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Quasiparticles in fractional quantum Hall effect edge theories

R. A. J. van Elburg and K. Schoutens
Van der Waals-Zeeman Institute and Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65,

1018 XE Amsterdam, The Netherlands
~Received 30 January 1998!

We propose a quasiparticle formulation of effective edge theories for the fractional quantum Hall effect. For
the edge of a Laughlin state with filling fractionn51/m, our fundamental quasiparticles are edge electrons of
charge2e and edge quasiholes of charge1e/m. These quasiparticles satisfy exclusion statistics in the sense
of Haldane. We exploit algebraic properties of edge electrons to derive a kinetic equation for charge transport
between an51/m fractional quantum Hall edge and a normal metal. We also analyze alternative ‘‘Boltz-
mann’’ equations that are directly based on the exclusion statistics properties of edge quasiparticles. Gener-
alizations to more general filling fractions~Jain series! are briefly discussed.@S0163-1829~98!03544-9#
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I. INTRODUCTION AND SUMMARY

Low-energy excitations over~fractional! quantum Hall ef-
fect ~QHE! ground states are localized near the edge o
sample. Certain aspects of QHE phenomenology can th
fore be captured by aneffective edge theory. The unusual
properties~notably, fractional charge and statistics! of bulk
excitations over a fractional QHE~FQHE! ground state carry
over to analogous properties of the fundamental edge ex
tions.

In the existing~theoretical! literature on QHE edge phe
nomena, the fundamental edge quasiparticles have
played an important role. Most, if not all, results have be
obtained by exploiting bosonization schemes. For the an
sis of edge-to-edge tunneling experiments, a combinatio
bosonization with techniques from integrable field theor
has led to exact results for universal conductance curve1,2

What has been missing until now is a description of edge
edge transport phenomena directly in terms of excitati
that are intrinsic to an edge in isolation. The authors of R
3 have explored such a picture and have derived a numb
strong-coupling selection rules for the scattering of edge
citations.

In this paper we take up the challenge of reformulat
effective QHE edge theories directly in terms of a set
fundamental edge excitations. For the principal Laugh
states at filling fractionn51/m, we select theedge electron
~of charge2e) and theedge quasihole~of charge1e/m) as
the fundamental excitations.~The reason for this asymmetri
choice will become clear.! An important complication is then
that these fundamental quasiparticles arenot fermions but
instead obey fractional statistics~in a sense to be explaine
below!. A large part of this paper will be devoted to workin
out the consequences of these unusual statistics.

Following Wen,4 we shall assume that the edge theory
a n51/m fractional QHE state~Laughlin state! takes the
form of a chiral Luttinger liquid~see Ref. 5 for a further
justification of this description!. The bosonic description o
such a theory is centered around the neutral charge de
operatorsnq51/Am(]w)q , which satisfy aU(1) affine Kac-
Moody algebra
PRB 580163-1829/98/58~23!/15704~13!/$15.00
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@nq ,nq8#5
1

m
qdq1q8 . ~1.1!

The vertex operators

Ce~z!5:exp~2 iAmw!:~z!,

Cqh~z!5:expS i
1

Am
w D :~z! ~1.2!

have charge2e and 1e/m, respectively, and have bee
identified as the edge electron and edge quasihole. They
the direct analogs of the bulk~Laughlin! quasiparticles, an
important distinction being that the edge excitations are g
less and have linear dispersion.

The first indication for the nontrivial statistics of the op
erators~1.2! comes from the operator product expansio
~OPE!

Ce~z!Ce~w!5~z2w!m@C8~w!1¯#,

Cqh~z!Cqh~w!5~z2w!1/m@C9~w!1¯#, ~1.3!

whereC8(w) andC9(w) are operators of charge22e and
12e/m, respectively. Form an odd integer, the right han
side of the first OPE picks up a minus sign under the
changez↔w, in correspondence with the required antisym
metry of the Laughlin wave functions. The second relati
features a fractional power of (z2w), which shows that the
quasihole operator has fractional ‘‘exchange statistics.’’

For n51 the operatorsCe andCqh are fermionic and the
edge theory is simply a theory of free fermions. The e
change statistics ofCe and Cqh at n51/m clearly signal a
deviation from free fermion behavior, but they are hard
helpful for the purpose of setting up a quasiparticle form
ism that mimics the free fermion treatment of then51 edge.
We shall here argue that a much more convenient poin
view is that of the ‘‘exclusion statistics’’ properties ofCe
andCqh.

In a recent paper,6 one of us proposed a method to ass
ciate exclusion statistics to quasiparticles for conformal fi
theory~CFT! spectra. We shall here show that, when appl
to the n51/m edge theory excitations, this method giv
15 704 ©1998 The American Physical Society
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ideal fractional exclusion statistics~in the sense of Haldane7!
with g5m for edge electrons andg51/m for edge quasi-
holes. We also find that the edge electrons and edge qu
holes can be viewed as independent excitations, in the s
that there is no mutual exclusion between the two.

Our program in this paper is then~1! to establish the
exclusion statistics properties ofCe andCqh and~2! to apply
them to both equilibrium and transport properties of the
edges. As for transport, we shall focus on the setup of
experiment by Changet al.,8 where electrons are allowed t
tunnel from a normal metal into the edge of an51/3 FQHE
edge. We shall use algebraic properties ofn51/3 edge elec-
trons to write an exact kinetic equation for the perturbat
I -V characteristics for this system, reproducing the res
obtained by other methods. Interestingly, the relevant a
braic properties derive from the so-calledN52 superconfor-
mal algebra, which has been well-studied in the contex
string theory. We shall also study ‘‘naive’’ Boltzmann equ
tions that are based on the exclusion statistics propertie
the edge quasiparticles. While the latter equations are
exact, we shall argue that they can be used as the sta
point in a systematic approximation to the exact transp
results. These results then are of general importance, as
illustrate the possibilities and limitations of the concept
exclusion statistics in the analysis of nonequilibrium physi

The observations made here are easily generalize
composite edges, related to hierarchical FQHE states, in
ticular those of the Jain series withn5n/(np11). For the
Jain series edge theories, two natural pictures emerge. In
first picture, the edge quasiparticles satisfy Haldane’s ex
sion statistics withG matrix equal toK21, whereK is the
topological order matrix of the bulk FQHE state. In the se
ond picture one decouples one charged mode fromn21 neu-
tral modes. A possible quasiparticle basis then consists
single charged Haldaneg-on and a collection ofn neutral
quasiparticles that are related to parafermions in the sens
Gentile.

This paper is organized in the following way. In Sec.
we discuss exclusion statistics and indicate the applicat
to FQHE states and to CFT spectra. In Sec. III we discus
some detail how a quasiparticle basis forn51/m FQHE edge
states is obtained and how that leads to an assignmen
exclusion statistics parameters. In Sec. IV we explain h
equilibrium properties are obtained in a quasiparticle
proach. In Sec. V we further study the quasiparticle ba
and make the link with Calogero-Sutherland quantum m
chanics and Jack polynomials. In Sec. VI we study cha
transport between a normal metal and an51/m FQHE edge
in terms of kinetic equations that are based on our quasi
ticle formalism. Appendix A describes the extension of o
quasiparticle formalism to filling fractions in the Jain serie
while Appendix B contains explicit results for an importa
quasiparticle form factor.

II. EXCLUSION STATISTICS

In his by now famous 1991 paper,7 Haldane proposed th
notion ‘‘fractional exclusion statistics,’’ as a tool for th
analysis of strongly correlated many-body systems. The c
tral assumption that is made concerns the way a many-b
spectrum is built by filling available one-particle states.
si-
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words, it is assumed that the act of filling a one-particle st
effectively reduces the dimension of the space of remain
one-particle states by an amountg. The choicesg51, g
50 correspond to fermions and bosons, respectively.
thermodynamics for general ‘‘g-ons,’’ and in particular the
appropriate generalization of the Fermi-Dirac distributi
function, have been obtained in Refs. 9–12. The so-ca
Wu equations9

ng~e!5
1

@w~e!1g#
,

with

@w~e!#g@11w~e!#12g5eb~e2m! ~2.1!

provide an implicit expression for the one-particle distrib
tion functionng(e) for g-ons at temperatureT and chemical
potentialm. It has been demonstrated that fractional exc
sion statistics are realized in various models for quant
mechanics with inverse square exchange7,13,14 and in the
anyon model in a strong magnetic field.15,9

A. Exclusion statistics and the fqHe

A natural application of the idea of exclusion statistics
offered by the various fractional quantum Hall effects. O
may take the somewhat naive but certainly justifiable po
of view that the essence of then51/m FQHE is that under
the appropriate conditions interacting electrons give rise
free quasiparticles with effective statistics parameterg5m.
A familiar interpretation of these quasiparticles is that th
can be viewed as composites of electrons plus an even n
ber of flux quanta.~The familiar terminology‘‘composite fer-
mions’’ is somewhat unfortunate in this context, as we arg
that the exclusionstatistics properties of these compos
quasiparticles arenot fermionic. Clearly, theirexchangesta-
tistics, which are determined ‘‘modulo 2p,’’ are fermionic.!
The familiar Laughlin wave functions describe the grou
state configuration for these quasiparticles. The fundame
excitations ~the Laughlin quasiparticles! are expected to
carry the ‘‘dual’’ ~see Sec. III C! statisticsg51/m.

The above scenario, which was suggested in Haldan
original paper, has been critically analyzed in the literatu
where it has been confirmed in the appropriate lo
temperature regime~see, for example, Ref. 16!. Our purpose
in this paper is to setup and analyze a similar picture foredge
excitationsin the FQHE. Since such excitations can be d
scribed using the language of CFT, we first turn to a disc
sion of exclusion statistics in CFT spectra.

B. Exclusion statistics in CFT

Conformal field theories in two dimensions come wi
two commuting Virasoro algebras, and these infinite dim
sional algebras can be used to organize the finite-size sp
of these theories. In such an approach, a CFT partition fu
tion is obtained by combining a number of characters of b
Virasoro algebras~or extensions thereof!. In applications
such as string theory, where the conformal symmetry ha
geometric origin and the fundamental fields are bosonic
ordinate fields, this ‘‘Virasoro approach’’ to CFT is entire
natural. In contrast, the prototypical CFT in the condens
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matter arena is a theory of free fermions, with a finite s
spectrum that is simply a collection of many-fermion sta
constructed according to the rules set by the Pauli princi
When facing other CFT’s that are relevant for conden
matter systems one may try to follow a similar road, which
to select a number of fundamental quasiparticle opera
and to construct the full~chiral! spectrum as a collection o
many-~quasi!-particle states. Explicit examples of this are t
so-called spinon bases forsu(n)̂k Wess-Zumino-Witten
~WZW! models.18,20–22

Let us now imagine that we have a concrete CFT, w
explicit rules for the construction of a many-~quasi!-particle
basis of the finite size spectrum. It is then natural to try
interpret that result in terms of ‘‘exclusion statistics’’ pro
erties of the fundamental quasiparticles. In a recent pap6

one of us has proposed a systematic procedure~based on
recursion relations for truncated chiral spectra!, which leads
to one-particle distribution functions for CFT quasiparticle
In many cases, it was established that the CFT thermo
namics are those of a free gas of quasiparticles governe
new, generalized distribution functions. The examples d
cussed in Ref. 6 include spinons in thesu(n)̂1 WZW mod-
els, CFT parafermions, and edge quasiparticles for the f
tional QHE.

The example of the CFT for FQHE edge excitations
particularly interesting, since in those cases the general
distributions derived from the CFT spectra are identical
those obtained from Haldane statistics~with specific values
for g). In Sec. III below we show in some detail how the
results are established.

Clearly, the identification of Haldane statistics in FQH
edge theories is most useful since it provides a concrete
between rather abstract considerations on the systemati
quasiparticle bases on the one hand and concrete labor
physics on the other. In particular, it opens up the possib
of analyzing transport phenomena such as edge-to-edge
neling in the QHE~which has been well studied both the
retically and experimentally! directly in terms of quasiparti-
cles satisfying fractional exclusion statistics. We shall rep
the results of such an analysis in Sec. VI below.

III. QUASIPARTICLES FOR THE n51/m FQHE EDGE

We consider the finite size spectrum for the CFT desc
ing a singlen51/m FQHE edge. In CFT jargon, this theor
is characterized as ac51 chiral free boson theory at radiu
R25m. We shall consider the chiral Hilbert space corr
sponding to the following partition function

Z1/m~q!5 (
Q52`

`
qQ2/2m

~q!`
, ~3.1!

with (q)`5P l 51
` (12ql) and q5e2b(2p/L)(1/r0). @The one-

particle energies are of the forme l5 l (2p/L)(1/r0) with l
an integer andr0 the density of states per unit length,r0
5(\vF)21.# In this formula, theU(1) affine Kac-Moody
symmetry is clearly visible as all states at fixedU(1) charge
Q form an irreducible representation of this symmetry.

We should stress that the Hilbert space correspondin
Eq. ~3.1! is not the physical Hilbert space for the edge theo
of a quantum Hall sample with the topology of a disc. In t
e
s
e.
d
s
rs

h

o

r,

.
y-
by
-

c-

ed
o

k
of

ory
y
un-

rt

-

-

to
y

latter Hilbert space physical charge is quantized in units oe
and, correspondingly, theU(1) chargeQ in Eq. ~3.1! is re-
stricted to multiples ofm.4 In the geometry of a Corbino
disc, i.e., a cylinder, the operator that transfers chargee/m
from one edge to the other is physical. Accordingly, t
physical Hilbert space is obtained by taking a tensor prod
of left and right copies of the Hilbert space~3.1! and restrict-
ing the totalU(1) chargeQL1QR to multiples ofm.4 In the
quasiparticle formalism that we present below the vario
restrictions onQL , QR are easily implemented.

Our goal here is to understand the collection of states
Eq. ~3.1! in a different manner, and to view them as mul
particle states built from the creation operators for edge q
siparticlesCe andCqh. To simplify our notations, we shal
write G[Ce, f[Cqh. ~The notationG is inspired by the
fact that the fundamental anticommutation relations for
modesG2t at n51/3 are those of the so-calledN52 super-
conformal algebra. See Sec. VI for more on this.! Due to the
above-mentioned restrictions on theU(1) chargesQ and
QL1QR , the chiral quasihole operatorf(z) by itself is not a
physical operator in the edge theories for the disc or cylin
@in the proper mathematical terminology we callf(z) a chi-
ral vertex operator~CVO!# physical states are obtained b
restricting the number off quanta in the appropriate manne

A. Quasihole states

We start by considering quasihole states that are b
by applying only the modesf2s defined via f(z)
5(sf2sz

s21/2m. Clearly, the indexs gives the dimension-
less energy of the modef2s . When acting on the charge-
vacuumu0&, we find the following multi-f states~compare
with Ref. 18 for the casem52, see also Ref. 23!

f2~2N21!/2m2nN
¯f23/2m2n2

f21/2m2n1
u0&

with nN>nN21>¯>n1>0. ~3.2!

The choice of minimal modes is such that the lowest state
chargeQ(e/m) is at energy (Q2/2m), in agreement with the
scaling dimension of the corresponding CFT primary fie
Using so-called generalized commutation relations satis
by the modesf2s one may show18 that all multi-f states
different from Eq.~3.2! are either zero or linearly depende
on Eq.~3.2!.

Before writing more general states we shall first focus
the exclusion statistics properties of the quantaf2s . We
follow the procedure of Ref. 6 and start by introducing tru
cated partition sums for quasihole states~3.2!. For s
51/2m, 3/2m, etc, we define polynomialsPs(x,q) to keep
track of the number of many-body states that can be m
using only the modesf2k with k<s, and that have a highes
occupied mode with energys8 such thats2s8 is an integer.
Ps(x,q) is defined as the trace of the quantityxNqE over all
these states, whereN is the number of quasiholes,E is the
dimensionless total energy, andx5ebmqh. For m53 this
gives

P1/65xq1/6, P1/25x2q4/6, P5/6511x3q9/6, etc.
~3.3!

In general, an occupied quasi-hole state of energys corre-
sponds to a factorxqs in these generating polynomials.
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The systematics of the edge quasihole states~3.2! directly
lead to the following recursion relations between the poly
mials Ps(x,q):

Ps~x,q!5Ps21~x,q!1xqsPs21/m~x,q!. ~3.4!

For m51, which is the case corresponding to an51 integer
GHE edge, this relation directly impliesPl 21/2(x,q)
5P j 51

l (11xqj 21/2). In that case the partition sum is simp
a product and we recognize free fermions. For generam
c

re

t

riv
ns

n

-
things are not that simple, but we can rewrite the recurs
relation in matrix form

S Pl 2~2m21!/2m

]

Pl 21/2m

D 5Ml
qh~x,q!S Pl 212~2m21!/2m

]

Pl 2121/2m

D ,

~3.5!

with l 51,2,..., andMl
qh(x,q) the following m3m matrix:
Ml
qh~x,q!5S 1 0 ¯ 0 xql 2~2m21!/2m

xql 2~2m23!/2m 1 ¯ 0 x2q2l 2~4m24!/2m

] � ]

xm21q~m21!l 2m/21~2m21!/2m xm22q~m22!l 2m/21~4m24!/2m
¯ xql 21/2m 11xmqml2m/2

D . ~3.6!
f
-

o
1

ons,

s

The grand partition function for the quasihole states~3.2! is
then given by

Zqh~x,q!5~1 1 ¯ 1!S )
l 51

`

Ml
qh~x,q!D S 0

]

0
1
D .

~3.7!

We propose that the quasihole modesf2s with s5 l 2(2m
21)/2m ,...,l 21/2m be viewed as a single (m-fold degen-
erate! level in the one-particle spectrum.@This convention is
natural since a single quasiparticle over the ground state
only occupy one of thesem levels.# Them3m matrix Ml

qh is
then a level-to-level transfer matrix and replaces the f
fermion (m51) factor (11xql 21/2). Clearly, the thermody-
namics of the states~3.2! will be dominated by the larges
eigenvaluesl l

1(x,q) of the matricesMl
qh(x,q). These sat-

isfy the characteristic equations

~l l
121!m2xmqml2m/2~l l

1!m2150. ~3.8!

Instead of trying to solve these equations, we can de
from them a result for the one-particle distribution functio

nqh~ l ![x]x ln~l l
1!5x

]xl l
1

l l
1 . ~3.9!

We find

nqh~ l !5
l l

121

11~1/m!~l l
121!

,

~xql !215~l l
121!21~l l

1!121/m. ~3.10!

Comparing with Eq. ~2.1! and identifying g51/m and
w(e)5(l l

121)21, we see that the distribution functio
nqh( l ) becomes identical tong51/m(e5 l ). In other words,
the exclusion statistics properties of then51/m quasiholes
are those of ‘‘idealg-ons’’ in the sense of Haldane, withg
an

e

e

51/m! This identification is consistent with the result o
bosonization applied tog-ons,24 and with the character com
putations of Ref. 25.

For the casem52, which is not in the category of FQHE
edges, the equilibrium distribution is given by

n1/2~e!5
2

A114e22b~m2e!
. ~3.11!

For m53 the explicit formulas~obtained using the Cardan
formula for cubic equations! are quite unpleasant; Fig.
shows the distributionn1/3(e).

B. Edge electron states

The same procedure can be applied to the edge electr
which are created by modesG2t with G(z)5( tG2tz

t2m/2.
Multielectron states take the form

G2~2M21!~m/2!2mM
...G23~m/2!2m2

G2m/22m1
u0&

with

FIG. 1. Distribution functions for fractional exclusion statistic
with g53 ~dashed line!, g51 ~dotted line!, andg5

1
3 ~solid line!,

all at the same temperature and at zero chemical potential.
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mM>mM21>¯>m1>0 ~3.12!

and we have truncated partition sumsQt(y,q) with t a half-
odd integer andy5ebme. They satisfy the recursion relation

Qt~y,q!5Qt21~y,q!1yqtQt2m~y,q!, ~3.13!

with the following initial values:

Q2m/25¯5Qm/22151. ~3.14!

The ‘‘transfer matrix’’ for the edge electronsMk
e(y,q) is

defined by

S QK

]

QK1m21

D 5Mk
e~y,q!S QK2m

]

QK21

D ~3.15!

with K5km2m/2, k51,2,..., and wehave

Ze~y,q!5~1 0 ¯ 0 0!S )
k51

`

Mk
e~y,q!D S 1

]

1
1
D .

~3.16!

In this case, a single action of the transfer matrix compri
a jump ofm one-particle levels, and the relevant distributi
function will be

ne~k![y]y ln@~mk
1!1/m#5

y

m

]ymk
1

mk
1 . ~3.17!

The characteristic equation for the eigenvaluemk
1

)
i 50

m21

~mk
12yqmk2 i !2~mk

1!m2150 ~3.18!

leads to

ne~k!5
1

m1~hk21!
, ~yqmk!215~hk21!mhk

12m .

~3.19!

with hk5mk
1/(yqmk). Identifying w(e)5hk21, we again

recognize the Wu equations~2.1! for Haldane exclusion sta
tistics, this time withg5m, and we may identifyne(k) with
ng5m(e5mk).

For m52 this gives

n2~e!5
1

2 S 12
1

A114e2b~e2m!D . ~3.20!

See Fig. 1 for the distribution functionn3(e) at me50.

C. Duality

Having recognized distribution functions for fraction
exclusion statistics withg51/m andg5m, respectively, we
expect a particle-hole duality between the two cases~com-
pare with Refs. 10, 12!.

Before we come to that, we generalize the results of S
III A and III B by considering a chiralcCFT51 CFT of com-
pactification radiusR25r /s, with r .s and r ,s coprime.
Choosingf quanta of charge1(s/r )e and G quanta of
s

s.

charge2e as our fundamental excitations, we easily rep
the previous analysis and derive the following recursion
lations:

Xl~x!5Xl 2r~x!1xXl 2s~x!,

Yl~y!5Yl 2s~y!1yYl 2r~y!, ~3.21!

where we putq51 for convenience.~The connection with
the quantities Pl and Ql defined for r /s5m is
Xl↔P(2l 21)/2m , Yl↔Qm/21( l 21) .) Proceeding as before w
obtain the distribution functions for Haldane statistics w
g5s/r ~for the f quanta! and g̃5r /s ~for the G quanta!.

In Refs. 10, 12 it was recognized that the cases withg and
g̃51/g are dual in the sense that particles are dual to ho
To recover this duality in our present approach, we note t
if Yl(y) is a solution of the second relation in Eq.~3.21!, the
expression

Xl~x!5Yl~y5x2g̃!xl /s ~3.22!

solves the first recursion relation. Assumingr .s, we can
rewrite both recursion relations in a form involving ar 3r
recursion matrix. The largest eigenvaluesl1(x) andm1(y)
are then related via

l1~x!5m1~x2g̃!xg̃ ~3.23!

and the distribution functions

ng~x![x]x ln l1~x!, ng̃~y![gy]y ln m1~y!,
~3.24!

satisfy

gng~x!512g̃ng̃~y5x2g̃!, ~3.25!

or, puttingm g̃52g̃mg and restoringqÞ1

gng~e!512g̃ng̃~2g̃e!, ~3.26!

in agreement with the results of Ref. 10. The interpretat
of this result is that theg̃ quanta with positive energy act a
holes in the ground state distribution of negative energyg
quanta. The relative factor (2g̃) between the energy argu
ments in Eq.~3.26! indicates that the act of taking outr g
quanta corresponds to addings g̃ quanta. This duality further
implies that, when setting up a quasiparticle description
fractional QHE edges, we can opt for~i! either quasiholes o`r
edge electrons, with energies over the full range2`,e
,` or ~ii ! a combination of both types of quasiparticle
each having positive energies only. The CFT finite size sp
trum naturally leads to~ii ! ~see Sec. III D below!, while the
analogy with Calogero-Sutherland quantum mechanics n
rally leads to option~i! ~see Sec. V!. When considering trans
port equations in Sec. VI, we shall be considering both al
natives.

D. The full spectrum

To complete our quasiparticle description for then
51/m edge, we need to specify how quasihole and elect
operators can be combined to produce a complete basis
the chiral Hilbert space~3.1!. We consider the following se
of states:
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G2~2M21!m/21Q2mM
¯G2m/21Q2m1

3f2~2N21!1/2m2Q/m2nN
¯f21/2m2Q/m2n1

uQ&

with

mM>mM21>¯>m1>0,

nN>nN21>¯>n1>0, n1.0 if Q,0, ~3.27!

whereuQ& denotes the lowest energy state of chargeQ(e/m)
with Q taking the values2(m21),2(m22),...,21,0. Our
claim is now that the collection~3.27! forms a basis of the
chiral Hilbert space, so that

Z1/m~q!5 (
Q52~m21!

0

qQ2/2mZQ
qh~x51,q!ZQ

e ~y51,q!,

~3.28!

where we added a factorqQ2/2m to take into account the
energy of the initial states and we denoted byZQ

qh andZQ
e the

generalizations of the partition functions~3.7! and ~3.16! to
the sector with vacuum chargeQ. They are naturally written
as

ZQ
qh5 (

N50

`
q~1/2m!~N212QN!1~12dQ,0!N

~q!N
,

ZQ
e 5 (

M50

`
q~m/2!M22QM

~q!M
, ~3.29!

with (q)L5P l 51
L (12ql).

While the collection of states~3.27! looks rather compli-
cated, it may be understood by considering the special c
m51, which is a theory of two real free fermions of char
61. In this case there is only theQ50 vacuum and the
allowedf andG modes reduce to the familiar free fermio
modesc21/22nj

6 .

The right hand side of Eq.~3.28! has the form of a so-
called ‘‘fermionic sum formula’’17 and the equality of Eqs
~3.1! and ~3.28! is a Rogers-Ramanujan identity. Simila
identities relating ‘‘fermionic sums’’ to characters in confo
mal field theories have been studied in the literature, see
example, Refs. 17–19. We would like to stress that the r
soning leading to these identities is very different betwe
our approach and the work of Ref. 17: in our approach
identities express exclusion statistics properties of C
fields, while in the work of Kedemet al. the identities are
based on Bethe ansatz solutions of specific integrable la
models. The first example where these two approaches
been explicitly connected is that of spinons inSU(2)1 CFT
and in the associated Haldane-Shastry spin chains.20,21,18

The important conclusion from the above is that, up to
finite sum over vacuum charges, the chiral partition sum f
torizes as a product of a quasihole piece and an edge ele
piece. This means that the two types of quasiparticles
independent or, in other words, that they do not have
mutual exclusion statistics. This then explains our asymm
ric choice of quasiparticles. Had we chosen to work w
fundamental quasiparticles of charges6e/m, we would
have come across nontrivial mutual statistics. All of this
se
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nicely illustrated with the casem52 where we can opt for
the ‘‘QHE basis’’ with independent quasiholes and ed
electrons, or for a ‘‘spinon basis’’ built from charge6e/2
quanta, which are identical to the spinons of Refs. 20, 21
and which have a nontrivial 232 statistics matrix. The two
choices have the quasihole states~3.2! ~called ‘‘fully polar-
ized spinon states’’ in Ref. 18! in common, but differ in the
way negative charges are brought in.

The observations made in this section may be general
to composite edges such as those of the so-called Jain s
with filling fraction n5n/(np11). We refer to Appendix A
for a brief discussion.

IV. EQUILIBRIUM QUANTITIES

A. Specific heat

The specific heat of a conformal field theory is we
known to be proportional to the central chargecCFT

C~T!

L
5gr0kB

2T, g5
p

6
cCFT, ~4.1!

wherer05(\vF)21 is the density of states per unit lengt
In Ref. 26 it was shown that the specific heat forg-on exci-
tations, with energies in the full range2`,e,`, is in
agreement with the central chargecCFT51 of the corre-
sponding CFT. The same result should of course come ou
a picture where we select positive energy electrons and p
tive energy quasi-holes as our fundamental excitations
this picture the total energy carried by the edge qua
particles takes the form

E5r0E
0

`

deeng~e!1r0E
0

`

deeng̃~e! ~4.2!

and the corresponding result for the specific heat is

C~T!

L
5~gg,11g g̃,1!r0kB

2T, ~4.3!

where

gg,15]bE
0

`

deeng~e!,

g g̃,15]bE
0

`

deeng̃~e!. ~4.4!

It takes an elementary application of the duality relati
~3.26! to show thatg g̃,15gg,2 and hence

~gg,11g g̃,1!5gg5
p

6
, ~4.5!

confirming once again the valuecCFT51.
We would like to stress that the individual contribution

gg,1 do depend ong and that only forg51 ~Majorana fer-
mions! gg,1 andgg,2 are equal. An exact result is27

gg,15
p

6

L~jg!

L~1!
, ~4.6!

with j a solution of the algebraic equation
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jg512j ~4.7!

andL(z) the Rogers dilogarithm. This gives

g1/2,15
p

6

3

5
, g2,15

p

6

2

5
,

g1/3,15
p

6
0.655,..., g3,15

p

6
0.344,..., etc. ~4.8!

B. Hall conductance

While the specific heat coefficientg is not sensitive tog,
the edge capacitance or, equivalently, the Hall conducta
obviously does depend on the filling fractionn and thereby
on g. In the quasiparticle formulation, this result comes o
in a particularly elegant and simple manner.

Let us focus on an51/m edge and take as our fundame
tal quasiparticles the edge electron of chargeq52e and
statisticsg5m and the edge quasihole of chargeq5e/m and
statisticsg̃51/m, all quasiparticles having positive energi
only.

Let us first consider zero temperature, where the Hald
distribution functions are step functions with maximal val
ng51/g. If we now put a voltageV.0 theq,0 quasipar-
ticles will see their Fermi energy shift by the amountqV and
all available states at energy up to2qV will be filled. The
total chargeDQ(V,T50) that is carried by these excitation
equals@we use the symbolDQ for the total charge, while we
keepQ for the reduced charge~in units of e/m)]

DQ~V,T50!5
1

g
qr0~2qV!, ~4.9!

where the factor 1/g originates from the maximum of th
distribution function and thus represents the statistics pr
erties of the quasi-particles. Clearly, positive-q quasiparticles
do not contribute to the response atT50, V.0.

For then51/m FQHE edges, the result forV.0 is

DQ~V.0,T50!5
1

m
~2e!r0~eV!52

e2

m
r0V

~4.10!

while for V,0

DQ~V,0,T50!5m
e

m
r0S 2

e

m
VD52

e2

m
r0V.

~4.11!

Clearly, the edge capacitance

DQ~V,T50!

V
52r0

e2

m
~4.12!

is independent of the sign ofV and we establish the correc
value of the Hall conductance

G5
1

r0h

uDQu
V

5
1

m

e2

h
. ~4.13!
e,

t

e

p-

To show that the results~4.12!, ~4.13! hold for finite tem-
peratures as well we write the general expression

DQ~V,T!52er0E
0

`

denm~e1eV!

1
e

m
r0E

0

`

den1/mS e2
e

m
VD ~4.14!

and evaluate]bDQ(V,T). Using once again the duality re
lations ~3.26!, we derive

]bDQ5
e

m
r0]bE

2`

`

den1/m~e!}E
0

`

dx ln~x!]xn1/m~x!

~4.15!

with x5e2be. Using Eq.~3.9! the last line turns into

} lim
x0→`

@ ln l1~x!2n1/m~x!ln~x!#0
x0 ~4.16!

and by using the asymptotic behavior forx→`

l1~x!'xm, n1/m'm ~4.17!

we conclude that]bDQ is indeed zero.

V. JACK POLYNOMIALS AND BEYOND

The quasiparticle basis that we specified in Eq.~3.27! has
some arbitrariness to it. For example, we could have cho
to act first with theG2t and then withf2s , which would
have lead to a different set of states. Also, one quickly fin
that the states~3.27! as they stand are not mutually orthog
nal. For the purpose of establishing the thermodynamics
the FQHE edge theory, what matters is the counting of
number of states with given charge and energy, and this
formation can be extracted from Eq.~3.27!. However, for the
analysis of more detailed questions, in particular those c
cerning transport, the precise form of the multi-quasi-parti
states is of crucial importance.

In this section, we shall present an ‘‘improved’’ set
multiparticle states, which are mutually orthogonal a
which are faithful to the statistics properties of the quasip
ticles f2s andG2t . The idea will be to specify an operato
HCS that acts on the CFT spectrum, and to modify the m
tiparticle states in such a way that they become eigenstate
HCS. The operatorHCS, which was first given by Iso in Ref
23, will be nothing else than a CFT version of the Ham
tonian of so-called Calogero-Sutherland~CS! quantum me-
chanics with inverse square exchange. The analogy with
quantum mechanics confirms the assignment ofg51/m (g
5m) exclusion statistics tof2s and G2t , which are the
CFT analogs of the particles and holes of the CS system
also links the Jack polynomial eigenstates of the CS sys
to the quasiparticle basis of the FQHE edge theory.

We would like to stress that, in the context of then
51/m QHE edge, we do not assign physical significance
the operatorHCS. We merely use this operator as a device
select an optimal set of multiparticle states, where ‘‘op
mal’’ is meant in the sense of mutual orthogonality and o
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relatively simple form of matrix elements of physical oper
tors between the states.

The need for improving the form of the multipartic
states~3.27! can be phrased in yet another way. Let us, as
example, consider a multiparticle state containing twof
quanta. If we were to work in position space, putting the t
f fields at positionsz2 andz1 , theexchange statisticsprop-
erties of the fieldf(z) would result in simple phase factor
associated to the interchangez2↔z1 in a correlator. Working
instead in energy space, withf quantaf2s2

andf2s1
, we

expect that theexclusion statisticsproperties off will imply
simple behavior under the interchanges2↔s1 in a correlator
or form factor. In particular, one expects that interchang
s2↔s1 in a form factor involving a stateu...,s2 ,s1 ,...& will
result in a phase factorei (p/m). We shall show below@see,
e.g., Eq.~5.10!#, that the form factors of the true ‘‘Jack poly
nomial’’ multiparticle statesu...,s2 ,s1 ,...& indeed satisfy
this simple property, which is not valid for the naive mul
particle state(...f2s2

f2s1
...)u0&. In mathematical terms

the issue is to define the correct coproduct in a situa
where, due to fractional statistics, the relevant symmetr
not a Lie algebra but rather a quantum group. In the con
of the spinon basis for them52 theory, this quantum group
is a so-called yangian, and it has been established tha
‘‘Jack-polynomial’’ coproduct agrees with the coproduct th
is dictated by the quantum group symmetry.21,18

A. The operator H CS

To specify the operatorHCS, we employ the free boson
w(z), which already featured in our formula~1.2!. Following
Ref. 23, we define

HCS5
m21

m (
l 50

`

~ l 11!~ iAm]w!2 l 21~ iAm]w! l 11

1
1

3m
@~ iAm]w!3#0 , ~5.1!

where]w(z)5( l(]w) lz
2 l 21 and where the second term o

the right-hand side denotes the zero mode of the norma
dered product of three factors (iAm]w)(z). As a first result,
one finds the following action ofHCS on states containing a
single quasiparticle of chargee/m or 2e:

HCSf21/2m2nu0&5hf~n!f21/2m2nu0&,

with

hf~n!5F 1

3m
1mnS n1

1

mD G
and

HCSG2m/22nu0&5hG~n!G2m/22nu0&,

with

hG~n!5F2
m2

3
2n~n1m!G . ~5.2!
-

n

g

n
is
xt

he
t

r-

We would like to stress that the fact that bothfs and Gt
diagonalizeHCS is quite nontrivial. If one evaluatesHCS on
any vertex operatorf (Q) @of chargeQ(e/m)#, one typically
runs into the field product (Tf (Q))(z), where T(z)
52 1

2 (]w)2(z) is the stress energy of the scalar fieldw. Only
for Q51 andQ52m do such terms cancel and do we fin
that the quasiparticle states are eigenstates ofHCS.

We can now continue and construct eigenstates ofHCS
which contain severalf or G quanta. What one then finds i
that the simple product states such as Eq.~3.2! are notHCS
eigenstates, but that they rather act as head states that ne
be supplemented by a tail of subleading terms. As an
ample, one finds two-f eigenstates to be of the form18

un2 ,n1&5f23/2m2n2
f21/2m2n1

u0&

1(
l 51

`

al@f23/2m2n22 lf21/2m2n11 l u0&] ~5.3!

with coefficientsal that can be computed. The connection
the coefficientsal with the Jack polynomials that feature i
the eigenfunctions in CS quantum mechanics has been m
explicit in Ref. 18. For theHCS eigenstate headed by th
multiparticle state~3.27! ~with unit coefficient!, we shall use
the notation

u$mj%,$ni%& ~5.4!

so that

HCSu$mj%,$ni%&5F (
j 51

M

hG@~ j 21!m1mj #

1(
i 51

N

hfS 1

m
~ i 21!1ni D G u$mj%,$ni%&.

~5.5!

Clearly, the states~5.4!, with the mj and ni as specified in
Eq. ~3.27!, form a complete and orthogonal basis for t
chiral Hilbert space.

B. Norms and form factors

Of importance for later calculations are the norms of t
states~5.4! and the matrix elements of physical operato
between these states. For the explicit evaluation of s
quantities we used the connection with Jack polynomia
relying on results that are available in the mathemati
literature28 ~see also Ref. 29!.

As an example, we focus on multi-quasi-hole sta
u$ni%&. To make contact with the Jack’s, we view the order
set$ni% as a Young tableaul. The norm squared of the stat
u$ni%& then becomes

^$ni%u$ni%&5 j l8 , ~5.6!

wherel8 is the Young tableau dual tol and thej l are taken
from Ref. 28. Explicit examples are
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^n1un1&5 j ~1n1!5
~n111/m21!~n111/m22!¯1/m

n1~n121!¯1
,

^n2 ,n1un2 ,n1&5 j ~2n1,1n22n1!

5
~n212/m21!~n212/m22!¯~n212/m2n1!

~n211/m!~n211/m21!¯~n211/m2n111!

~n22n111/m21!¯1/m

~n22n1!¯1

~n111/m21!¯1/m

n1¯1
, ~5.7!
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etc. In the limit where allni@1, one finds

^$ni%u$ni%&')
i 51

N
ni

1/m21

G~1/m!
. ~5.8!

Of interest for the analysis of processes where electr
or holes tunnel into a FQHE edge is the form factor

N^$nm ,...,n2 ,n1%uG2m/22n
† u0&5 f ~nm ,...,n1!dn,nm1¯1n1

.

~5.9!

where the subscriptN indicates that the state has been pro
erly normalized. This form factor describes the amplitude
which an incoming hole~described by the operatorG† and of
charge1e) creates a state that hasm quasiholes excited ove
the ground state. Explicit computation in the limit where
ni@1 yields~for simplicity we give the result form53, see
Appendix B for the general case!

f ~n3 ,n2 ,n1!'
G~1/3!1/2

G~2/3! S ~n32n2!~n32n1!~n22n1!

n3n2n1
D 1/3

.

~5.10!

Remarkably, this result takes the form of a ‘‘Jastrow facto

in the energy variablesni . The order-(13 ) zeros when twoni

come near reflect theg5 1
3 exclusion statistics properties o

the fundamental quasiholes. Note that the expression~5.10!
is invariant under global scalings of all energiesni . The
form ~5.10! of the form factor can be viewed as a limit i
~chiral! CFT of a result on correlation functions for th
‘‘classical’’ model of quantum mechanics with invers
square exchange. This result was conjectured by Halda30

and later proven in Refs. 13, 29.

VI. TRANSPORT PROPERTIES

Having checked that the thermodynamics of FQHE ed
is correctly reproduced in the quasiparticle language we
now ready to move on and consider transport properties.
lowing the setup of a number of recent experiments, we s
consider a situation where electrons~or holes! from a Fermi-
liquid reservoir are allowed to tunnel into an51/m FQHE
edge. The dcI -V characteristic for this setup, which wer
first computed by Kane and Fisher31 ~see also Ref. 32!, show
a crossover from a linear~thermal! regime into a power-law
behavior at high voltages and thus presents a clear finger
of the Luttinger-liquid features of the FQHE edge. The e
perimental results from Ref. 8 are in agreement with th
predictions.~See Ref. 2 for a further theoretical analysis
these data.!

The calculations by Kane and Fisher were based
s
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-
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bosonization and on the Keldysh formalism for nonequil
rium transport. Our goal here is to see if we can reprod
their results in an approach directly based on the edge q
siparticle formalism. Before going into this, we would like
stress that the ‘‘thermodynamic Bethe ansatz~TBA! quasi-
particles’’ behind the approach of Ref. 2 are quite differe
from what we have here, the most important distinction b
ing that the TBA quasiparticles are a combination of degr
of freedom of both sides of the tunneling barrier; they do n
exist for an51/m edge in isolation.

If the n51/m FQHE edge were to behave as a Fer
liquid, we could calculate charge transport across a bar
using a simple~Boltzmann! kinetic equation of the form

I ~V,T!}eE
2`

`

deW$ f 1~e2eV!F2~e!2F1~e2eV! f 2~e!%,

~6.1!

with f (e) and F(e) the Fermi-Dirac distributions for elec
trons and holes, respectively, andW the probability for an
electron or hole of energye to cross the barrier and enter th
edge. As is well known, this Boltzmann equation leads to
ohmic ~linear in V) and temperature-independent curre
Now that we have seen that the non-Fermi-liquid features
the 1/m edge can be captured via the statistics of the e
quasiparticles we can try to write a ‘‘Boltzmann equation
for transport to and from FQHE edges by putting in app
priate generalizationsh(e) andH(e) of the quantitiesf 2(e)
and F2(e), respectively. Before giving precise results~in
Sec. VI A below! we shall consider a ‘‘naive’’ expressio
based on the intuition from the quasiparticle approach.
first approximation, the factorh(e), which describes the
probability for an electron toleavea n51/m edge, comprises
two effects.

~1! A correlation effect, which can be traced to the no
trivial scaling dimension of the edge electron operator@see,
for example, Eq.~1.3!#. At zero temperature, this is the so
called tunneling density of states

A1~e!}em21. ~6.2!

~2! A temperature dependence related to the exclus
statistics properties of the edge electrons. As we have s
the natural factor associated to thepresenceof an edge elec-
tron is the distribution function

ng5m~e!. ~6.3!

Combining these factors, we come to the naive expressi

h~0!~e !5em21ng5m~e!, ~6.4!
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and by similar reasoning we obtain

H ~0!~e !5em21ebe ng5m~e!, ~6.5!

where the thermal factorebenm(e) has been dictated by th
requirement of detailed balance.~This same thermal facto
was proposed in Ref. 33, which proposes a generalizatio
the Boltzmann equation to the case of fractional statistics
our view, the proposal of Ref. 33 is incomplete, as it igno
the correlation effects which are unavoidable for quasipa
cles obeying fractional exclusion statistics.!

One quickly finds that the Boltzmann equation with fa
tors h(0) andH (0) is not exact at finite temperature. In Se
VI B we shall further comment on this equation and arg
that it can be viewed as a first stage in a systematic appro
Before we come to that, we shall in the next section pres
a particularly simple derivation of the exact perturbativeI -V
characteristics for tunneling from a Fermi liquid to an5 1

3

FQHE edge. This derivation uses the idea of a kinetic eq
tion, together with the algebraic properties of the edge e
trons.

A. Kinetic equation for interedge transport

A careful derivation, based directly on the form of th
tunneling Hamiltonian@we write C for the edge electron
operator~denoted byCe in Sec. II and byG in Sec. III!, and
we indicate the filling fraction by an explicit subscript#

H int}tE de@Cn51
† ~e!Cn51/3~e!1H.c.#, ~6.6!

leads to the following kinetic equation~see, e.g., Ref. 32!:

I ~V,T!}et2E
2`

`

de@ f ~e2eV!H~e!2F~e2eV!h~e!#,

~6.7!

whereh,H are one particle Green’s functions

H~e!5^Cn51/3
† ~e!Cn51/3~e!&V,T ,

h~e!5^Cn51/3~e!Cn51/3
† ~e!&V,T ~6.8!

for edge electrons in then5 1
3 FQHE edge, taken atV50.

Note that the expression~6.7! is perturbative as it gives th
lowest nontrivial order in the parametert.

The quantitiesH(e) andh(e) can be determined by usin
two simple observations. The first is that ofdetailed balance,
which can be phrased as the requirement that at zero vo
there should be no current flowing. This fixes the ratio
H(e) andh(e) according to

H~e!5eb~e2eV!h~e!. ~6.9!

The second observation uses thealgebraic propertiesof the
edge electron operator, which include the anticommuta
relation

$C
n5

1
3

†
~e!,Cn5

1
3
~e8!%

5
2p

L

1

r0
e2d~e2e8!16

E

r0
13~e1e8!

DQ

er0
.

~6.10!
of
In
s
i-

e
ch.
nt

a-
c-

ge
f

n

In this formula,E is the operator for the total energy per un
length~proportional to the Virasoro zero modeL0), andDQ
is the operator for the total charge per unit length@propor-
tional to the zero modeJ0 of theU(1) Kac-Moody algebra#.
Clearly, this anti-commutator fixes the sumH(e)1h(e).
The expectation values of energy and charge follow direc
from our analysis in Sec. IV. We find

^E&5r0S p2

6b2 1
~eV!2

6 D , ^DQ&52er0

~eV!

3
~6.11!

and obtain the exact expressions

H~e!5
~e2eV!21p2/b2

e2b~e2eV!11
, h~e!5

~e2eV!21p2/b2

11eb~e2eV! .

~6.12!

They lead toI -V characteristics

I ~V,T!}et2b23FbeV

2p
1S beV

2p D 3G , ~6.13!

in agreement with the result obtained in differe
approaches.31,2

Clearly, the Green’s functions~6.8! can be evaluated in
other ways, for example, by using a conformal transform
tion in the x,t domain.32 We would like to stress that ou
derivation is more direct and uses nothing more than
fundamental anticommutation relation of the edge electro
For n5 1

3 , these are particularly simple as they derive fro
the so-calledN52 superconformal algebra, which has be
well-studied in other contexts. For other filling fractions th
fundamental anti-commutators look more complicated
are available in principle.

B. Interpretation in terms of exclusion statistics

If we compare the exact kinetic equation forn5 1
3 with a

naive generalized Boltzmann equation, we see that the m
take in the latter is in the approximation of the Green’s fun
tion h(e) by a the producth(0)(e) of a tunneling density of
states times a Haldane distribution for fractional statisti
The reason why this approximation turns out to be rat
poor is that the operatorN(e)5Cn51/3

† (e)Cn51/3(e) inside a
FQHE edge isnot to be viewed as a simple counting operat
weighted by the appropriate power law ofe. This fact can be
traced to the nontrivial operator terms~proportional to the
energy and the charge operators! in the right-hand side of Eq
~6.10!. To further illustrate this point we evaluated the e
pectation value of the operatorN(e) in a ~normalized! one-
electron stateue8&

^e8uN~e!ue8&}e2d~e2e8!16
~e82e!~e821e2!

e82 u~e82e!.

~6.14!

This result shows an interaction effect in the action ofN(e)
on a one-electron state: rather than just counting quant
energye, the operatorN(e) is sensitive to the presence o
quanta at energye8.e as well. In the Green’s functionh(e)
~for e.0), the first term on the right-hand side of Eq.~6.14!
corresponds toh(0)(e), while the second term leads to th
following correction term:
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h~1!~e !56E
e

`

de8
~e82e!~e821e2!

e82 n3~e8!. ~6.15!

In Fig. 2 we have plotted the exact result forh(e) against the
approximationsh(0)(e) and @h(0)1h(1)#(e). Clearly, the
correction termh(1)(e) greatly improves the accuracy of th
description.

The situation here can be described as follows. As fa
thermodynamics goes, the distribution functionsn3(e) and
n1/3(e) give exact results for quantities such as specific h
and conductance, and we may view the edge system a
ideal gas of fractional statistics quasiparticles. However,
operatorsCn51/3

† (e), Cn51/3(e) are not one-particle opera
tors in the usual sense, as they do not simply add or extra
single quasiparticle from a many-particle state. In edge t
neling experiments, the edge system communicates wi
Fermi liquidvia the operatorsCn51/3

† (e) andCn51/3(e) and
we cannot avoid interaction effects. We do believe, howev
that a systematic expansion based on the quasiparticle
ture is possible.

To avoid reference to a ‘‘filled sea of negative ener
edge electrons’’ we prefer to discuss transport in the pict
where the fundamental quasiparticles are positive ene
edge electrons and edge quasiholes, respectively. If we
stick for a moment to the abovementioned ‘‘naive’’ zero
order approximation, we would arrive at the following low
est contribution to the tunneling current at voltageV and
temperatureT:

I ~0!~V,T!}2eE
0

`

den1~e2V!N3~e!e2

1eE
0

`

deN1~e2V!n3~e!e2

1eE
0

`

de3de2de1n1S (
i

e i1VD
3N1/3~e3!N1/3~e2!N1/3~e1! f 2~e3 ,e2 ,e1!

2eE
0

`

de3de2de1N1S (
i

e i1VD
3n1/3~e3!n1/3~e2!n1/3~e1! f 2~e3 ,e2 ,e1!,

~6.16!

FIG. 2. One-particle Green’s functionh(e) for filling fraction
n5

1
3 and at zero voltage. The drawn curve is the exact re

~6.12!; the dashed curve is the approximationh(0)(e) and the dotted
curve corresponds to@h(0)1h(1)#(e).
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wheref (e3 ,e2 ,e1) is the form factor given in Eq.~5.10! and
the integrations are over ordered sets of energiese3>e2
>e1>0. We have used the notation

Ng~e!5ebeng~e!. ~6.17!

This result becomes exact in the limitT→0, where all dis-
tributions become step functions and the interaction effe
disappear. Note that this formula has a clear asymmetry
tween electrons and holes: electrons that come into the e
settle as edge electrons, while incoming holes ‘‘decay’’ in
a total of three edge quasiholes, with relative amplitud
given by the form factorf (e3 ,e2 ,e1). For T50, V.0 the
expression~6.16! reduces to a single term

I ~0!~V.0,T50!}2eE
0<e<V

dee2}V3, ~6.18!

while T50, V,0 it reduces to

I ~0!~V,0,T50!}eE
0<( ie i<V

de3de2de1f 2~e3 ,e2 ,e1!}V3.

~6.19!

In the latter case, the power lawI}V3 is a simple conse-
quence of the fact that we perform three independent in
grations*de3de2de1 over quasihole energies, with a form
factor f (e3 ,e2 ,e1) that is scale invariant.

Clearly, the expression~6.16! needs corrections. We be
lieve that a systematic expansion, along the lines of the
pansionh(e)5h(0)(e)1h(1)(e)1¯ that we have demon
strated above, is possible. We plan to demonstrate thi
more detail in a future publication.

VII. CONCLUSIONS

The edge electrons that have been central in this pape
the edge analogs of the composite fermions~CF! used to
describe bulk physics. We have made clear that, while
exchange statistics of these particles are fermionic, their
clusion statistics properties are not and are instead capt
by nontrivial distribution functionsnm(e) that take the place
of the familiar Fermi-Dirac distribution. We have also inve
tigated to what extent a quasiparticle picture, with edge e
trons and edge quasiholes as the fundamental quanta, ca
used as a starting point for a quantitative analysis of tra
port. We have used algebraic properties of then5 1

3 edge
electrons to derive exact results, and we have claimed tha
general exclusion statistics properties may be used to se
a systematic expansion. In our view, these results hold s
important lessons for other situations where fractional sta
tics quasiparticles have been proposed~spinons in d51
quantum spin chains, anyons ind52, etc.!.

ACKNOWLEDGMENTS

We thank A. W. W. Ludwig for many insightful com
ments and collaboration in the early stages of this proje
K.S. thanks P. Bouwknegt, E. Fradkin, and Y.-S. Wu f
discussions. Part of this work was done at the 1997 I
Santa Barbara Workshop on ‘‘Quantum Field Theory in Lo
Dimensions: from Condensed Matter to Particle Physic
This research has further benefited from NATO Collabo

lt



or
th
e

-
ta

-
E
a

s
ic

tio
of
e

g

ut

s

t

-
ion

ow

as

only
al

n

t
he

on

e

n-
t a

ticle

or

’

PRB 58 15 715QUASIPARTICLES IN FRACTIONAL QUANTUM HALL . . .
tive Research Grant No. SA.5-2-05~CRG.951303! and by
support from the FOM foundation of The Netherlands.

APPENDIX A: COMPOSITE EDGES—JAIN SERIES

In this appendix we briefly describe a quasiparticle f
mulation of the composite edge theories corresponding to
filling fractionsn5n/(np11) of the Jain series. These edg
theories can be written as a collection ofn free bosons,
coupled via the topologicalK matrix of the effective bulk
Chern-Simons theory.4 In Ref. 34 it was shown that the ef
fective low-energy CFT for particles satisfying Haldane s
tistics with n3n statistical matrixG is a c5n CFT with
topological matrixK5G21. Inverting the argument we ex
pect that the fundamental excitations of the CFT for QH
matrix K can be interpreted in terms of pseudoparticles s
isfying fractional exclusion statistics with matrixG5K21.

An alternative and more natural approach to the Jain
ries edges would be to first perform a change of basis wh
separates a single charged mode from a set ofn21 neutral
modes.35,36The latter are governed by ansu(n)̂1 affine Kac-
Moody symmetry, and can be treated separately. An op
is to view them as a set ofn free parafermions in the sense
Gentile, see Ref. 6. The CFT for the remaining charg
mode is of the type that we described in this paper, withg
5n. The entire edge theory is then described by a sin
~charged! g-on and a set ofsu(n)̂1 degrees of freedom.

As an example of how the chiral Hilbert space works o
here is the example ofn52/5, with K matrix

K5S 3 2

2 3D . ~A1!

This theory has two independentU(1) affine Kac-Moody
symmetries, giving a factor@P l 51

` (12ql)#22 in the partition
function. The various charge sectors are labeled by pair
integers (l 1 ,l 2), the energy being given byE( l 1 ,l 2)
5 1

10 (3l 1
224l 1l 213l 2

2) @this is the bilinear form defined by
the inverse of theK matrix ~A1!#. Thus

Zn52/5~q!5 (
~ l 1 ,l 2!

qE~ l 1 ,l 2!

@P l 51
` ~12ql !#2 . ~A2!

Under the rearrangement intosu(2)̂1 timesU(1), thecom-
bination 1

2 ( l 22 l 1) plays the role of thesu(2) spin, while
l 11 l 2 is the charge under the newU(1). Thecharacter iden-
tity will be36

Zn52/5~q!5x j 50
su~2!1~q!Zeven

2/5 ~q!1x j 51/2
su~2!1~q!Zodd

2/5~q!,
~A3!

where the subscript even~odd! on Zs/r means that we restric
to the states with totalU(1) chargeQ even or odd. Simple
expressions for thesu(2)1 characters are

x j 50
su~2!1~q!5 (

m1n even

q1/4~m1n!2

~q!m~q!n
,

x j 51/2
su~2!1~q!5 (

m1n odd

q1/4~m1n!2

~q!m~q!n
. ~A4!
-
e

-

t-

e-
h

n

d

le

,

of

For the general case withn5n/(np11), the charged sec
tor is described by a free boson CFT at compactificat
radiusR25n21, which we write asR25r /s. The chiral par-
tition sum is

Zs/r~q!5 (
Q52`

`
qQ2/~2rs!

P l 51
` ~12ql !

, ~A5!

and restrictions, such as the even/odd in Eq.~A3! are taken
into account by restricting the charge quantum numberQ.

Our fundamental charged edge quasi-particles will n
be the primary fields ofU(1) charges1s and2r ; we shall
write the creation and annihilation modes of these fields
f2t andG2t , respectively. Note that forsÞ1 the operators
G2t are not the physical edge electrons as the latter can
be written by including nontrivial factors from the neutr
sector.

In close analogy with our analysis in Sec. III D, we ca
now establish that the states

G2~2M21!r /2s1Q/s2mM
¯G2r /2s1Q/s2m1

3f2~2N21!s/2r 2Q/r 2nN
¯f2s/2r 2Q/r 2n1

uQ&

with

mM>mM21>¯>m1>0, nN>nN21>¯>n1 ,

and

n1>0 if Q>0,

n1.0 if Q,0, ~A6!

with Q52(r 2s),...,1(s21), spanning the chiral Hilber
space~A5! of the charged boson. The total energy of t
lowest-energy state in the charge sectorQ having particle
numbersM andN for the quanta of typeG andf, respec-
tively, equals

E~Q;M ,N!5
Q2

2rs
1

r

2s
M22

Q

s
M1

s

2r
N21FQ

r
1dQ,0GN

~A7!

and leads to the following expression for the chiral partiti
sum:

Zs/r~q!5 (
Q52~r 2s!

~s21!

(
M ,N>0

qE~Q;M ,N!

~q!M~q!N
. ~A8!

The equality of the expressions~A5! and~A8! is an identity
of the Rogers-Ramanujan type~see Refs. 17–19 for som
similar identities!.

In the casep,0, the Jain series QHE edge exhibits cou
terflowing edge modes and it has been claimed tha
disorder-driven fixed point dominates the physics.37,35 It will
be most interesting to analyze this scenario in a quasipar
formulation.

APPENDIX B: FORM FACTOR FOR GENERAL M

We briefly explain the exact evaluation of the form fact
f (mm ,...,m1) as defined in Eq.~5.9!. Let us consider the
special casem52 first. In that case the ‘‘hole operator’
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G(z) has conformal dimension 1 and may be identified w
one of the currents of the affine Kac-Moody algebrasu(2)̂1 .
By exploiting the OPE

f~z!f~w!5~z2w!11/2@G~w!1O~z2w!# ~B1!

one obtains

G~w!5 R
Cw

dz

2p i
~z2w!23/2f~z!f~w!. ~B2!

We also have21

f~z!f~w!u0&5~z2w!1/2 (
n2 ,n1

Pn2 ,n1

~21/2!~z,w!un2 ,n1&,

~B3!

where P$ni %
(21/2)(z,w) are the appropriate Jack polynomia

Combining the above, we obtain

G~w!u0&5 (
n2 ,n1

Pn2 ,n1

~21/2!~w,w!un2 ,n1& ~B4!

and it follows that
ys

tt
e

N^n2 ,n1uG212n
† u0&5dn,n21n1

@ j ~2n1,1n22n1!#
1/2Pn2 ,n1

~21/2!~1,1!,

~B5!

with j l8 as in Eq.~5.6!. For generalm one obtains a similar
result in terms of Jack polynomials with label (21/m). Us-
ing the explicit result28,29

P$ni %
~21/m!~1,1!5 )

i 50

m21
G~1/m!

G~12 i /m!

3)
i , j

G@nj2ni1~ j 2 i 11!/m#

G@nj2ni1~ j 2 i !/m#
, ~B6!

together with the result~5.8! for the j l8 , we derive the fol-
lowing asymptotic form forni@1:

f ~nm ,...,n1!5
@G~1/m!#m/2

P i 50
m21G~12 i /m!

P i , j~nj2ni !
1/m

P i 51
m ni

~m21!/2m .

~B7!

The simple Jastrow form of this form factor is a clear ind
cation that in the limitni@1 a much simpler derivation
along the lines of ‘‘bosonization in momentum space
should be possible.
tt.
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