and theK , andK, are chosen as variable elas-
tic parameters.
Ca_No_233_ .o @ In Fig. 2(a) we showwfy as a function of an elastic con-
c, N, 144 — 77 stantK, in the case of strong interchain interactiih=1
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FIG. 1. Squared lowest-phonon frequency for the FK model g l v
(Kz=K;=1 andK,=K =). g 0@ E
F
and Ks=1. The strength of the interchain interactiok,( £ on 4
=1) is chosen to be greater than the critical value of the?g
Aubry transition for the FK modelK{Tc®~0.33 for K, = ooo1 | ]
=1. Because of strong interchain interaction, the phonon gars ‘
is finite and almost constant in the region of large value of
Ky (2.4<Ky). However, steep valleys appear in the range 0.0001 o3 ; 1o
0.81<K,<2.4. The amount oa‘oﬁ)f changes there more than (b) K
two orders of magnitude. It is considered thg; vanishes at
each valley. The finite values @b at the bottom of the @ (I (I (Iv)
valleys will be due to the numerical accuracy of the present_ 1o : , , 4
calculation and the finite magnitude of changing Kn . g
. =1
When Ky, becomes smaller than a certain value(Q.81), g
wﬁ,f increases sharply and then becomes almost constant. Tf”g“
vanishing phonon gap at each valley seems to indicate a sol§
of phase transition. & L 1
When the interchain interactioK, is somewhat weak- %
. . . iti Q
ened, but its strength is still greater thigff{'c*, more dras- -
tic behavior of phonon gaps is observed. Figufe) Zhows §
wﬁ,f obtained forK,;=0.45 andK¢=1. Finite phonon gaps & o1 s . s
exist both in small and largk, regimes, and steep valleys 0.01 0.1 Ié 10 100

appear in the intermediate regime €.K,<0.6. Such be-
havior is quite similar to that foK,=1. In a wide regime, _
0.6<Kp<1.4; however, the phonon gap vani'shes'com'plgtel)k;f'(s)' f,qijgfg :%iif??gﬁg(fg%inf% éi):Kl'o_ }(:‘Tsd
within a nume_rlcal accuracy. This regime 'S_qu't_e dIStInCtfixed at unity. We will refer to insetted numbered arrows later in
from other regimes with narrow valleys seen in Fig2as oo 5 6, and 8.
discussed in the next subsection. The anomalous behavior o
the phonon gap disappears when a large valu€dg cho-
sen as in Fig. @), whereK,=10 (K,=1). It is obvious that
the behavior of the phonon gap depends on the elastic p
rameterK as well asK,. In Fig. 2a) the behavior of the _ S
phonon gap looks self-similar. If this is the case, the phonon 2. Maximum-static frictional force
gap reveals more complicated behavior against a smaller Next we calculate the maximum-static frictional force nu-
change inKy, in the intermediate,, regime. merically by applying the external force to the pinned states.
The discontinuous and complicated behavior (Dﬁ)f Figures 3a) and 3b) show the maximum-static frictional
against the change in elastic parameters for the two-chaiforce calculated for pinned states shown in Fig&) 2nd
model is obviously quite different from that for the FK 2(b), respectively. The maximum-static frictional force also
model shown in Fig. 1. We confirmed that the magnitude ofshows anomalous behavior, which obviously reflects the
the phonon gap at aK,’'s chosen in Figs. @-2(c) is en-  phonon gap structures in Figs(a@ and Zb). In Fig. Ja),
tirely insensitive to the enlargement of the system size detewhere the values of the paramet&rs=1 andK,=1 are the

mined by using a continued-fraction expansion of the golden
Jnean in Eq(7).
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1 , . that hull functions defined in two chains are also useful to
] analyze the lattice structures both in pinned and sliding states
for the two-chain model! The hull functions for the two-
chain model are defined as

I
iy
T
I

uj=ic,+a+hy(ic,+a), 9

001 .
vi=icy+ B+hy(icy+B), (10

: whereh, andhy, are the hull functions in the upper and lower

0.001 ¢ 5 chains, respectively, and and 8 are constant phases. The

periodicities of the hull functions are expressed as

Maximum Static Frictional Force

0.0001 A . L ha(X)=ha(x+cp), hp(x)=hp(X+cy). (11
0.01 0.1 1 10 100

When the chains are not deformed and hence the atoms are
b arrayed periodically, the interchain interaction potential is
sinusoidal as mentioned in Eq&k) and (6), and then the

)
~

o1 ' ' ' position of the potential maximum in one period is located at
3 the half of the period of the hull functiox=c/2 (c,/2) for
g oory : h,(X) [hy(x)] in our choicea=B=0.
E ] For the convenience of later discussions, we briefly sum-
§ 0.001 L marize here some features of the hull function for the FK
s model. When the strength of the interchain interaction is less
2 than the critical value of the Aubry transition, the hull func-
e 0.0001 tion is smooth and continuous. Above the critical point, how-
E ever, the breaking of analyticity due to the Aubry transition
E 107} occurs, and then the hull function changes its form from
é* continuous to discrete and shows a complicated structure

10° . . with many gaps. Among the gaps the largest one is located at

0.01 0.1 1 10 100 the half of the period of the hull function. The continuous

) K form means continuous spatial atomic distribution in the un-

derlying potential, and then no gap exists in the phonon ex-
FIG. 3. Maximum static frictional force vK,. () K,=1 and  citation. On the other hand, the discrete one corresponds to a
Ks=1, (b) K;=0.45 andK=1. K is fixed at unity. pinned state, which is accompanied by a finite gap in the
phonon excitation. The spatial atomic distribution is vanish-
ing at the maxima of the potential and the atoms are confined
ghearby the minima of the potential. Then the hull function
shows the largest central gap, which characterizes the break-
ing of the analyticity state for the Aubry transition.
Now we consider the case of the two-chain model. Fig-
ures 41)—4(VIl) show the hull function$, andhy, for sev-
Is?ral values oK, indicated by arrowsl)— (VII) in Fig. 2(a),
here the magnitudes of the parametiis=1 andK ;=1
re the same as those in FigaR The hull funct|onhb in
Fig. 41) [K,=0.1;(l) in Fig. 2a)] shows the largest central
gap atx=c,/2~0.809. This gap structure is essentially the
same with that for the Aubry transition in the FK model and
indicates that the lower chain is in the conventional breaking
of the analyticity state due to the Aubry transition. On the
other handh, shows a discrete feature but does not have a
ﬁentral gap. Such a state in the upper chain where the central
gap of the hull function is absent is not well defined in the
context of the conventional breaking of the analyticity state
) ) due to the Aubry transition of the FK model, but it is obvi-
3. Hull functions and lattice structures ously a sort of breaking of the analyticity states because of
To investigate further the above anomalous pinning bethe presence of gaps of the hull function. These gap struc-
havior observed for the phonon gap and the maximum-statitires ofh, andh,, remain gven forK,=0.702[Fig. 4(11)].
frictional force, we analyze the lattice structures of theThis reflects the COﬂStam|pf observed in the smak,, re-
pinned states by examining hull functions. Although a hullgime (K,<0.81) in Fig. Za). As K, increases furtherK,
function has been employed to analyze the breaking of the-0.81), however, the central gap lof is destroyed and no
analyticity state for the FK modéfl° it has been reported central gap exists both in, andh,. Some other gaps also

same with those in Fig.(8), the maximum-static frictional
force shows multivalley structures. The magnitude of th
maximum-static frictional force is finite in the wholg, re-
gime. We note that the values Kf, at the local minima and
maxima of the maximum-static frictional force do not corre-
spond exactly to those aa‘»ﬁ)f shown in Fig. 2a). This may
be considered to be the effect of the external force, by whic
the pinned lattice structures are distorted and the depinnin
threshold force would be affected slightly. On the other
hand, as seen in Fig.(® for K;,=0.45 andK.=1, the
maximum-static frictional force vanishes completely in the
characteristicK, regime where the completely vanlshmg
phonon gap is observed in Fig(k. In the case thaK,=

and K4,=10, it is confirmed that the maximum-static fric—
tional force as well as the phonon gap in Figc)2does not
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in the left (right) row are the hull functions for the uppéower)
chain. The values df,,, (1) 0.1, (II) 0.702,(lll) 1.3, (IV) 1.83, (V)

2.11, (V1) 4.09, and(VIl) 8.14, correspond to arrows indicated in

Fig. 2(a).
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spond to local minima obﬁ)f and (b) corresponds to a local maxi-
mum ofw[‘;,f indicated by the arrowll) in Fig. 2(a).

valleys of wﬁ]f, both the gap structures &f, and h,, are
almost unchanged. Only wheK, is changed crossing
through the valley ofwﬁ)f, the gap structures are suddenly
changed, i.e., new gaps appear. In the lakye regime
(Kp>2.4), as shown inVl) in Fig. 4, the central gap ap-
pears inh,, but it is absent irh,, and the gaps dfi, as a
whole are highly reduced. This behavior indicates that the
upper chain is in the conventional breaking of the analyticity
state due to the Aubry transition. These gap structurds, of
andhy, retain up to infiniteK, while the amplitude oh, as a
whole shrinks a¥y, is increased(VI) and (VII) in Fig. 4].
The wﬁ)f also does not change in this larjg regime. To see
how the change of gap structures of hull functions takes
place at the valleys af)ﬁ)f, in Figs. 5a) and Jc), we show
hull functions for two nearest-neighbor valley8ocal
minima) of w,pf atKp,=1.18 and 1.58. Note here that tKg

for (IIl) in Fig. 4 is located in thd<,, regime between these
two nearest-neighbor valleys mﬁ,zpf. For the comparison
with these states at valleys, the graph(bf) in Fig. 4 is
plotted again in Fig. ®). In Figs. 5a) and 5c) several gaps

of the hull functions observed in Fig(y are destroyed by
the appearance of certain states in gaps, i.e., the formation of

vanish or shrink, otherwise enlarge, and furthermore newew gap structures at thg,’s. As mentioned above, the gap
gaps appear at several positions. Figlld-4(V) show h,
and hy, at several values oKy, where wﬁ,f shows a local
maximum against the change k&, [see arrowslIl )—(V) in
Fig. 2@]. It should be noted here that the gap structures ofey of w|pf WhenK,, reaches one of the critical value, the

h, and h, shown in(lll)=(V) in Fig. 4 are different from

structures of hull functions for Fig.(B) are stable and almost
unchanged in the regime of 1.4&,<<1.58 where no valley
of w,pf eX|sts Similar behavior is observed around each val-

old gap structure becomes unstable and new states appear in

each other. In &, regime between two nearest-neighbor gaps, which accompany the decrease of the phonon gap and
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(VI), (VII)) in Figs. 6, respectiveﬂywherewﬁ,f is almost con-
stant, both the gap structures lof and h,, are unchanged,
one of which shows the central gap. This indicates that one
of the upper and lower chains is in the conventional breaking
of the analyticity state due to the Aubry transition in the
large and smalK, regime, respectively. In the intermediate
regime[(I11)—(V) in Fig. 6], the gap structures as a whole are
rather sensitive to the changeHr , but also in this case the
gap structures are almost unchanged in a siglregime
between two nearest-neighbor vaIIeysm:f,gf. Thus, the be-
havior ofh, andhy, is similar to that in Fig. 4 in this regime.
However, in theK, regime 0.&<K,<1.4, for K,=0.45,
Wherewﬁ,f is vanishing, both the hull functions show a pe-
culiar feature. In Fig. 7 we show several typitglandh, in
thisK,, regime. It is clearly observed that both hull functions
h, andh, are continuous and show sinusoidal forms, which
are quite similar to that of the hull function for the FK model
in the absence of the breaking of analyticity. These corre-
spond to states in which all atoms of both chains locate near
its regular sites periodically and are weakly affected by the
almost sinusoidal interchain force caused by atoms in the
other chain. Since the continuous hull functions mean that
the atomic distribution is spatially continuous both in the
upper and lower chains, every atom in the upper chain moves
smoothly when the upper chain is driven by the external
force. Therefore, there are no energy costs against the sliding
motion of the upper chain. Hence the maximum static fric-

then the pinning force. WhekK,, crosses the critical value, tional force vanishes as observed in Fi¢)2

new gap structure becomes stable and the phonon gap in- For K;=10 andK,;=1 [(I)-(IV) in Fig. 8], h, does not
creases. Further change 6§ moves the system to the next show any remarkable changes of gap structurggradually
critical value and then the successive phase transition occurshanges its gap structure only in a larfg regime K

In Fig. 6 we show the hull functions, andh,, for several
values ofKy in the case of weak interchain interactiéh

>10), but the effect of the change is almost negligible be-
cause the amplitude of the gapshgfbecomes very small for

=0.45, andKs=1, which are the same values with those insuch largeK,'s. Therefore, all elastic effects come from the

Fig. 2b). In the small and larg&, regimes[(l), (II), and

upper chain. The behavior of the hull functions reflects the
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the upper(lower) one, i.e. K,/K, or Ki/K,>1 (<1), the
atoms in the uppeflower) chain tend to relax into potential
minima created by the atoms in the loweppe) chain, and
then the conventional breaking of the analyticity state ap-
pears in the uppeflower) chain. In the intermediati,, re-
gime, however, quite different states from the conventional
breaking of the analyticity state observed for the FK model
appear. We will again discuss this point later by calculating
the energy quantities of the system.

It should be noted here that all the hull functions shown in
Figs. 4—8 do not contain irregular points that break a rota-
tional symmetry bymr of hull functions. This fact means that
atomic configurations obtained above are not disordered, but
they exactly reflect the discreteness of hull functions in an
incommensurate system. This feature of the pinned atomic
configuration is the same as that for the FK madfel.

It is helpful here to observe the change of the pinned
lattice structures in real space. Figure 9 shows the local lat-
tice structure in the pinned state fidf=1 andK =1, which
are the same values with those in Fig&)23(a) and 4. Here
the atomic displacements from the regular periodic sites in
the two chainsdu; and év; are plotted in Figs. @) and 9b),
respectively, forK,'s indicated by arrowsll)—(VI) in Fig.
2(a). In the smallK,, regime K,<0.8), the lattice structure
is essentially unchangddl) in Figs. 9a) and 9b)]. In the
intermediate regime (0:8K,<2.4), however, bottu; and
dv; are very sensitive to the changeH, . Figures(2) and
(3) in Figs. 9a) and 9b) correspond to atomic displacements
at local maxima of the phonon gapﬁ)f in Fig. 2(a). It is
obvious that the spatial modulation patternséof and dv;
show quasiperiodicity approximately for ea&ly, but the
spatial patterns are different for different values K.
When K,, increases further K,>2.5), the reconstruction
does not occur any more and the lattice structures as ob-
served in(5) in Figs. 9a) and 9b) retain up to infinitekK,,,
but the atomic displacement in the lower chain; as a
whole decreases its magnitude more and more. Similar
changes of local lattice structures are observed also in the
intermediateK, regime forK,;=0.45 andK =1. Note here
that if the behavior of the phonon gap has a self-similar
nature as noticed in Fig.(@, then infinite sorts of local
lattice structures would exist in the intermedi#ig regime.

smooth change in the phonon gap in Figc)1In all regime
of Ky, h, shows the largest central gap, Huyf does not. 4. Analysis of energy and discussion on the pinning mechanism
Thus, in these pinned states the conventional breaking of
analyticity due to the Aubry transition occurs in the upper
chain for the whole range df,. Then the magnitude of the
central gap irh, is quite larger than those of the gapship
and almost unchanged against the changiéjn b
It can be confirmed that the breaking of the analyticity y
states exist in the present two-chain model, but they are
rather complicated and different from the conventional one

We discuss further the anomalous pinning behavior by
examining the energy of the system. Here it is useful to
define the following energy quantities. Elastic energy in the
upper chairg,,, and that in the lower chaiBig,4, are given

N
K a
due to the Aubry transition of the FK model. In the small Ee|aa=7a > (U= ui—c)?, (12
(large Ky, regime, however, the gap structurehgf (h,) is '
the same as the conventional one observed in the breaking of
the analyticity state in the FK model, while thattof (hy) is . Np
different. That is, in the two-chain model, it is considered Ee|ah=? EI (Vi+1—vi—Cp). (13

that whether the conventional breaking of the analyticity
state characterized by the largest central gap exists in the
upper or lower chain depends on the elasticity of the twdElastic energy between the lower chain and the substrate
chains. When the loweupped chain is highly stiffer than Eg,s iS given by
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N
Ks < )
Eens=7 2 (vi=icy)”. (14

Total elastic energ¥gja-torar iS the sum of

Eela-tota™ Eelaat Eelab™ Eelas- (19
Interchain interaction enerdy;,; is expressed as
Na
i

1Na Mo
Em=32 2 [Ui(u—vp)-Uilica—icy)l. (16

action, that is, the lower chain forms a kind of discommen-
surate structure or the soliton lattice. Whi€p is increased,

the deformation of the lower chain arkf},s decrease. On
the other handg .4, increases because its coupling constant,
itself, increases. Whelik;,| becomes comparable to the total
elastic energy, the lattice structures of both chains in the
small K, regime becomes unstable and another structure ap-
pears. The presence of kinks for all energy curves in Fig. 10
indicates that the structural change is a phase transition of
the first order. The difference in the lattice structures be-
tween phases is observable directly in Fige) &nd 9b).

The disappearance of the central gap of the hull fundtign

where the contribution in the case of periodic rigid atomicin Fig. 4 is attributed to the structural phase transition. Both

configurations is subtracted. To evaluate E4®)—(16) we

chains form complicated discommensurate structures where

used the atomic configuration obtained in the calculation oboth chains deform to make the local commensurate struc-
wﬁ)f. Figures 10a)—10d) show these energy quantities plot- ture in order to gain the interchain interaction. The occur-
ted againstk,, for K;=1 andK =1, which are the same rence of the structural phase transition leads to the sudden

values with those in Figs.(d), 3(a), 4, 5, and 9. WheiK,, is

decreasgor vanishing of the phonon gap aK,~0.81 as

very small K,<1), the absolute value of the interchain in- observed in Fig. @). In the intermediatél,, regime (0.81

teraction energyE;,| is much greater thaB,,, but not so

<K,<2.4), many, or an infinite number of lattice structures

much greater thak,,s. The upper chain deforms little, but appear there, each of which corresponds to a different dis-
the lower chain deforms so large to gain the interchain intercommensurate structure. Whéf, is increased small or in-

action. In fact the hull function of the lower chaip shows

finitesimally, lattice structures change to another one by a

the central largest gap, bbt, does not and its magnitude is structural phase transition. Such phase transitions occur suc-
small. These behaviors indicate that the upper chain has aressively in this regime against the changeKig. As the
almost periodic structure, but the lower chain adjusts its localower chain becomes stiffer, the atomic displacement in the
period to that of the upper chain to gain the interchain interlower chain év; is suppressed, and thdfy ., and Eqjas
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hold up to infiniteK, . We note here that these features, such
decrease. Because in thg, regime a slight change iK as the kinks for energy and the vanishing of the phonon gap,
causes a structural phase transition, the phonon gap and thdich mean a first-order phase transition, are never expected
hull functions also change their structures correspondingly. lin the case of the FK model because the Aubry transition
should be noted that the absence of the central gap in botbbserved in the FK model is a higher-order phase transition.
hull functions characterizes the lattice structures in this inter- In Fig. 11 we show the energy quantities for the param-
mediateK, regime, where the successive structural phasetersK,=0.45 andK;=1 employed in Figs. @), 3(b), 6,
transition occurgFigs. 4111)-4(V)]. This indicates compli- and 7. Also, in this case kinks are observed for all energy
cated discommensurate structures of both chains. In the largairves. Within thek,, regime (0.6<K,<1.4) where the pho-
K, regime K> 2.4), the structural phase transition does notnon gap and maximume-static frictional force are vanishing
occur and a quite stable lattice structure appears in eaatompletely, any anomaly such as a kink is not observed. It is
chain, which is characterized by the largest central gap ofonsidered that one particular lattice structure of both chains
h,. These behaviors indicate that the lower chain forms amppears in thi&, regime.
almost periodic structure, but the upper chain forms a dis- The energy quantities obtained fide=10 andK,=1 are
commensurate structure. In this regime the major contribuplotted in Figs. 128)—-12d). In this case, because of the
tion to Egjatota COMeES fromEg,, because the atomic dis- large value ofKg, the lower chain is much stiffer than the
placemen®u; is suppressed angl;’s are fixed into alocally upper chain. Then all energy quantities change smoothly
commensurate configuration. Therefokg,,, and E;,; are  with K,. This means that these pinned states inkgllre-
almost constant. Consequently, almost the same gap strugimes are understood essentially in the context of the con-
tures of the hull functions as those in Fidgl) and the same ventional breaking of the analyticity state due to the Aubry
atomic configurations as those (B) in Figs. 9a) and 9b) transition for the FK model. Namely, the feature of pinned
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=10; (@ Egpna, (0) Egaps (©) Egpas, and(d) Eq;. comparison, the results in Fig(& are also plotted by the dashed
lines with squares.

states forKs=10 andK,;=1 are the same as those in the increasing andb) decreasing value df,. For comparison,
large K, regime shown in Fig. 10, wher&;=1 andK; the results in Fig. @) are also plotted by the dashed lines
=1. with squares. By comparison, between these two results, the
For simplicity, we have changed the elasticity of the hysteretic behavior of the phonon gap is obviously observed
lower chain, while the elasticity of the upper chain is fixedin the intermediateK, regime. Such hysteretic behavior,
(i.e., Kz=1). In general, it is considered that the relevantwhich appears suddenly only in the intermedii{gregime,
parameters to the pinning behavior of the present model aré another evidence of the first-order phase transition.
normalized onesK,/K,, Ks/K,, andK, /K. We have considered only three initial conditions corre-
sponding to a periodic atomic configurati@figs. 2—12 and
two history-dependent configurationgip and downward
sweeps ofKy) (Fig. 13. The pinning behavior for other
We have discussed the structural phase transitions of thgitial conditions has not been investigated exhaustively be-
first order. Then we expect hysteretic behaviors around theause a great variety of configurations may be considered.
critical points. It is to be noted here that in all the resultswe have found here that the hysteresis curves of phonon
shown in Figs. 1-12, the initial configurations of atoms forgaps in Fig. 13 are reproducible well when the starting value
each value ofK, are regular and periodic. In Fig. 13 we of K, for sweeps is set in the small or lardgg, regime.
show phonon gaps for the same parametkis=(Ks=1) as  Furthermore, even when the sweepkaf is started from the
those in Fig. 2a) whenKy, is swept, that is, the initial atomic intermediate regime, we have observed a tendency that
configuration for a certain value df, is the final stable phonon gaps change staying on one of the curves shown in
configuration for its previous value. The solid lines with Fig. 13 corresponding to the increase or decrease in the value
circles indicate the results obtained for the sweep with of K,,.

5. Hysteretic behavior of phonon gap
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- — e increasing and decreasing processes of the driving force
when a periodic atomic configuration is employed as the
initial state of no external force.

0.1 V. SUMMARY

We have investigated frictional phenomena of an incom-
mensurate two-chain model. By controlling the elasticity of
chains, we have found anomalous pinning behavior, which is
accompanied by a successive phase transition. The pinned
states show complicated behavior against the change in elas-
tic parameters and differ apparently from the conventional
breaking of the analyticity state due to the Aubry transition
of the FK model. Under certain conditions on elasticity and
. interchain interaction, we have confirmed that the pinning

0.0001 Lo | - NI force and the maximum-static frictional force are anoma-
0.0001 0001 001 0.1 1 10 lously reduced or vanishing. Such anomalous pinning behav-
Velocity ior is quite sensitive to the elasticity of chains, and it is never

FIG. 14. Kinetic frictional force vs sliding velocity. Triangles expected for the FK model because the anomalous pinning
denote numerical results obtained in the case Khat-», K,=1,  occurs in a characteristic regime where the elasticity of both
andK,=1, i.e., in a case of the FK model. Circles and dotted linechains becomes important.
denote a numerical result and an analytic result calculated with We have also found that the anomalous pinning effect
perturbation theory, respectively, faf,=1, K,=1, Ky=2, and  affects the kinetic frictional force significantly. Also, in such
Ks=1. a pinned state the maximum-static frictional force is given in

the vanishing velocity limit of the kinetic frictional force. In
B. Sliding states the case that the pinning force is weakened anomalously, the

We here investigate the kinetic frictional force of the slid- velocity dependence of the kinetic frictional force shows the

ing state started from the pinned state. Figure 14 shows th¢elocity-strengthening  and  velocity-weakening  features
kinetic frictional force as a function of the sliding velocity, clearly, which are very close to those of the kinetic frictional

where the interchain interaction is choserkas=1. The line  force expected in the absence of the breaking of the analyt-
with circles shows the result in the case that=2 andk, ICity state. In the present paper the overdamped sliding dy-
=1, which correspond to the valley of the maximum static"@mics has been investigated in connection with the kinetic
frictional force in Fig. 3a). For comparison, the result for a fictional force. For underdamped dynamics, however, the
large K,, limit (K,=), where the present model corre- kinetic frictional force may show much more complicated

sponds to the FK model, is plotted in the same figure. The/€locity dependence, compared with the overdamped Case.

. . . ’20
frictional force calculated by the perturbation thebryin It Will be discussed in other reportS: . .
the case thak,=2 andK.=1 is also plotted in this figure. The detailed study of the overall phase diagram in the

It is found that the perturbation theory explains well the nu-Ko~Ki plane will be reported elsewhere. It might be inter-
merical results when the interchain interaction is so weal€Sting to investigate three-dimensional systems with relax-

that the maximum static frictional force is vanishitigeor ~ @tional interfaces. The breaking of analyticity is not re-
K,=2 andK.=1, the velocity-strengthening and velocity- stricted in one-dimensional systems and is also possible in

weakening features of the kinetic frictional force are recov-Nigher d!men;ions, as noticed .in Refs. 6 and 18. In prac_tic_:e,
ered and well explained by the perturbation theory. In thethe re]atlor_lshlp betwgen th? pinning eﬁgct _anq the elgstlc]ty
case of the FK model K, =), however, the velocity- of lattices in higher dimensions are an intriguing subject in

strengthening feature in the low-velocity regime is destroye&ribOIOgy' We may expect more complicated pinning behav-

by the large maximum-static frictional force and the discrep-©" than that for the present one-dimensional mddel.

ancy between the simulation and the perturbation theory is

obvious. Therefore, it is considered that the effect of the ACKNOWLEDGMENTS
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