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Driving-voltage-induced mechanical force oscillations in metal quantum-point contacts
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~Received 15 July 1998!

We predict that the mesoscopic tensile force fluctuations in metal quantum-point contacts~nanowires! arise
as a result of finite electric voltage on the contact. They are due to reconfiguration of the electronic subsystem
and are correlated with the nonlinearities of the current-voltage characteristics of the contact. The observation
of the effect would directly confirm the recently suggested ‘‘free-electron’’ mechanism of mesoscopic force
fluctuations observed in nanowires under deformation. The related magnetic susceptibility fluctuations and role
of topology of the wire cross section are discussed as well.@S0163-1829~98!00147-7#
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The quantization of electrical conductance of thre
dimensional~3D! quantum-point contacts1 ~QPC! has been
observed in a variety of metal mesoscopic contacts.2 The
simplest model of the 3D QPC is a ‘‘nanowire’’ of lengthL
and diameterd;lF , connecting two bulk conducting rese
voirs, wherelF is the Fermi wavelength in the system~see
Fig. 1!, and the underlying atomic structure is the positive
charge ‘‘jellium.’’ It is the quantized character of transver
motion of electrons that is revealed in conductance quant
tion as a function ofd. Since the applied driving voltag
changes the population of occupied subbands, nonlin
current-voltage dependence quantum-point contacts,
predicted.3–6 The theory is in a good agreement with expe
ment on 2D and 3D systems.7 On the other hand, the non
linear conductivity of 3D bismuth QPC~Ref. 8! shows only
qualitative agreement with the theory, while measureme
on 3D gold QPCs~Ref. 9! did not show the predicted type o
nonlinearities altogether.10

The experiments on metal QPCs under deformat
showed that the mechanical stress in the wire fluctuates
function of its elongation, and the fluctuations are correla
with the conductance jumps.11 This seemed to require a mor
complex mechanism, and the often-used explanation of th
phenomena invokes the atomic rearrangement processes
is supported by molecular-dynamics calculations~e.g., Ref.
12!.

Recently, an elegant alternative explanation of the fo
fluctuations was suggested, based on the reaction of the
electrons to the mechanical deformation of the cont
region.13 The role of the atomic structure of the wire wa
again reduced to providing a ‘‘jellium’’ background. In th
‘‘free-electron’’ model, the longitudinal force, being the c
ordinate derivative of the thermodynamic potential, is sen
tive to the positions and occupancy of electronic subband
the wire. The latter depends on the shape of the cross se
and on the elongation of the wire~assumed to take place at
constant volume!. The positions of cusps inF as a function
of the elongation would naturally coincide with those of t
conductance steps.

In this paper we show that the ‘‘free-electron’’ mech
nism of tensile force fluctuations will lead to related effec
mechanical force and magnetic susceptibility fluctuations
a nanowire as a function of applied driving voltage at t
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same values ofeU, as the features of the differential con
ductanceGdiff(eU). Investigation of these effects can b
done using existing experimental techniques and would p
vide an independent test of the mechanism suggested in
13 and confirm the role of an electronic subsystem in de
mining both transport and mechanic properties of me
quantum contacts.

We start from the expression for the grand potential of
electronic subsystem at zero temperature and voltage f
wire of uniform cross section~Blom et al.13!:

V~EF!52
4

3
LA2m*

p2\2(n
@EF2En~L,V!#3/2

3u@EF2En~L,V!#. ~1!

Here m* is the effective mass of an electron,u(x) is the
Heaviside step function, andEn is the energy ofnth elec-
tronic transverse mode in the wire, which depends on
wire lengthL and volumeV. We assume that the length o
the wire is much larger than its diameterd, which allows us
to set the electrical potential to zero in the wire.~Due to

FIG. 1. Schematic view of a metal quantum-point conta
~nanowire! and distribution function of right- and left-moving elec
trons in the wire at finite driving voltage. Solid lines correspond
quantized values of transverse momentum.
15 827 ©1998 The American Physical Society
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screening in metal the effects of finite bias will be felt only
distances'd from the ends; see Ref. 4 and referenc
therein.!

For the sake of simplicity, we will neglect both elastic a
inelastic scattering in the nanowire. Their contributions
of order (L,d)/ l s , wherel s is the corresdponding scatterin
length.14 The condition (L,d)/ l s!1 is satisfied both for the
elastic and electron-phonon scattering. In the latter case
use the estimatel e-ph;\vF /lvD , wherevD is Debye fre-
quency, andl,1 is the electron-phonon coupling consta

The electron-electron scattering length can be estima
as l e-e;\vF /eF(eF /eV)2, the biaseV playing the role of
effective temperature. For the effects of electron-elect
scattering to be small we needd/ l e2e!1 ~because the lon
gitudinal momentum conservation and transverse quan
tion in the electronic subsystem suppress the elect
electron scattering inside the nanowire!. The corresponding
restriction on the applied voltage iseV,eF /AN', where
N';d/lF is the number of transverse channels in the qu
tum contact. This condition is compatible with bias being
the same order as the interlevel spacing in the contact,De
;eF /N' , which is necessary for the observation of nonl
ear effects discussed in this paper.

Under the above assumptions, we can consider rig
moving and left-moving electrons as two independent s
systems, with chemical potentialsmL and mR ,
respectively14,15 ~Fig. 1!:

mL5EF2~12b!eU; mR5EF1beU. ~2!

The grand potential thus becomes

VeU5
1

2
$V~EF1beU!1V@EF2~12b!eU#%. ~3!

Parameterb determines the asymmetry of the voltage dr
on the contact.@Usually symmetric voltage drop is assum
(b51/2), in which case the differential conductance is
ways a multiple of12 GQ .3 Generallyb can deviate from 1/2
~Ref. 7! and be voltage dependent.# It should be in principle
determined self-consistently by solving the electrostat
problem for the wire and its surroundings at giveneU.10 We
consider here two limiting cases:~a! symmetric voltage drop
b51/2, and~b! perfect screening. In the latter caseb(eU) is
determined from the condition of no charge accumulation
the wire,

N~EF1beU!1N@EF2~12b!eU#52N~0!, ~4!

where

N~E!52LA2m*

p2\2(n
u~E2En!AE2En. ~5!

It is easy to see, that the differential conductance of
system is given by
t
s

e

e

.
d

n

a-
n-

-
f

-

t-
-

-

l

n

e

Gdiff~eU!5
dI

dU
5

d

dU

2e

h E
EF2~12b!eU

EF1beU

dE(
n

u~E2En!

5GQ(
n

S bu~EF1beU2En!

1~12b!u@EF2~12b!eU2En#

1U
db

dU
$u~EF1beU2En!

2u@EF2~12b!eU2En#% D , ~6!

whereGQ52e2/h is the unit quantum conductance. Ther
fore Gdiff(eU) shows a structure at the voltages when co
sequent transverse energy levels enter the current-carr
interval @EF2(12b)eU,EF1beU#. In the limit of perfect
screeningb(eU) was found numerically for both models w
considered: the wire of square cross sectiond3d, and the
round wire of diameterd.

The quantized levels in the wire are given by

Emn5H E0~m21n2! ~square!

4E0

p2
gmn

2 ~round!.
~7!

HereE05p2\2/(2m* d2), andgmn denotes thenth positive
zero of the Bessel functionJm(z); m is the magnetic quan
tum number. The mechanical force is given by

F~u!52S ]V

]L D
V

5F0(
mn

$ f @eF1b~u!u;emn#

1 f @eF2„12b~u!…u;emn#%, ~8!

where eF5EF /E0 ; u5eU/E0 ; emn5Emn /E0 ; F0
5p2\2/(2m* d3), and f (x;y)5@(2/3)(x2y)3/22(x
2y)1/2y#u(x2y). The nonlinear dependenceF(eU) and
Gdiff(eU) in both limiting cases is shown in Fig. 2. Th
nonlinear conductance is strongly dependent on the chara
of screening in the wire. On the other hand, the qualitat
character of the force fluctuations is the same, and mech
cal force and differential conductance still show singularit
at the same applied voltages in both limits.16 The absolute
magnitude of force fluctuations ford;1 nm is of order 1
nN, in agreement with earlier results.11,13

Another way of changing positions of quantized leve
and thus the properties of the contact, is by applying lon
tudinal magnetic field. The characteristic field sweep sc
corresponding to interlevel spacing, is though;F0 /d2,
where F05hc/e is the magnetic flux quantum.1,6,17 For a
metal QPC withd;1 nm this yields unrealistic fields o
order 103 T. This means that in metal contacts, apprecia
dependence of the contact’s properties on the magnetic
can take place only when the Fermi level is already v
close to one of the quantized energy levels. This can
achieved, e.g., by mechanical deformation of the contact
by applying finite driving voltage. We will concentrate o
the latter possibility, which is reversible and promises be
opportunities for the necessary fine tuning.
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The magnetic field can be taken into account in the p
turbation theory,18 valid in the limit of the weak field~large
cyclotron radius,r c@d) ~Ref. 19! one finds for the quantized
transverse levels,

Ẽmn
s ~h!5

4E0

p2 S gmn
2 12mh14

m*

m0
ghsD1O~h2!. ~9!

Here h is the magnetic field measured in units ofH0
5(hc/e)/(pd2/4). Sinceh!1, we keep in Eq.~9! only lin-
ear inh terms, including the spin splitting~the last term in
the parentheses!. Heres561 is the projection of spin,g is
the g factor, andm0 is the free electron mass.

The differential conductance and force fluctuations
thus given by

Gdiff~h,u!5
1

2
GQ (

s561
(
n51

`

(
m52`

` S u@eF1bu2 ẽmn
s ~h!#

1u@eF2~12b!u2 ẽmn
s ~h!#

1u
db

du
$u@eF1bu2 ẽmn

s ~h!#

2u@eF2~12b!u2 ẽmn
s ~h!#% D , ~10!

FIG. 2. Differential conductance and force fluctuations vs
plied voltage in a nanowire of square cross sectiond3d @~a! and
~c!# or circular cross section of diameterd @~b! and ~d!#. The force
and bias are measured in units ofF05p2\2/(2m* d3) and E0

5p2\2/(2m* d2), respectively. The Fermi energy isEF511E0 .
Solid line: symmetric voltage drop (b50.5). Dots: perfect screen
ing.
r-

e

F~h,u!5
1

2
F0 (

s561
(
n51

`

(
m52`

`

$ f @eF1bu; ẽmn
s ~h!#

1 f @eF2~12b!u; ẽmn
s ~h!#%, ~11!

whereẽmn[Ẽmn /E0 . The factors of one-half beforeGQ ,F0
reflect the spin splitting in the magnetic field of previous
degenerate energy levels.

The magnetization of the wire is

M~h,u!52
1

VS ]V

]H D
V,T

5
m0

m*
mB (

s,m,n
S 2

]ẽmn
s ~h!

]h
D

3$@eF1u/22 ẽmn
s ~h!#1/2u@eF1u/22 ẽmn

s ~h!#

1@eF2u/22 ẽmn
s ~h!#1/2u@eF2u/22 ẽmn

s ~h!#%,

~12!

wheremB5e\/(2m0c) is the Bohr magneton.
The effects of the applied weak magnetic field are d

scribed by the magnetoconductance coefficients(u)
[(]Gdiff /]H)V,T;H50 , magnetotension coefficientY(u)
[(]F/]H)V,T;H50 , and the magnetic susceptibilityx(u)
5(]M/]H)V,T;H50 .

Keeping only the singular terms, we find the followin
expressions:

s~eU!52
1

2
GQ (

s,n,m
S ]ẽmn

s ~h!

]h
D

h50
S d@eF1bu2 ẽmn

s ~0!#

1d@eF2~12b!u2 ẽmn
s ~0!#1u

db

du
$d@eF1bu

2 ẽmn
s ~0!#2d@eF2~12b!u2 ẽmn

s ~0!#% D , ~13!

Y~eU!'
F0

2H0
(

s,n,m
ẽmn

s ~0!

3S ]ẽmn
s ~h!

]h
D

h50
H u@eF1bu2 ẽmn

s ~0!#

@eF1bu2 ẽmn
s ~0!#1/2

1
u@eF2~12b!u2 ẽmn

s ~0!#

@eF2~12b!u2 ẽmn
s ~0!#1/2J , ~14!

Note that the magnetoconductance and magnetotension
ficients contain the first power of]ẽmn

s (h)/]h. Therefore
they areexactlyzero, due to cancellation of terms with op
positem,s:

s50; Y50. ~15!

This means, that the magnetoconductance and magnet
sion in a metal quantum contact are the effects of sec
order inh!1. They would thus appear as numerically sma
extremely narrow peaks in voltage dependence of the co
sponding functions, and cannot be in a satisfactory way
vestigated in our simple model, neglecting the effects of
nite temperature and scattering.

-
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On the contrary, the magnetic susceptibility contains
second power of]ẽmn

s (h)/]h, and is thus nonzero:

x~eU!'
memB

2m* H0
(

s,m,n
S ]ẽmn

s ~h!

]h
D

h50

2

3H u@eF1bu2 ẽmn
s ~0!#

@eF1bu2 ẽmn
s ~0!#1/2

1
u@eF2~12b!u2 ẽmn

s ~0!#

@eF2~12b!u2 ẽmn
s ~0!#1/2J . ~16!

It demonstrates a series of inverse square-root singularitie
the same values of driving voltage as the features of dif
ential conductance and force fluctuations~see Fig. 3!. The
features ofx(eU) are better pronounced than those of t
former coefficients, which could outweigh the small mag
tude of the effect and make measurements of magnetic
ceptibility of a metal point contact a more sensitive tool f
investigation of electronic density and potential redistrib
tion in metal point contacts.

In conclusion, using a simple model, we showed that
nite driving voltage can lead to mechanical force fluctuatio
and singularities of magnetic susceptibility in metal quant
contacts. The mechanism of these effects is voltage-indu
nonequilibrium redistribution of electrons over quasi-1
subbands in the contact. On the other hand, magnetocon
e
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i-
us-
r
-

-
s

m
ed

uc-

tance and magnetotension coefficients are shown to be
actly zero, and the corresponding effects to be at leas
order (H/H0)2, whereH0'103 T in a nanometer-size con
tact.

Experimental investigation of the predicted effects wo
clarify the role played by electronic subsystem in behavio
metal quantum contacts.

I am grateful to I. Affleck, E. Bogachek, A. Bratkovsk
and S. Rashkeev for helpful discussions.

FIG. 3. Magnetic susceptibility vs applied voltage in a nanow
of round cross section. The unitx05memB /(m* H0), where H0

58\c/(d2e). We choseg52, m* 5me .
a
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