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Density of states of a two-dimensional electron gas in a nonquantizing magnetic field

A. M. Rudin,* I. L. Aleiner,† and L. I. Glazman
Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

~Received 18 May 1998!

We study the local density of electron states of a two-dimentional conductor with a smooth disorder
potential in a nonquantizing magnetic field, which does not cause the standard de Haas–van Alphen oscilla-
tions. It is found that, though the influence of such a ‘‘classical’’ magnetic field on the average electron density
of states~DOS! is negligibly small, it does produce a significant effect on the DOS correlations. The corre-
sponding correlation function exhibits oscillations with the characteristic period of cyclotron quantum\vc .
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I. INTRODUCTION

In a clean homogeneous electron gas the wave funct
of electrons are plane waves and the density of electron
is constant in space. In disordered conductors electrons
scattered by impurities, which change their wave functio
from the plane waves. This, in turn, results in spatial var
tions of the electron density. It is appropriate to descr
those variations by introducing the local density of electr
states,n(e,r ), which is determined by the equation

n~e,r !52(
a

uca~r !u2d~e2ea!, ~1!

where indexa specifies the electronic states, and the fac
of 2 reflects the spin degeneracy. The distribution function
the local density of states~DOS! at the fixed energy in open
metallic disordered samples was studied in many papers~see,
e.g., Ref. 1! with the emphasis on the rare, nontypical flu
tuations. It was found that although the local DOS distrib
tion is close to the Gaussian one, it has slowly decay
logarithmically normal asymptotics. Prigodin2 studied the
correlation function of the density of the electron states o
two-dimensional system at different energies in relation
the NMR line shape.

It is well known that a strong magnetic field modifies t
single-particle densities of electron states, both local and
erage, due to the Landau quantization. In a two-dimensio
electron gas the quantization leads to a peak structure in
average density of states, which is revealed in tunneling
periments as peaks in the dependence of the tunneling
ductance on the applied bias, see, e.g., Ref. 3. The form
width of these peaks are determined4 by the disorder.

In a weak magnetic field the distance between the Lan
levels,\vc , is smaller than their disorder-induced width. A
a result, in such a ‘‘classical’’ magnetic field, oscillations
the average density of states caused by the Landau quan
tion become exponentially small,4 }exp@22p/(vcts)#. Here
ts is a quantum lifetime of an electron.

The goal of the present paper is to show that, though s
a ‘‘classical’’ magnetic field does not influence the avera
DOS, it does produce a significant effect on the correlat
function of thelocal density of states fluctuations
PRB 580163-1829/98/58~23!/15698~6!/$15.00
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P~e1 ,e2 ,r !5
^dn~e1 ,r !dn~e2 ,r !&

n0
2

. ~2!

Heredn(e,r )5n(e,r )2n0 is the local deviation of the DOS
in point r from its average value,n05m/p\2, m is the
electron mass, and the brackets^ & denote averaging ove
the random impurity potential. Clearly, the correlation fun
tion depends only on the difference of energy argume
P(e1 ,e2 ,r )5P(e12e2 ,r ).

The effect of the classical magnetic field on the DO
correlation function becomes pronounced if the disorder
tential has a correlation length much larger than the Fe
wavelength. In such a potential, electrons experience sm
angle scattering, and their transport relaxation timet tr , is
much larger thants . Thus there exists a range of magne
fields in which Landau quantization is suppressed (vcts
!1), while classical electron trajectories are strongly
fected by the field (vct tr@1). In this regime the correlation
function P(e12e2) is strongly enhanced with respect to th
zero-magnetic-field case, and exhibits peaks as a functio
energy differencee12e2 with the distance between peak
equal to the cyclotron quantum\vc . For the macroscopi-
cally homogeneous sample the shape of thenth peak,u(e1
2e2)2n\vcu&\vc/2, in the local DOS correlation function
is given by

P~e12e2!5
vc

2t tr
2

2A2pEFt tr

1

n
f S e12e22n\vc

\n2/t tr
D , ~3!

where

f ~x!5
1

A2
F11Ax211

x211 G1/2

, ~4!

andEF is the Fermi energy. Asn becomes larger, the width
of the peaks increases and their height decreases, so
eventually the oscillatory structure is washed out. The to
number of resolved peaks is of the order ofAvct tr.

The sensitivity of the correlation functionP to the classi-
cal magnetic field comes from the fact that this function
directly associated with the self-crossing of classical elect
trajectories. We denote the probability for an electron
complete a loop of self-crossing trajectory over timet as
15 698 ©1998 The American Physical Society
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K(t). The correlation functionP(e12e2) turns out to be
proportional to the Fourier transform of this return probab
ity,

P~e12e2!}K~e12e2!5E
0

`

dt e2 i ~e12e2!tK~ t !.

The strong enough, (vct tr@1) magnetic field curves the
electron trajectories, significantly affects the return proba
ity and, in turn, leads to specific correlations in the loc
DOS ate12e2'\vc .

For long time scalest@t tr , the function K(t) can be
found from the diffusion equation. It givesK(t)}(Dt)21 for
the two-dimensional case (D is the diffusion coefficient!.
The Fourier transformK(v) is proportional to ln(v), which
leads to the well-known2 logarithmic form of the local DOS
correlation function with the renormalized by the magne
field diffusion coefficient.

At short time scalest!t tr , electrons move ballistically
along the cyclotron orbits. Provided thatvct tr@1, during the
time t electron may return to the initial point many time
Multiple periodic returns of electron produce peaks in t
probability Fourier transformK(v) at energies, which are
multiples of the cyclotron quantum. The correlation functi
P(e12e2) oscillates with the same period, which is reflect
by Eq. ~3!.

II. DERIVATION OF THE DOS CORRELATION
FUNCTION

Now we derive expression for the correlation function
the local DOS,P, valid for arbitrary electron energies. W
omit the Planck constant in all the intermediate formul
The DOS@Eq. ~1!# can be rewritten in terms of the exa
retarded and advanced Green’s functions of an electro
the following way:

n~e,r !5
1

p i
@G e

A~r ,r !2G e
R~r ,r !#, ~5!

where

G e
R~r1 ,r2!5(

a

ca* ~r1!ca~r2!

e2ea1 i0
, ~6!

and G e
A(r1 ,r2)5@G e

R(r2 ,r1)#* . Single-electron wave
functionsca(r ) satisfy the Schr‘‘odinger equation for non
interacting electrons, Ĥ0ca5(ea1EF)ca , where Ĥ0
52(\2/2m)¹21Ur(r ), andUr(r ) is the random potential

With the help of Eq.~5!, the DOS correlation function
@Eq. ~2!#, can be rewritten in terms of the ensemble-avera
products of the electron Green’s functions:

P~e12e2 ,r !5
1

~pn0!2
@2 Rê G e1

R ~r ,r !G e2

A ~r ,r !&

1^G e1

R ~r ,r !G e2

R ~r ,r !&1^G e1

A ~r ,r !G e2

A ~r ,r !&#.

~7!

The averages of the typêGRGR& and ^G AG A& can be ne-
glected as they do not contain contributions associated
the electron trajectories longer thanlF and, thus, do not
-

l-
l

f

.

in

d

th

produce an energy dependence ofP(e12e2 ,r ) at e12e2
!EF . Conversely, the averaged product^GRG A& is deter-
mined by long electron trajectories~see, e.g., Ref. 5!. In gen-
eral, the product of two exact Green’s function
G e1

R (r1 ,r2)G e2

A (r3 ,r4) oscillates rapidly with the distance be

tween its arguments, so that the function

K~e1 ,e2 ,r1 ,r2 ,r3 ,r4!5^G e1

R ~r1 ,r2!G e2

A ~r3 ,r4!& ~8!

averages out. This is no longer the case if its arguments
close to each other pairwise. That is, the sizesur12r4u,ur2
2r3u or, alternatively,ur12r3u,ur22r4u of spatial domains
defining the ends of a trajectory should be small enough~less
thanvFts) so that electron propagation in these two doma
could be described by plane waves.

If the ends of trajectories are separated by a distance
ceeding the electron wavelength,ur12r2u*lF , one can re-
late the functionK to the generalized classical correlatio
functions – diffusonKD and CooperonKC, which are given
by the sum of all ladder and all maximally crossed diagra
respectively. That is,

K~e1 ,e2 ,r1 ,r2 ,r3 ,r4!

5pn0E df1

2p E df2

2p
eip1~r12r4!eip2~r32r2!

3K e12e2

D ~r1 ,f1 ;r2 ,f2! ur12r4u,ur22r3u!vFts ~9!

or

K~e1 ,e2 ,r1 ,r2 ,r3 ,r4!

5pn0E df1

2p E df2

2p
eip1~r12r3!eip2~r42r2!

3K e12e2

C ~r1 ,f1 ;r2 ,f2! ur12r3u,ur22r4u!vFts .

~10!

Here pi5pFni , where ni5(cosfi ,sinfi) is a unit vertor
with the direction determined by the anglef i .

In the opposite limit, when the all four pointsr1 , r2 , r3 ,
andr4 coinside, both ladder and maximally crossed diagra
contribute to Eq.~8!. As a result, the DOS correlation func
tion @Eq. ~7!# contains both the diffuson and the Cooper
contributions:

P~e1 ,e2 ,r !5
2

pn0
Re@De12e2

~r ,r !1Ce12e2
~r ,r !#.

~11!

HereD andC are the diffuson,KD, and the Cooperon,KC,
averaged over the initial and the final directions of the el
tron momentum:

De12e2
~r1 ,r2!5E df1

2p

df2

2p
K e12e2

D ~r1 ,f1 ;r2 ,f2!,

~12!

Ce12e2
~r1 ,r2!5E df1

2p

df2

2p
K e12e2

C ~r1 ,f1 ;r2 ,f2!.

~13!
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As one sees, calculation of the DOS correlation funct
reduces to an analysis of two classical correlation functi
D andC. Provided that we are interested in the DOS cor
lation function in the presence of a magnetic field, the pr
lem can be further simplified. Indeed, as is well known, t
diffusion and Cooperon depend quite differently on the m
netic field~see, e.g., Ref. 6!. In particular,C is exponentially
suppressed if the magnetic lengthlH5Ac\/eH becomes
smaller than the transport relaxation lengthl tr . We, in fact,
assumed a much stronger conditionvct tr@1 for the mag-
netic field. Thus the Cooperon term in Eq.~11! can be ne-
glected in our case. On the other hand, the diffusion term
Eq. ~11! is meaningful and will be analyzed below.

III. DOS CORRELATION FUNCTION FOR AN INFINITE
TWO-DIMENSIONAL ELECTRON GAS

Let us first calculate the local DOS correlation functio
P(e12e2), in the macroscopically homogeneous samp
The generalized diffusonK v

D(r1 ,f1 ;r2 ,f2) satisfies the
Boltzmann equation~see, e.g., Ref. 5! describing the scatter
ing of electrons on impurities in the presence of the magn
field. In the special casets!t tr we are interested in, small
angle scattering dominates the collision integral. Taking
count of this simplification, the transport equation f
K v
D(r1 ,f1 ;r2 ,f2) takes the Fokker-Planck form

F2 iv1vFn2

]

]r2
1vc

]

]f2
2

1

t tr

]2

]f2
2GK v

D~r1 ,f1 ;r2 ,f2!

52pd~f12f2!d~r12r2!. ~14!
ft
e-

a
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-
-
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Equation~14! describes electron motion along the cyclotr
orbit accompanied by the angular diffusion caused by s
tering on a random potential. The solution of this equat
will give us the Fourier transform

K v
D~1;2!5E

0

`

KD~ t,1;2!e2 ivtdt

of the probability densityKD(t,r1 ,f1 ;r2 ,f2) for an elec-
tron which starts at momentt50 in point r1 , with a direc-
tion of momentumf1 , to arrive at momentt to the pointr2
with momentum directionf2 .

The approximation of an angular diffusion that we ha
used here is valid only for long trajectories: the electron m
traverse many impurities and, therefore, experience m
small deflections in the course of its motion. For a smo
random potential, this means that the typical trajectory len
must exceed the correlation radiusj of the potential. In the
case of cyclotron motion this requirement leads to the c
dition Rc*j, or tc*j/vF ~hereRc and tc[2p/vc are the
radius and period of the cyclotron motion, respectively, a
vF is the Fermi velocity of an electron!.

In order to solve Eq.~14! it is convenient to introduce
new spatial variables which correspond to the center of
electron cyclotron orbit,

R5r1Rc@n3z#, ~15!

wherez is a unit vector parallel to the magnetic field. Chan
ing variables in Eq.~14!, and performing the Fourier trans
formation fromR2 to q, we obtain
H 2 iv1vc

]

]f2
1

Rc
2q2

2t tr
2

1

t tr

]2

]f2
2 1

Rc
2

t tr
F ~n2q!22

q2

2
2

i

Rc
S n2q

]

]f2
1

]

]f2
n2qD G JK v

D~R1 ,f1 ;q,f2!

52pd~f12f2!e2 iqR1. ~16!
ing
f a
ical
We seek for the solution of Eq.~16! in the following form:

K v
D~R1 ,f1 ;q,f2!5(

n
einf2Fn~v,q;f1!. ~17!

Substitution of Eq.~17! to Eq.~16! results in a linear system
of equations forFn . At small enough wave vectors,qRc

!vc
2t tr /(uvu1vc), terms in the square brackets on the le

hand side of Eq.~16! become small, the equations corr
sponding to differentn become independent, and we obtain
solution forFn(v,q;f1) in the form

Fn~v,q;f1!5
e2 inf1e2 iqR1

2 i ~v2nvc!1
Rc

2q2

2t tr
1

n2

t tr

. ~18!

The inverse transformation of variables immediately yie
now the solution of Eq.~14!:
-

s

K v
D~r1 ,f1 ;r2 ,f2!5E dq

~2p!2
eiq~r22r1!

3(
n

ein~f22f1!eiRcq[ ~n22n1!3z]

2 i ~v2nvc!1
Rc

2q2

2t tr
1

n2

t tr

.

~19!
After substitution of Eq.~19! into Eqs.~11! and~12!, and

subsequent integration over angles, we obtain the follow
expressions for the correlation function of the local DOS o
homogeneous two-dimensional conductor in the class
magnetic field:

P~e12e2!5
2

pn0
E dq

~2p!2
ReDe12e2

~q!, ~20!
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De12e2
~q!5(

n

uJn~qRc!u2

2 i ~e12e22nvc!1
Rc

2q2

2t tr
1

n2

t tr

. ~21!

Here Jn(z) is a Bessel function. At small frequencie
v5e12e2!\/t tr , then50 term in Eq.~21! dominates, and

Dv~q!'
1

2 iv1Rc
2q2/2t tr

.

This limit corresponds to the diffusion regime with the d
fusion coefficientD5Rc

2/2t tr renormalized by the magneti
field. The correlation functionP(e12e2) depends logarith-
mically on e12e2 in this limit:

P~e12e2!5
~vct tr!

2

2pEFt tr
lnF \

ue12e2ut tr
G . ~22!

At large frequenciesv5e12e2@\/t tr , the correlation
function P(e12e2) exhibits peaks ate12e2 close to mul-
tiples of cyclotron quantum,n\vc . The form of thenth
peak is given by

P~e12e2!5
vc

2t tr
2

pEFt tr
Re$I n@a~n,dv!#Kn@a~n,dv!#%,

~23!

where \dv5e12e22n\vc was introduced instead ofe1
2e2 , and a(n,dv)52(n22 idvt tr). FunctionsI n(a) and
Kn(a) are the modified Bessel functions. For largea we can
use the asymptotical relationI n(a)Kn(a)'1/2a, and arrive
at the resulting Eq.~3! that describes the energy dependen
of the local DOS correlation function in the vicinity of th
nth peak.

The overall energy dependence of the correlation func
of the local density of states for an infinite sample, obtain
by numerical analysis of Eqs.~20! and ~21! is presented in
Fig. 1. The DOS correlation function exhibits strong oscil
tions with the period close to\vc .

IV. OSCILLATIONS OF THE DOS FOR TUNNELING
INTO THE EDGE OF A TWO-DIMENSIONAL

ELECTRON GAS

The tunneling density of statesn(e,r ) is directly related
to the tunneling differential conductanceG(V) of a point
contact attached to a two-dimensional gas,n(eV,r )/n0
5G(V)/G0 ~here G0 is the average linear conductance
zero magnetic field!. Thus, measuring the conductance c
relation function^dG(V)dG(V1DV)&, one can determine
the DOS correlation functionP(eDV)5^dG(V)dG(V
1DV)&/G0

2 . HeredG(V)5G(V)2G0 . The tunneling DOS
we studied so far is related to tunneling into the ‘‘bulk’’ of
two-dimensional electron gas; see Fig. 2~a!. For GaAs het-
erostructures, however, there exists a well-developed me
of forming point contacts for lateral tunneling into the ed
of a two-dimensional electron gas~see, e.g., the review o
Beenakker and van Houten7!. The edge affects electron tra
jectories and thus alters the correlation function of the t
neling density of states. Below we estimateP(e12e2) for
the specific case of lateral tunneling, schematically show
e

n
d

-

t
-

od

-

in

Fig. 2~b!. We demonstrate that the oscillatory pattern ofP at
energies larger than\vc persists, although the amplitude o
oscillations becomes smaller than in the case of tunne
into the bulk. In order to find the conductance correlati
function, one should, according to Eq.~11!, find the Fourier
transform of the return probabilityD(t) for an electron emit-
ted from the contact right at the edge of the electron gas

Let us consider an electron which is emitted from a poi
like tunnel contact attached to the edge of the tw
dimensional conductor at a momentt50 with the initial ve-

FIG. 1. Energy dependence of the local density-of-states co
lation function P(e12e2) of the macroscopically homogeneou
sample in the classical magnetic field, obtained by numerical an
sis of Eqs.~20! and ~21!. Parametervct tr510.

FIG. 2. Two possible tunneling experiment that enable one
measure properties of the tunneling density of electron states~a!
the pointlike tunnel contact is attached to a two-dimensional c
ductor far from its edges;~b! tunneling occurs at the edge of th
two-dimensional electron gas.
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locity characterized by the anglef1 . For any nonzerof1
electron experiences multiple reflections from the bound
of the two-dimensional electron gas~see Fig. 3!. The bound-
ary of the electron gas is usually smooth, so that we ass
this scattering to be purely specular. Those multip
scattering events lead to a drift of the guiding center of el
tron orbit along the boundary of a two-dimensional electr
gas with a velocityvd , which is given by

vd5
DRxvc

2p
'A2

p
vFARc2Ry

Rc
~24!

for Ry less thanRc , and is zero otherwise. HereRx andRy
are the coordinates of the center of the electron orbit, wh
in the initial momentt50, are

Rx5Rcsinf1 , Ry5Rccosf1 , ~25!

andDRx is defined in Fig. 3. In the absence of disorder, d
prevents an electron from returning to the contact, and
return probability D(t)50 at t.0. Disorder, however,
makes the return probability nonzero. In fact, disorder le
to two effects:~1! motion along the cyclotron orbit is accom
panied by the angular diffusion; and~2! in addition to the
boundary-induced drift, the guiding center of the electr
cyclotron orbit diffuses in a direction perpendicular to t
boundary. As we will see, for small enough initial anglesf1
these two effects can, in fact, overcome the bounda
induced drift of electron away from the contact.

From Eqs.~24! and ~25! we see that the larger initia
anglef1 is, the faster electron drifts away from the conta
In view of this fact, let us start from the casef150, which
corresponds to the center of an electron cyclotron orbit h
ing the initial coordinatesRx50, andRy5Rc . Our goal now
is to obtain the probability of finding the center of orbit aga
in the same point after timet. During time t, the center of
orbit diffuses in a vertical~see Fig. 3! direction at a distance

DY~ t !5uRy~ t !2Rcu'ADt, ~26!

whereD5Rc
2/2t tr is a diffusion coefficient. During the sam

time interval t, the center of the orbit will travel along th
horizontal axis at a distance

DX5E
0

t

vd~ t8!dt8;vFE
0

tADY~ t8!

Rc
dt8'vF

t5/4

t tr
1/4

.

~27!

FIG. 3. Drift of an electron in the magnetic field caused by t
multiple specular reflections from the boundary of the tw
dimensional electron gas.
y

e
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e
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n
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Here we exploited Eqs.~24! and ~26!. One sees that the
probability of finding the center of electron orbit in the initia
point after timet decreases rapidly with time:

K~ t !'
1

DXDY
}

t tr
3/4

RcvFt7/4
.

As the result, in the presence of a boundary, contribution
the electron return probability coming from the trajectori
with two and more revolutions along the cyclotron orbit a
small and can be neglected. The probability of the electro
return to the point of origin before a full revolution is com
pleted is exponentially small,D;exp(2ttr /t), because of
the small-angle character of the electron scattering, see
~14!. Therefore, the main contribution to the oscillatory pa
of P(e12e2) comes from trajectories which involve on
revolution between the start att50 and finish at the momen
t'tc[2p/vc . Let us now study the latter contribution.

If there were no boundary, the probability densityD(t)
for the electron to return to the initial point at timet5tc
1dt, wheredt!tc , could be easily obtained from the solu
tion @Eq. ~19!# of the transport equation~16!. In fact, one
puts r15r2 in Eq. ~19!, and integrates it over all possibl
values off1 andf2 , taking into account that we are inte
ested in trajectories which are close to a single cyclot
loop. As a result we obtain the return probability dens
which has a strong maximum att5tc , with the amplitude
depending on the amount of disorder in the system:

D~ t'tc!5
A2vct tr

Rc
2

expF2
p

2
vct tr S t2tc

tc
D 2G . ~28!

This equation is valid in the absence of the boundary, i.e.,
a homogeneous system. Clearly, for such a system, traje
ries with different initial anglesf1 contribute equally to Eq.
~28!. For a system with a boundary this is obviously not t
case. That is, only a small fraction of trajectories withf1

&1/Avct tr contribute, for which the disorder-induced unce
tainty of electron position exceeds the shiftDRx5vdtc ; see
Fig. 3. Thus in the presence of the boundary the return pr
ability densityDb(t) can be estimated by multiplying Eq
~28! by a small factor 1/Avct tr:

Db~ t !'
D~ t !

Avct tr

. ~29!

According to Eqs.~11!, the correlation function of the DOS
at the edge of the two-dimensional electron gas,P(e1
2e2), is determined by the Fourier transform ofDb(t) given
by Eqs. ~28! and ~29!. Performing the Fourier transforma
tion, we finally obtain

P~e12e2!'
\

mvcRc
2 cosS 2p

e12e2

\vc
D

3expF2
2p

vct tr
S e12e2

\vc
D 2G . ~30!

One sees that the correlation function exhibits harmonic
cillations with the period\vc up to the energies of the orde
of e12e2;\vcAvct tr. The amplitude of these oscillation

-
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is vct tr@1 times smaller than in the case of vertical tunn
ing into the bulk of the two-dimensional electron gas; see
~3!.

V. DOS CORRELATION FUNCTION
IN AN INTERACTING SYSTEM

Until now we have completely disregarded effects of t
electron-electron interaction. It is known, however, that t
interaction has a crucial effect8 on the tunneling DOS of the
disordered conductor. That is, interaction leads to a str
energy dependence of the single-particle density of elec
states for the energies close to the Fermi level. As a re
the density of states must be written as a function depen
both on the position of the Fermi level and on the elect
energy measuredfrom the Fermi level:

n~e!5n~e2eF ,eF!. ~31!

In the two-dimensional system,n(e2eF ,eF) has a logarith-
mical singularity8 at small e2eF!\/t tr , and can be quite
pronounced9,10 even at largee2eF@\/t tr . In particular, in
the classical magnetic fieldn(e2eF ,eF) is an oscillating
function10 of e2eF with a characteristic period of cyclotro
quantum\vc .

As a consequence of Eq.~31!, the DOS correlation func-
tion for an interacting system is a function of three arg
ments:

P~e1 ,e2!5P~e12eF
~1! ,e22eF

~2! ,eF
~1!2eF

~2!!

5
^dn~e12eF

~1! ,eF
~1!!dn~e22eF

~2! ,eF
~2!!&

n0
2

.

~32!
l-
q.

e
is

ng
on
ult,
ing
n

-

In order to observe experimentally the oscillations of
DOS correlation function predicted in the present paper
given by Eqs.~3! and~30!, one has to distinguish them from
the interaction-induced oscillations of the density of th
electron states. The easiest way to do this is to fix two of
arguments of the correlation function,e12eF

(1) and e2

2eF
(2) , and then measureP as a function of the shift in the

chemical potential,eF
(1)2eF

(2) .

VI. CONCLUSIONS

In summary, we study properties of the two-dimensio
conductor with a smooth disorder potential in a magne
field. It is known that the average density of states of suc
conductor is hardly modified by the magnetic field@dn/n0

} exp (22p/vcts)# as long asvcts!1. We show that,
though such a ‘‘classical’’ magnetic field does not influen
the average DOS of the conductor, it does strongly affect
correlation function of the local density of states,P(e1

2e2). That is, provided thatvct tr@1, the correlation func-
tion P(e12e2) aquires an oscillatory structure with the cha
acteristic period\vc . This structure can be observed in tu
neling experiments on both vertical tunneling into the bulk
the two-dimensional conductor, and lateral tunneling into
edge of the conductor.
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