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Quasiparticles in fractional quantum Hall effect edge theories
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We propose a quasiparticle formulation of effective edge theories for the fractional quantum Hall effect. For
the edge of a Laughlin state with filling fraction= 1/m, our fundamental quasiparticles are edge electrons of
charge—e and edge quasiholes of charge/m. These quasiparticles satisfy exclusion statistics in the sense
of Haldane. We exploit algebraic properties of edge electrons to derive a kinetic equation for charge transport
between av=1/m fractional quantum Hall edge and a normal metal. We also analyze alternative “Boltz-
mann” equations that are directly based on the exclusion statistics properties of edge quasiparticles. Gener-
alizations to more general filling fractioridain seriesare briefly discussedS0163-18208)03544-9

I. INTRODUCTION AND SUMMARY 1

[nq,nqr]=ﬁq5q+q,. (1.9
Low-energy excitations ovéfractiona) quantum Hall ef-

fect (QHE) ground states are localized near the edge of dhe vertex operators

sample. Certain aspects of QHE phenomenology can there-

fore be captured by aeffective edge theoryrhe unusual \Ife(z)=:exp(—i\/ﬁgo):(z),
properties(notably, fractional charge and statisjicx bulk 1

excitations over a fracUongI QHE&EQHE) ground state carry _ W 4(2)= :exp( i _(P) 1(2) (1.2)
over to analogous properties of the fundamental edge excita- Jym

tions.

- . . have charge—e and +e/m, respectively, and have been

In the eﬂstw:cg(tgeoretmalj I|t§rature on QHEIedgE phe- identified as the edge electron and edge quasihole. They are
homena, the fundamental edge quasiparticles have NQte girect analogs of the buliLaughlin quasiparticles, an
played an important role. Most, if not all, results have beenyyortant distinction being that the edge excitations are gap-
obtained by exploiting bosonization schemes. For the analyiass and have linear dispersion.
sis of edge-to-edge tunneling experiments, a combination of The first indication for the nontrivial statistics of the op-

bosonization with tEChniqueS from integrable field theorie%rators(l_Z) comes from the Operator product expansions
has led to exact results for universal conductance curtes. (OPB

What has been missing until now is a description of edge-to-

edge transport phenomena directly in terms of excitations V)W (w)=(z=w)"[¥' (W) +---],
that are intrinsic to an edge in isolation. The authors of Ref. S
3 have explored such a picture and have derived a number of V()W gn(w) = (z=w)*"[¥"(w) +---], (1.3

strong-coupling selection rules for the scattering of edge exwhere ¥’ (w) and¥”(w) are operators of charge 2e and
citations. +2e/m, respectively. Fom an odd integer, the right hand
In this paper we take up the challenge of reformulatingside of the first OPE picks up a minus sign under the ex-
effective QHE edge theories directly in terms of a set ofchangez«—w, in correspondence with the required antisym-
fundamental edge excitations. For the principal Laughlinmetry of the Laughlin wave functions. The second relation
states at filling fractionv=1/m, we select theedge electron features a fractional power oz { w), which shows that the
(of charge—e) and theedge quasihol¢of charge+e/m) as  quasihole operator has fractional “exchange statistics.”
the fundamental excitationéThe reason for this asymmetric For v=1 the operator¥, and ¥y, are fermionic and the
choice will become clearAn important complication is then edge theory is simply a theory of free fermions. The ex-
that these fundamental quasiparticles ac# fermions but  change statistics o¥ . and W, at v=1/m clearly signal a
instead obey fractional statisti¢s a sense to be explained deviation from free fermion behavior, but they are hardly
below). A large part of this paper will be devoted to working helpful for the purpose of setting up a quasiparticle formal-
out the consequences of these unusual statistics. ism that mimics the free fermion treatment of the 1 edge.
Following Wen? we shall assume that the edge theory forwWe shall here argue that a much more convenient point of
a v=1/m fractional QHE state(Laughlin stat¢ takes the view is that of the “exclusion statistics” properties &,
form of a chiral Luttinger liquid(see Ref. 5 for a further andW .
justification of this description The bosonic description of In a recent papetone of us proposed a method to asso-
such a theory is centered around the neutral charge densityate exclusion statistics to quasiparticles for conformal field
operatorsny= 1/\/ﬁ(¢9<p)q, which satisfy dJ(1) affine Kac- theory(CFT) spectra. We shall here show that, when applied
Moody algebra to the v=1/m edge theory excitations, this method gives
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ideal fractional exclusion statisti¢s the sense of Haldafle ~ words, it is assumed that the act of filling a one-particle state

with g=m for edge electrons and=1/m for edge quasi- effectively reduces the dimension of the space of remaining

holes. We also find that the edge electrons and edge quagine-particle states by an amougt The choicesg=1, g

holes can be viewed as independent excitations, in the sense0 correspond to fermions and bosons, respectively. The

that there is no mutual exclusion between the two. thermodynamics for generalg-ons,” and in particular the
Our program in this paper is thefl) to establish the appropriate generalization of the Fermi-Dirac distribution

exclusion statistics properties ¥f, and¥ 4, and(2) to apply ~ function, have been obtained in Refs. 9-12. The so-called

them to both equilibrium and transport properties of thesaNu equation

edges. As for transport, we shall focus on the setup of the

experiment by Changt al.® where electrons are allowed to _ 1

tunnel from a normal metal into the edge o¥& 1/3 FQHE Ng(€)= [w(e)+g]’

edge. We shall use algebraic propertiesefl/3 edge elec- )

trons to write an exact kinetic equation for the perturbativeWIth

-V characteristics for this system, reproducing the result g 1-g_ Ble—p)

obtained by other methods. Interestingly, the relevant alge- [wie)P[1+w(e)]"=e @D

braic properties derive from the so-callbd=2 superconfor- provide an implicit expression for the one-particle distribu-

mal algebra, which has been well-studied in the context ofion functionng(e) for g-ons at temperatur€ and chemical

string theory. We shall also study “naive” Boltzmann equa- potential . It has been demonstrated that fractional exclu-

tions that are based on the exclusion statistics properties aion statistics are realized in various models for quantum

the edge quasiparticles. While the latter equations are nahechanics with inverse square exchdrdé* and in the

exact, we shall argue that they can be used as the startirmyon model in a strong magnetic fieftf

point in a systematic approximation to the exact transport

results. These results then are of general importance, as they A. Exclusion statistics and the fqHe

illustrate the possibilities and limitations of the concept of L . . e

exclusion statistics in the analysis of nonequilibrium physics. A natural appl|qat|0n of the idea of exclusion statistics is
The observations made here are easily generalized t%ffered by the various fractional quantum Hall effects. One

composite edges, related to hierarchical FQHE states, in papjay_ take the somewhat naive but certainly -justifiable point
ticular those of the Jain series with=n/(np+1). For the ©f view that the essence of the=1/m FQHE is that under

Jain series edge theories, two natural pictures emerge. In ttﬁge appropriate conditions interacting electrons give rise to

first picture, the edge quasiparticles satisfy Haldane’s exclul€€ duasiparticles with effective statistics paramegem.

sion statistics withG matrix equal tok ~%, whereK is the A familiar interpretation of these quasiparticles is that they

topological order matrix of the bulk FQHE state. In the sec-ca" be viewed as composites of elgctrons“plus an even num-
ond picture one decouples one charged mode fient neu- ber of flux quanta(The familiar terminology*‘composite fer-

tral modes. A possible quasiparticle basis then consists of lons 1S somewhat u_nfprtunate In _th|s context, as we argue
single charged Haldang-on and a collection of neutral that the exclusionstatistics properties of these composite

guasiparticles that are related to parafermions in the sense 8P§S|part|ples areot ferm.|on|c.“CIearIy, tr,]enexchan.ges_ta—
Gentile tistics, which are determined “modulorZ’ are fermionic)
This.paper is organized in the following way. In Sec. Il The familiar Laughlin wave functions describe the ground

. ' g nitate configuration for these quasiparticles. The fundamental

to FQHE states and to CFT spectra. In Sec. Il we discuss iff*ifations (the Laughlin quasiparticl¢sare expected to

some detail how a quasiparticle basis fet 1/m FQHE edge car_lr}k/] theb“dual” (see Sec. rlll.l E]:StatIStICSQZ 1”3‘ in Haldane’
states is obtained and how that leads to an assignment of e above scenario, which was suggested in Haldane's

exclusion statistics parameters. In Sec. IV we explain howpriginal paper, has been critically analyzed in the literature,

equilibrium properties are obtained in a quasiparticle apyvhere it has been confirmed in the appropriate low-

proach. In Sec. V we further study the quasiparticle baselfmperature regimesee, for example, Ref. 160ur purpose

and make the link with Calogero-Sutherland quantum mel" this paper is to setup and analyze a similar picturestige

chanics and Jack polynomials. In Sec. VI we study Charggxqitations_in the FQHE. Since such exc_itations can b_e de-
transport between a normal metal and-al/m FQHE edge spnbed using _the '3”9“?‘96_ of CFT, we first tumn to a discus-
in terms of kinetic equations that are based on our quasipaﬁIon of exclusion statistics in CFT spectra.

ticle formalism. Appendix A describes the extension of our

quasiparticle formalism to filling fractions in the Jain series, B. Exclusion statistics in CFT
while Appendix B contains explicit results for an important  Conformal field theories in two dimensions come with
quasiparticle form factor. two commuting Virasoro algebras, and these infinite dimen-

sional algebras can be used to organize the finite-size spectra
of these theories. In such an approach, a CFT patrtition func-
tion is obtained by combining a number of characters of both
In his by now famous 1991 papéHaldane proposed the Virasoro algebrasior extensions therepf In applications

notion “fractional exclusion statistics,” as a tool for the such as string theory, where the conformal symmetry has a
analysis of strongly correlated many-body systems. The cergeometric origin and the fundamental fields are bosonic co-
tral assumption that is made concerns the way a many-bodyrdinate fields, this “Virasoro approach” to CFT is entirely
spectrum is built by filling available one-particle states. Innatural. In contrast, the prototypical CFT in the condensed

II. EXCLUSION STATISTICS
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matter arena is a theory of free fermions, with a finite sizelatter Hilbert space physical charge is quantized in units of
spectrum that is simply a collection of many-fermion statesand, correspondingly, thg(1) chargeQ in Eg. (3.1) is re-
constructed according to the rules set by the Pauli principlestricted to multiples ofm.* In the geometry of a Corbino
When facing other CFT’s that are relevant for condensedlisc, i.e., a cylinder, the operator that transfers chavge
matter systems one may try to follow a similar road, which isfrom one edge to the other is physical. Accordingly, the
to select a number of fundamental quasiparticle operatorphysical Hilbert space is obtained by taking a tensor product
and to construct the fullchiral) spectrum as a collection of of left and right copies of the Hilbert spa¢®.1) and restrict-
many{quas)-particle states. Explicit examples of this are theing the totalU(1) chargeQ, + Qg to multiples ofm.* In the
so-called spinon bases fou(n), Wess-Zumino-Witten quasiparticle formalism that we present below the various
(WZW) models!820-22 restrictions onQ, , Qg are easily implemented.

Let us now imagine that we have a concrete CFT, with Our goal here is to understand the collection of states in
explicit rules for the construction of a marguas)-particle  Eq. (3.1) in a different manner, and to view them as multi-
basis of the finite size spectrum. It is then natural to try toparticle states built from the creation operators for edge qua-
interpret that result in terms of “exclusion statistics” prop- siparticles¥, and ¥ q,. To simplify our notations, we shall
erties of the fundamental quasiparticles. In a recent paperwrite G=V¥,, =WV, (The notationG is inspired by the
one of us has proposed a systematic procedbased on fact that the fundamental anticommutation relations for the
recursion relations for truncated chiral spegtrahich leads modesG_, at v=1/3 are those of the so-callét=2 super-
to one-particle distribution functions for CFT quasiparticles.conformal algebra. See Sec. VI for more on thidue to the
In many cases, it was established that the CFT thermodyabove-mentioned restrictions on thé&(1) chargesQ and
namics are those of a free gas of quasiparticles governed ly, +Qp, the chiral quasihole operatgi(z) by itself is not a
new, generalized distribution functions. The examples disphysical operator in the edge theories for the disc or cylinder
cussed in Ref. 6 include spinons in tha(n); WZW mod-  [in the proper mathematical terminology we ca{lz) a chi-
els, CFT parafermions, and edge quasiparticles for the fragal vertex operatofCVO)] physical states are obtained by

tional QHE. restricting the number ap quanta in the appropriate manner.
The example of the CFT for FQHE edge excitations is

particularly interesting, since in those cases the generalized A. Quasihole states

distributions derived from the CFT spectra are identical to o ) )

those obtained from Haldane statistiggith specific values We start by considering quasihole states that are built

for g). In Sec. Il below we show in some detail how thesePY apply@%znonly the modes¢_ defined via #(2)

results are established. =3s¢p_Z° . Clearly, the indexs gives the dimension-

Clearly, the identification of Haldane statistics in FQHE less energy of the modé_. When acting on the charge-0
edge theories is most useful since it provides a concrete linkacuum|0), we find the following multie) states(compare
between rather abstract considerations on the systematics Wfth Ref. 18 for the casen=2, see also Ref. 23
guasiparticle bases on the one hand and concrete laboratory
physics on the other. In particular, it opens up the possibility b-(on-1yam—ny " P—3iam-n, b - 1/am-—n,|0)
of analyzing transport phenomena such as edge-to-edge tun-
neling in the QHE(which has been well studied both theo-
retically and experimentaljydirectly in terms of quasiparti- The choice of minimal modes is such that the lowest state of
cles satisfying fractional exclusion statistics. We shall reporchargeQ(e/m) is at energy Q%/2m), in agreement with the

with ny=ny_,;=---=n;=0. (3.2

the results of such an analysis in Sec. VI below. scaling dimension of the corresponding CFT primary field.
Using so-called generalized commutation relations satisfied
Ill. QUASIPARTICLES FOR THE »=1/m FQHE EDGE by the modesp_ one may show? that all multi« states

different from Eq.(3.2) are either zero or linearly dependent
We consider the finite size spectrum for the CFT describon Eq.(3.2.
ing a singlev=1/m FQHE edge. In CFT jargon, this theory  Before writing more general states we shall first focus on
is characterized as@=1 chiral free boson theory at radius the exclusion statistics properties of the quagta;. We
R2=m. We shall consider the chiral Hilbert space corre-follow the procedure of Ref. 6 and start by introducing trun-

sponding to the following partition function cated partition sums for quasihole stat€3.2). For s
, =1/2m, 3/2m, etc, we define polynomialB¢(x,q) to keep
un c g track of the number of many-body states that can be made
z (Q):Qz_w @, (3.)  using only the modes _ with k<s, and that have a highest

occupied mode with energy/ such thats—s’ is an integer.
with (). =II"(1—q') andgq=e A@7LWra) [The one- Ps(x,q) is defined as the trace of the quantityg® over all
particle energies are of the fore=1(27/L)(1/po) with |  these states, wheie¢ is the number %f quasiholek, is the
an integer an@o the density of states per unit |engtb® d!menSIOn|eSS total energy, and=eP*ah, For m=3 this
=(hve) L] In this formula, theU(1) affine Kac-Moody 9IVes
symmetry is clearly visible as all states at fixdd1) charge T o a6 _ 3 906
Q form an irreducible representation of this symmetry. Pue=xa™  Pu=x"q™%  Pge=1+Xx7q7% etié 3
We should stress that the Hilbert space corresponding to '
Eq. (3.1 is not the physical Hilbert space for the edge theoryln general, an occupied quasi-hole state of enexgyprre-
of a quantum Hall sample with the topology of a disc. In thesponds to a factoxg® in these generating polynomials.



PRB 58

The systematics of the edge quasihole sté3e® directly

QUASIPARTICLES IN FRACTIONAL QUANTUM HALL . ..

15707

things are not that simple, but we can rewrite the recursion

lead to the following recursion relations between the polyno+elation in matrix form

mials P¢(x,q):

Ps(an):Psfl(xyq)+qupsfl/m(x1q)- (3.9

Form=1, which is the case corresponding tea 1 integer
GHE edge, this relation directly implies,_4;5(x,q)

=ITj_,(1+xg~*?. In that case the partition sum is simply

Pi-(2m-1)/2m Pi-1-(2m-1)/2m
=M{"(x,q) : ,
Pi—1om Pi—1-12m

(3.5

a product and we recognize free fermions. For general with 1=1,2,.., andMﬁh(x,q) the following mXx m matrix:

1
|—(2m—3)/2m
M(x,q) = “

XM= 1q(mf 1)l —m/2+(2m—1)/2m mezq(m72)l —m/2+(4m—4)/2m

The grand partition function for the quasihole staf@<®) is
then given by

0
Zx,q)=(1 1 1)( 11 M.q“(x,q>) 5
I=1
1
3.7
We propose that the quasihole modgsg with s=1—(2m
—1)/2m,... | —1/2m be viewed as a singlen{-fold degen-

erate level in the one-particle spectrufThis convention is

0 qu —(2m—1)/2m

1 . 0 X2q2l—(4m—4)/2m

(3.9

qu—1/2m 1+quml—m/2

=1/m! This identification is consistent with the result of
bosonization applied tg-ons?* and with the character com-
putations of Ref. 25.

For the casen=2, which is not in the category of FQHE
edges, the equilibrium distribution is given by

2
Ny€)= Tide e

For m=3 the explicit formulagobtained using the Cardano
formula for cubic equationsare quite unpleasant; Fig. 1
shows the distributiom,5( €).

(3.11

natural since a single quasiparticle over the ground state can

only occupy one of thesm levels] The mXxX m matrix M ﬁh is

B. Edge electron states

then a level-to-level transfer matrix and replaces the free

fermion (m=1) factor (1+xq ~*?). Clearly, the thermody-
namics of the state€3.2) will be dominated by the largest
eigenvalues\;" (x,q) of the matricesMﬁh(x,q). These sat-
isfy the characteristic equations

(\F—1)M—xmgmI-mZ(\ Fym-1=q, (3.9

Instead of trying to solve these equations, we can derive
from them a result for the one-particle distribution functions

N

N (3.9

n(1)=xa, In(\;") =x

We find

A -1

h _
= Mo =1

(xg) "=\ =1 (N, (3.10

Comparing with Eg.(2.1) and identifying g=1/m and
w(e)=(\;"—1)"1, we see that the distribution function
na(1) becomes identical tog-1m(e=1). In other words,
the exclusion statistics properties of the= 1/m quasiholes
are those of “idealg-ons” in the sense of Haldane, with

The same procedure can be applied to the edge electrons,

which are created by mod&s_, with G(z)==,G_,zt ™2
Multielectron states take the form

G—(ZM —1)(m/2)—my,- -G—S(m/2)—mZG—m/2— ml|0>
with

ng(€)

-2 0 2

€ [B_l] 6

FIG. 1. Distribution functions for fractional exclusion statistics
with g=3 (dashed ling g=1 (dotted ling, andg=% (solid line),
all at the same temperature and at zero chemical potential.
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my=my_;=---=m;=0

(3.12

and we have truncated partition su@gy,q) with t a half-
odd integer ang = ef*e, They satisfy the recursion relations

Q(Y,D=Qi-1(Y, ) +yYqdQ-m(y, @),  (3.13
with the following initial values:
Q-mz="""=Qme-1=1. (3.149

The “transfer matrix” for the edge electronli(y,q) is

defined by
Q«
: =Mg(y.a)
QK+m—1 QK*l

with K=km—m/2, k=1,2..., and wehave

Q- m
(3.19

1
Z%y,.9)=(1 0 - 0 0>(kHlME<y,q>) ;

1

(3.16

In this case, a single action of the transfer matrix comprise
a jump ofm one-particle levels, and the relevant distribution

function will be

+

n%mzy@|mxugﬂm}:%f£%< (3.17
The characteristic equation for the eigenvalLig

m—1

I (wé—ya™H-(wOm?=0 (@18

leads to

ne(k) = (yg™ " t=(h,—1)"hg ™.

(3.19

with hy=puy/(yg™). Identifying w(e)=h,—1, we again
recognize the Wu equatiori2.1) for Haldane exclusion sta-
tistics, this time withg=m, and we may identifyn®(k) with
Ng=m(e=mK).

Form=2 this gives

1
m+(hk_1) ’

1 1
nz(e)zz (1—\/W). (32@

See Fig. 1 for the distribution functiomy(€) at pe=0.

C. Duality

Having recognized distribution functions for fractional
exclusion statistics witly=1/m andg=m, respectively, we
expect a particle-hole duality between the two casesn-
pare with Refs. 10, 12
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charge—e as our fundamental excitations, we easily repeat
the previous analysis and derive the following recursion re-
lations:

Xi(X) =X _r(X) + XX _¢(X),

Yi(Y)=Y,_s(Y) +YYi_(y), (3.2)

where we putg=1 for convenience(The connection with
the quantities P, and Q, defined for r/s=m is
Xi=P2i-1y2m, Y1+ Qmpr-1).) Proceeding as before we
obtain the distribution functions for Haldane statistics with
g=s/r (for the ¢ quanta andg=r/s (for the G quanta.

In Refs. 10, 12 it was recognized that the cases gidimd
9= 1/g are dual in the sense that particles are dual to holes.
To recover this duality in our present approach, we note that
if Y|(y) is a solution of the second relation in E8.21), the
expression

X(x) =Y (y=x"9)x''s (3.22

solves the first recursion relation. Assumings, we can
rewrite both recursion relations in a form involvingr&r
recursion matrix. The largest eigenvalues(x) and u™ (y)
gre then related via

A () =p" (x9)x0

and the distribution functions

(3.23

Ng(X)=Xdy IN N*(X), ng(y)=gydy In u*(y),

(3.29
satisfy
gng(x)=1-gng(y=x"9), (3.29
or, putting ug= —Gug and restoringy# 1
gng(e)=1-Gng(—Ge), (3.26

in agreement with the results of Ref. 10. The interpretation
of this result is that th§ quanta with positive energy act as
holes in the ground state distribution of negative engggy
quanta. The relative factor{g) between the energy argu-
ments in Eq.(3.26 indicates that the act of taking outg
gquanta corresponds to addiad quanta. This duality further
implies that, when setting up a quasiparticle description for
fractional QHE edges, we can opt foy either quasiholesro
edge electrons, with energies over the full rangec<e

< or (ii) a combination of both types of quasiparticles,
each having positive energies only. The CFT finite size spec-
trum naturally leads tdii) (see Sec. Ill D beloyy while the
analogy with Calogero-Sutherland quantum mechanics natu-
rally leads to optionii) (see Sec. ¥ When considering trans-
port equations in Sec. VI, we shall be considering both alter-
natives.

D. The full spectrum

To complete our quasiparticle description for the

Before we come to that, we generalize the results of Secs=1/m edge, we need to specify how quasihole and electron

[l A and 1l B by considering a chiratcg;=1 CFT of com-
pactification radiusR?=r/s, with r>s andr,s coprime.
Choosing ¢ quanta of charget(s/r)e and G quanta of

operators can be combined to produce a complete basis for
the chiral Hilbert spac€3.1). We consider the following set
of states:



PRB 58 QUASIPARTICLES IN FRACTIONAL QUANTUM HALL . .. 15709

nicely illustrated with the cassm=2 where we can opt for
the “QHE basis” with independent quasiholes and edge
X ¢7(2N71)1/Zn7Q/man'"¢71/2m7Q/m7n1|Q> electrons, or for a “spinon basis” built from chargee/2
. quanta, which are identical to the spinons of Refs. 20, 21, 18
with and which have a nontrivial 22 statistics matrix. The two
choices have the quasihole staf@8<?) (called “fully polar-
ized spinon states” in Ref. 28n common, but differ in the
) way negative charges are brought in.
nN=ny-1==n=0, n >0 if Q<0, (3.27) The observations made in this section may be generalized
where|Q) denotes the lowest energy state of chagfe/m) [0 composite edges such as those of the so-called Jain series
with Q taking the values- (m—1),—(m—2),...,—1,0. our  With filling fraction v=n/(np+1). We refer to Appendix A
claim is now that the collectiof3.27) forms a basis of the for a brief discussion.
chiral Hilbert space, so that

G—(ZM—l)m/2+Q—mM' ’ 'G—m/2+Q—m1

My=my_1=---=m;=0,

IV. EQUILIBRIUM QUANTITIES
0

Zl/m(q) — 2 qQZ/ZquQh(X: 17q)zg(y: 1,q), A. Specific heat
Q=-(m-1) (3.28 The specific heat of a conformal field theory is well-
' known to be proportional to the central chamg+
where we added a facta®”?™ to take into account the
energy of the initial states and we denotedztﬁ} andZj, the ﬂ: 2T e 4.1)
generalizations of the partition functio3.7) and (3.16) to L~ YPofel. YT g tcrm '

the sector with vacuum charg@g. They are naturally written wherepo=(hve) ! is the density of states per unit length.

as In Ref. 26 it was shown that the specific heat fpon exci-
= (12m)(N2+2QN)+ (1 5 N tations, with energies in the full range »<e<c, is in
Zzah— 2 9 ’ agreement with the central chargeer=1 of the corre-
Qo (Dn sponding CFT. The same result should of course come out in
a picture where we select positive energy electrons and posi-
* q<m/2>M2*QM tive energy quasi-holes as our fundamental excitations. In
Z8=> ———, (3.29  this picture the total energy carried by the edge quasi-
o (Dm -
particles takes the form
with (a), =IT7_;(1-q). _ . .
While the collection of state€3.27) looks rather compli- Ezpof deeng(e)+p0f deeng(e) (4.2)
cated, it may be understood by considering the special case 0 0

m=1, which is a theory of two real free fermions of charge

+1. In this case there is only th®@=0 vacuum and the

allowed ¢ andG modes reduce to the familiar free fermion C(T) )

modeSz/ffl,z_nj. = Yo+ T 5+ )pokeT, 4.3
The right hand side of Eq.3.28 has the form of a so-

called “fermionic sum formula’” and the equality of Eqs. Where

(3.1) and (3.28 is a Rogers-Ramanujan identity. Similar "

ident!ties relati_ng “fermionic sums_” to charagters in confor- Yo+ zgﬂf deeng(e),

mal field theories have been studied in the literature, see, for 0

example, Refs. 17-19. We would like to stress that the rea-

soning leading to these identities is very different between

our approach and the work of Ref. 17: in our approach the

identities express exclusion statistics properties of CFT o ] )

fields, while in the work of Kedenet al. the identities are It takes an elementary application of the duality relation

based on Bethe ansatz solutions of specific integrable lattice-26 to show thatys . =y, - and hence

models. The first example where these two approaches have

been explicitly connected is that of spinonsStJ(2); CFT

and in the associated Haldane-Shastry spin ctdifis:®

' .The important conclusion from the a_bove is't'hat, up to aconfirming once again the valugqr=1.

finite sum over vacuum charges, the chiral partition sum fac-

torizes as a product of a quasihole piece and an edge electr

piece. This means that the two types of quasiparticles ar

independent or, in other words, that they do not have any

mutual exclusion statistics. This then explains our asymmet-  L(£9)

ric choice of quasiparticles. Had we chosen to work with Yo+~ g L(1) "

fundamental quasiparticles of chargese/m, we would

have come across nontrivial mutual statistics. All of this iswith £ a solution of the algebraic equation

and the corresponding result for the specific heat is

oo

yé’+:aﬁfo deeng(e). (4.4

n
(Vg,++7fg,+)=yg=g, 4.9

We would like to stress that the individual contributions
g,+ do depend org and that only forg=1 (Majorana fer-
ions y4 . andyy _ are equal. An exact result’fs

(4.6
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g9=1-¢ 4.7 To show that the resultgt.12), (4.13 hold for finite tem-

. . . peratures as well we write the general expression
andL(z) the Rogers dilogarithm. This gives

[

w3 w2 AQ(V,T)=—epOJ den,(et+eV)
71/2.+—g§, 7’2,+—g§. 0

e oc e
+EPOJ dfnl/m( €— EV) (414)
o o
Vs = 50655 .., 73, =50.344..., etc. (48 °
and evaluate);AQ(V,T). Using once again the duality re-
lations (3.26), we derive

B. Hall conductance

While the specific heat coefficientis not sensitive ta, e o o
the edge capacitance or, equivalently, the Hall conductance, 9sAQ= - Poaﬁﬁwdfnllm( €)x fo dx IN(X) 3N 1m(X)
obviously does depend on the filling fractienand thereby (4.15
on g. In the quasiparticle formulation, this result comes out
in a particularly elegant and simple manner. with x=e~#¢. Using Eq.(3.9) the last line turns into

Let us focus on a=1/m edge and take as our fundamen-
tal qu_asiparticles the edge elec_tron of charge —e and % fim [In )\+(x)—n1/m(x)ln(x)]é° (4.16
statisticsg=m and the edge quasihole of chamye e/m and Xg—
statisticsg=1/m, all quasiparticles having positive energies ) . ]
only. and by using the asymptotic behavior for>

Let us first consider zero temperature, where the Haldane
distribution functions are step functions with maximal value M) ~x™  nym~m (4.17
ng=1/g. If we now put a voltage/>0 theq<0 quasipar- L
ticles will see their Fermi energy shift by the amogitand W€ conclude that;AQ is indeed zero.
all available states at energy up toqV will be filled. The
total chargeAQ(V,T=0) that is carried by these excitations V. JACK POLYNOMIALS AND BEYOND
equalgwe use the symbal Q for the total charge, while we

keepQ for the reduced chargén units of e/m)] The quasiparticle basis that we specified in E327) has

some arbitrariness to it. For example, we could have chosen
to act first with theG_; and then with¢_, which would
have lead to a different set of states. Also, one quickly finds
that the state$3.27) as they stand are not mutually orthogo-
. . nal. For the purpose of establishing the thermodynamics of
W.hefe t_he factor_ Y originates from the maximum _Of the the FQHE edge theory, what matters is the counting of the
d|s_tr|but|on funct|pn ar)d thus represent_s_the St"?‘t'St'.CS PrOPAumber of states with given charge and energy, and this in-
erties of the quaS|-part|cIes. Clearly, positiyeuasiparticles formation can be extracted from E@.27). However, for the
do not contribute to the responsetat 0, V>0. analysis of more detailed questions, in particular those con-
For ther=1/m FQHE edges, the result faf>0 is cerning transport, the precise form of the multi-quasi-particle
states is of crucial importance.
1 In this section, we shall present an “improved” set of
AQ(V>0,T=0)= a(—e)po(e\l)z PV multiparticle states, which are mutually orthogonal and
(4.10 which are faithful to the statistics properties of the quasipar-
ticles ¢_; andG_;. The idea will be to specify an operator
Hcg that acts on the CFT spectrum, and to modify the mul-
tiparticle states in such a way that they become eigenstates of
. ® e |\ € Hcs. The operatoH g, which was first given by Iso in Ref.
AQ(V<O’T_O)_mEp°( a EV) =PV 23, will be nothing else than a CFT version of the Hamil-
(4.11 tonian of so-called Calogero-Sutherla@S) quantum me-
chanics with inverse square exchange. The analogy with CS
guantum mechanics confirms the assignmengsfl/m (g
) =m) exclusion statistics tap_; and G_;, which are the
AQ(V,T=0) __ e 4.12 CFT analogs of the particles and holes of the CS system. It
\% Pom ' also links the Jack polynomial eigenstates of the CS system
to the quasiparticle basis of the FQHE edge theory.

We would like to stress that, in the context of the
=1/m QHE edge, we do not assign physical significance to
the operatoH 5. We merely use this operator as a device to
select an optimal set of multiparticle states, where “opti-
mal” is meant in the sense of mutual orthogonality and of a

1
AQ(V,T=0)=EQP0(—C1V), (4.9

e2

while for V<0

2

Clearly, the edge capacitance

is independent of the sign &f and we establish the correct
value of the Hall conductance

e
e (4.13
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relatively simple form of matrix elements of physical opera-We would like to stress that the fact that both and G,
tors between the states. diagonalizeH 5 is quite nontrivial. If one evaluatdd g on

The need for improving the form of the multiparticle any vertex operatop? [of chargeQ(e/m)], one typically
states(3.27) can be phrased in yet another way. Let us, as amuns into the field product T¢(Q)(z), where T(2)
example, consider a multiparticle state containing t#0 =—1(9¢)?(2) is the stress energy of the scalar figldOonly
quanta. If we were to work in position space, putting the twofor Q=1 andQ= —m do such terms cancel and do we find
¢ fields at positiong, andz,, theexchange statisticsrop-  that the quasiparticle states are eigenstates gf.
erties of the field$(z) would result in simple phase factors We can now continue and construct eigenstates! gf
associated to the interchangg—z, in a correlator. Working  which contain severap or G quanta. What one then finds is
instead in energy space, withquantag_s, andé_s, we  that the simple product states such as B are notHcg
expect that thexclusion statisticproperties ofg will imply eigenstates, but that they rather act as head states that need to
simple behavior under the interchange—s, in a correlator be supplemented by a tail of subleading terms. As an ex-
or form factor. In particular, one expects that interchangingample, one finds twab eigenstates to be of the fotf
s,«<+S, in a form factor involving a state..,s,,s;,...) will
result in a phase factad(™™. We shall show belowsee,

e.g., Eq(5.10], that the form factors of the true “Jack poly- IM2,12)= ¢ —siom-n, & viom-n, | 0)

nomial” multiparticle states|...,s,,S;,...) indeed satisfy o
this simple property, which is not valid for the naive multi- +2 al b _som-n.— 19— 1m-n. +1/0)] (5.3
particle state(...¢_s,¢_s...)|0). In mathematical terms, =1 z !

the issue is to define the correct coproduct in a situation, iy coefficientsa, that can be computed. The connection of

where, 'due to fractional stafistics, the relevant symmetry i he coefficients, with the Jack polynomials that feature in
not a Lie algebra but rather a quantum group. In the conte

. . ) e eigenfunctions in CS gquantum mechanics has been made
of the spinon basis for the=2 theory, this quantum group explicit in Ref. 18. For theH g eigenstate headed by the

'S a so-called ya,r’\glan, and it has be‘?” established that ﬂ?ﬁultiparticle statg3.27) (with unit coefficien}, we shall use
Jack-polynomial” coproduct agrees with the coproduct thatthe notation

is dictated by the quantum group symmeihy®

A. The operator H g {m;}.{ni}) (5.9

To specify the operato o5, we employ the free boson ¢q that
¢(2), which already featured in our formu{a.2). Following
Ref. 23, we define

M
2, Nol(j=1)m+m]

m

4 Hed{m;}.{ni})=
20 (14+ 1) (i Vmag) _y_1(iVmde) 44

m N 1
+§1 h¢(a(i—l)+ni

Hes=

{mi}.{ni}).
(5.5

wheredp(z)=Z(d¢)z”'~* and where the second term on Clearly, the state$5.4), with them; andn; as specified in
the right-hand side denotes the zero mode of the normal orEq_ (3.27), form a complete and orthogonal basis for the
dered product of three factors\{mde)(z). As a first result, chiral Hilbert space.

one finds the following action dfl .5 on states containing a
single quasiparticle of charg&m or —e:

1
+ 3 [(1Vmae)*o, (5.

B. Norms and form factors

Hesd— 1am—nl0) = () b 1/m_n| O) Of importance for later calculations are the norms of the

' states(5.4) and the matrix elements of physical operators

with between these states. For the explicit evaluation of such
quantities we used the connection with Jack polynomials,

|1 1 relying on results that are available in the mathematical
hg(n)=|z-+mn n+ literaturé® (see also Ref. 29
As an example, we focus on multi-quasi-hole states
and |{n;}). To make contact with the Jack’s, we view the ordered
set{n;} as a Young tableak. The norm squared of the state
HesG - mz2—nl0) =hg(N) G n2-1n|0), |{ni}) then becomes
with )
SUTEUTYSIING (5.6
2
m where)\’ is the Young tableau dual toand thej, are taken
=l ————-n(n+m)|. . L :
ha(n) 3 n(n+m) (5.2 from Ref. 28. Explicit examples are
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. (ng+1m=1)(ny+1m—2)---1/m
<n1|n1>_1(1"1)_ n(n;—1)---1 ,

(nz,ng|ny,ng) =] (2,10 n)

_ (np+2Im—=1)(np+2/m—2)--(ny+2/m—ny) (Np—ny+1/m—1)---1/m (ny+1/m—1)---1/m

~(ny+1/m)(ny+1/m—1)--+(ny+1/m—n;+1) (ny—ny)---1 ng--1 G
|
etc. In the limit where alh;>1, one finds bosonization and on the Keldysh formalism for nonequilib-
N rium transport. Our goal here is to see if we can reproduce
n;¥m-1 their results in an approach directly based on the edge qua-
<{ni}|{”i}>”iﬂl T(1m)" (5.8 siparticle formalism. Before going into this, we would like to

stress that the “thermodynamic Bethe ans@BA) quasi-
Of interest for the analysis of processes where electronBarticles” behind the approach of Ref. 2 are quite different

or holes tunnel into a FQHE edge is the form factor from what we have here, the most important distinction be-
ing that the TBA quasiparticles are a combination of degrees
N<{nm----an21n1}|Gtm/2—n|O>:f(nm----!nl)an,n oty of freedom of both sides of the tunneling barrier; they do not

59 exist for av=1/m edge in isolation.
o (5.9 If the v=1/m FQHE edge were to behave as a Fermi
where the subscrig¥l indicates that the state has been prop-liquid, we could calculate charge transport across a barrier

erly normalized. This form factor describes the amplitude byysing a simplgBoltzmann kinetic equation of the form
which an incoming holédescribed by the operat@&" and of

charge+e) creates a state that hasquasiholes excited over o
the ground state. Explicit computation in the limit where all '(V1T)“9J_md€W{f1(E—eV)Fz(f)—Fl(f—e\/)fz(f)}v
n;>1 yields(for simplicity we give the result fom=3, see 6.1)
Appendix B for the general case
2 s with f(e) andF(e) the Fgrmi—Dirac distributiopg for elec-
H(Nauy )~ I'(1/3)7* [ (n3—nz)(n3—ng)(N—ny) trons and holes, respectively, alid the probability for an
32TV T(203) N3N,N, ' electron or hole of energyto cross the barrier and enter the
(5.10  edge. As is well known, this Boltzmann equation leads to an
Remarkably, this result takes the form of a “Jastrow factor”ﬁlhmIC (linear in V) and temperature-lnde_pe_:nqent current.
. ) ow that we have seen that the non-Fermi-liquid features of
in the energy variables; . The order-§) zeros when wa,  he 1m edge can be captured via the statistics of the edge
come near reflect thg=3 exclusion statistics properties of quasiparticles we can try to write a “Boltzmann equation”
the fundamental quasiholes. Note that the expres&dt®  for transport to and from FQHE edges by putting in appro-
is invariant under global scalings of all energies The  priate generalizations(e) andH(e) of the quantities ,(e€)
form (5.10 of the form factor can be viewed as a limit in gng F,(€), respectively. Before giving precise resulis
(Chiral) CFT of a result on correlation functions for the Sec. VI A be|ov\) we shall consider a “naive” expression
“classical” model of quantum mechanics with inverse pased on the intuition from the quasiparticle approach. In
square exchange. This result was conjectured by Hatanefirs approximation, the factoh(e), which describes the

and later proven in Refs. 13, 29. probability for an electron tteavea v= 1/m edge, comprises
two effects.
VI. TRANSPORT PROPERTIES (1) A correlation effect, which can be traced to the non-

) ) trivial scaling dimension of the edge electron operdsme,
Having checked that the thermodynamics of FQHE edges,, example, Eq(1.3)]. At zero temperature, this is the so-
is correctly reproduced in the quasiparticle language we arg;oq tunneling density of states

now ready to move on and consider transport properties. Fol-

lowing the setup of a number of recent experiments, we shall A*(e)oce™ L, 6.2)
consider a situation where electrofas holeg from a Fermi-
liquid reservoir are allowed to tunnel into=1/m FQHE (2) A temperature dependence related to the exclusion

edge. The dd-V characteristi_cls:‘gr this setup, which were gtatistics properties of the edge electrons. As we have seen,
first computed by Kane and Fishietsee also Ref. 32show  the natural factor associated to theesencef an edge elec-
a crossover from a linedtherma) regime into a power-law  ,0n, is the distribution function

behavior at high voltages and thus presents a clear fingerprint
of the Luttinger-liquid features of the FQHE edge. The ex- Ny m(€). 6.3
perimental results from Ref. 8 are in agreement with these ’
predictions.(See Ref. 2 for a further theoretical analysis of Combining these factors, we come to the naive expressions
these data.

The calculations by Kane and Fisher were based on h@(e)=€™tng_pm(e), (6.4)
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and by similar reasoning we obtain In this formula,E is the operator for the total energy per unit
© m—1,.8¢ length(proportional to the Virasoro zero modg), andAQ
H™(e)=€"" e ng_p(e), (6.9 s the operator for the total charge per unit lenfphopor-

where the thermal facta#®n,,(¢€) has been dictated by the tional to the zero modé, of theU(1) Kac-Moody algebra
requirement of detailed balanc€his same thermal factor Clearly, this anti-commutator fixes the suRfi(e)+h(e).
the Boltzmann equation to the case of fractional statistics. [Af0m our analysis in Sec. IV. We find
our view, the proposal of Ref. 33 is incomplete, as it ignores 2 (eV)? (eV)
the correlation effects which are unavoidable for quasiparti- EY=pol =5+ ——|, (AQ)=—ep;—— (6.1
. . . . < > Po 6 2 6 ’ < Q> epO 3 .

cles obeying fractional exclusion statistics. B

One quickly finds that the Boltzmann equation with fac-

0) ) - and obtain the exact expressions
tors h'**) andH' is not exact at finite temperature. In Sec.

VI B we shall further comment on this equation and argue (e—eV)2+ 72 p? (e—eV)2+ 72 pg?
that it can be viewed as a first stage in a systematic approachH(€) = ——ge—ev; 7 — &)= —FFew
Before we come to that, we shall in the next section present (6.12

a particularly simple derivation of the exact perturbative

characteristics for tunneling from a Fermi liquid tova=2  They lead tol-V characteristics
FQHE edge. This derivation uses the idea of a kinetic equa-

tion, together with the algebraic properties of the edge elec- (V,T)xefB 3 @/Jr
trons. ' 2

BeV\?
2

: (6.13

in agreement with the result obtained in different
approached!?

A careful derivation, based directly on the form of the Clearly, the Green’s function.8) can be evaluated in
tunneling Hamiltonianfwe write ¥ for the edge electron other ways, for example, by using a conformal transforma-
operator(denoted by¥ ., in Sec. Il and byG in Sec. ll), and  tion in the x,t domain®** We would like to stress that our
we indicate the filling fraction by an explicit subscript derivation is more direct and uses nothing more than the
fundamental anticommutation relation of the edge electrons.
For v=1%, these are particularly simple as they derive from
the so-calledN=2 superconformal algebra, which has been
well-studied in other contexts. For other filling fractions the
fundamental anti-commutators look more complicated but
are available in principle.

A. Kinetic equation for interedge transport

Himutj de[W!_,(e)W,_y5(€)+H.cl, (6.6)

leads to the following kinetic equatiaisee, e.g., Ref. 32

I(V,T)ocetZch de[f(e—eV)H(e)—F(e—eV)h(e)],

(6.7) B. Interpretation in terms of exclusion statistics
whereh,H are one particle Green’s functions If we compare the exact kinetic equation fie= 3 with a
naive generalized Boltzmann equation, we see that the mis-
H(e)=(V -1V -y &)y 1, take in the latter is in the approximation of the Green’s func-
' tion h(€) by a the produch(®)(e) of a tunneling density of
h(é)=<‘I’V:1/3(6)\PI:1/3(5)>V’T (6.9 states times a Haldane distribution for fractional statistics.

The reason why this approximation turns out to be rather
_ _ ) N & poor is that the operatdi(e) =P _, (€)W ,_14(€) inside a
Note that the expressiof6.7) is perturbative as it gives the FQHE edge isiotto be viewed as a simple counting operator

lowest nontrivial order in the parameter _ _ weighted by the appropriate power law©fThis fact can be
The quantitied(€) andh(e) can be determined by using yraced to the nontrivial operator ternfsroportional to the

two simple observations. The first is thatdstailed balance energy and the charge operadrsthe right-hand side of Eq.
which can be phrased as the requirement that at zero voltagg 10)" To further illustrate this point we evaluated the ex-

there should be no current flowing. This fixes the ratio Ofpectation value of the operatdi(¢) in a (normalized one-
H(e) andh(e) according to electron statde’)

for edge electrons in the=3 FQHE edge, taken af=0.

H(e)=ef'<"*Vh(e). (6.9 , (€ —€)(e'2+ )
The second observation uses tilgebraic propertiesof the (¢'IN(e)]e)xe®5(e—€")+6 €'’ B(e'~e).
edge electron operator, which include the anticommutation (6.19
relation . . . . :
! This result shows an interaction effect in the actiorNgk)
{q,T L(€),W,_1(e)} on a one-electron state: rather than just counting quanta of
v=3 " V73 energye, the operatolN(e) is sensitive to the presence of
27 1 E AQ guanta at energy’ > € as well. In the Green'’s functioh(e)
=T —e?5(e—€')+6—+3(ete') o (for e>0), the first term on the right-hand side of £§.14)
Po Po Po corresponds th(?)(¢), while the second term leads to the

(6.10 following correction term:
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wheref(es,€,,€7) is the form factor given in Eq5.10 and
the integrations are over ordered sets of energigse,
=¢€,=0. We have used the notation

Ng(€)=eny(e). (6.17

This result becomes exact in the linfit—0, where all dis-
tributions become step functions and the interaction effects
disappear. Note that this formula has a clear asymmetry be-
8 tween electrons and holes: electrons that come into the edge
settle as edge electrons, while incoming holes “decay” into
FIG. 2. One-particle Green’s functiam(e) for filling fraction & total of three edge quasiholes, with relative amplitudes
v=% and at zero voltage. The drawn curve is the exact resulgiven by the form factorf(e3,€,,€;). For T=0, V>0 the
(6.12; the dashed curve is the approximatttf(e) and the dotted ~ expression(6.16) reduces to a single term
curve corresponds fch@ +h®](e).

e[57)

I(°>(V>O,T=0)0<—ef dee’xV3,  (6.18

- € —€ 6/2+€2 O<esV
h<1>(e)=6f de’ ( )(,2 ) ny(e’). (6.19 _ _
€ € while T=0, V<0 it reduces to
In Fig. 2 we have plotted the exact result fdre) against the ©) 5 3
approximationsh©(e) and [h(@+hM](¢). Clearly, the ! (V<0'T:O)OCGLQ_E_ngfsdfzdélf (€3,€2,€1)c V.
correction termh®(¢) greatly improves the accuracy of the o (6.19

description.

Thepsituation here can be described as follows. As far a1 the latter case, the power lalwV° is a simple conse-
thermodynamics goes, the distribution functiange) and  quence of the fact that we perform three independent inte-
nys(€) give exact results for quantities such as specific hea@rations fdesde,de; over quasihole energies, with a form
and conductance, and we may view the edge system as &®ctor f(e3,€;,€;) that is scale invariant.
ideal gas of fractional statistics quasiparticles. However, the Clearly, the expressio(6.16 needs corrections. We be-
operatorS\IfI:m(e), W, _.4(€) are not one-particle opera- Ileve_that a systematic expansion, along the lines of the ex-
tors in the usual sense, as they do not simply add or extract%ﬁ”s'onh(f):h_(o)(e)+h(l)(5)+‘" that we have demon-
single quasiparticle from a many-particle state. In edge tunstrated above, is possible. We plan to demonstrate this in
neling experiments, the edge system communicates with &ore detail in a future publication.

Fermi liquid via the operatorsIfI:m(e) and¥,_q;5(€) and

we cannot avoid interaction effects. We do believe, however, VIl. CONCLUSIONS

that a systematic expansion based on the quasiparticle pic-
ture is possible.

To avoid reference to a “filled sea of negative energy
edge electrons” we prefer to discuss transport in the pictur
where the fundamental quasiparticles are positive ener
edge electrons and edge quasiholes, respectively. If we
stick for a moment to the abovementioned “naive” zeroth
order approximation, we would arrive at the following low-
est contribution to the tunneling current at voltageand
temperaturerl:

The edge electrons that have been central in this paper are
the edge analogs of the composite fermig@$) used to
describe bulk physics. We have made clear that, while the
%xchange statistics of these particles are fermionic, their ex-
Rusion statistics properties are not and are instead captured
nontrivial distribution functions,(€) that take the place
of the familiar Fermi-Dirac distribution. We have also inves-
tigated to what extent a quasiparticle picture, with edge elec-
trons and edge quasiholes as the fundamental quanta, can be
used as a starting point for a quantitative analysis of trans-
. port. We have used algebraic properties of ie edge
1OV, T)e _ej deny(e—V)Na(€)e? electrons to derive exact results, and we have claimed that in
0 general exclusion statistics properties may be used to set up
. a systematic expansion. In our view, these results hold some
+ eJ' deN(e—V)ns(e)e? important lessons for other situations where fractional statis-
0 tics quasiparticles have been proposapinons ind=1
guantum spin chains, anyons 2, etc).

+eJ' d€3d€2d61nl( 2 ei+V
0 i
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APPENDIX A: COMPOSITE EDGES—JAIN SERIES tition sum is

In this appendix we briefly describe a quasiparticle for- * qQZ/(2f5>
mulation of the composite edge theories corresponding to the z"(q)= E =% A
fillin ; _ ; ; Q=== IIZ1(1-0q)

g fractionsv=n/(np+ 1) of the Jain series. These edge
theories can be written as a collection wffree bosons, and restrictions, such as the even/odd in &®) are taken
coupled via the topologicak matrix of the effective bulk into account by restricting the charge quantum nun@er
Chern-Simons theory/In Ref. 34 it was shown that the ef- Our fundamental charged edge quasi-particles will now
fective low-energy CFT for particles satisfying Haldane sta-be the primary fields ob)(1) chargests and —r; we shall
tistics with nXn statistical matrixG is ac=n CFT with  write the creation and annihilation modes of these fields as
topological matrixk =G~ 1. Inverting the argument we ex- ¢_, andG_,, respectively. Note that fas# 1 the operators
pect that the fundamental excitations of the CFT for QHEG _, are not the physical edge electrons as the latter can only
matrix K can be interpreted in terms of pseudoparticles satbe written by including nontrivial factors from the neutral
isfying fractional exclusion statistics with matr&=K ~1. sector.

An alternative and more natural approach to the Jain se- In close analogy with our analysis in Sec. Ill D, we can
ries edges would be to first perform a change of basis whiclmow establish that the states
separates a single charged mode from a set-ol neutral

(A5)

modes®®3¢ The latter are governed by &u(n), affine Kac- G_(oM-1)ri2s+Qis—my," "G —rizs+ Qis—m,
Moody symmetry, and can be treated separately. An option
is to view them as a set of free parafermions in the sense of X (2N-1)si2r—QIr—ny '¢fs/2er/rfn1|Q>

Gentile, see Ref. 6. The CFT for the remaining chargequ,[h
mode is of the type that we described in this paper, with
=v. The entire edge theory is then described by a single  m,=m,,_;=---=m;=0, ny=ny_;=---=n;,
(charged g-on and a set ofu(n), degrees of freedom.
As an example of how the chiral Hilbert space works out,and

here is the example af=2/5, with K matrix n=0 if Q=0,

K:(z 2) (A1) n,>0 if Q<O, (AB)
with Q= —(r—s),...,+(s—1), spanning the chiral Hilbert

This theory has two independekt(1) affine Kac-Moody space(A5) of the charged boson. The total energy of the

symmetries, giving a factdil;_,(1—q')]~ 2 in the partition  lowest-energy state in the charge sed@rhaving particle

function. The various charge sectors are labeled by pairs afumbersM andN for the quanta of typ& and ¢, respec-

integers (4,l,), the energy being given byE(l4,l,) tively, equals

= &(313—4l,1,+3I2) [this is the bilinear form defined by

2
the inverse of th&K matrix (Al1)]. Thus . - Q_ LY 9 S\ 9
E(Q;M,N) 2rs+23M SM-I—ZrN + r+5Q<0N
qE(|1»|2) (A7)
Z,- = e R A2 . . . ..
25 (|§2) [, (1—-g"H]? (A2) and leads to the following expression for the chiral partition
. . sum:

Under the rearrangement inga(2), timesU(1), thecom-
bination 3(1,—1,) plays the role of thesu(2) spin, while (s-1 gE(QM.N)
[,+1, is the charge under the néw(1). Thecharacter iden- 9= —_—. (A8)
tity will be3® Q=Tr—-9 MR=0 (Dm(Dn

su2) o5 cu2) o5 The equality of the expressioiid5) and(A8) is an identity
Z,—a5( D= X[ Zg (D Zeved D + X[ 172 (D) Zogd A, of the Rogers-Ramanujan tygeee Refs. 17—19 for some
(A3) similar identities.

In the casg <0, the Jain series QHE edge exhibits coun-
terflowing edge modes and it has been claimed that a
disorder-driven fixed point dominates the physit® It will
be most interesting to analyze this scenario in a quasiparticle

where the subscript eveépdd) on Z¥" means that we restrict
to the states with totdlU (1) chargeQ even or odd. Simple
expressions for theu(2), characters are

Su2)y, o\ q1/4(m+n)2 formulation.
Xj=o (Q)_m+n oven (A (A’ APPENDIX B: FORM FACTOR FOR GENERAL M
LA+ m? We briefly explain the exact evaluation of the form factor
sti(lz/)zl(Q): 9 (A4)  f(mm,...m;) as defined in Eq(5.9. Let us consider the

m+modd (Dm(An special casean=2 first. In that case the “hole operator”



15716

G(2z) has conformal dimension 1 and may be identified with N(nz,n1|Gil_n|O>= S

one of the currents of the affine Kac-Moody algebtg?); .
By exploiting the OPE

d(2)p(wW)=(z—w) " ¥ G(w)+O(z—w)] (B
one obtains
d
G(w)= fﬁc 2—;(Z—W)73’2¢(2)¢(W)- (B2
We also havé&
$2BW)[0)=(z=W)*2 X, P} T2(zw)|nz,ny),
2. 83

where P{_ "(z,w) are the appropriate Jack polynomials.

Combining the above, we obtain

(—=1/2)
N2.Ny

(w,w)[ny,ny) (B4)

G(w)|0y= > P
ny,Ny

and it follows that
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(—1/2)
n2,nl

(1,1,
(B5)

with j,, as in Eq.(5.6). For generaim one obtains a similar
result in terms of JackJ)onnomiaIs with labet (/m). Us-
ing the explicit resuft-?

: 1/2
n,n2+n1[1(2n1,1"z*n1>] P

™1 T (Um)
(—1/m) _
Ping " (L0= 11 w7 =57y
«T1 F[nj—ni+(j—i+1)/m]’ (B6)

F[nj—nij+(j—i)/m]

i<j

together with the resul5.8) for the j,,, we derive the fol-
lowing asymptotic form fon;>1:

[F(llm)]mlz Hi<j(nj_ni)l/m
o T(1—i/m) I p;(m-Drem

(B7)
The simple Jastrow form of this form factor is a clear indi-
cation that in the limitn;>1 a much simpler derivation,

along the lines of “bosonization in momentum space”
should be possible.
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