
PHYSICAL REVIEW B 15 DECEMBER 1998-IVOLUME 58, NUMBER 23
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Experimental results for core-electron photoemissionJk(v) are often compared with the one-electron spec-
tral function Ac(ek2v), where v is the photon energy,ek is the photoelectron energy, and the optical
transition matrix elements are taken as constant. SinceJk(v) is nonzero only forek.0, we must actually
compare it withAc(ek2v)u(ek). For metalsAc(v) is known to have a quasiparticle~QP! peak with an
asymmetric power-law@theories of Mahan, Nozie`res, de Dominicis, Langreth, and others~MND!# singularity
due to low-energy particle-hole excitations. The QP peak starts at the core-electron energyec , and is followed
by an extended satellite~shakeup! structure at smallerv. For photon energiesv just above threshold,v th5

2ec , Ac(ek2v)u(ek) as a function ofek (v constant! is cut just behind the quasiparticle peak, and neither
the tail of the MND line nor the plasmon satellites are present. The sudden~high-energy! limit is given by a
convolution ofAc(v) and a loss function, i.e., by the Berglund-Spicer two-step expression. ThusAc(v) alone
does not give the correct photoelectron spectrum, neither at low nor at high energies. We present an extension
of the quantum-mechanical~QM! models developed earlier by Inglesfield, and by Bardyszewski and Hedin to
calculateJk(v). It includes recoil and damping, as well as shakeup effects and extrinsic losses, is exact in the
high-energy limit, and allows calculations ofJk(v) including the MND line and multiple plasmon losses. The
model, which involves electrons coupled to quasibosons, is motivated by detailed arguments. As an illustration
we have made quantitative calculations for a semi-infinite jellium with the density of aluminum metal and an
embedded atom. The coupling functions~fluctuation potentials! between the electron and the quasibosons are
related to the random-phase-approximation dielectric function, and different levels of approximations are
evaluated numerically. The differences in the predictions for the photoemission spectra are found small. We
confirm the finding by Langreth that the BS limit is reached only in the keV range. At no photon energy are
the plasmon satellites close to being either purely intrinsic or extrinsic. For photoelectron energies larger than
a few times the plasmon energy, a semiclassical approximation gives results very close to our QM model. At
lower energies the QM model gives a large peak in the ratio between the total intensity in the first plasmon
satellite and the main peak, which is not reproduced by the SC expression. This maximum has a simple
physical explanation in terms of different dampings of the electrons in the QP peak and in the satellite. For the
MND peakJk(v) andAc(ek2v) agree well for a range of a few eV, and experimental data can thus be used
to extract the MND singularity index. For an embedded atom at a small distance from the surface there are,
however, substantial deviations from the large-distance limit. Our model is simple enough to perform quanti-
tative calculations allowing for band-structure and surface details.@S0163-1829~98!03847-8#
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I. INTRODUCTION

Photoemission spectroscopy~PES! has become an impor
tant tool for studying properties of matter. Most measu
ments have aimed at obtaining electron band structures,
electron quasiparticle energies. The experimental results
generally in good agreement with theory for large classe
systems. The interpretation of experiment is mostly based
the sudden approximation, expressing PES in terms of th
one-electron spectral functionA(v). There is, however,
never a true correspondence between PES andA(v), not
even at high energies. The reason is thatA(v) only describes
the primary excitation of the photoelectron, but does not t
account of the losses the photoelectron can have befo
leaves the solid. This has been recognized from the sta
the field, and the earliest attempts to account for this disc
ancy was the use of the Berglund-Spicer~BS! three-step
model.1 Apart from the surface losses, the BS model sim
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means a convolution of the spectral functionA(v) with a
loss function. Such a convolution does not change theposi-
tion of a sharp quasiparticle peak. Quasiparticle peaks, h
ever, have a lifetime width, and the experimental width
thus not the same as the width of the peak inA(v). They
also have an asymmetry, which has to be known to allow
precise assignment of a peak position.

Besides the quasiparticle peak,A(v) has an incoheren
satellite structure. Insp solids the satellite structure i
mainly due to shakeup of surface and bulk plasmons.
high-Tc materials the incoherent background can be ass
ated with, e.g., spin excitations, and gives important inf
mation regarding the nature of the electronic correlation. T
spectral function is also influenced by thermal motion, i.e.
gives information on phonon properties. With synchrotr
radiation sources the resolution in PES has been vastly
proved, and the data now show a richness in detail bes
peak positions, which demands a comprehensive theore
interpretation.
15 565 ©1998 The American Physical Society
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The satellite structures in PES originate both fromA(v)
and from the losses the photo-electron can have befo
leaves the solid. We talk aboutintrinsic @coming fromA(v)]
andextrinsic losses. Between these two types of losses th
is quantum-mechanical interference. This interference res
in a strong suppression of the satellite structures as comp
to the BS predictions, up to photoelectron energies in
keV region. When the interferences are gone, and the
model applies, we may say that we are in thesudden limit,
since we only have to convoluteA(v) with a loss function to
get the PES spectrum. At threshold, when we may say
we are in theadiabatic limit, the satellites are absent due
energy conservation. Qualitatively we can consider the a
batic limit in time development and use a semiclassical p
ture. The combined effect of the potential from the hole l
by the photoelectron and the slowly moving photoelect
gives a slowly varying potential to which the solid adjus
adiabatically. This picture is, however, not possible to qu
tify, and at low energies the semiclassical approximation
quantitatively poor, as we will discuss later in this paper.

Since the mean free path is typically 5–20 Å it is cle
that the surface plays an essential role for PES. This ma
any theory beyond the BS model complicated. This pa
has a twofold purpose, namely, to quantitatively describe
transition from the adiabatic to the sudden limit in cor
electron PES in a simple model situation, and to develo
method that allows quantitative calculations of more realis
systems.

A general approach to PES was developed by Ca
et al.2 and Chang and Langreth3 based on Keldysh diagrams
which has been further expanded by, among others, B
Longe, and collaborators,4 and Almbladh.5 Here we will use
a different, and more elementary approach than by use
Keldysh diagrams.6,7 We use an electron-boson Hamiltonia
where both the photoelectron and the core electron
coupled to bosonic-type excitations in the solid via fluctu
tion potentials. We then make a straightforward perturbat
expansion in terms of the fluctuation potentialsVq(r ) ~cf.
Sec. III!, rather than in a dynamically screened Coulom
potentialW(r ,r 8;v). Note that theVq(r ) are functions only
of r and not ofr andr 8, and do not depend onv. We study
only core-electron PES, which is considerably simpler th
valence electron PES. Our approach is fully quantum m
chanical~QM!, and, e.g., the recoil of the photoelectron a
its damping are considered.

The fluctuation potentials can be obtained from the diel
tric function. Our lowest-order approximation for the phot
current is quadratic in the fluctuation potentials, and can
expressed in terms of the dielectric function.

A central issue is a good treatment of the fluctuation
tentials corresponding to the random-phase-approxima
~RPA! dielectric function. This function was discussed
detail by Newns8 for a semi-infinite jellium. The RPA func-
tion is, however, quite complicated, and a simpler versi
corresponding to an infinite barrier and specular reflection
the electrons, is often used. In this approximation, wh
neglects interference between incoming and reflected e
trons, only the jelliumbulk dielectric function is involved.
The screened interaction corresponding to this approxi
tion has been written in analytical form by Bechstedt, End
lein, and Reichardt,9 and we have further obtained the corr
it
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sponding fluctuation potentials. Inglesfield6,10 has used
further simplified fluctuation potentials, which turn out
give results closely similar to those of Bechstedt. Other e
mates of electron-solid coupling functions were discus
by, e.g., Feibelman, Duke, and Bagchi,11 and by Eguiluz.12

An important issue in our paper is that we are not restric
to plasmon-pole-type approaches, but have obtained re
also with the RPA dielectric function including electron-ho
excitations.

An even simpler approach is the semiclassical~SC! one,
where the photoelectron is put on a trajectory and not
lowed to recoil. This approach is old and it is hard to trace
origin. It was used early in the classic paper by Lindhard13

and it has been used by Ferrell14 to discuss plasmon satellite
in x-ray emission. A detailed discussion, directly relevant
this paper, was given by Lucas, Kartheuser, and Badro15 for
electron-phonon scattering, and accounted very success
for experimental data.

An approach related to the SC one is due to Simons
Yubero, and Tougaard.16 Here the dielectric response of th
system is found from a theory by Garcia-Moliner and Rub
~see, e.g., Ref. 17! involving pseudosurface charges.

The main results in this paper are the following. We d
rive the high-energy limit of PES, and find arguments as
why the photoelectron-solid coupling should be given by
fluctuation potential. We find a relation between the fluctu
tion potentials and the imaginary part of the RPA express
for the dynamically screened potential, and check that
model electron-boson Hamiltonian reproduces theGW
approximation18 for the electron self-energy. We follow in
detail, both analytically and numerically, how the transiti
from QM to SC and to BS takes place. Using the form
similarity between the QM, SC, and BS results, we gene
ize the results in Ref. 7 to a closed expression contain
plasmon losses to all orders as well as the particle-h
losses. We find explicit analytic results for the fluctuati
potentials in the case of a dielectric function of a sem
infinite jellium with an infinite potential barrier and specul
reflection of the electrons at the surface. These analytic
sults are compared with those from a full RPA calculatio

Core electron PES is an old problem. The asymme
quasiparticle line due to particle-hole and phonon shak
has been treated extensively, and the results by Mahan,
zieres, de Dominicis, Langreth, and others are discusse
textbooks ~MND theory!.19 With our approach we find a
power-law behavior set by intrinsic losses only, out to se
eral eV from the edge. We further find that the MND x-ra
edge singularity index is enhanced when the emitting e
tron is close to the surface, but quickly approaches its b
value~within, say, approximately 5 a.u.!. Our approach also
reproduces multiple plasmon losses and the smooth b
ground from electron-hole excitations.

The outline of this paper is as follows. First we discu
basic theory and derive the sudden approximation in S
II A. In Sec. II B a discussion follows on photoemission
the electron-boson model. We obtain general results to a
trary order in the electron-boson coupling functions, the flu
tuation potentials. The background for the electron-bos
model is discussed in Appendix A, and the properties of
fluctuation potentials are derived in Appendix B. In Se
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II C 1 detailed results for one-boson satellites are deriv
and as an example, explicit results with the Inglesfield b
plasmon potential are given in Sec. II C 2, as well as
high-energy and large-zc limit in Sec. II C 3 (zc is the dis-
tance of the core electron from the surface!. In Sec. II D we
generalize the one-boson loss results to an exponential f
which includes multiboson losses. The BS expression is w
ten in a compact form in Sec. II E. The exact solution for t
SC case, derived in Appendix C, is discussed in Sec.
and compared with the QM results. Finally in Sec. II w
compare the SC approach with that of Tougaard~Sec. II G!.
Section III is devoted to the central quantities in our theo
the fluctuation potentials. First the general relation to
dynamically screened Coulomb potential, derived in App
dix B, is discussed in Sec. III A, and then the Inglesfield a
the Bechstedt approximations are discussed in Secs. III B
III C. Finally in Sec. III, the RPA potential is considere
~Sec. III D!. In Sec. IV we present our results, and in Sec.
we give concluding remarks.

II. PHOTOEMISSION THEORY

A general expression for the photoelectron current can
obtained from scattering theory20 ~we use atomic units,e
5\5m51, and thus, e.g., energies are in Hartrees, 2
eV!,

Jk~v!5(
s

u^Ck,suDuC i&u2d~v2«k1«s!. ~1!

This is the standard golden rule expression with final sta
having the proper boundary conditions for scattering sta
All states are correlated. Further,«k is the energy of the
photo-electron,k2/2, «s gives the energy of the final state o
the solid as«s5E(N,0)2E(N21,s), v is the photon en-
ergy, andD is the optical transition operator,D5( i j ^ i uAp
1pAu j &ci

†cj . uC i& is the initial state, anduCk,s& the final
state, which can be written

uCk,s&5F11
1

E2H2 ih
~H2E!Gck

†uN21,s&, ~2!

whereH is the fully interacting Hamiltonian including targe
electrons and photoelectron, andE5v1E(N,0)5«k1E(N
21,s). uN21,s& is the target state after the photoelectron h
left, andck

† creates the photoelectron. The states correspo
ing to ck

† are so far undefined, except that they are tim
inverted LEED states with asymptotically a plane-wave p
exp(ik•r ). We will suppress spin variables.

A. Sudden approximation

In the sudden approximation the final state is appro
mated asuCk,s&5ck

†uN21,s& . This means that all extrinsic
interactions between the photoelectron and the target sy
are neglected. At high energies this is a good approxima
for finite systems such as atoms and molecules, atoms
surfaces, etc.~with a proper choice of photoelectron statesk,
see Appendix A!, because the electron scattering rates go
zero with increasing energy. The sudden approximation
however, never good for solids, and always has to be
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rected for extrinsic losses. This is so because with increa
electron energy, the mean free path increases, and the
trons come from increasingly larger distances from the s
face. Thus even though the scattering rate goes down,
total scattering tends to a constant, as shown in Sec. II E,
~44!.

From Eq.~1! it immediately follows that

Jk~v!5(
s

U K N21,sUck(
i j

D i j ci
†cjC i L U2

d~v2«k1«s!.

If the photoelectronk is fast enough, there are no virtua
states inuC i& to annihilate, and thenck must matchci

† . This
gives the well-known sudden approximation21

Jk~v!5(
i j

Dk jAji ~«k2v!D ik , ~3!

whereA(v) is the one-electron spectral function. The arg
ments leading to this expression do not say which o
electron states should be chosen for the photoelectron.
can only be decided by explicitly considering the left-o
contribution in Eq.~2!. Since the statesk in Eq. ~2! are not
uniquely defined, the division between intrinsic and extrin
contributions is somewhat arbitrary, except at high energ
In Appendix A we make a choice for this division.

The sudden approximation includes ‘‘intrinsic losses’’
satellite structure, while the remaining term in Eq.~2! gives
the ‘‘extrinsic losses.’’ Extrinsic and intrinsic losses thusadd
amplitudes, not intensitiesin the expression for the photocu
rent in Eq.~1!.

If we use an effective one-electron Hamiltonianh, and
approximate the self-energy inA by an imaginary constant
2 iG, thenA(v)52p21Im@v2h1 iG#21, and we have an
approximation discussed in detail by, e.g., Feibelman
Eastman,22 and by Pendry.23 This approximation thus de
scribes only the quasiparticle bands, and no satellite st
tures~intrinsic or extrinsic!. There is no unique definition fo
h in Pendry’s approach.

B. General discussion of core-electron photoemission
using an electron-boson model Hamiltonian

The standard theory for photoemission uses the th
current formulation2,3 expanding in Keldysh diagrams. Her
we will instead follow a simple direct approach developed
Ref. 7, where we approximate the Hamiltonian by keep
only the simplest terms that give extrinsic losses,

H5Hs1h1V, ~4!

Hs5(
q

vqaq
†aq , h5 (

k

unocc

ekck
†ck ,

V5 (
qkk8

Vkk8
q

~aq1aq
†!ck

†ck8 ; Vkk8
q

5^kuVq~r !uk8&, ~5!

Vq~r !5E v~r2r 8!^qur~r 8!u0&dr 8. ~6!
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Here Hs describes the solid with all the electron-electr
interactions,h the photoelectron, andV the interaction be-
tween the photoelectron and the solid.Hs thus describes in-
trinsic losses, andV extrinsic losses, and also the damping
the photoelectron. The operatorsaq

† create exited states of th
solid ~quasibosons!, with excitation energyvq , and the op-
erators ck

† create photoelectrons in time-inverted LEE
states with free-electron energies.Vq is a fluctuation poten-
tial, cf Eq. ~50!. For simplicity we use a single indexq to
design our bosons. We actually have both bulk and surf
plasmons~which depend only on the momentum parallel
the surface!, as well as~in the RPA case!, electron-hole
pairs,ck1q

† ck , depending on an additional indexk. For core-
electron photoemission all quantities inH refer to the situa-
tion with one core hole present. A detailed motivation f
this approximation can be made in the high-energy limit,
Appendix A.

The initial state has no photoelectrons, no quasibos
and the core-electron stateb is occupied. We writeuC i&
5b†u08&. The ground stateu08& is for valence electrons with
no core hole. (H2E) in Eq. ~2! can be replaced byV since
(Hs1h2E)ck

†us&50, and we can write the final state as

uCks&5F11
1

E2H2 ih
VGck

†us&.

The stateus& containsnq(s) quasibosons‘‘q. ’’ The photo-
electron current becomes@cf. Eq. ~1!#

Jk~v!5(
s

uts~k!u2dS v2«k2(
q

nq~s!vqD , ~7!

with the transition amplitude

ts~k!5K sUckF11V
1

E2H1 ih G(
i j

D i j ci
†cjb

†U08L . ~8!

We have shifted the energy scale forv to remove the large
core-electron binding energyec , such that the maximum en
ergy that the photoelectron can have isv. For the photoelec-
tron we have put the energy zero at the bottom of the c
duction band. When the photoelectron barely can leave
solid, and thus has zero kinetic energy, it is assigned
energy eF1f, where eF is the Fermi energy, andf the
work function (f.0). The minimum possible value forv is
henceeF1f.

In Eq. ~8!, cj must annihilate the core electron, andci
†

create a~virtual! photoelectron. Going over to a produ
space, we obtain

ts~k!5^ku K sU11V
1

E2H1 ih U08L(
k8

uk8&^k8uDuc&

'^ku K sU11V
1

E2H1 ih U08L Duc&, ~9!

where, in the last line, we have approximated(k8uk8&^k8u by
a d function.

In Eq. ~9!, u08& stands for the ground state of the valen
electrons before the core electron was removed, whileus&
f

ce

r
e

s,

-
e
e

stands for a state of the valence electrons in the presenc
the core hole, andus50&5u$nq50%& is the completely re-
laxed state. The ground stateu08& is an eigenfunction of

Hs85(
q

vqaq
†aq1(

q
Vcc

q ~aq1aq
†!. ~10!

To diagonalizeHs8 we make a shift in the oscillators,aq

5āq2Vcc
q /vq , and have

Hs85(
q

vqāq
†āq2(

q

~Vcc
q !2

vq
.

The second term is an energy shift, which we drop. T
relation between the ground stateu0& of (qvqaq

†aq , andu08&
of (qvqāq

†aq is

u08&5e2Su0&, S5(
q

FVcc
q

vq
aq

†1
1

2S Vcc
q

vq
D 2G . ~11!

We have forts(k),

ts~k!5^ku K sUF11V
1

E2H1 ih Ge2SU0L Duc& ~12!

We next make a partial summation inV to obtain damped
photoelectron states. From Feshbach’s projection oper
techniques,24 with P1Q51, andV5HPQ1HQP , we have

PS 11V
1

E2H1 ih D5
P~E2HPP1 ih!

E2HPP2SPP1 ih

3S 11VPQ

1

E2HQQ1 ih D ,

SPP5VPQ@E2HQQ1 ih#21VQP .

ChoosingP5us&^su, we have

HPP5S (
q

nq~s!vq1hD P,

VPQ5P(
q

~aq1aq
†!VqQ, VQP5Q(

q
¯P.

This gives

ts~k!5^k̃u K sUS 11VPQ

1

E2HQQ1 ih De2SU0L Duc&,

~13!

where^k̃u is a damped photoelectron state

^k̃u5^ku
ih

ek2h2SPP1 ih
.

To estimateSPP we replaceHQQ by its lowest-order ex-
pression,Hs1h, which gives
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SPP~ek!5 (
qkk8k9

Vkk9
q Vk9k8

q

ek2ek92vq1 ih
ck

†ck8.

The imaginary part ofSPP is precisely the polarization par
in theGW approximation18 for the self-energy, while the rea
part differs slightly. We note that in the present approxim
tion SPP does not depend onP, and we will hence omit the
P index onS. In r space we have

S~r ,r 8;v!5(
q

Vq~r !
1

v2h2vq1 ih
Vq~r 8!. ~14!

We will now expand the transition amplitude to lowe
nontrivial order in the fluctuation potentials when there a
zero, one and two bosons excited. FromS @cf. Eq. ~11!# we
have an overall prefactor,e2a/2, where

a5(
q

S Vcc
q

vq
D 2

. ~15!

We write

ts~k!5e2a/2^ k̃uTsDuc&,

Ts5 K sUS 11V
Q

E2HQQ1 ih De2(
q

~Vcc
q /vq!āq

†U0L .

First consider a states with one bosonq0 excited,nq(s)
5dq,q0

,

Ts5F ^q0uVu0&K 0U Q

E2HQQ1 ih U0L 2
Vcc

q0

vq0

G .

We further have~see Refs. 26,27!,

K 0U Q

E2HQQ1 ih U0L 5G~ek1vq0
!,

where

G~v!5
1

v2h2S~v!

with S given in Eq.~14!. Collecting our results we have

Ts5Vq0G~ek1v
q0

!2
V

cc
q0

v
q0

, ~16!

where the first term gives extrinsic and the second intrin
losses.

Next consider the casenq(s)50, i.e., us&5u0&,

Ts512(
q

VqG~ek2vq!
Vcc

q

vq
1(

q
VqG~ek2vq!VqG~ek!.

~17!

The last term was neglected in Ref. 7.
-

e

ic

It is possible to develop a general expansion forts(k).
For the lowest-order contribution to two-boson excitation
@for example,nq1

(s)5nq2
(s)51, all other nq(s)50], we

have

Ts5
Vcc

q1Vcc
q2

vq1
vq2

1S 2Vcc
q1

vq1

D Vq2G~«k1vq2
!

1S 2Vcc
q2

vq2

D Vq1G~«k1vq1
!11Vq1G~«k1vq1

!

3Vq2G~«k1vq1
1vq2

!1Vq2G~«k1vq2
!

3Vq1G~«k1vq1
1vq2

!. ~18!

We will return to this two-boson expression in Sec. II D.

C. Detailed results for the one-boson satellites†nq„s…5dq,q0
‡

1. General results in the semi-infinite jellium case

We want to evaluate approximations forts(k) to obtain
the photocurrent from Eq.~7!. Since we have only one boso
in the final statess, we will in this section for simplicity
write tq(k) instead ofts(k). We have

Jk~v!5(
q

utq~k!u2d~v2«k2vq!. ~19!

We consider a half-infinite electron gas with an embedd
ion at distancezc.0 from the surface. We take the sel
energy as zero outside the solid, and2 iG(v) inside. Ne-
glecting the influence of the embedded ion, the fluctuat
potential can be written

Vq~r !5eiQ•RVq~z!. ~20!

Bold capitals are used for vector components parallel to
surface, and small thin letters for thez components,r
5(R,z), k5(K ,k) andq5(Q,q), except thatr meansur u.

For the LEED state we write (k.0),

uk̃,LEED&5eiK–R$@eikz1Re2 ikz#u~2z!1Teik̃zu~z!%,

where

k̃5Ak212@feF1f1 iG~ek!#, ~21!

with f the work function (f.0). We set the transmissio
factor T51, and correspondingly the reflection factorR50,
which is a good approximation except for very low energi
where in any case our approximations are less reliable.
photoelectron state is the time-inverted~i.e., complex conju-
gated, since we have no magnetic fields! LEED state. We
have

uk̃&5e2 iKR@u~z!e2 i k̃* z1u~2z!e2 ikz#.

The intrinsic and extrinsic contributions to the transition a
plitude become@cf. Eq. ~16!#
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tq
intr~k!52e2a/2^k̃uDuc&

Vcc
q

vq
, ~22!

^k̃uDuc&5eik̃zc^k̃uDuc&0, ~23!

^k̃uDuc&05E eik̃~z2zc!eiK•RD~z,R!wc~z,R!dzdR,

tq
extr~k!5e2a/2E eik̃zVq~z!G~z,z8;k!ei ~Q1K !•R

3D~z8,R!wc~z8,R!dzdz8dR,

G~z,z8;k!52
i

k
eikuz2z8u,

k5A2@v1f1 iG~v!#2uQ1K u2. ~24!

In k we could replaceek1vq by v since we have an energy
conservingd function in Eq. ~19!. Let us take the core
electron as centered at (0,zc), and neglect theR dependence
in the exponents, since the core-electron wave function
strongly localized. We can also replacez8 by zc in
G(z,z8;k), and approximateVcc

q 5Vq(zc). We then have

tq
intr~k!52^k̃uDuc&0eik̃zc2a/2

Vq~zc!

v2ek
,

tq
extr~k!5^kuDuc&0e2a/2E eik̃zVq~z!G~z,zc ;k!dz,

~25!

^kuDuc&05E eik~z2zc!D~z,R!wc~z,R!dzdR.

The contributions to the integral givinĝkuDuc&0 come
mainly from a small region close toz5zc . In that region we
should replaceeik(z2zc) by a wave function that is forced b
the strong ionic potential to have rapid oscillations. O
finds, with ans core function, polarization in thez direction,
and taking the origin of the photoelectron wave function
the ion core, (0,zc), that ^kuDuc&0 should be replaced by

^kuDuc&54p iY10~ k̂!Dc~ uku!,

Dc~ uku!5E
0

`

r 2R1~r ;uku!D~r !fc~r !dr,

whereR1 is the radial solution of the atomic potential th
matches smoothly to thep wave part of the plane wave
Dc(uku) varies only slowly withuku, while ^kuDuc&0 is pro-
portional to k. At high enough energies the plane wa
should be good, but then the approximation of neglecting
eiKR factor is not valid. In the following we will put
^kuDuc&0 in Eq. ~25! equal to 1, and thus disregard the a
gular functionuY10( k̂)u2, which is a common factor for pho
toemission in a given direction, as well as the slowly varyi
function Dc(uku).
is

e

t

e

-

We have previously found7 that contributions when the
photoelectron travelsaway from the surface are very smal
and neglect such contributions toG. The total transition am-
plitude then is,25

utq~k!u5e2zcImk̃2a/2ugqu, ~26!

gq5U E
2`

`

f ~z!Vq~z!dzU,
f ~z!5

d~z2zc!

v2ek
1

i

k
ei ~ k̃2k!~z2zc!u~zc2z!,

gq5UVq~zc!

v2ek
1

i

kE2`

zc
ei ~ k̃2k!~z2zc!Vq~z!dzU. ~27!

SinceJk(v) is quadratic in the fluctuation potentials, w
can write the photocurrent in terms of the imaginary part
the screened interaction. From Eq.~B3! we have for the par-
allel momentum Fourier transform of ImW(r ,r 8;v) @cf. also
Eq. ~20!#,

ImW~Q,z,z8;v!52pA(
q

Vq~z!Vq~z8!* d~v2vq!,

~28!

where the asterisk means complex conjugate, andA is the
normalization area, the normalization volume beingV
5AL. Taking the core-electron wave function as havi
zero extent, we obtain from Eqs.~19! and ~26!,

Jk~v!5e22zcIm k̃2a(
q

ugqu2d~v2«k2vq!. ~29!

Comparison with Eq.~28! gives,

Jk~v!5e22zcIm k̃2a
21

pA(
Q

E f ~z! f ~z8!*

3Im W~Q,z,z8;v2«k!dzdz8. ~30!

The first ~intrinsic! term in f (z) will clearly dominate close
to threshold,v5«k .

2. Explicit results with the Inglesfield bulk fluctuation potential

The Inglesfield bulk plasmon potential is~in atomic units!

Vq~z!5Aq@cos~qz1fq!2cosfqe
2Qz#u~z!, ~31!

Aq5A 4pvp
2

V~Q21q2!vq

, fq5arctg
Q

q
,

vq5vp1 1
2 ~Q21q2!.

Using Eq.~27!, we have the simple expression
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gq5Aqe
i ~k2 k̃!zcH eifqR~ k̃2k1q!

2k
1

e2 ifqR~ k̃2k2q!

2k

2
cosfqR~ k̃2k1 iQ !

k
2

cos~qzc1fq!2cosfqe
2Qzc

vq
J ,

~32!

whereR(x)5(12eixzc)/x.
We see that the damping is proportional tozc , whereas

we should expect it to be proportional to the lengthl
5zc /cosw traveled by the electron coming out at an anglew

to the normal. The combinationzcIm k̃, however, has the
expected behavior, at least at high energy. From Eq.~21! we
have

2zcImk̃>
2Gzc

k
>

2G l cosw

ukucosw
5

l

l
, ~33!

wherel is the mean field path,v/(2G).
For photoemission at right angle to the surface,K50, the

K•Q term in k disappears, and we are left with only on
integral in Eq.~29!, which then becomes

Jk~v!5
e22zcImk̃2avp

2u~q0!

pq0
2~v2«k!

E
2q0

q0 Ugq

Aq
U

Q5Aq0
2
2q2

2

dq,

~34!

q05A2~v2vp2«k!.

3. High-energy and large-zc limit

We want to evaluateJk(v) in the limit of high energy and
largezc , and show that we obtain the same result as in
Berglund-Spicer model. For large energies

k> k̃>k, Re~k2 k̃!>
vp1q2/2

k
,

Im~k2 k̃!>
G~v!2G~v2vq0

!

k
.

G(v) starts quadratically at the Fermi surface, increases
idly at the onset of plasmon decay at abouteF1(1
10.24Ar s)vp , reaches a broad maximum slightly belo
eF13vp , and then slowly goes to zero as 1/Av. From this it
follows that in the high-energy limit, we can neglect Im(k

2 k̃) which appears as a prefactor in the expression forgq in
Eq. ~27!. Neglecting the cross terms~interference terms! in
ugqu2 we have

Ugq

Aq
U2

5
1

4k2
$uR~ k̃2k1q!u21uR~ k̃2k2q!u2%

1
cos2~qzc1fq!

vq
2

.

We have dropped the cosfqR( k̃2k1 iQ) term, since for
large energies the result cannot depend on the phase shifq
e

p-

at the surface. One can also explicitly verify that this term
much smaller than those that we have kept. We have
dropped the cosfqe

2Qzc term, which vanishes for largezc .
For largezc ,cos2(qzc1fq) averages to 1/2. FurtheruR(x)u2

5@4sin2(xzc/2)#x2>2pzcd(x), and thus

Jk~v!5
e22zcIm k̃2avp

2u~q0!

pq0
2~v2«k!

Fpzc

k2
1

q0

~v2«k!
2G . ~35!

D. Generalization of Eq. „29… to an exponential form

We can write an exponential expression that in low
order reproduces Eq.~29!, and picks up the most divergen
terms in higher order in the expansion made in Sec. II B,

Jk~v!5
1

2pE2`

`

ei ~v2«k!te(qugqu2~e2 ivqt21!dt, ~36!

First we expand Eq.~36! as

Jk~v!5e2(qugqu2Fd~v2«k!1(
q

ugqu2d~v2«k2vq!G .
~37!

This is meaningful only when thevq have a positive mini-
mum value, i.e., when the particle-hole continuum is om
ted, since otherwisegq diverges whenv5ek , cf. Eq. ~27!.
The exponential expression, on the other hand, is well
fined also with the particle-hole terms included. Thed func-
tion in Eq. ~37! gives the quasiparticle contribution, and th
second term reproduces Eq.~29! provided

(
q

ugqu25a12zcIm k̃. ~38!

In the high-energy limit we have from Eqs.~35! and ~37!,

(
q

ugqu25E dvF vp
2u~q0!

pq0
2~v2«k!

S pzc

k2
1

q0

~v2«k!
2D G .

~39!

The second term in Eq.~39! comes from the intrinsic contri-
bution,

vp
2u~v2vp!

pv3A2~v2vp!
5

a~v!

v
, ~40!

wherea(v) is the Langreth singularity function, defined s
that a(0) is the singularity index for the core-electron spe
tral line,Ac(v)'v2[12a(0)] ~cf. p. 655 in Ref. 28!. The first
term in Eq.~39! is related to what Ritchie31 calls the DIMFP
function t(e,v) ~differential inverse mean free path, se
e.g., p. 689 in Ref. 28!, wheree is the photoelectron energy

t~«,v!5
1

p«E dq

q
ImF 21

e~q,v!G .
Neglecting the weak~at higher energies! dependence on the
electron energye, we have
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vp
2u~v2vp!

2~v2vp!v«
5t~«,v!.

The integral overa(v)/v gives the overlap factora in Eq.
~15!, and overt(«,v) the inverse mean free patht0(«)
51/l, cf. Eq. ~33!,

a5E a~v!

v
dv, t0~«!5E t~«,v!dv. ~41!

Thus Eq.~38! is correct at least in the high-energy limit. A
example of the magnitude of the breakdown of Eq.~38! is
given in Fig. 8.

We now turn to the higher-order terms in Eq.~36!. It is
easy to see that if we neglect the extrinsic losses, we arriv
the usual intrinsic spectrum with its asymmetric main li
and all its satellite peaks. At threshold the intrinsic ter
dominate, due to the factorv2ek in the denominator@cf. Eq.
~27!#. From the general expressions for expandingTs ~cf.
Sec. II B!, the next most singular term at threshold@cf. Eq.
~18!# is exactly reproduced by the exponential expression
all orders, and for all energies. As regards the second-o
term, it is reproduced exactly by Eq.~18! in the high-energy
limit.

E. The Berglund-Spicer expression

The Berglund-Spicer approximation for the energy dis
butionD(v,z) of the electron after it has traveled a distan
z is

D~v,z!5E Ac~v8!P~v82v;z!dv8,

where Ac(v) is the intrinsic spectrum given by the on
electron spectral function, andP(v;z) is the probability that
the electron has lost an energyv when it has traveled a
distancez. As shown in Ref. 28,D(v,z) can be written in a
compact form if we use results by Langreth29 and Landau,30

D~v,z!5E
2`

` eivtdt

2p
expH E ~dv8/v8!

3@a~v8!1zv8t~e,v8!#~e2 iv8t21!J . ~42!

The dependence oft(e,v) on e is weak at high energies
and was neglected in Landau’s derivation ofP(v). Neglect-
ing the electron-hole contributions, so thata(v) andt(«,v)
start at the plasmon loss threshold, we have

D~v,z!5e2a2t0~«!zFd~v!1
a~v!

v
1t~«,v!z1••• G .

~43!

When we evaluatet0(«), a(v), andt(«,v) in the plasmon-
pole approximation, the satellite part in Eq.~43! precisely
reproduces Eq.~35!.

When we integrateD(v,z) over z, we have the well-
known result32
at

s

o
er

-

E D~v,z!dz5
e2a

t0~«!Fd~v!1
a~v!

v
1

t~«,v!

t0~«!
1••• G .

If we also integrate overv we obtain,

E D~v,z!dzdv5
e2a

t0~«!
@11a111•••#. ~44!

The relative intensity of the first plasmon satellite to that
the main peak is thus alwaysa11 in the BS approximation.
In our model calculationsa50.35.

As noted in Ref. 32t(«,v) andt0(«) tend to zero with
increasing photoelectron energy«. When we integrate Eq
~43! over z, we, however, cover a larger and larger distan
since t0(«) in the exponent becomes smaller and smal
and the total contribution from the extrinsic losses is alwa
the same as in the elastic peak. If we have photoemis
from a finite system, or from atoms on a surface, the dista
the photoelectron travels is finite, and the extrinsic contrib
tions vanish as the photoelectron energy increases.

F. Loss spectra from time-dependent perturbation theory

A simple approach to calculate loss spectra at high en
gies is to consider the effect of a classical particle moving
a trajectory. We then have a perturbation from a charge m
ing with velocity v. For simplicity we here assume that
moves at right angle towards the surface,

r~r ,t !5@d~z1vt2zc!2d~z2zc!#d~R!u~ t !. ~45!

To describe the effect of the perturbation we can use
‘‘forced oscillator’’ Hamiltonian,15,33

H~ t !5(
q

@vqaq
†aq1Vq~ t !~aq1aq

†!#, ~46!

Vq~ t !5E Vq~r !r~r ,t !dr. ~47!

HereVq(r ) is the same fluctuation potential as we introduc
in Eqs. ~6! and ~20!. In Appendix C we calculate the prob
ability P(«) that the time-dependent perturbation inH(t)
after a long time has excited the system with an energy«.
We then assume thatP(«) also is the probability that the
photoelectron has lost an energy«, Jk(v)5P(«)5P(v
2«k). From Eq.~C2! in Appendix C we have

Jk~v!5
1

2pE2`

`

ei ~v2«k!te(
q

ugq
0u2~e2 ivqt21!dt.

The coupling function is obtained from Eqs.~45! and ~47!,

ugq
0u[U E

0

`

eivqtVq~ t !dtU
5U i

vE2`

zc
dzVq~z!e2 ivq~z2zc!/v1

Vq~zc!

vq
U.

We can comparegq
0 with gq in Eq. ~27!. In our unitsv5k.

At high energiesk̃>k>k , and k̃2k>2@(vq2Q2/2)/k#.
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The semiclassical approach thus agrees with the quan
mechanical one at high energies, as expected, and as
been noted before.6,7 Here however we have gone one st
further and obtained the exact solution to the semiclass
problem. This exponential expression for the solution is v
similar to what we had in the Berglund-Spicer approach, a
to what we postulated also for the quantum-mechanical c
Eq. ~36!. The lowest-order term in the quantum-mechani
and classical cases agree quite well already at the order
plasmon energy above threshold. This gives further ind
tions for the validity of Eq.~36!.

G. The Tougaard approach

In the work of Simonsen, Yubero, and Tougaard16 on
photo-emission one finds a different formulation of t
energy-loss process in terms of an induced potential.
medium is polarized by the sudden creation of core hole
photoelectron, and the resulting polarization charge acts
the moving electron. In this classical picture the outgo
electrons are decelerated by the induced potential fi
(f ind). The induced potential is found from a theory dev
oped by Garcia-Moliner and Rubio~see, e.g., Ref. 17!. The
vacuum and medium parts off ind are calculated separately
introducing pseudosurface charges at the interface to acc
for the removal of the other subsystem~e.g., the vacuum
induced potential is calculated for a vacuum medium in
space, where the effect of removing the solid is counterac
by some pseudosurface charge!. The pseudo-charges ar
found from the appropriate boundary conditions at the in
face. In this method, as in Bechstedt’s, the dielectric
sponse can be easily formulated in terms of the bulk die
tric function, and also here the interference effects are
included. As a further approximation Tougaard uses
plasmon-pole model for the bulk dielectric function, com
bined with the assumption that thekz dependence ofe(k,v)
can be neglected in calculating the photoemission. Thus
should have, withWp5W2v,

E dz8Wp~Q,z,z8,v!rext~Q,z8,v!

5u~2z!E dkz

2p
e2 ikzzf ind

V ~k,v!

1u~z!E dkz

2p
e2 ikzzf ind

M ~k,v!, ~48!

where rext(Q,z8,v) is the two-dimensional Fourier trans
form of the core hole and photoelectron charge densit
while w ind

M (k,v) and w ind
V (k,v) are the full Fourier trans-

forms of the induced potentials of the two subsystems~me-
dium and vacuum!. For their definition see Ref. 16. We hav
checked this relation explicitly by taking the screened int
action of Bechstedt, Enderlein, and Reichardt forW with the
same approximations fore(k,v) as used by Simonsen
Yubero, and Tougaard.

The approximatione(k,v)5e(Q,v), however, implies
the existence oflocalized bulk plasmon fluctuation poten
tials. For a description of the collective modes of the syste
it is therefore inappropriate. Nevertheless the satellites
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tained by Tougaard are similar to ours, but there are subs
tial quantitative differences, as we will discuss in Sec. IV

III. FLUCTUATION POTENTIALS

A. General considerations

The exact formal expression for the dynamically screen
interactionW(r ,r 8;v) can be written as a spectral resolutio

W~r ,r 8;v!5v~r2r 8!1(
t

2v tV
t~r !Vt~r 8!

v22v t
2

, ~49!

where v(r2r 8) is the bare Coulomb potential,v(r2r 8)
5e2/ur2r 8u, andVt(r ) is the fluctuation potential,

Vt~r !5E v~r2r 8!^tur~r 8!u0&dr 8. ~50!

We have expressed our theory for photoemission in term
the fluctuation potentialsVt(r ). We noted that the photoelec
tron current, to lowest nontrivial order, is quadratic in t
fluctuation potentials, Eq.~30!, and can be described b
Im W. Still, it is useful to work directly with the fluctuation
potentials, rather than with ImW, since it allows a larger
flexibility and more insight in developing approximations.

To obtain an approximation forVt(r ) we write the RPA
expression forW on the same spectral form as in Eq.~49!. In
RPA we haveW5(12vP)21v, with

P~r ,r 8;v!5(
t

2v tw t~r !w t* ~r 8!

v22v t
2

. ~51!

Here w t(r ) is a particle-hole wave function,w t(r )
5c i(r )c j* (r ), and v t5« i2« j (« i>«F>« j ) a particle-hole
energy. The indext stands for the pair (i , j ). In Appendix B
we have shown that we can use the real and imaginary p
of

Vt~r !5E W~r ,r 8;v t!w t~r 8!dr 8 ~52!

in Eq. ~49!. We can easily check that this expression is c
rect to lowest nontrivial order inv. ReplacingW by v in Eq.
~52! we reproduce the Hartree-Fock approximation for E
~50!, since in Hartree Fock

^N,tur~r !uN&5(
i j

c i* ~r !c j~r !^N,tuci
†cj uN&5c i* ~r !c j~r !,

with t5( i j ). If we expandW5(12vP)21v to second order
in v, and use Eq.~51!, we also reproduce Eq.~49! to second
order.

In addition to the fluctuation potentials in Eq.~52! we can
also have contributions to Eq.~49! from fluctuation poten-
tials coming from solutionswi to an eigenvalue problem, Eq
~B6! in Appendix B,

Vi~r !5F]l i~v!

]v G
v5v i

2~1/2!

wi~r ,v i !. ~53!
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Such solutions contribute only ifv i is real @v i comes from
l i(v i)50, cf. Eq.~B6!#. If v i is not real, the eigenmodes n
longer correspond to undamped collective excitations of
system. If the imaginary part ofv i is small, a modewi(r ,v i)
is however a useful approximation to a set of modes of
type in Eq.~52!.

As another illustration of the nature of fluctuation pote
tials, consider an electron gas. Here we have contribut
both from particle-hole pairs,Vt(r ) (t5k,k1q), and from
plasmons,Vq(r ),

Vt~r !5U v~ uqu!
e~ uqu,ek1q2ek!

Ueiq–r,

Vq~r !5U v~ uqu!
]e~ uqu,v!/]vU

v5vq

1/2

eiq–r.

We can also write Eq.~49! in terms of the normalized
eigenpotentialswi(r ,v) ~see Appendix B!,

W~r ,r 8;v!5(
i

wi~r ,v!wi~r 8,v!

l i~v!
. ~54!

In this case we do not have to combine contributionsVt(r )
andVq(r ); however, the approach has the drawback that
need a different potentialwi(r ,v) for eachv, while in the
earlier approach the energyv i in wi(r ,v i) was coupled to
the statei.

It is useful to study simple analytic forms of the fluctu
tion potentials that illustrate the physics of the interact
between photoelectron and valence-electron systems, an
the next sections we introduce two simple forms and co
pare them with RPA results.

B. Inglesfield’s fluctuation potentials

The Inglesfield bulk potential is given in Eq.~31!, while
his surface potential is justNse

2Quzu. The arguments behind
the Inglesfield potentials are the following.

It can be shown10 that the bulk modes in a semi-infinit
system are standing waves, i.e., phase-shifted cosines m
fied at the surface. The shape of the bulk modes at the
face and the magnitude of the phase shift are determine
the details of the surface dielectric response. In Ref. 6 Ing
field assumed that the cosine form for the charge fluctuat
was valid all the way to the surface; the phase shift w
determined by assuming that the corresponding fluctua
potentials were zero at the surface. We obtain the requ
orthogonality of the bulk potential to the charge density
the surface modes~at the same frequency!, if the surface
charge fluctuations are assumed to bed functions centered a
z50. The actual bulk fluctuation potentials are nonzero
the surface, as seen in Eq.~60!, but the tails are quite smal

C. Fluctuation potentials from Bechstedt’s model

Semiinfinite jellium, an electron gas confined by an in
nite potential barrier, is a much used model.8 If the interfer-
ence terms in the polarization are neglected, we have a
simple expression for the polarization,
e
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P~Q,z,z8,v!5u~z!u~z8!@Po~Q,z2z8,v!

1Po~Q,z1z8,v!#, ~55!

whereQ is the magnitude of the two-dimensional mome
tum parallel to the surface,z andz8 are coordinates perpen
dicular to the surface, andP0 is the polarization function for
the homogeneous electron gas. In this way the dielectric
sponse of the semijellium problem is related to the respo
of the homogeneous bulk system. This approximation sa
fies thef-sum rule.

Bechstedt, Enderlein, and Reichardt9 were able to obtain a
closed expression for the screened potentialW corresponding
to Eq. ~55!,

W~Q,z,z8,v!5
2pe2

Q
$u~2z!u~2z8!

3@e2Quz2z8u1~12t1!eQ~z1z8!#

1t1@u~2z!u~z8!a~Q,z8,v!eQz

1u~z!u~2z8!a~Q,z,v!eQz8#1u~z!u~z8!

3@a~Q,z2z8,v!1a~Q,z1z8,v!

2t1a~Q,z,v!a~Q,z8,v!#%, ~56!

where t152@11a(Q,0,v)#21, and wherea(Q,z,v) is re-
lated to the bulk dielectric functioneo(q,v)

a~Q,z,v!5
Q

pE dqz

eiqzz

uqu2eo~ uqu,v!
. ~57!

For eo(uqu,v) we use a simple plasmon-pole model

1

eo~ uqu,v!
511

vp
2

v22v uqu
2

, ~58!

wherev uqu5vp1 1
2 (q21Q2) is the plasmon frequency. Th

quantitya(Q,z,v) then assumes a simple analytic form a
from the imaginary part ofW(Q,z,z8,v) the fluctuation po-
tentials can be extracted. For the surface fluctuation po
tials we find

Vs~z,v!5Ns@u~2z!eQz1u~z!a~Q,z,v!# ~59!

and for the bulk fluctuation potentials,

Vb~z,v!5Nb@u~2z!eQz1u~z!$~21C11C3!cos~qz!

1C2sin~qz!2~11C1!e2Qz2C3e2Av1vp1Q2z%,

~60!

where

C15
vp

2

v22vp
2

, C25
2Qvp

2

2v~v2vp!q
,

C35
2Qvp

2

2v~v1vp!Av1vp1Q2
.
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TheNs andNb include coefficients due to normalization an
coupling strengthu]l i(v)/]vuv5v i

2(1/2) ~see Appendix B!.

D. RPA fluctuation potentials and screened interaction

To calculate the RPA fluctuation potentialswi it is con-
venient first to find the charge fluctuationsdr i , Eq. ~B8!. In
our case with a semi-infinite jellium, the noninteractin
Green’s function has a simple form

Go~Q,v;z,z8!5
e2guz2z8u

g
u~z!u~z8!, ~61!

g5~Q222v!1/2u~Q222v!2 i ~2v2Q2!1/2u~2v2Q2!,

from which the RPA polarizationP can be calculated.10

Equation~B8! can be Fourier transformed with respect toR,
and then cosine transformed with respect to thez and z8
coordinates. The resultingkz integral is replaced by a dis
crete sum, see, e.g., Ref. 10. The modes withl i(v)50 for
real v correspond to collective excitations of the syste
Within the RPA only the bulk plasmon excitations are u
damped. The surface modes satisfyl i(v)50 for ~slightly!
complex frequencies and are damped complex modes.
side the Landau damping region (Q,Qc5 the Landau wave
vector!, it is a good approximation to neglect the imagina
parts. Indeed, the agreement between the RPA, and
Inglesfield and the Bechstedt surface fluctuation potentia
very good. The potentials are both roughly of the fo
e2Quz2z0u and the modes show very similar dispersion re
tions. Herez0 is some small distance from the surface in
the bulk ~say, 2 a.u.! and depends only weakly onQ.

IV. RESULTS

We study a simple model, semi-infinite jellium with on
atom at a distancezc from the surface, and are interested
general trends when we go from threshold excitation to h
energies. The final states are plane waves outside the s
Inside the solid the waves are damped with an ener
dependent self-energyG(v), calculated within theGW ap-
proximation for a homogeneous jellium~with the full RPA
dielectric function!. No surface emission, i.e., contributio
from the gradient of the surface barrier, is considered.
calculations are for an electron density corresponding to
with r s52.0724. At this density the bulk plasmon ener
vp50.581 a.u., the surface plasmon energyvp /A250.411
a.u., and the Fermi energy«F50.429 a.u. For the work-
function we takenf50.147 a.u. (54 eV). For the Bech-
stedt and Inglesfield potentials we used a simple plasm
pole dielectric function@cf. Eq. ~58!#, which gives for the
overlap factora @cf. Eqs.~11,15!# a50.3480. For the RPA
calculations~which include particle-hole excitations! a semi-
infinite jellium with an infinite potential at the boundary wa
used.

The RPA collective excitations~both bulk and surface!
were calculated solving the eigenvalue equation~B8!. The
results agree very well with those from Bechstedt’s mod
especially at frequencies where Landau damping is not
fective, and the surface modes thus couple weakly to
electron-hole pairs. As a specific example we show in Fig
.
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RPA bulk and surface fluctuation potentials forQ50.2 a.u.
~bulk! andQ50.05 a.u.~surface!. Landau damping sets in a
Q50.68 a.u. We also show results from the Inglesfield p
tential, which agree reasonably well both for bulk and s
face plasmons. The coupling constants in the two approac
differ typically by only a few percent. The good agreeme
implies that the interference terms in the polarization fun
tion, which are neglected in Bechstedt’s model, are sm
From Fig. 1 we also see that the imaginary part in the R
surface plasmon potential is quite small.

Bulk plasmon satellite intensities integrated over core
sitions for the QM, the SC, and the BS convolution cases,
shown in Fig. 2 for various photoelectron energies. We
that the QM and SC results approach each other fa
quickly, and above, say, 3–4 a.u., the difference is insign
cant, while at low energies like 2 a.u. there are substan
differences. The BS result, on the other hand, is grossly
until at very high energies of the order of keV. We no

FIG. 1. Bulk and surface plasmon potentials forQ50.2 a.u.
~bulk! and Q50.05 a.u.~surface! according to Bechstedt~solid
line!, Inglesfield ~dashed line!, and RPA ~dotted line!. The dot-
dashed curve gives the imaginary part of the potential in the R
case.

FIG. 2. Bulk plasmon satellite spectra for various photon en
gies, and for three different approaches: BS~solid curves!, QM
~dotted curves!, and SC~dashed curves!. At 90 a.u. no semiclassica
results are shown. For the QM and SC results Inglesfield’s fluc
tion potential has been used. The inset shows bulk QM results,
Bechstedt’s potential~dotted curve! and with Inglesfield’s potential
~solid curve!. The photoelectron energies are with respect to
elastic peak position.
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the two peaks in the BS curves at lower energies. They a
from the intrinsic losses that start at the threshold energyvp ,
and the extrinsic losses that start at a slightly higher ene
determined by momentum/energy selection rules. The in
in the panel for 10 a.u. shows a comparison between
results in the QM case using Bechstedt’s and Inglesfie
potentials. The differences become smaller at higher e
gies, and slightly larger at lower energies. The sharp cutof
the v52 a.u. curve comes at«(k)52(v2f2«F)5
21.43 a.u.

Similar results are obtained for surface plasmon satelli
as shown in Fig. 3. In this case we can only show QM a

FIG. 4. Total intensity of bulk and surface plasmon satelli
relative to the elastic peak weight, as a function of photon ene
In the top panel the two upper curves give bulk, and the two lo
surface plasmons. The QM bulk curve shows a strong peak, w
the SC curve is smooth. In the lower panel, the bulk curves cha
very little, while the QM surface plasmon curve has a small pe
The bulk modes are from Inglesfield’s potential, and surface mo
from Bechstedt’s.

FIG. 3. Surface plasmon satellite spectra from Bechstedt’s
tential for various photon energies: QM~solid curves!, and SC~dot-
ted curves!. The photoelectron energies are with respect to the e
tic peak position.
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SC results, since we have not included any surface losse
our BS expression. The same trends as in the bulk case
observed, but the SC results agree better with the QM one
low energies.

A clear illustration of how the satellite intensities in th
QM and SC cases approach the BS limit is shown in Fig
which is obtained by integrating the curves in Fig. 3 ov
energy. The QM and SC curves rapidly approach each o
with increasing energy, and are already close at, say, 5
The bulk plasmon intensity approaches the BS high-ene
limit @cf. Eq. ~44!# of 1.35 ~indicated by the dashed line!
extremely slowly, and follows an (ek)

21/2 dependence as
derived by Langreth and co-workers.3 The surface plasmon
intensity tends to zero at high energies, and also approa
this limit extremely slowly. At lower energies, the bulk curv
has a pronounced maximum. As we remarked in Sec. II C
theG(v) curve starts to rise strongly, due to plasmon dam
ing, at about 1.1 a.u., and has a maximum at about 2
Whenv is below 2 a.u. the elastic photoelectron thus ha
stronger damping than the electrons in the satellite, and
relative satellite intensity is increased. This effect does

s
y.
r

ile
ge
.
s

FIG. 5. Bulk and surface plasmon satellite spectra accordin
QM ~bold curves! and Tougaard’s~normal thickness! calculations,
at a photonenergy of 1413.5 eV and three different angles. QM b
plasmon from Inglesfield’s and QM surface plasmon from Bech
edt’s potential.

FIG. 6. Bulk and surface plasmon satellite spectra accordin
QM ~top curves! and Tougaard~bottom curves!, at various energies
and normal emission. In the QM case the same potentials were
as in the previous figure.
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come in the SC approximation, where the damping is pu
by hand, and is the same for the elastic peak and the s
lites.

The surface plasmons can be excited only when the p
toelectron is in the surface region, and with a long mean f
path, this happens only during a small fraction of the pa
The enhancement is thus expected to be much weaker fo
surface plasmons. When the electron exits at an angle
shown in the bottom panel of Fig. 4, a larger fraction of t
mean free path is spent in the surface region, and sur
losses are enhanced relative to bulk losses, and we the
tually also have a small maximum in the surface contrib
tion. In both cases the surface plasmon intensities are we
than the bulk ones.

We have neglected the reabsorption contribution in
~17!. The results in Ref. 7~which, however, did not include
all reabsorption contributions! indicate a moderate increas
in the elastic peak, and thus a reduction in the relative sa
lite intensity. A stronger reason, however, to expect the
riously large peak to be reduced is our neglect of ela
scattering, and also of impurity and phonon scattering
small residual damping of 0.05 a.u. put in by hand remo
most of the peak. Still, it is reasonable to expect some pe
ing at this energy to occur.

FIG. 7. Satellite spectra from the exponential expression, a
aged over core positions, at the energy 50 a.u. Bechstedt’s ex
sion was used, and no particle-hole effects included.

FIG. 8. Same as in Fig. 7, but for 10 a.u., and with the large l
region excluded.
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Results from the Tougaard approach are shown in Fig
and 6, and compared with our QM results. Figure 5 sho
surface and bulk plasmon satellite spectra at various em
sion angles and at a high photon energy (1413.5 eV!, where
the agreement should be good. The overall features are s
lar, but there seems to be a non-negligible difference
strength, which we attribute to the different approximatio
of the dielectric functions. In both cases the surface plasm
satellite is clearly smaller than the bulk satellite for all em
sion angles.

The surface plasmon satellite becomes stronger as
angle of emission is increased, while the intensity of the b
plasmon satellite goes down slightly, and the shapes of
satellites do not change much. In Fig. 6 we compare
dependence of the satellite spectra as a function of pho
energy for normal emission. Here we consider total, not re
tive intensities. The trends roughly agree. The surface c
tribution decreases relative to the bulk one, and the bulk p
becomes sharper with increasing energy. The large broa
ing in the Tougaard curves, however, makes a quantita
comparison difficult.

In the last four figures we give results from the expone
tial expression in Eq.~36!. Figure 7 shows results for th
satellite spectrum at a rather high energy, 50 a.u., obta

r-
es-

s

FIG. 9. RPA result from particle-hole pairs plus surface pla
mons for the energy 5 a.u. and a core distance 20 a.u. Total s
trum, solid line; intrinsic spectrum, dots; extrinsic spectrum das
line; and interference contribution, dot dashed line.

FIG. 10. Singularity indexa as a function of core position. The
dashed line gives the bulk limit ofa.
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with only surface and bulk plasmon, but not electron-ho
contributions included. The first, rather weak peak, com
from surface plasmon losses. Then follows a sequenc
multiple bulk plasmon loss peaks, each followed by a we
surface loss peak. The double surface loss peak is margin
visible. A blow up of the threshold region at a somewh
lower energy, 10 a.u., is shown in Fig. 8, where we a
compare with the first-order spectrum. The two spectra
identical out to the onset for two surface losses, except
the different treatment of the damping. In the exponen
expression, Eq.~36!, the damping comes from the integr
*b(k,v8)dv8, which only asymptotically equals the expo
nent of the prefactor in Eq.~34!, a1t0z.

Results from an RPA calculation, which include partic
hole pairs, are shown in Figs. 9 and 10. In Fig. 9 the ene
is 5 a.u., and the core distance 20 a.u. The bulk plasm
contribution is not included. The different contributions
the total spectrum, the intrinsic, the extrinsic and the int
ferences parts are shown separately. We see that out to
2 eV the intrinsic part dominates.

At the surface plasmon peak the intrinsic part is fai
small, and the extrinsic and interference parts strongly c
cel. We also see that interference effects are important o
in a narrow region at the peak of the surface plamon, an
particular they are very small in the quasiparticle tail. Sin
the intrinsic contribution dominates at threshold we can
tain an energy-independent singularity indexa by fitting our
numerical results to a power-lawv2(12a), in a narrow re-
gion at threshold. The smallness of the interference contr
tion in the quasi-particle tail indicates that a BS convoluti
may work well here.

Results for different core distances are shown in Fig.
We see that we have to go to a distance of about 6 a.u. be
the bulk asymptotic limit is reached. The coupling functi
Vq(z) @cf. Eq. ~31!# behaves like2qz2/2 for small z. Thus
Vq(0)50, which leads toa50, the vanishing of all satel
lites, and ad-function quasiparticle line. This unrealistic re
sult depends on our neglect of the possibility for backscat
ing of the photoelectron, see remarks just before Eq.~26!.
Thus the behavior ofa for very smallz is unrealistic. We
can, however, conclude thata is enhanced close to the su
face. A more detailed estimate could be made fairly eas

V. CONCLUDING REMARKS

We have studied three different levels of approximat
for describing the photoemission current. In the quantu
mechanical approach~QM, Sec. II B–II D! we have an elec-
tron fully quantum-mechanically coupled to bosons, wh
represent electron-hole and plasmon excitations. In the s
classical approach~SC, Sec. II F! the electron moves on
trajectory with a given velocity, and we evaluate the los
from the corresponding time-dependent perturbation b
quantum-mechanical calculation. Finally in the Berglun
Spicer approach~BS, Sec. II E! we convolute the intrinsic
spectrum with an energy loss function. In the SC and
cases we found exact solutions on an exponential form.
QM case cannot be solved exactly, but we find an expon
tial form, which reproduces the main features of the ex
solution ~cf. Sec. II D!, and also of experiment~cf. Figs. 7
and 9 with experimental data in Pardeeet al.32 Note that we
,
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use atomic units, e.g., energy unit527.2 eV!. The QM and
SC expressions are very similar and have a square of the
of amplitudes for the extrinsic and intrinsic terms, while
the BS case we have a sum of the intensities from the ex
sic and intrinsic contributions. One can question how ac
rately our quasiboson model represents reality, but we
lieve it is the best model presented so far, which also
been quantitatively evaluated in detail.

The most important result is that the quasi-particle asy
metric line is found to follow the expected power law fo
several eV, and here is determined solely by the intrin
term ~cf. Fig. 9!. From this one may guess that the widt
and asymmetries of valence electron quasiparticles also
intrinsic effects given by the one-electron spectral functio
The asymmetry indexa depends on how far from the surfac
the atom sits, and is strongly enhanced close to the sur
~cf. Fig. 10!.

Another important result is the energies when QM b
comes well represented by SC, and when SC~and thus QM!
becomes well represented by BS~cf. Figs. 2–4!. The first
energy is approximately 5 a.u., while the second is say
a.u.~if we require, say, a 90% agreement!. However already
at, say, 20 a.u. the SC and BS cases give similar curves
the satellites, mainly differing by a scale factor.

For the effect of extrinsic scattering in the say, 5-eV-wi
range, which is important for strongly correlated systems
is hard to make any guesses from our present results. In
case the incoherent part is supposed to have important
tributions from more short-range interactions, while for o
model system the incoherent part was dominated by fa
sharp plasmon peaks coming from long-range interactio
This difference could make the approach to the sud
~5BS! limit much faster for strongly correlated system
without any pronounced plasmon excitations.

That we have a close relation between the QM and
cases was indicated in an early work by Ashley a
Ritchie.34 The classical probability of havingn collisions
when the particle has traveled a distancez is given by the
Poisson distribution,

Pn~z!5
1

n! S z

l D n

e2z/l.

They studied the same quasiboson Hamiltonian as in
paper, and showed that under certain conditions the quan
treatment also gives this Poisson distribution. However, t
only derived the probability of having a certain number
energy losses, not of losing a certain amount of energy.

Fluctuation potentials have been widely used for a lo
time. Here we put them on a rigorous basis by relating th
to the exact, and even more important, to the RPA dielec
response function. In the RPA case we find that formally
can define~and, in principle, use! fluctuation potentials also
for the electron-hole continuum, and not only for the pla
mon contributions. The form of the electron-hole potent
Vt(r ), Eq. ~52!, is physically appealing. It shows explicitl
that we work with a dynamically screened potential~with
on-shell energies!. In the usual Green’s function expansion
we also have a dynamically screened potential,W(v). How-
ever in this case we integrateW(v) over v, and W(v) is
practically unscreened in some energy ranges.
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To motivate our quasiboson model we study the hig
energy limit, and find that it can be exactly represented
having a coupling between the photoelectron and den
fluctuations. This is of course not much support when
want to discuss the fairly low energies, say, 5 a.u., where
go from QM to SC, and even less when we try to evalu
the strong relative enhancement in the satellite intensitie
say, 2 a.u.~cf. Fig. 4!. A stronger argument for the quasibo
son picture is probably that it makes physical sense, and
it has been successfully used before, both for the couplin
plasmons28 and to phonons.15

Langreth and co-workers3 have presented comprehensi
formal discussions of photoemission. For more detailed c
siderations they turned to a similar quasiboson model as u
in our work. However, they took a simpler coupling functio
@Eq. ~12! in the second reference of Ref. 3#, and they ne-
glected the bulk and surface plasmon dispersions. They
made further approximations that reduced their express
to the SC limit. We confirm their conclusion that the dev
tion from the BS result goes as (ek)

21/2 for large ek . It
would be very interesting, but not simple, to find out how t
choice of diagrams of Langreth and co-workers
Almbladh5 are related to our model.

We have studied a very simple model case since our m
purpose is to get a qualitative understanding of the rela
between photoemission and the spectral function. Our
proach is, however, general, and the one-electron Ha
tonianh can stand for a real solid with a surface. This ca
can be treated by taking the ionic potentials as perturbati
and calculating elastic scattering. We have used a cons
self-energy. A possible next step is to evaluate the s
energy using fluctuation potentials. The effects of elas
scattering should actually be very important as discusse
an early paper by Tougaard and Sigmund.35 A related ap-
proach can also be used for electron scattering.27
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APPENDIX A: HIGH-ENERGY LIMIT
OF PHOTOEMISSION

The general expression for photoemission was given
Eqs.~1! and~2!. We follow Chew and Low36 and rewrite the
final state as

uCks&5ck
†uN21,s&1

1

E2H2 ih
VCLuN21,s&,

VCL5@H,ck
†#2ekck

† .

Evaluating the commutator we have
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@H,ck
†#5(

k1

ck1

† hk1k1
1

2 (
k1k2k3

^k1k2uuvuukk3&ck1

† ck2

† ck3
,

where ^k1k2uuvuukk3& is an antisymmetrized Coulomb ma
trix element. We add and subtract a term

(
k1k2k3

ck1

† ^k1k2uuvuukk3&^N21,suck2

† ck3
uN21,s&

and choose the one-electron basis to diagonalize the HF
one-electron Hamiltonian,

hk1k1 (
k2k3

^k1k2uuvuukk3&^N21,suck2

† ck3
uN21,s&.

For the continuum states we use scattering states. Sinc
have scattering states, the diagonal element must equa
free-electron energyek . Theekck

† terms inVCL then cancel,
and we have

VCL5 (
k1k2k3

ck1

† ^k1k2uuvuukk3&

3S 1

2
ck2

† ck3
2^N21,suck2

† ck3
uN21,s& D .

We now discuss which are the dominant terms when
photoelectron has a high energy.

In the last termthe statesk2 and k3 must have limited
energies, since the stateuN21,s& has a limited range of vir-
tual one-electron energies. Furtherk1 must have a large en
ergy, otherwise the matrix element^k1k2uuvuukk3& becomes
small.

In the first term ck3
must have a limited energy since

works on uN21,s&. Thus one ofk1 and k2 must have a
limited energy, and one a high energy~sincek has a high
energy!, otherwise the matrix element^k1k2uuvuukk3& be-
comes small. The first term is symmetric ink1 andk2 , and
we can thus choosek1 to have a high energy, and omit th
factor 1

2 .
We denote states with a high energy byk and with a

limited energy byl, and have

VCL> (
k1l1l2

ck1

† ^k1l 1uuvuukl 2&

3~cl1
† cl2

2^N21,sucl1
† cl2

uN21,s&!.

Again utilizing the properties of the Coulomb matrix el
ments we can write~where we have dropped the small e
change part in the antisymmetrized Coulomb matrix e
ment!

uCks&5F11
1

E2H2 ih
VGck

†uN21,s&, ~A1!

V5 (
k1k2

f ast

(
l1l2

slow

ck1

† ck2
^k1l1uvuk2l2&
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3@cl1
† cl2

2^N21,sucl1
† cl2

uN21,s&#. ~A2!

We can rewriteV in terms of the density operator,

r~r !5(
l1l2

c l1
* ~r !c l2

~r !cl1
† cl2

and have

V5 (
k1k2

f ast

ck1

† ck2
E ck1

* ~r !v~r2r 8!

3@r~r 8!2^r~r 8!&#ck2
~r !drdr 8. ~A3!

We now have the expected result:At high energies we can
treat the photoelectron as a distinguishable particle intera
ing with the density fluctuations of the target system.

In the high-energy limit we can further write the fu
Hamiltonian as

H5Hs1h1V, ~A4!

where Hs describes the solid with all the electron-electr
interactions~only l operators!, h the photoelectron~only k
operators!, and V @Eq. ~A3!# is the interaction between th
photoelectron and the solid. We have dropped terms in
full Hamiltonian containing Coulomb interactions with on
or three fast electrons, since the involved Coulomb integ
are small. We have also dropped Coulomb interactions w
four fast electrons since they do not contribute whenH op-
erates onVck

†uN21,s&. Thus in a perturbation expansion o
Eq. ~A1! we can work with eigenstates ofHs1h, which
form a product basis,us8&uk8& ~for simplicity we have writ-
ten us8& for uN21,s8&).

In an extended system we may think of an excited s
us8& as having a finite number of extended boson-type e
tations. Since each boson excitation only changes the ch
density by a term proportional to (volume)21, we take
^s8ur(r )us8&5^0ur(r )u0&, for all s8. In a one-electron
theory the charge-density operatorr(r ) creates electron-hole
pairs.^s8ur(r )us9& is then different from zero only when th
states8 contains one more or one less electron-hole pair, s
t, than we have ins9 ~the cases when an operator in one p
coincides with an operator in another pair are so rare tha
can neglect them!. With a finite number of pairs we ca
replacê s8ur(r )us9& by ^tur(r )u0& or ^0ur(r )ut& The charge
fluctuations^tur(r )u0& determine thecharge fluctuation po-
tentials, Eq. ~50!, which can be chosen to be real. The a
proximations we have made are actually in accordance w
RPA, where the excited states are built of electron-hole pa
and no multielectron multiholes are considered,37 and also
with recent successful descriptions of exciton effects.38,39

The interactionV can be written

V5 (
k1k2

(
s1s2

E ^k1uVs1s2uk2&us1&^s2uck1

† ck2
,

~A5!

Vs1s2~r !5E v~r2r 8!^s1ur~r 8!2^r~r 8!&us2&dr 8.
-

e

ls
th

te
i-
ge

y,
r
e

-
th
s,

With the approximations above, it is reasonable to repl
the HamiltonianH by an electron-boson model Hamiltonia

Hs5(
t

v tat
†at ,h5 (

k

unocc

ekck
†ck ,

V5 (
tk1k2

Vk1k2

t ~at1at
†!ck1

† ck2
,

Vk1k2

t 5^k1uVt~r !uk2&.

Here we have representedus1&^s2u by at
† when s1 has one

bosont more thans2 , and byat when it has one less. Al
Vs1s2 wheres1 differs from s2 by more than one boson exc
tation are neglected.

APPENDIX B: THE FLUCTUATION POTENTIALS
CORRESPONDING TO THE RPA DIELECTRIC

FUNCTION

In Eq. ~49! we gave the exact formal expression for t
screened potentialW in terms of fluctuation potentialsVt,
which can be taken as real. We will here show that also
the RPA,W can be written as in Eq.~49!.

1. Regular case

We rewriteW5v(12Pv)21 as

W5v~12Pv !21~12P†v !~12P†v !21

5v~12Pv2P† v1P† vPv !212WP†W†.

We write P in Eq. ~51! as P11 iP2 , whereP1 and P2 are
Hermitian, which gives

W5W12WP1W†1 iWP2W†,

where

W15v1/2~122v1/2P1v1/21v1/2P† vPv1/2!21v1/2.

Both W12WP1W† and WP2W† are Hermitian, and thus
their diagonal parts are real in any basis set. We choos
complete set of real functions$gi%, and have

Im^gi uWugi&5^gi uIm Wugi&5^gi uWP2W†ugi&.

From Eq.~51! it follows that

P2~r ,r 8;v!52p(
t

w t~r !w t~r 8!d~v2v t!,

where the functions$w t% are chosen as real, which gives

^gi uIm Wugi&52p(
t

z^gi uWuw t& z2d~v2v t!.

We will now show that ImW5Im Wtrial where,
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Im Wtrial ~r ,r 8;v!52
p

2(
t

@Vt~r !Vt~r 8!* 1cc#d~v2v t!

~B1!

with

Vt~r !5E W~r ,r 8;v t!w t~r 8!dr 8. ~B2!

Both ImW @cf. Eq. ~49!# and ImWtrial are real, and they are
both symmetric inr andr 8. Their difference, which we cal
D(r ,r 8) is thus also real and symmetric. Further the diago
elements ofD are zero. We have, for arbitrary functionsf (r )
andg(r ),

05^ f 1guDu f 1g&5^ f uDug&1^guDu f &52^ f uDug&.

Hence all matrix elements ofD are zero, andD itself must be
zero. From Eq.~B1! we obtain, by using the Kramers-Kroni
relation, the corresponding expression forW.

Finally we introduce the real functionsV1
t 5 1

2 (Vt1Vt* )
andV2

t 51/2i (Vt2Vt* ), and have

Im Wtrial ~r ,r 8;v!52p(
t

(
i 51

2

Vi
t~r !Vi

t~r 8!d~v2v t!.

~B3!

2. Singular cases

In RPA for an electron gas,P2(uqu,v) is zero outside the
parabolas in the (uqu,v) plane that limit the particle-hole
excitations, as discussed in Sec. III A. In this region there
simply no particle-hole excitationsvk,q5«k1q2«k(«k1q
>«F>«k), due to phase-space restrictions. As is w
known, we still have contributions from this region in th
(uqu,v) plane from plasmon excitations. Similarly for a sol
with a surface, we can have singular bulk plasmon contri
tions in addition to those in Eq.~B3!. To obtain these con
tributions we follow another approach.

Write W on a symmetrized form,

W5v1/2~12v1/2Pv1/2!21v1/2[v1/2«̃21v1/2. ~B4!

The effective dielectric function«̃ is symmetric. We solve
for eigenvalues and eigenfunctions

«̃~v!w i5l i~v!w i~v!.

Taking the set$w i% as orthonormalized, we have

«̃~r ,r 8;v!5(
i

l i~v!w i~r ;v!w i~r 8;v!,

«̃21~r ,r 8;v!5(
i

1

l i~v!
w i~r ;v!w i~r 8;v!,

~B5!

W~r ,r 8;v!5(
i

wi~r ;v!wi~r 8;v!

l i~v!
, wi5v1/2w i .

The fluctuation potentialswi(r ;v) satisfy the equation
l

re

l

-

~12vP!wi5l i~v!wi . ~B6!

Equation~B5! gives a complete representation ofW. It is,
however, not on the spectral form we have in Eq.~49!, ex-
cept whenl i(v)50 has a real pole. Assuming that we ca
take the functionswi as real we have

Im W~r ,r 8;v!52p(
im

F]l i~v!

]v G21

wi~r ;v!wi~r 8;v!

3d~v2v im!.

We can now identify a fluctuation potential coming from
singular part ofW as

Vim~r !5U ]l i~v!

]v U21/2

wi~r ;v!U
v5v im

. ~B7!

For bulk and surface plasmonsi corresponds tok and Q,
respectively, and in the cases we discuss, there is only
root m for eachi. For an electron gas the functionswi are not
real, but rather plane waves. However, we can then tak
Fourier transform, and Eq.~B7! still holds. The presence o
singular contributions is connected with having very simp
models like the electron gas, and for a solid with band str
ture they do not appear. Still approximations of plasmo
pole type may be useful also for more complex systems.

In Sec. III D we also will need the charge fluctuation
dr i , which satisfy

~12Pv !dr i5l i~v!dr i , wi5vdr i . ~B8!

APPENDIX C: HARMONIC OSCILLATOR
WITH TIME-DEPENDENT POTENTIAL

In treating the semiclassical approximation~the trajectory
approximation!, we have a problem described by the Ham
tonian

H~ t !5(
q

@vqaq
†aq1Vq~ t !~aq1aq

†!#,

Vq~ t !50 for t<0.

We first treat the problem with one oscillator, and can th
easily obtain the solution for a sum of oscillators. The tim
evolution is writtenut&5U(t)u0&, where u0& is the ground
state ofH(0)5va†a. We have (\51)

H~ t !5va†a1V~ t !@a1a†#⇒ i
da~ t !

dt
5va~ t !1V~ t !,

a~ t !5U~ t !†aU~ t !5e2 ivt@a2 ig~ t !#,

g~ t !5E
0

t

eivt8V~ t8!dt8.
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The probability amplitude for the stateut& to haven excita-
tions is

^nut&[
1

An!
^0uanU~ t !u0&5

1

An!
^0uU~ t !a~ t !nu0&

5
e2 invt@2 ig~ t !#n

An!
^0uU~ t !u0&.

Using the fact that(nu^nut&u251, we have

Pn[u^nut&u25e2ug~ t !u2 ug~ t !u2n

n!
. ~C1!

We are interested in the case when time goes to infinity,
denoteug(`)u5g. It is, further, convenient to introduce th
energy distributionP(«),
e

es

ol

5,
d

P~«!5(
n

Pnd~«2nv!5
1

2pE2`

`

ei«teg2[e2 ivt21]dt.

When we have many oscillatorsq, each with a probability
Pnq

q of having nq excitationsvq , we are interested in the

energy distribution

P~v!5 (
nqnq8•••

~Pnq

q Pnq8

q8
••• !d~v2nqvq2nq8vq82••• !

5
1

2pE2`

`

eivte(
q

ugq
0u2[e2 ivqt21]dt, ~C2!

ugq
0u5U E

0

`

eivqtVq~ t !dtU.
This is the result we need in Sec. II F.
we
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