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Density of states of a two-dimensional electron gas in a nonquantizing magnetic field
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We study the local density of electron states of a two-dimentional conductor with a smooth disorder
potential in a nonquantizing magnetic field, which does not cause the standard de Haas—van Alphen oscilla-
tions. It is found that, though the influence of such a “classical” magnetic field on the average electron density
of states(DOS) is negligibly small, it does produce a significant effect on the DOS correlations. The corre-
sponding correlation function exhibits oscillations with the characteristic period of cyclotron quéniym
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I. INTRODUCTION 1) 6
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In a clean homogeneous electron gas the wave functions

pf electrons_are plane waves and the density of electron 93%ere 5v(e,r) = v(e,r)— vg is the local deviation of the DOS
is constant in space. In disordered conductors electrons ajg point r from its average valuepo=m/=#2, m is the

scattered by impurities, W.hic.h change their.wave funCﬁO_n%|ectron mass, and the brackéts) denote averaging over
from the plane waves. This, in turn, results in spatial variathe random impurity potential. Clearly, the correlation func-
tions of the electron density. It is appropriate to describg;g, depends only on the difference of energy arguments
those variations py introducing the local density of electronp(el,ezyr): P(er—€,,1).
states,v(e,r), which is determined by the equation The effect of the classical magnetic field on the DOS
correlation function becomes pronounced if the disorder po-
tential has a correlation length much larger than the Fermi
v(er)=22 | (1)|28(e—€,), (1) wavelength. In such a potential, electrons experience small-
¢ angle scattering, and their transport relaxation time is
) B ) much larger tharnrs. Thus there exists a range of magnetic
where indexa specifies the electronic states, and the factokig|gs in which Landau qguantization is suppressed.
of 2 reflects thg spin degeneracy. The _distribution fgnction of¢ 1), while classical electron trajectories are strongly af-
the local density of statea®OS) at the fixed energy in 0pen  tected by the field 7> 1). In this regime the correlation
metallic disordered samples was studied in many pases  fnction P(e,— €,) is strongly enhanced with respect to the

e.g., Ref. 1 with the emphasis on the rare, nontypical fluc- ;oro_magnetic-field case, and exhibits peaks as a function of
tuations. It was found that although the local DOS dlstrlbu-energy differencee, — e, with the distance between peaks

tion is close to the Gaussian one, it has slowly decayingq, 5| "to the cyclotron quantude.. For the macroscopi-

Iogarlthmmally r}ormal asymptotics. Prigodirstudied the cally homogeneous sample the shape of ritie peak,|(e;

correlation function of the density of the electron states of a_ €,)— Nfi w| <fi w /2, in the local DOS correlation function
cl— C 1

two-dimensional system at different energies in relation t :
the NMR line shape. % given by
It is well known that a strong magnetic field modifies the 272 1 e
single-particle densities of electron states, both local and av-  p(¢,—¢,)= ——° " _f( €1—€ “’C), 3)
erage, due to the Landau quantization. In a two-dimensional 2\2mEg7, N hn?l 7,
electron gas the quantization leads to a peak structure in the
average density of states, which is revealed in tunneling exvhere
periments as peaks in the dependence of the tunneling con-
ductance on the applied bias, see, e.g., Ref. 3. The form and f(x) = 1
width of these peaks are determifidny the disorder. (x)= E
In a weak magnetic field the distance between the Landau
levels,iiw., is smaller than their disorder-induced width. As andEg is the Fermi energy. Aa becomes larger, the width
a result, in such a “classical” magnetic field, oscillations in of the peaks increases and their height decreases, so that
the average density of states caused by the Landau quantizeventually the oscillatory structure is washed out. The total
tion become exponentially sméllxexd —27/(w.7)]- Here  number of resolved peaks is of the order\ab. 7.
75 IS a quantum lifetime of an electron. The sensitivity of the correlation functidd to the classi-
The goal of the present paper is to show that, though sucbal magnetic field comes from the fact that this function is
a “classical” magnetic field does not influence the averagedirectly associated with the self-crossing of classical electron
DOS, it does produce a significant effect on the correlatiortrajectories. We denote the probability for an electron to
function of thelocal density of states fluctuations complete a loop of self-crossing trajectory over titnas
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K(t). The correlation functiorP(e;—€,) turns out to be produce an energy dependence Rffe;—e,,r) at e;— ¢,
proportional to the Fourier transform of this return probabil-<E.. Conversely, the averaged prody&tRG*) is deter-
ity, mined by long electron trajectorigsee, e.g., Ref.)5In gen-
. eral, the product of two exact Green's functions
P(el—ez)“K(61—62)=J dt e (- etK (1), gEl(rl,rz)g’jz(r3,r4) oscillates rapidly with the distance be-
0 tween its arguments, so that the function

The strong enough,of.7;>1) magnetic field curves the

electron trajectories, significantly affects the return probabil- K(€1,€2.11.12.13.r) =(G& (r.r)Ge(rara))  (8)
ity and, in turn, leads to specific correlations in the local
DOS ate;— ex~fw,.

For long time scales> r,, the functionK(t) can be
found from the diffusion equation. It givés(t)o(Dt) 1 for
the two-dimensional caseD( is the diffusion coefficient
The Fourier transfornk (w) is proportional to Ing), which
leads to the well-knowhlogarithmic form of the local DOS
correlation function with the renormalized by the magnetic
field diffusion coefficient.

At short time scales<r,, electrons move ballistically
along the cyclotron orbits. Provided that,> 1, during the
time t electron may return to the initial point many times.
Multiple periodic returns of electron produce peaks in the
probability Fourier transfornK(w) at energies, which are K(e,, e,,r;,r,,r3,r4)
multiples of the cyclotron quantum. The correlation function

averages out. This is no longer the case if its arguments are
close to each other pairwise. That is, the sigs-r,],|r,

—r4| or, alternatively,|r;—rs|,|r,—r4| of spatial domains
defining the ends of a trajectory should be small endlegs
thanvg7s) so that electron propagation in these two domains
could be described by plane waves.

If the ends of trajectories are separated by a distance ex-
ceeding the electron wavelengtin; —r,|=\g, one can re-
late the functionK to the generalized classical correlation
functions — diffusoniC ” and Cooperork ¢, which are given
by the sum of all ladder and all maximally crossed diagrams
respectively. That is,

P(e;— €,) oscillates with the same period, which is reflected de, [ des _
by Eq. (3). = Wyof f @lP1(r1—r4)gipa(rg—ry)
Il. DERIVATION OF THE DOS CORRELATION XKL _(ry,d1:r2.00) [ri—ral,|ra—r3|<vers (9)

€17 €
FUNCTION
or
Now we derive expression for the correlation function of

the local DOS,P, valid for arbitrary electron energies. We K(eq,€5,r1,r2,r3,r4)

omit the Planck constant in all the intermediate formulas.

The DOS[EQq. (1)] can be rewritten in terms of the exact de¢y [ dops QiPA(T T3 giP2lTa— 1)
retarded and advanced Green’s functions of an electron in ”VOJ J rh sl e
the following way:

Xngl (T, P1:12,92) [ri—r3l,[ra—rg<vers.

1
v(e,r)=;[gﬁr,r)—g?(r,r)], (5) (10)

Here p;=pen;, where n;=(cosd¢;,sing;) is a unit vertor
with the direction determined by the angfe.
P Wa(ro) In the opposite limit, when the all four pointg, r,, rs,
Ririr)=2 e 10 (6)  andr, coinside, both ladder and maximally crossed diagrams
¢ @ contribute to Eq(8). As a result, the DOS correlation func-
and g’:(rl,rz):[gf(rz,rl)]*_ Single-electron wave tion [Eq. (7)] contains both the diffuson and the Cooperon
functions ¢,(r) satisfy the Schr*odinger equation for non- contributions:
interacting electrons, Hoy, = (€,+Eg)¢,, Where Hg 5
=—(#%/2m)V?+U,(r), andU,(r) is the random potential. P(€;,€,1)=——ReD
With the help of Eq.(5), the DOS correlation function TVo
[Eq. (2)], can be rewritten in terms of the ensemble-averaged (12)
products of the electron Green'’s functions: HereD and( are the diffuson/C?, and the Cooperorj@c,
averaged over the initial and the final directions of the elec-
tron momentum:

where

(r,r)+CEl_62(r,r)].

€17 €2

P(e;—€p,1)= [2 ReGR (r,r) gA (r,r))

™Y

dg, deb,
+<gel<r,r>gez<r,r>>+<g§l<r,r>g§2<r,r>>]. Dfrfz“l’rz):fEE’C?Z(“-%”Z’%)’

(12
@)

The averages of the typ@RGR) and (GAG*) can be ne- (o )_J%%Kc (F1obiite )
glected as they do not contain contributions associated with CoreT1T2 27 27 a-e L1222k
the electron trajectories longer than and, thus, do not (13



15700 A. M. RUDIN, I. L. ALEINER, AND L. I. GLAZMAN PRB 58

As one sees, calculation of the DOS correlation functionEquation(14) describes electron motion along the cyclotron
reduces to an analysis of two classical correlation function®rbit accompanied by the angular diffusion caused by scat-
D and(C. Provided that we are interested in the DOS corretering on a random potential. The solution of this equation
lation function in the presence of a magnetic field, the probwill give us the Fourier transform
lem can be further simplified. Indeed, as is well known, the
diffusion and Cooperon depend quite differently on the mag- o ,
netic field(see, e.g., Ref.)6In particular,C is exponentially Kﬁ(1;2)=f KP(t,1;2)e''dt
suppressed if the magnetic length,=/cfi/eH becomes °
smaller than the transport relaxa'ti'on length We, in fact, ¢ 4o probability densityC2(t,r,,d1:r,,b,) for an elec-
assumed a much stronger conditiar,>1 for the mag- tron which starts at moment=0 in pointr,, with a direc-

netic field. Thus the Cooperon term in Ed.1) can be ne- .. : :
. oo _tion of momentum¢,, to arrive at moment to the pointr
glected in our case. On the other hand, the diffusion term in ! P 2

; . X with momentum directionp, .
Eq. (12) is meaningful and will be analyzed below. The approximation of an angular diffusion that we have

used here is valid only for long trajectories: the electron must

IIil. DOS CORRELATION FUNCTION FOR AN INFINITE traverse many impurities and, therefore, experience many

TWO-DIMENSIONAL ELECTRON GAS small deflections in the course of its motion. For a smooth

Let us first calculate the local DOS correlation function, "@ndom potential, this means that the typical trajectory length
P(e;—€,), in the macroscopically homogeneous sample.mUSt exceed the corrglauoq rad|§spf the potential. In the

The generalized diffusoﬂcf(rl,¢l;r2,¢2) satisfies the case of cyclotron motion this requirement leads to the con-

Boltzmann equatiotisee, e.g., Ref.)5describing the scatter- dit(;c.)n Rc?(f, or tdc?‘fglﬁF (helre R; andt.=2m/w are iche 4
ing of electrons on impurities in the presence of the magneti€@dius and period of the cyclotron motion, respectively, an

field. In the special case,<r, we are interested in, small- UF iS the Fermi velocity of an electron

angle scattering dominates the collision integral. Taking ac- In Ofd‘?f to s_olve Eq@“) it is convenient to infroduce
count of this simplification, the transport equation for new spatial variables which correspond to the center of the

ICf(rl,¢1;r2,¢2) takes the Fokker-Planck form electron cyclotron orbit,

R=r+R/nXxz], (15
. d 4 1 (92 D
—lo+ UFnzL;_r2 + Gy Ty 2 Ko(ri,¢1:r2,62) wherez is a unit vector parallel to the magnetic field. Chang-
T2 ing variables in Eq(14), and performing the Fourier trans-
=278(hp1— o) O(r1—r,). (14)  formation fromR, to g, we obtain

[—iw-l—w L+R§q2_ia_2+R_§ (n q)z—q—z—i—<n qi+in q)HICD(R ¢1:,0,¢2)
Cad)z 27_tr Ttra¢% Ty 2 2 RC 2 (9¢2 a(ﬁz 2 w 1:¥P1:4, P2

=278(py— Ppp)e 1R, (16)

We seek for the solution of Eq16) in the following form:
ei qro—ry)

’Cg(rl’¢1;r21¢2):J >
D . _ ing . (27)
KO(Ry,¢1:0,62) =2 €M2F (w,0:¢1).  (17)

n gin(¢2— 1) giRcal(nz—nq) X7

Substitution of Eq(17) to Eq.(16) results in a linear system X - quz n2
of equations forF,. At small enough wave vectorgR; —i(w—Nwe)+ 5 +—
<wiry/(|o|+ we), terms in the square brackets on the left- v T
hand side of Eq(16) become small, the equations corre- (19
sponding to different become independent, and we obtain a  After substitution of Eq(19) into Egs.(11) and(12), and
solution forF,(w,q; ¢4) in the form subsequent integration over angles, we obtain the following
expressions for the correlation function of the local DOS of a
e Nt1g—1dRy homogeneous two-dimensional conductor in the classical
Folw,q;é1)= R n?’ (18 magnetic field:
i(w—Nwg)+ e + ™
The inverse transformation of variables immediately yields P(e;— €)= 2 dq oo (), (20)
1 2

now the solution of Eq(14): mvol (2)?
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|3n(aqR)|?
R:g?

27y Tr

Doy (=2 - (@

_i(El_Ez_nwc)+ —
Here J,(z) is a Bessel function. At small frequencies,
w= €1~ €,<Nhl 1, then=0 term in Eq.(21) dominates, and

1

D(Q~—m .
(@ —iw—i—quZ/ZTt,

This limit corresponds to the diffusion regime with the dif-
fusion coefficientD = R/27, renormalized by the magnetic
field. The correlation functiolP(e;—€,) depends logarith-
mically on e;— €, in this limit:

P (&%)

(wcTtr)2

Ple €)= ok,
r

. (22

|61_ 62|Ttr

At large frequenciesn=¢€,— e,>%/7,, the correlation
function P(e;—€,) exhibits peaks at;— e, close to mul-
tiples of cyclotron quantumn#z .. The form of thenth

2.2

W T,
EC ! Re{l[a(n,dw)]K[a(n,dw)]}, FIG. 1. Energy dependence of the local density-of-states corre-
TEF T lation function P(e;—€5) of the macroscopically homogeneous
(23 : . g : .
sample in the classical magnetic field, obtained by numerical analy-
where i Sw=€;— €,— nfhw, was introduced instead of,  sis of Egs.(20) and(21). Parametet. 7= 10.
—€,, and a(n,dw)=2(n’—idwr,). Functionsl,(a) and
K,(a) are the modified Bessel functions. For laayee can  Fig. 2(b). We demonstrate that the oscillatory patterrPat
use the asymptotical relatidp(a)K,(a)~1/2a, and arrive  energies larger thafiw, persists, although the amplitude of
at the resulting Eq(3) that describes the energy dependenceoscillations becomes smaller than in the case of tunneling
of the local DOS correlation function in the vicinity of the into the bulk. In order to find the conductance correlation
nth peak. function, one should, according to Ed.1), find the Fourier
The overall energy dependence of the correlation functionransform of the return probabilitip(t) for an electron emit-
of the local density of states for an infinite sample, obtaineded from the contact right at the edge of the electron gas.

P(e1— €)=

by numerical analysis of Eq$20) and (21) is presented in Let us consider an electron which is emitted from a point-
Fig. 1. The DOS correlation function exhibits strong oscilla-like tunnel contact attached to the edge of the two-
tions with the period close thw, . dimensional conductor at a momenrt 0 with the initial ve-

IV. OSCILLATIONS OF THE DOS FOR TUNNELING a)

tunnel contact

INTO THE EDGE OF A TWO-DIMENSIONAL
ELECTRON GAS

The tunneling density of stateq e,r) is directly related Y
to the tunneling differential conductan€g(V) of a point
contact attached to a two-dimensional gageV,r)/vg 2DEG

=G(V)/Gy (here Gy is the average linear conductance at
zero magnetic field Thus, measuring the conductance cor-
relation function{8G(V)8G(V+AV)), one can determine
the DOS correlation functionP(eAV)=(5G(V)5G(V
+AV))/G3. Here 5G(V)=G(V)—Gy. The tunneling DOS
we studied so far is related to tunneling into the “bulk” of a
two-dimensional electron gas; see Figa)2 For GaAs het-
erostructures, however, there exists a well-developed method 2DEG \
of forming point contacts for lateral tunneling into the edge
of a two-dimensional electron gdsee, e.g., the review of  FiG. 2. Two possible tunneling experiment that enable one to
Beenakker and van Houtén The edge affects electron tra- measure properties of the tunneling density of electron stédes:
jectories and thus alters the correlation function of the tunthe pointlike tunnel contact is attached to a two-dimensional con-
neling density of states. Below we estimd&€e, —e,) for  ductor far from its edgestb) tunneling occurs at the edge of the
the specific case of lateral tunneling, schematically shown inwo-dimensional electron gas.

b)

tunnel contact
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R AR =2R sin¢ Here we exploited Eqs(24) and (26). One sees that the
probability of finding the center of electron orbit in the initial
2DEG point after timet decreases rapidly with time:

3/4
Tir

AXAY " R p et

[0 K(t)=
. Rx

Tunnel contact

As the result, in the presence of a boundary, contributions to
the electron return probability coming from the trajectories
with two and more revolutions along the cyclotron orbit are
FIG. 3. Drift of an electron in the magnetic field caused by theSmall and can be neglected. The probability of the electron’s
multiple specular reflections from the boundary of the two-return to the point of origin before a full revolution is com-
dimensional electron gas. pleted is exponentially smallp~exp(—7,/t), because of
the small-angle character of the electron scattering, see Eq.
locity characterized by the anglé,. For any nonzerap,  (14). Therefore, the main contribution to the oscillatory part
electron experiences multiple reflections from the boundarpf P(e;—€,) comes from trajectories which involve one
of the two-dimensional electron gésee Fig. 3. The bound- revolution between the start &0 and finish at the moment
ary of the electron gas is usually smooth, so that we assume=t.=2m/w.. Let us now study the latter contribution.
this scattering to be purely specular. Those multiple- If there were no boundary, the probability densipft)
scattering events lead to a drift of the guiding center of elecfor the electron to return to the initial point at tine=t,
tron orbit along the boundary of a two-dimensional electron+ 6t, whereét<t., could be easily obtained from the solu-

gas with a velocity 4, which is given by tion [Eq. (19)] of the transport equatiofil6). In fact, one
putsr,=r, in Eq. (19), and integrates it over all possible
ARy, \F R.—Ry values of¢, and ¢,, taking into account that we are inter-
vaT 5 TN FUFYN R. (24 ested in trajectories which are close to a single cyclotron

loop. As a result we obtain the return probability density
for R, less tharR, and is zero otherwise. HeR, andR,  which has a strong maximum &&t., with the amplitude
are the coordinates of the center of the electron orbit, whichgdepending on the amount of disorder in the system:
in the initial moment =0, are

(28)

) _ \/—wcTtr T t—tg 2
R=Rsing;, R,=R.os¢, (25) D(t~tc)= R—gex T | |
andAR, is defined in Fig. 3. In the absence of disorder, drift
prevents an electron from returning to the contact, and th
return probability D(t)=0 at t>0. Disorder, however,

This equation is valid in the absence of the boundary, i.e., for
8 homogeneous system. Clearly, for such a system, trajecto-
ries with different initial anglesp, contribute equally to Eq.

to two effects:(1) motion along the cyclotron orbit is accom t28). For a system with a boundary this is obviously not the
panied by the angular diffusion: an@) in addition to the case. That is, only a small fraction of trajectories with

boundary-induced drift, the guiding center of the electron_ LI wer contribute, for which the disorder-induced uncer-

o . S . tainty of electron position exceeds the shifR,=uv4t.; see
cyclotron orbit diffuses in a direction perpendicular to the Fig. 3. Thus in the presence of the boundary the return prob-
boundary. As we will see, for small enough initial angies e

these two effects can, in fact, overcome the boundary"’lb”'ty density Dy(t) can be estimated by multiplying Eq.

induced drift of electron away from the contact. (28) by a small factor Hwy:
From Egs.(24) and (25 we see that the larger initial

angle ¢, is, the faster electron drifts away from the contact. Dy(t)~ D(1) _ (29)
In view of this fact, let us start from the cagg =0, which Voery

corresponds to the center of an electron cyclotron orbit hav- . ) .

ing the initial coordinate®,=0, andR,= R, . Our goal now According to Eqgs(11), the C(.)rrelatllon function of the DOS
is to obtain the probability of finding the center of orbit again@ the edge of the two-dimensional electron g&e;
in the same point after time During timet, the center of ~— €2) is determined by the Fourier transform®f(t) given

orbit diffuses in a verticalsee Fig. 3 direction at a distance BY Eds.(28) and (29). Performing the Fourier transforma-
tion, we finally obtain

AY(1)=|Ry(t) = R¢|~\Dt, (26) 5 e
P(e;—€3)~——c08 2
whereD = R§/27-tr is a diffusion coefficient. During the same (e1~€) Mo RS 5( T hwe )
time intervalt, the center of the orbit will travel along the )
horizontal axis at a distance xexd — 2T (€1~ € (30)
W Ty P
’ 5/4
AX = ftv (t')dt' ~v jt . /AY(t )dt’%v t_ One sees that the correlation function exhibits harmonic os-
0 ¢ Flo R. F il cillations with the periodi v up to the energies of the order

(270  of e,— ex~hw o . The amplitude of these oscillations
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is w.my>1 times smaller than in the case of vertical tunnel-In order to observe experimentally the oscillations of the
ing into the bulk of the two-dimensional electron gas; see EqDOS correlation function predicted in the present paper and

3). given by Egs(3) and(30), one has to distinguish them from
the interactioninduced oscillations of the density of the
V. DOS CORRELATION FUNCTION electron states. The easiest way to do this is to fix two of the
IN AN INTERACTING SYSTEM arguments of the correlation functiongl—e(Fl) and e,
— ¢, and then measure as a function of the shift in the

Until now we have completely disregarded effects of the : ). (2)
electron-electron interaction. It is known, however, that thischemical potentiale” — g™
interaction has a crucial efféodn the tunneling DOS of the

disordered conductor. That is, interaction leads to a strong

energy dependence of the single-particle density of electron VI. CONCLUSIONS
states for the energies close to the Fermi level. As a result,

the density of states must be written as a function depending " SUmmary, we study properties of the two-dimensional
both on the position of the Fermi level and on the electrorfonductor with a smooth disorder potential in a magnetic

energy measurefiom the Fermi level: field. It is k!’]own that the.a}verage density of .stat'es of such a
conductor is hardly modified by the magnetic fig¢ldv/v,
v(e)=v(e—€g,€p). (31)  xexp(2mw.sr)] as long asw.7s<1. We show that,

In the two-dimensional systen(e— er,eg) has a logarith- trr:ough such a cla_;,5|hcal m:gnetlc.flgld does nolt |m;lfuencr(]a
mical singularity at smalle— er<#/7,, and can be quite e average DOS of the conductor, it does strongly affect the

pronounced'® even at larges— ex>#/7,. In particular, in correlation function of the local density of stateB(e;

the classical magnetic fiel#(e— g, e) is an oscillating — €2)- That s, provided thab.7,>1, the correlation func-
function'® of e— e with a characteristic period of cyclotron tion P(e1— €;) aquires an oscillatory structure with the char-
quantuniw, . acteristic periodh w. . This structure can be observed in tun-

As a consequence of E¢1), the DOS correlation func- neling experiments on both vertical tunneling into the bulk of
tion for an interacting system is a function of three argu_the two-dimensional CondUCtor, and lateral tunneling into the

ments: edge of the conductor.
P(ey,€,)=P(e— 6&1) L€r— 65:2) ,65:1>_ 55:2))
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