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Experimental results for core-electron photoemissigiw) are often compared with the one-electron spec-
tral function A.(ex— w), Where w is the photon energye, is the photoelectron energy, and the optical
transition matrix elements are taken as constant. Sliy¢e) is nonzero only fore,>0, we must actually
compare it withA.(e,— ) 6(e,). For metalsA.(w) is known to have a quasiparticl®P) peak with an
asymmetric power-laitheories of Mahan, Nozies, de Dominicis, Langreth, and othékdND)] singularity
due to low-energy particle-hole excitations. The QP peak starts at the core-electron €neagy is followed
by an extended satellitesshakeup structure at smallew. For photon energies just above thresholdy,,=
— €., Alex—w)0(e) as a function ofy, (w constantis cut just behind the quasiparticle peak, and neither
the tail of the MND line nor the plasmon satellites are present. The sudhigimenergy limit is given by a
convolution ofA.(w) and a loss function, i.e., by the Berglund-Spicer two-step expression.Aliug alone
does not give the correct photoelectron spectrum, neither at low nor at high energies. We present an extension
of the quantum-mechanicé&@M) models developed earlier by Inglesfield, and by Bardyszewski and Hedin to
calculate],(w). It includes recoil and damping, as well as shakeup effects and extrinsic losses, is exact in the
high-energy limit, and allows calculations &f( w) including the MND line and multiple plasmon losses. The
model, which involves electrons coupled to quasibosons, is motivated by detailed arguments. As an illustration
we have made quantitative calculations for a semi-infinite jellium with the density of aluminum metal and an
embedded atom. The coupling functidffisictuation potentialsbetween the electron and the quasibosons are
related to the random-phase-approximation dielectric function, and different levels of approximations are
evaluated numerically. The differences in the predictions for the photoemission spectra are found small. We
confirm the finding by Langreth that the BS limit is reached only in the keV range. At no photon energy are
the plasmon satellites close to being either purely intrinsic or extrinsic. For photoelectron energies larger than
a few times the plasmon energy, a semiclassical approximation gives results very close to our QM model. At
lower energies the QM model gives a large peak in the ratio between the total intensity in the first plasmon
satellite and the main peak, which is not reproduced by the SC expression. This maximum has a simple
physical explanation in terms of different dampings of the electrons in the QP peak and in the satellite. For the
MND peakJ,(w) andA.(e,— w) agree well for a range of a few eV, and experimental data can thus be used
to extract the MND singularity index. For an embedded atom at a small distance from the surface there are,
however, substantial deviations from the large-distance limit. Our model is simple enough to perform gquanti-
tative calculations allowing for band-structure and surface de{&¥163-18208)03847-9

[. INTRODUCTION means a convolution of the spectral functidw) with a
loss function. Such a convolution does not changepibs-
Photoemission spectroscoflJES has become an impor- tion of a sharp quasiparticle peak. Quasiparticle peaks, how-
tant tool for studying properties of matter. Most measure€Ver, have a lifetime width, and the experimental width is
ments have aimed at obtaining electron band structures, i.dus not the same as the width of the peakAfw). They
electron quasiparticle energies. The experimental results al so_have an asymmetry, which ha_s to be known to allow a
generally in good agreement with theory for large classes OPreé:ésSei daesssItghr;mqeunats(i);f)Srt?celskpggi?f)n.has an incoherent
fg:t;:gze-rr]h;)'B:i;?ﬁ;%g%xirgzgﬁgmsggS;nmt(;f:;ysb;Sf:eogatgIIite structure. Insp solids the satellite structure is
. . mainly due to shakeup of surface and bulk plasmons. In
one-electron spectral functioA(w). There is, however,

high-T. materials the incoherent background can be associ-
never a true correspondence between PES Afw), not  4req with, e.g., spin excitations, and gives important infor-

even at high energies. The reason is iab) only describes mation regarding the nature of the electronic correlation. The
the primary excitation of the photoelectron, but does not takgpectral function is also influenced by thermal motion, i.e., it
account of the losses the photoelectron can have before dfives information on phonon properties. With synchrotron
leaves the solid. This has been recognized from the start ghdiation sources the resolution in PES has been vastly im-
the field, and the earliest attempts to account for this discrepgaroved, and the data now show a richness in detail besides
ancy was the use of the Berglund-Spid®S) three-step peak positions, which demands a comprehensive theoretical
model® Apart from the surface losses, the BS model simplyinterpretation.
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The satellite structures in PES originate both fréfw) sponding fluctuation potentials. Inglesfield has used
and from the losses the photo-electron can have before further simplified fluctuation potentials, which turn out to
leaves the solid. We talk abointrinsic [coming fromA(w)] give results closely similar to those of Bechstedt. Other esti-
andextrinsiclosses. Between these two types of losses therenates of electron-solid coupling functions were discussed
is quantum-mechanical interference. This interference resulisy, e.g., Feibelman, Duke, and Bagéhiand by Eguiluz?
in a strong suppression of the satellite structures as comparésh important issue in our paper is that we are not restricted
to the BS predictions, up to photoelectron energies in théo plasmon-pole-type approaches, but have obtained results
keV region. When the interferences are gone, and the B&Iso with the RPA dielectric function including electron-hole
model applies, we may say that we are in tuglden limit  excitations.
since we only have to convolufg w) with a loss function to An even simpler approach is the semiclassi&(C) one,
get the PES spectrum. At threshold, when we may say thathere the photoelectron is put on a trajectory and not al-
we are in theadiabatic limit the satellites are absent due to lowed to recoil. This approach is old and it is hard to trace its
energy conservation. Qualitatively we can consider the adiaorigin. It was used early in the classic paper by Lindhdrd,
batic limit in time development and use a semiclassical picand it has been used by Fertélo discuss plasmon satellites
ture. The combined effect of the potential from the hole leftjy x-ray emission. A detailed discussion, directly relevant for
by the photoelectron and the slowly moving photoelectronpig paper, was given by Lucas, Kartheuser, and Badoo

gives a slowly varying potential to which the solid adjusts gjectron-phonon scattering, and accounted very successfully
adiabatically. This picture is, however, not possible to quansg, experimental data.

tify, and at low energies the semiclassical approximation is An approach related to the SC one is due to Simonsen

quantitatively poor, as we will discuss later in this paper. Yubero, and Tougaartf. Here the dielectric response of the

Since the mean free path is typically 5-20 A it is clear . . .
that the surface plays an essential role for PES. This make?/smrn is found from a theory by Garcia-Moliner and Rubio

any theory beyond the BS model complicated. This pape See, e.g.,_Ref. 1)7!nvp|wng pseudosurface charges.
has a twofold purpose, namely, to quantitatively describe the, The main results N thls paper are th_e following. We de-
transition from the adiabatic to the sudden limit in core-"V¢ the high-energy limit (_)f PES, 'and find argumgnts as to
electron PES in a simple model situation, and to develop /N the photoelectron-solid coupling should be given by a
method that allows quantitative calculations of more realistidluctuation potential. We find a relation between the fluctua-
systems. tion potentials and the imaginary part of the RPA expression
A genera| approach to PES was deve|oped by Caro'for the dynamica”y screened pOtential, and check that our
et al? and Chang and Langrethased on Keldysh diagrams, model electron-boson Hamiltonian reproduces tGaV
which has been further expanded by, among others, Bos@pproximation® for the electron self-energy. We follow in
Longe, and collaboratofsand Almbladi Here we will use  detail, both analytically and numerically, how the transition
a different, and more elementary approach than by use dfom QM to SC and to BS takes place. Using the formal
Keldysh diagram§.” We use an electron-boson Hamiltonian, similarity between the QM, SC, and BS results, we general-
where both the photoelectron and the core electron arize the results in Ref. 7 to a closed expression containing
coupled to bosonic-type excitations in the solid via fluctua-plasmon losses to all orders as well as the particle-hole
tion potentials. We then make a straightforward perturbatiodosses. We find explicit analytic results for the fluctuation
expansion in terms of the fluctuation potenti&8(r) (cf. potentials in the case of a dielectric function of a semi-
Sec. I, rather than in a dynamically screened Coulombinfinite jellium with an infinite potential barrier and specular
potentialW(r,r’";w). Note that thev9(r) are functions only reflection of the electrons at the surface. These analytic re-
of r and not ofr andr’, and do not depend om. We study  sults are compared with those from a full RPA calculation.
only core-electron PES, which is considerably simpler than Core electron PES is an old problem. The asymmetric
valence electron PES. Our approach is fully quantum meguasipatrticle line due to particle-hole and phonon shakeup
chanical(QM), and, e.g., the recoil of the photoelectron andhas been treated extensively, and the results by Mahan, No-
its damping are considered. zieres, de Dominicis, Langreth, and others are discussed in
The fluctuation potentials can be obtained from the dielectextbooks (MND theory).'® With our approach we find a
tric function. Our lowest-order approximation for the photo- power-law behavior set by intrinsic losses only, out to sev-
current is quadratic in the fluctuation potentials, and can beral eV from the edge. We further find that the MND x-ray
expressed in terms of the dielectric function. edge singularity index is enhanced when the emitting elec-
A central issue is a good treatment of the fluctuation poiron is close to the surface, but quickly approaches its bulk
tentials corresponding to the random-phase-approximatiomalue (within, say, approximately 5 au.Our approach also
(RPA) dielectric function. This function was discussed in reproduces multiple plasmon losses and the smooth back-
detail by Newn& for a semi-infinite jellium. The RPA func- ground from electron-hole excitations.
tion is, however, quite complicated, and a simpler version, The outline of this paper is as follows. First we discuss
corresponding to an infinite barrier and specular reflection obasic theory and derive the sudden approximation in Sec.
the electrons, is often used. In this approximation, whichll A. In Sec. |1 B a discussion follows on photoemission in
neglects interference between incoming and reflected elethe electron-boson model. We obtain general results to arbi-
trons, only the jelliumbulk dielectric function is involved. trary order in the electron-boson coupling functions, the fluc-
The screened interaction corresponding to this approximauation potentials. The background for the electron-boson
tion has been written in analytical form by Bechstedt, Endermodel is discussed in Appendix A, and the properties of the
lein, and Reichardt,and we have further obtained the corre- fluctuation potentials are derived in Appendix B. In Sec.
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[IC 1 detailed results for one-boson satellites are derivedrected for extrinsic losses. This is so because with increasing
and as an example, explicit results with the Inglesfield bulkelectron energy, the mean free path increases, and the elec-
plasmon potential are given in Sec. [IC2, as well as thdrons come from increasingly larger distances from the sur-
high-energy and large: limit in Sec. IIC3 (z. is the dis- face. Thus even though the scattering rate goes down, the
tance of the core electron from the surfade Sec. IID we  total scattering tends to a constant, as shown in Sec. Il E, Eq.
generalize the one-boson loss results to an exponential forn¢4).

which includes multiboson losses. The BS expression is writ- From Eqg.(1) it immediately follows that

ten in a compact form in Sec. Il E. The exact solution for the

SC case, derived in Appendix C, is discussed in Sec. Il F,

and compared with the QM results. Finally in Sec. Il we Jk(@)=> <N—1,S Ck AijCiTCj‘I’i>
compare the SC approach with that of Touga@dc. Il G. S .

Section Ill is devoted to the central quantities in our theory,If the photoelectrork is fast enough, there are no virtual
the fluctuation potentials. First the general relation to thesiates in¥;) to annihilate, and thea, must match:iT. This

dynamica”y Screened Coulomb pOtential, derived in Appen'gives the We”_known Sudden approximaﬁbn
dix B, is discussed in Sec. lll A, and then the Inglesfield and

the Bechstedt approximations are discussed in Secs. 111 B and

2
(w—exteg).

lIC. Finally in Sec. lll, the RPA potential is considered J(w)=2, AyjAji(e— 0) Ay, 3
(Sec. lID). In Sec. IV we present our results, and in Sec. V 1
we give concluding remarks. whereA(w) is the one-electron spectral function. The argu-
ments leading to this expression do not say which one-
Il. PHOTOEMISSION THEORY electron states should be chosen for the photoelectron. This

gan only be decided by explicitly considering the left-out
contribution in Eq.(2). Since the statek in Eq. (2) are not
émiquely defined, the division between intrinsic and extrinsic
“contributions is somewhat arbitrary, except at high energies.
In Appendix A we make a choice for this division.

The sudden approximation includes “intrinsic losses” or

- NEZY . satellite structure, while the remaining term in EB) gives

Jk(w)_Es (Wi Ao 0 =it eg). @ the “extrinsic losses.” Extrinsic and intrinsic losses tradl

o ) o amplitudes, not intensitiga the expression for the photocur-
This is the standard golden rule expression with final stategant in Eq.(1).

having the proper boundary conditiqns for scattering states. |t we use an effective one-electron Hamiltonian and

All states are correlate(_j. Furthes, is the energy of the approximate the self-energy # by an imaginary constant,
photo-electronk?/2, ¢, gives the energy of the final state of —il', thenA(w)=— 7 tIm[w—h+il']"%, and we have an
the solid ase;=E(N,0)—E(N—18),  is the photon en- apnroximation discussed in detail by, e.g., Feibelman and
ergy, andA is the optical transition operatoA=X;;(i|Ap  Eastmarf? and by Pendry® This approximation thus de-
+pAlj)cic;. |¥;) is the initial state, and¥, J the final  scribes only the quasiparticle bands, and no satellite struc-
state, which can be written tures(intrinsic or extrinsi¢. There is no unique definition for

h in Pendry’s approach.

A general expression for the photoelectron current can b
obtained from scattering thedfy(we use atomic unitse
=f=m=1, and thus, e.g., energies are in Hartrees, 27

ev),

1
_ T TIN —
|Wk,5>_ 1+ E—H-—i 77(H E) Ck|N 1s), 2 B. General discussion of core-electron photoemission

using an electron-boson model Hamiltonian
whereH is the fully interacting Hamiltonian including target .
y 9 grarg The standard theory for photoemission uses the three-

+ =g+ . T .
electrons and photoelectron, abd"w+E(N,0)=e,+E(N current formulatiofr® expanding in Keldysh diagrams. Here

—19). IN~15) is the target state after the photoelectron hag e will instead follow a simple direct approach developed in

T -
left, andcy creates the photoelectron. The states correspon(ﬁef' 7, where we approximate the Hamiltonian by keeping

ing to CE are so far undefined, except that they are time—Only the simplest terms that give extrinsic losses,

inverted LEED states with asymptotically a plane-wave part
exp(k-r). We will suppress spin variables.

H=H,+h+V, (4)
A. Sudden approximation unoce
In the sudden approximation the final state is approxi- HS:Z wqagaq, h= E €kCle,
mated a§ ¥, J=cf|N—1s) . This means that all extrinsic q K

interactions between the photoelectron and the target system
are neglected. At high energies this is a good approximation q ot q .
for finite systems such as atoms and molecules, atoms on V= E Vi (Agtagcer s Vi, =(kIVAN[K"), (5)
surfaces, etqwith a proper choice of photoelectron stakes akk
see Appendix A because the electron scattering rates go to
zero with increasing energy. The sudden approximation is,
however, never good for solids, and always has to be cor-

vq<r>=fv(r—r'><q|p<r'>|0>dr'. ®)
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Here Hy describes the solid with all the electron-electronstands for a state of the valence electrons in the presence of
interactions,h the photoelectron, an¥f the interaction be- the core hole, angis=0)=|{n,=0}) is the completely re-
tween the photoelectron and the solity, thus describes in- laxed state. The ground std@') is an eigenfunction of

trinsic losses, an¥ extrinsic losses, and also the damping of

the photoelectron. The operatcar&create exited states of the ) " . N

solid (quasibosons with excitation energyw,, and the op- Hs=§ wqaqanf% Vee(@g T ag). (10
erators ¢/ create photoelectrons in time-inverted LEED

states with free-electron energid4! is a fluctuation poten- To diagonalizeH; we make a shift in the oscillators,

tial, cf Eq. (50). For simplicity we use a single index to :aq—vgclwq, and have

design our bosons. We actually have both bulk and surface

plasmongwhich depend only on the momentum parallel to o (V)2

the surfack as well as(in the RPA casg electron-hole H.=> wqagaq_g ;C
q q q

pairs,chck, depending on an additional ind&x For core-

electron photoemission all quantities ihrefer to the situa-  The second term is an energy shift, which we drop. The

tion with one core hole present. A detailed motivation for g|ation between the ground sta@s of = ala and|0’)
this approximation can be made in the high-energy limit, see araraTa

_T_ .
Appendix A. of 2qwqaqaq is
The initial state has no photoelectrons, no quasibosons,

2

and the core-electron stateis occupied. We writd¥;) N o | Ve p, 1V
=b'0’). The ground statf’) is for valence electrons with 07)=e770), S_% wq 4t 3 wq) | (D
no core hole. H—E) in Eq. (2) can be replaced by since
(Hs+h—E)c]|s)=0, and we can write the final state as We have forrg(k),

W)= 4 v clls) (K =(k|( §||1+V=———|e"S0)Alc) (12

ks E-H—inp | K> s E-H+in

The statels) containsny(s) quasibosonsd.” The photo- We next make a partial summation\Vto obtain damped
electron current becomésf. Eq. (1)] photoelectron states. From Feshbach’s projection operator

techniqueg? with P+Q=1, andV=Hpgo+Hgp, we have

I(w)=2 lvs<k>|26(w—sk—2 nq<s>wq), (7) P(E—Hpp+iz)
] i P Y e ) T EHpp—Sppti
with the transition amplitude 7 PPTSPPT LY
1
X 1+VPQ—- ,
E—Hgoti
- - otantlor QQTI7
7<(K) <s Cy 1+vE_H+i7] %‘, Ajicic;b’|o > (8

— H -1
We have shifted the energy scale forto remove the large 2pp=VeglE—-Hootin] Voe.
core-electron binding energy., such that the maximum en- ChoosingP=|s)(s|, we have
ergy that the photoelectron can havevisFor the photoelec-
tron we have put the energy zero at the bottom of the con-
duction band. When the photoelectron barely can leave the pr=(z Ng(S)wgt+h
solid, and thus has zero kinetic energy, it is assigned the q
energy e+ ¢, where e¢ is the Fermi energy, ang the
work function (¢>0). The minimum possible value fer is
henceer + 9. (#=0) P Vo= qu (ag+ahviQ, vazQEq) P,
In Eq. (8), ¢; must annihilate the core electron, aofl o
create a(virtual) photoelectron. Going over to a product This gives
space, we obtain

P!

/% -S
k)=(k - A KWK A TS(k)_<k|<S(1+VPQE_HQQ+i7I ¢ O>A|C>'
(k) =Kl s 1+V a0 & KK Ale) (13
1 where<E| is a damped photoelectron state

i

e T

where, in the last line, we have approximatad |k’ )(k’'| by
a ¢ function.

In Eq. (9), |0") stands for the ground state of the valence To estimateX pp we replaceH oq by its lowest-order ex-
electrons before the core electron was removed, wsiie pressionHg+h, which gives
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2PP(EK): 2

qkk’k” € En—

The imaginary part o pp is precisely the polarization part
in the GW approximatiof® for the self-energy, while the real

part differs slightly. We note that in the present approxima-

tion 3 pp does not depend oR, and we will hence omit the
P index onX. In r space we have

S(rriw)=2, VI(r) 77vtl(r’). (14)
q

w—h—a)q—H

We will now expand the transition amplitude to lowest

nontrivial order in the fluctuation potentials when there are

zero, one and two bosons excited. Fr&fcf. Eq. (11)] we
have an overall prefactoe”*?, where

Vi) ?
wq)

1o(k)= eia/2<’|Z|TsA|C>!

a=>

q

(19

We write

a, ot
e’Eq (Vidwga]

1+V

s o).

First consider a state with one bosor, excited,n(s)

d

_

q.qq’

Q

-

Yo
_ VCC]
wq,

We further havgsee Refs. 26,97

Q
<O —E—HQQ+i 7]0> =G(ek+wq0),
where
3 1
Glw)= w—h—3(w)

with %, given in Eq.(14). Collecting our results we have

Vo

=\/% __cc
To=V®G(ect o, ) >
0

(16)
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It is possible to develop a general expansion fg(k).
For the lowest-order contribution to two-boson excitations,
[for example,nql(s)=nq2(s):1, all otherny(s)=0], we
have

Vqlqu A1
Te=—— +| — | VRG(&+ wg))
waqu wa
_Vq2
+ CIVHG (g + wg )+ + VUG (g + 0g.)
g Ek a, €k a,
2

XV2G(g,+ wq, + 0g,) +V2G(g, + wgq,)

XVUG (g, + wq, + qu). (18

We will return to this two-boson expression in Sec. 11 D.

C. Detailed results for the one-boson satellitebn (s) = 5q'q0]

1. General results in the semi-infinite jellium case

We want to evaluate approximations fog(k) to obtain
the photocurrent from Ed7). Since we have only one boson
in the final statess, we will in this section for simplicity
write 74(K) instead ofrg(k). We have

Jk<w)=§ | 74(K)[28(0— &= g). (19)

We consider a half-infinite electron gas with an embedded
ion at distancez,>0 from the surface. We take the self-
energy as zero outside the solid, andI'(w) inside. Ne-
glecting the influence of the embedded ion, the fluctuation
potential can be written

VI(r)=eQRvI(z). (20)

Bold capitals are used for vector components parallel to the
surface, and small thin letters for the components,r
=(R,2), k=(K,k) andgq=(Q,q), except thar meangr|.

For the LEED state we writek(>0),

K, LEED) =& R{[e**+Re *?]6(~2) + Te*?6(2)},

where

k=\VK2+2[per+ d+il ()], (22)

with ¢ the work function ¢p>0). We set the transmission
factor T=1, and correspondingly the reflection fact+ 0,
which is a good approximation except for very low energies,

where the first term gives extrinsic and the second intrinsievhere in any case our approximations are less reliable. The

losses.
Next consider the case,(s)=0, i.e.,|s)=10),

Vq
T=1-, vqe(ek—wq)—w°°+2 VIG(€— wq) VIG(€).
q q q

7

The last term was neglected in Ref. 7.

photoelectron state is the time-invertée., complex conju-
gated, since we have no magnetic figllEED state. We
have

[K)=e R g(z)e” K 2+ 6(—2)e %],

The intrinsic and extrinsic contributions to the transition am-
plitude becomédcf. Eq. (16)]
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‘ B R We have previously fourldthat contributions when the
qumr(k): —e‘a/z(k|A|c>w—, (22)  photoelectron travelaway from the surface are very small,

q and neglect such contributions @& The total transition am-
plitude then i

(K|acy=e*ze(k|a|c)°, (23
|Tq(|()| :efzclmkfa/2|gq|, (26)
<~k|A|c>°=f ek(z-2)giKRA (2, R) o, (z,R)dZ R,

ng‘ ficf(z)vq(z)dz

(k)= e‘a’zf ek2vd(2)G(z,2'; k)€ (TR

X A(z' R)ou(2' ,R)dzdZdR, tz)= 2275 L Tk nemgg -2,
W — €L K
[ ;
G(z,z';k)=— —elxlz=7], Vaz)) i [z -
K = ¢ J— i(k*K)(Z*ZC) q
dq pr, + Kﬁwe VY(z)dZ. (27)

— : 2
k= \2wt ¢+l (w)]=[Q+K 24 SinceJy(w) is quadratic in the fluctuation potentials, we
In x we could replacey + g by w since we have an energy- can write the photocurrent in terms of the imaginary part of
conservings function in Eqg. (19). Let us take the core- the screened interaction. From E&3) we have for the par-
electron as centered a,¢.), and neglect th& dependence  allel momentum Fourier transform of I(r,r’; ) [cf. also
in the exponents, since the core-electron wave function igq. (20)],

strongly localized. We can also replacg by z. in
G(z,2';«), and approximat®&/J.=V9(z.). We then have
IMW(Q,z,2';w)=—7AY, VA(Z)VUZ')* 80— wy),
q
(28)
where the asterisk means complex conjugate, And the
normalization area, the normalization volume beifiy

Tg"“(k):(K|A|c>°e*a’2f e‘EZVq(z)G(z,zC;K)dz, =AL. Taking the core-electron wave function as having
(25) zero extent, we obtain from Eq&L9) and(26),

Vi(z,)

intr — % 0 iEzc—aIZ
74 (K)=—(k|A[c)% pryp

<k|A|c>°=f k(=27 (z,R) po(z,R)dZCR. Jk(w)=e‘22°'”‘"‘a% 94?00 —e—wg). (29

The contributions to the integral givingk|A|c)® come
mainly from a small region close to=z.. In that region we
should replace'®(?~%) by a wave function that is forced by 1
t_he strong ionic potentlz_;\I to hav_e rz_;lpld_ oscnla_\tlon_s. One Je(w)=e"2zm k-a__—% ff(z)f(zr)*
finds, with ans core function, polarization in thedirection, TAQ

and taking the origin of the photoelectron wave function at

Comparison with Eq(28) gives,

the ion core, 0,z.), that(k|A|c)° should be replaced by XImW(Q,z,2";w—g,)dzdZ. (30)
R The first(intrinsic) term in f(z) will clearly dominate close
(klA[c)=4miYo(K)Ac(K]), to threshold,w=&.

2. Explicit results with the Inglesfield bulk fluctuation potential

Ac<|k|>=f:rleu;|k|>A<r>¢c<r>dr,

The Inglesfield bulk plasmon potential(i& atomic unit$

whereR; is the radial solution of the atomic potential that

matches smoothly to thp wave part of the plane wave. Vi(z)=Ag[codqz+ ¢q) — cospee “10(2),  BD
Ac(Jk|) varies only slowly with|k|, while (k|A|c)? is pro-

portional to k. At high enough energies the plane wave A Q

should be good, but then the approximation of neglecting the A= -k $q=arctg—,

e'kR factor is not valid. In the following we will put Q%+ %) wg q

(k|A|c)? in Eq. (25) equal to 1, and thus disregard the an-

gular function|Y;o(k)|2, which is a common factor for pho- wg=wp+3(Q*+q?).
toemission in a given direction, as well as the slowly varying

function A(|k|). Using Eq.(27), we have the simple expression
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e*R(k-k+q) e %R(Kk—x—q) at the surface. One can also explicitly verify that this term is
5 + 5 much smaller than those that we have kept. We have also
K K dropped the ca,e” %% term, which vanishes for large. .
= : - For largez.,cog(qz+ ¢,) averages to 1/2. Furth¢R(x)|?
— k+ + — Qz; (S q
_CoShgR(k— k*1Q) _ cotaz+ dq) — COSHee —[4sif(xz/2)]x°=2m2.5(x), and thus

ngAqei(K—E)zC

K wq

(32 e—ZZCIm‘R—a 20
(o) = ©p0(do)| 72 o

whereR(x) = (1— e™%)/x. (35)

We see that the damping is proportionalzag whereas
we should expect it to be proportional to the lendth
=z./cose traveled by the electron coming out at an angle
to the normal. The combinationImk, however, has the =~ We can write an exponential expression that in lowest
expected behavior, at least at high energy. From(Etj.we  order reproduces Eq29), and picks up the most divergent

mi(0—e) | K (0—ep?]

D. Generalization of Eq. (29) to an exponential form

have terms in higher order in the expansion made in Sec. 11 B,
~ 2z, 2I'lcosp | 1 J"" o 2 g—iwgt_
S i P it S J(w)y==—| e edleddd™ e~ gt (36
2z Imk= — = TR (33 Ko)=5—| (36)
where\ is the mean field pathy/(2T"). First we expand Eq36) as

For photoemission at right angle to the surfa€es 0, the
K-Q term in k disappears, and we are left with only one

~s a2
integral in Eq.(29), which then becomes Ji(w)=e" *d%| 5(w_8k)+§q: |9q|?8(w— 2~ wg) |-
e72zclm~kfawr2)0(q0) % | gq 2 (37)
(@)= 702 w—g) q A > qu’ This is meaningful only when the, have a positive mini-
0 K oF Q= Va5-a mum value, i.e., when the particle-hole continuum is omit-
(34) ted, since otherwisg, diverges whenw= ¢, cf. Eq. (27).
The exponential expression, on the other hand, is well de-
Qo= V2(w—wp—&y). fined also with the particle-hole terms included. Téhéunc-
tion in Eq.(37) gives the quasiparticle contribution, and the
3. High-energy and large-z limit second term reproduces EQ9) provided

We want to evaluatd, () in the limit of high energy and

largez;, and show that we obtain the same result as in the 2 ~
Berglund-Spicer model. For large energies zq: |9q/*=a+2zimk. (38)
wp+q2/2 In the high-energy limit we have from Eq&5) and (37),

k=k=k, Re(k—K)=

k 1
2
wp0(do) [ 7z do
o E|9q|2=fdwzp—_—zc+ﬁ :
. TNeo)T'(w wqo) q mOo(w—ey)\ K (w—gy)

Im(xk—k)= K . (39
I'(w) starts quadratically at the Fermi surface, increases rapESteioiecond term in Eq39) comes from the intrinsic contri-
idly at the onset of plasmon decay at abogt+ (1 '
+0.24\/r_s)wp, reaches a broad maximum slightly below 5
€r+ 3w, and then slowly goes to zero as/i/. From this it wpb(o—wp) _ a(w) 40
follows that in the high-energy limit, we can neglect ln( ww3</2(w—wp) w '

—k) which appears as a prefactor in the expressiorgfdn

Eq. (27). Neglecting the cross termnterference termsin wherea(w) is the Langreth singularity function, defined so
|gq|2 we have that «(0) is the singularity index for the core-electron spec-

tral line, Aj(w) ~ w1~ *O1 (¢f, p. 655 in Ref. 28 The first
term in Eq.(39) is related to what Ritchié calls the DIMFP

2
9q =i{|R(~k—K+q)|2+|R(~k—K—q)|2} function 7(e,w) (differential inverse mean free path, see
Aq  4K? e.g., p. 689 in Ref. 28 wheree is the photoelectron energy,
| o5zt bq) 1 f dg [ -1
2 : 7(e,w)=— | —Im .
wq me) ( €(q,w)

We have dropped the C¢§R(T<—K+iQ) term, since for Neglecting the weakat higher energigsdependence on the
large energies the result cannot depend on the phasefghift electron energy, we have
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wgt‘)(w—wp) . - a(w) 1(e,0)
2(0—wp)we =7le,0) f D(w.2)dz= To(e) )+ =5 7o(€)

The integral overx(w)/ o gives the overlap factoa in Eq.  |f we also integrate ovew we obtain,

(15), and over7(e,w) the inverse mean free pathy(e) -

=1, cf. Eq.(39), J D(w,2)dzdw= :)(:)[1+a+1+...]_ (44)

a(w) The relative intensity of the first plasmon satellite to that of

the main peak is thus alwayst 1 in the BS approximation.
In our model calculationa=0.35.

As noted in Ref. 32r(e,w) and (&) tend to zero with
increasing photoelectron energy When we integrate Eq.
(43) overz, we, however, cover a larger and larger distance,
easy to see that if we neglect the extrinsic losses, we arrive {nce To(e) in the _exp_onent becomes_smaller and_ smaller,

and the total contribution from the extrinsic losses is always

the usual intrinsic spectrum with its asymmetric main "nethe same as in the elastic peak. If we have photoemission
and all its satellite peaks. At threshold the intrinsic termsfrom a finite svstem. or from 2torﬁs on asurfacg the distance
dominate, due to the factar— ¢, in the denominatojcf. Eq. Y ' o Y ;

. the photoelectron travels is finite, and the extrinsic contribu-
(27)]. From the general expressions for expanding|(cf. tions vanish as the photoelectron energy increases
Sec. IIB), the next most singular term at threshtd. Eq. P 9y '
(18)] is exactly reproduced by the exponential expression to
all orders, and for all energies. As regards the second-order
term, it is reproduced exactly by E@L8) in the high-energy
limit.

J

Thus EQ.(38) is correct at least in the high-energy limit. An
example of the magnitude of the breakdown of E2P) is
given in Fig. 8.

We now turn to the higher-order terms in E§6). It is

dow, TO(S)=f 7(e,w)dw. (41

F. Loss spectra from time-dependent perturbation theory

A simple approach to calculate loss spectra at high ener-
gies is to consider the effect of a classical particle moving on
a trajectory. We then have a perturbation from a charge mov-
ing with velocity v. For simplicity we here assume that it
moves at right angle towards the surface,

E. The Berglund-Spicer expression

The Berglund-Spicer approximation for the energy distri-
kZ)liJStlon D(w,z) of the electron after it has traveled a distance p(r ) =[S(z+vt—20)— (z—29)]6(R)O(L).  (45)

To describe the effect of the perturbation we can use the

D(w,Z)Zf Alw")Plo'—w;z)do’,

where A (w) is the intrinsic spectrum given by the one-
electron spectral function, arf w;z) is the probability that
the electron has lost an energy when it has traveled a
distancez. As shown in Ref. 28D (w,z) can be written in a
compact form if we use results by Langrétand Landar®

= g'eldt
D((u,Z)ZJﬁoc 5 exp[f(dw’/w')

><[a(w’)+Zw'r(e,w')](e-‘w’t—1)]. (42

The dependence of(e,w) on € is weak at high energies,
and was neglected in Landau’s derivationRtfw). Neglect-
ing the electron-hole contributions, so thetw) and (e, )
start at the plasmon loss threshold, we have

a(w)
D(a),z)=efafT°(s)Z S(w)+ T+ (e, w)z+---

(43

When we evaluatey(e), a(w), and7(e,w) in the plasmon-
pole approximation, the satellite part in E@3) precisely
reproduces Eq35).

When we integrateD(w,z) over z, we have the well-
known resulft?

“forced oscillator” Hamiltonian®33

H(t)=2q [wqalag+ V() (ag+a))]l, (46)

Vq(t)=f Va(r)p(r,t)dr. (47)

HereVY(r) is the same fluctuation potential as we introduced
in Egs.(6) and(20). In Appendix C we calculate the prob-
ability P(e) that the time-dependent perturbation Hi(t)
after a long time has excited the system with an energy
We then assume th&(e) also is the probability that the
photoelectron has lost an energy J,(w)=P(g)=P(w
—gy). From Eq.(C2) in Appendix C we have

1 * 0 i
Jk(w)ZEf_ e'(‘”_sk)teg lggl?(e™ =1t

The coupling function is obtained from Eq#5) and (47),

09| | “evnar

iz . Vi(z
=’—f dz\A(z)e '@az 20 4 Viz,) :

UV)—-x wq
We can compargg with g4 in Eq. (27). In our unitsv=Kk.
At high energiesk=«k=k , andk— k= —[(wq— Q%/2)/K].
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The semiclassical approach thus agrees with the quantuntained by Tougaard are similar to ours, but there are substan-
mechanical one at high energies, as expected, and as higal quantitative differences, as we will discuss in Sec. IV.
been noted befor®’ Here however we have gone one step

further and obtained the exact solution to the semiclassical IIl. FLUCTUATION POTENTIALS

problem. This exponential expression for the solution is very
similar to what we had in the Berglund-Spicer approach, and
to what we postulated also for the quantum-mechanical case, The exact formal expression for the dynamically screened

Eq. (36). The lowest-order term in the quantum-mechanicalinteractionW(r,r’; w) can be written as a spectral resolution,
and classical cases agree quite well already at the order of a

plasmon energy above threshold. This gives further indica-

A. General considerations

20 V(r)VY(r")

tions for the validity of Eq.(36). W(r,r’;w)=v(r—r’)+2t JERprE (49
t
G. The Tougaard approach where v(r—r’) is the bare Coulomb potential(r—r")
In the work of Simonsen, Yubero, and Tougddren ~ =€°/|r—r’|, andV'(r) is the fluctuation potential,

photo-emission one finds a different formulation of the
energy-loss process in terms of an induced potential. The o , , ,
medium is polarized by the sudden creation of core hole and V()= | v(r=r')(tlp(r")|0)dr". (50

photoelectron, and the resulting polarization charge acts on o
the moving electron. In this classical picture the outgoing’Ve have expressed our theory for photoemission in terms of

electrons are decelerated by the induced potential field)e fluctuation potentialy’(r). We noted that the photoelec-
(¢ing). The induced potential is found from a theory devel-{ron current, to lowest nontrivial order, is quadratic in the
oped by Garcia-Moliner and Rubi@ee, e.g., Ref. 37The  fluctuation potentials, Eq(30), and can be described by
vacuum and medium parts @f .4 are calculated separately, ImWw. _St|||, it is useful to \_/vork dlreptly Wlth the fluctuation
introducing pseudosurface charges at the interface to accouptentials, rather than with I, since it allows a larger
for the removal of the other subsystef@.g., the vacuum flexibility and more insight in developing approximations.
induced potential is calculated for a vacuum medium in all TO obtain an approximation fov'(r) we write the RPA
space, where the effect of removing the solid is counteracte@*Pression fokV on the same spectral form as in E49). In

by some pseudosurface charg@he pseudo-charges are RPA we havew=(1-vP)™ v, with

found from the appropriate boundary conditions at the inter-
face. In this method, as in Bechstedt's, the dielectric re-
sponse can be easily formulated in terms of the bulk dielec-
tric function, and also here the interference effects are not
included. As a further approximation Tougaard Uses ajere ¢(r) is a particle-hole wave function,e(r)
plasmon-pole model for the bulk dielectric function, com- =N Y (r), and o=z~ ¢;(s;=8¢>¢;) a particle-hole
bined with the assumption that tie dependence oé(k,w)  gnergy. The inde stands for the pairi(j). In Appendix B

can be neglected in calculating the photoemission. Thus W&e have shown that we can use the real and imaginary parts
should have, withV,=W-u, of

2 * !
P w)=S wrp(r) @y (T ). (51)
T

U)Z—U)tz

f dZ,Wp(QvZIZ,!w)pext(Qrz,!w) Vt(r):fW(rar,;wt)got(r’)dr’ (52)

dk; ., v in Eq. (49). We can easily check that this expression is cor-
= 0(_Z)f 5,8 bk o) rect to lowest nontrivial order in. ReplacingW by v in Eq.
(52 we reproduce the Hartree-Fock approximation for Eq.

dk, . (50), since in Hartree Fock
+o(z)f2—;e kg (K, ), (48)

where pe,(Q,z’,») is the two-dimensional Fourier trans- <N’t|P(r)|N>:Z g (DN tlel e Ny =g (1) gy (),
form of the core hole and photoelectron charge densities, .
while oM, (k,») and ¢ 4(k,») are the full Fourier trans- with t=(ij). If we expandW=(1—-vP) v to second order
forms of the induced potentials of the two subsystéms-  in v, and use Eq(51), we also reproduce E¢49) to second
dium and vacuum For their definition see Ref. 16. We have order.
checked this relation explicitly by taking the screened inter- In addition to the fluctuation potentials in EG2) we can
action of Bechstedt, Enderlein, and Reichardt\with the  also have contributions to Eg449) from fluctuation poten-
same approximations foe(k,w) as used by Simonsen, tials coming from solutionsy; to an eigenvalue problem, Eq.
Yubero, and Tougaard. (B6) in Appendix B,

The approximatione(k,w) = €(Q,w), however, implies
the existence ofocalized bulk plasmon fluctuation poten- INi(w)
tials. For a description of the collective modes of the system, Vi(r) =[ o
it is therefore inappropriate. Nevertheless the satellites ob-

—(12)
Wi(r,a)i). (53)
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Such solutions contribute only ib; is real[ w; comes from P(Q,z2,2 ,0)=60(2)0(z')[Ps(Q,z2— 7' ,»)
\i(w;) =0, cf. Eq.(B6)]. If w, is not real, the eigenmodes no )
longer correspond to undamped collective excitations of the +Po(Q,z+7",0)], (55

system. If the imaginary part @; is small, a modevi(r,wi)  whereQ is the magnitude of the two-dimensional momen-
is h0\_/vever a useful approximation to a set of modes of thg,y, parallel to the surface andz’ are coordinates perpen-
type in Eq.(52). _ _ dicular to the surface, anfdl, is the polarization function for

_ As anot_her illustration of the nature of fluctuation POte_”'the homogeneous electron gas. In this way the dielectric re-
tials, consider an electron 95}5- Here we have COI"t”bu“c’”§ponse of the semijellium problem is related to the response
both from particle-hole pairs/'(r) (t=k,k+q), and from  f the homogeneous bulk system. This approximation satis-
plasmonsVi(r), fies thef-sum rule.

Bechstedt, Enderlein, and Reichdrdere able to obtain a

Vi(r)= v(|al) oiar closed expression for the screened potemialorresponding
e(lal, e q— €| to Eq. (55),
27re?
Va(r) = & H iq-r W(Q,z,z',w)= 7(73 {6(—2)6(—2")
de(|q|, )/ dw o ’
‘ x[e Q221 (1-1,)ez 2]
We can also write Eq(49) in terms of the normalized , , 0z
eigenpotentialsv;(r,») (see Appendix B +t4[0(-2)6(z")a(Q,z, w)e
+6(2)6(—2)a(Q,z,0)e % 1+ 6(2) 6(2')
, wi(r,w)w;i(r',w)
W(r,r ;w)=2 ) (54 x[a(Q,z—7',0)+a(Q,z+2' )
In this case we do not have to combine contributivf@) ~tha(Q.z,w)a(Q.z', w1}, (56)

andV(r); however, the approach has the drawback that wavheret;=2[1+a(Q,0,w)] %, and wherea(Q,z,) is re-
need a different potential;(r,w) for eachw, while in the lated to the bulk dielectric functiog,(q, )
earlier approach the energy, in w;(r,w;) was coupled to

the statd. Q eldz2
It is useful to study simple analytic forms of the fluctua- a(Q,z,w)= —f dg,———. (57)
tion potentials that illustrate the physics of the interaction m |al?eq(]], @)
between photoelectron and valence-electron systems, and Ii—'br e,(/dl, ) we use a simple plasmon-pole model
the next sections we introduce two simple forms and com- v
pare them with RPA results. 1 )
4 (58)
B. Inglesfield’s fluctuation potentials 60(|Q|aw) wz—w|2q|

The Inglesfield bulk potential is given in E¢31), while Wherew|q|=wp+%(q2+ Q?) is the plasmon frequency. The
his surface potential is jusMSe*Q‘z‘. The arguments behind quantitya(Q,z,) then assumes a simple analytic form and
the Inglesfield potentials are the following. from the imaginary part ofV(Q,z,z’,w) the fluctuation po-

It can be showt? that the bulk modes in a semi-infinite tentials can be extracted. For the surface fluctuation poten-
system are standing waves, i.e., phase-shifted cosines modials we find
fied at the surface. The shape of the bulk modes at the sur-
face and the magnitude of the phase shift are determined by VS(z,0)=Ng 0( —2)e%%+ 6(2)a(Q,z,»)] (59)
the details of the surface dielectric response. In Ref. 6 Ingles- ) ]
field assumed that the cosine form for the charge fluctuation@nd for the bulk fluctuation potentials,
was valid all the way to the surface; the phase shift was
determined by assuming that the corresponding fluctuatio®(z,»)=Ny[ 6(—2)e®*+ 6(z){(2+C,+ C3)cogq2)
potentials were zero at the surface. We obtain the required

. _ _ 2
orthogonality of the bulk potential to the charge density of +Cysin(g2) — (1+Cy)e” W~ Cge™ Vot opt Q7
the surface modegat the same frequengyif the surface (60)

charge fluctuations are assumed toddfeinctions centered at
z=0. The actual bulk fluctuation potentials are nonzero atvhere
the surface, as seen in E§0), but the tails are quite small.

2 _0.2
C= gm0
C. Fluctuation potentials from Bechstedt's model 1 02— w2 2 20(w— ®p)q’
P
Semiinfinite jellium, an electron gas confined by an infi-
nite potential barrier, is a much used mofidf.the interfer- Qa2
ence terms in the polarization are neglected, we have a very C

— P
. . . . 3 .
simple expression for the polarization, 20(w+ wp) Vot o,+ Q?
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The N andN,, include coefficients due to normalization and 95 f

coupling strengthi(w)/dw|, 2 (see Appendix B

45
D. RPA fluctuation potentials and screened interaction
To calculate the RPA fluctuation potentials it is con-
venient first to find the charge fluctuatiods; , Eq. (B8). In -05 [
our case with a semi-infinite jellium, the noninteracting
Green’s function has a simple form

-65

e '}’lZ_Z,‘

Go(Q,w;Z,Z’)ZTa(Z)H(Z'), (61)

-10.5 . . -0.2 L !
-40.0 -200 00 200 400 -100.0 -50.0 0.0 50.0 100.0

z(au) z(au)

(02 1/2 2 ; 2\1/2 2
= -2 0(Q°—2w)—1(2w— 02w — ,
=@ w) (Q ©)=1(20=Q7) (20-Q%) FIG. 1. Bulk and surface plasmon potentials fQr=0.2 a.u.

from which the RPA polarizatiorP can be calculatet?  (bulk) and Q=0.05 a.u.(surface according to Bechstedtsolid
Equation(B8) can be Fourier transformed with respecRp  line), Inglesfield (dashed ling and RPA (dotted ling. The dot-
and then cosine transformed with respect to thand z’ dashed curve gives the imaginary part of the potential in the RPA
coordinates. The resultink, integral is replaced by a dis- case.

crete sum, see, e.g., Ref. 10. The modes wjitw) =0 for

real o correspond to collective excitations of the system.RPA bulk and surface fluctuation potentials fr=0.2 a.u.
Within the RPA only the bulk plasmon excitations are un-(bulk) andQ=0.05 a.u(surface. Landau damping sets in at
damped. The surface modes satiaffw)=0 for (slightly) Q=0.68 a.u. We also show results from the Inglesfield po-
complex frequencies and are damped complex modes. Outential, which agree reasonably well both for bulk and sur-
side the Landau damping regio@ £ Q.= the Landau wave face plasmons. The coupling constants in the two approaches
vectoy, it is a good approximation to neglect the imaginary differ typically by only a few percent. The good agreement
parts. Indeed, the agreement between the RPA, and thmplies that the interference terms in the polarization func-
Inglesfield and the Bechstedt surface fluctuation potentials ison, which are neglected in Bechstedt's model, are small.
very good. The potentials are both roughly of the formFrom Fig. 1 we also see that the imaginary part in the RPA
e~ Qlz=%l and the modes show very similar dispersion rela-surface plasmon potential is quite small.

tions. Herez, is some small distance from the surface into  Bulk plasmon satellite intensities integrated over core po-

the bulk(say, 2 a.u.and depends only weakly dQ. sitions for the QM, the SC, and the BS convolution cases, are
shown in Fig. 2 for various photoelectron energies. We see
IV. RESULTS that the QM and SC results approach each other fairly

) S ) quickly, and above, say, 3—4 a.u., the difference is insignifi-
We study a simple model, semi-infinite jellium with one cant, while at low energies like 2 a.u. there are substantial
atom at a distance, from the surface, and are interested in differences. The BS result, on the other hand, is grossly off

general trends when we go from threshold excitation to highyntil at very high energies of the order of keV. We note
energies. The final states are plane waves outside the solid.

Inside the solid the waves are damped with an energy- L Sy S
dependent self-enerdy(w), calculated within theSW ap- wl 7 loal Lol o0 510
proximation for a homogeneous jelliutwith the full RPA

dielectric function. No surface emission, i.e., contribution »er T 1=°r

from the gradient of the surface barrier, is considered. All

calculations are for an electron density corresponding to Al,
with rg=2.0724. At this density the bulk plasmon energy
w,=0.581 a.u., the surface plasmon enetgy/\2=0.411
a.u., and the Fermi energy-=0.429 a.u. For the work-
function we taken$=0.147 a.u. €4 eV). For the Bech-
stedt and Inglesfield potentials we used a simple plasmon
pole dielectric functioncf. Eq. (58)], which gives for the
overlap factora [cf. Egs.(11,19] a=0.3480. For the RPA gt ] g0 e M L A
calculationgwhich include particle-hole excitationa semi- & & &
infinite jellium with an infinite potential at the boundary was 5 5 gy plasmon satellite spectra for various photon ener-
used. ) L gies, and for three different approaches: B®Ilid curves, QM

The RPA coIIectl\/.e eXC|tat|'0nSboth bulk and surfade  (gotted curvels and SC(dashed curvésAt 90 a.u. no semiclassical
were calculated solving the eigenvalue equatiB8). The  regyits are shown. For the QM and SC results Inglesfield’s fluctua-
results agree very well with those from Bechstedt's modelijon potential has been used. The inset shows bulk QM results, with
especially at frequencies where Landau damping is not efBechstedt’s potentiaidotted curvg and with Inglesfield’s potential
fective, and the surface modes thus couple weakly to theésolid curve. The photoelectron energies are with respect to the
electron-hole pairs. As a specific example we show in Fig. Xlastic peak position.

00 =ET] o .
21.06 0.9 ~0.86 ~0.76 —0.65 0.56 ~1.06 ~0.95 0,86 —0.76 ~0.56 —0.55
g, g
L3 k

@=90
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FIG. 5. Bulk and surface plasmon satellite spectra according to
FIG. 3. Surface plasmon satellite spectra from Bechstedt's poQ'vI (bold curve and Tougaard'snormal thif:knes)scalculations,
tential for various photon energies: Qigolid curves, and SQ(dot- at a photonenergy of _1413.5 eV and three different angles. QM bulk
ted curveg The photoelectron energies are with respect to the elasplasmon fro.m Inglesfield’s and QM surface plasmon from Bechst-

tic peak position. edt's potential.

the two peaks in the BS curves at lower energies. They ariseC results, since we have not included any surface losses in
from the intrinsic losses that start at the threshold energy U’ BS expression. The same trends as in the bulk case are
and the extrinsic losses that start at a slightly higher energ@PServed, but the SC results agree better with the QM ones at
determined by momentum/energy selection rules. The inséPW €nergies. _ o o
in the panel for 10 a.u. shows a comparison between the A clear illustration of how the satglhtg .|nten3|t|e§ m_the
results in the QM case using Bechstedt's and Inglesfield’@M and SC cases approach the BS limit is shown in Fig. 4,
potentials. The differences become smaller at higher enefvhich is obtained by integrating the curves in Fig. 3 over
gies, and slightly larger at lower energies. The sharp cutoff iftN€rgy- The QM and SC curves rapidly approach each other
the w=2 au. curve comes ak(k)=—(w—d—ep)= with increasing energy, a_nd are already close at, say, 5 a.u.
—1.43 a.u. The bulk plasmon intensity approaches the BS high-energy
Similar results are obtained for surface plasmon satellitediMit [cf. Eq. (44)] of 1.35 (indicated by the dashed line

as shown in Fig. 3. In this case we can only show QM andXremely slowly, and follows ane() "2 dependence as
derived by Langreth and co-worketdlhe surface plasmon

50 , , intensity tends to zero at high energies, and also approaches

g | omissi this limit extremely slowly. At lower energies, the bulk curve
o - - . .
g *o[ || normatemission has a pronounced maximum. As we remarked in Sec. |1 C 3,
$ 30 . theI'(w) curve starts to rise strongly, due to plasmon damp-
k=] . .
2.0 ] ing, at about 1.1 a.u., and has a maximum at about 2 a.u.
"g? ' Whenw is below 2 a.u. the elastic photoelectron thus has a
@ . . .
EN0r N stronger damping than the electrons in the satellite, and the
® 00 —— - . ] relative satellite intensity is increased. This effect does not
0.0 10.0 20.0 30.0
elastic peak energy
. 0.040 T T T
_|< 0030 | 1
6.0 : T : T >
= 2 | solid: 175ev |
8 . o 2 0020 I gors: 5006V
S emission at 60" from surface normal ] dash: 1000eV
5 @ 0010 |- dot-dash: 2000eV i
EEXNS E z
[ =
£ e 0000 —— R i L * S ey
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% 20 | 4 energy loss (eV)
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2 < solid: 1756V
2 o [ — ) - - 0030 [ dots: 500eV 1
0.0 10.0 20.0 30.0 % dash: 1000eV
elastic peak energy ; 0.020 dot-dash: 2000eV
‘©
<
FIG. 4. Total intensity of bulk and surface plasmon satellites £ %0
relative to the elastic peak weight, as a function of photon energy. 3 00

L
150

In the top panel the two upper curves give bulk, and the two lower 50 energy Ioss (8V)

surface plasmons. The QM bulk curve shows a strong peak, while
the SC curve is smooth. In the lower panel, the bulk curves change FIG. 6. Bulk and surface plasmon satellite spectra according to
very little, while the QM surface plasmon curve has a small peakQM (top curve$ and Tougaardbottom curvey at various energies
The bulk modes are from Inglesfield’s potential, and surface modeand normal emission. In the QM case the same potentials were used
from Bechstedt's. as in the previous figure.
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dots: intrinsic
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FIG. 7. Satellite spectra from the exponential expression, aver- FIG. 9. RPA result from particle-hole pairs plus surface plas-
aged over core positions, at the energy 50 a.u. Bechstedt's expresions for the energy 5 a.u. and a core distance 20 a.u. Total spec-
sion was used, and no particle-hole effects included. trum, solid line; intrinsic spectrum, dots; extrinsic spectrum dashed

line; and interference contribution, dot dashed line.
come in the SC approximation, where the damping is put in
by hand, and is the same for the elastic peak and the satel- Results from the Tougaard approach are shown in Figs. 5
lites. and 6, and compared with our QM results. Figure 5 shows

The surface plasmons can be excited only when the phcsurface and bulk plasmon satellite spectra at various emis-
toelectron is in the surface region, and with a long mean fresion angles and at a high photon energy (1413.5 e¥ere
path, this happens only during a small fraction of the paththe agreement should be good. The overall features are simi-
The enhancement is thus expected to be much weaker for thar, but there seems to be a non-negligible difference in
surface plasmons. When the electron exits at an angle, asrength, which we attribute to the different approximations
shown in the bottom panel of Fig. 4, a larger fraction of theof the dielectric functions. In both cases the surface plasmon
mean free path is spent in the surface region, and surfacgatellite is clearly smaller than the bulk satellite for all emis-
losses are enhanced relative to bulk losses, and we then agion angles.
tually also have a small maximum in the surface contribu- The surface plasmon satellite becomes stronger as the
tion. In both cases the surface plasmon intensities are weakangle of emission is increased, while the intensity of the bulk
than the bulk ones. plasmon satellite goes down slightly, and the shapes of the

We have neglected the reabsorption contribution in Eqgsatellites do not change much. In Fig. 6 we compare the
(17). The results in Ref. Twhich, however, did not include dependence of the satellite spectra as a function of photon
all reabsorption contributionsndicate a moderate increase energy for normal emission. Here we consider total, not rela-
in the elastic peak, and thus a reduction in the relative satetive intensities. The trends roughly agree. The surface con-
lite intensity. A stronger reason, however, to expect the cutribution decreases relative to the bulk one, and the bulk peak
riously large peak to be reduced is our neglect of elastibecomes sharper with increasing energy. The large broaden-
scattering, and also of impurity and phonon scattering. Ang in the Tougaard curves, however, makes a quantitative
small residual damping of 0.05 a.u. put in by hand removesomparison difficult.
most of the peak. Still, it is reasonable to expect some peak- In the last four figures we give results from the exponen-
ing at this energy to occur. tial expression in Eq(36). Figure 7 shows results for the

satellite spectrum at a rather high energy, 50 a.u., obtained

6.0 T T T
solid: exponential expression 0.50
dots: first order spectrum
dashed line gives bulk limit of o
4.0 | 0.40 +
3 0.30
20
0.20 |
0.0 0.10 ! 1 . L
-2.0 -15 -1.0 0.0 0.0 2.0 4.0 6.0 8.0 10.0

z¢ (au)

FIG. 8. Same as in Fig. 7, but for 10 a.u., and with the large loss FIG. 10. Singularity index as a function of core position. The

region excluded.

dashed line gives the bulk limit aof.
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with only surface and bulk plasmon, but not electron-holeuse atomic units, e.g., energy ua7.2 e\j. The QM and
contributions included. The first, rather weak peak, come$C expressions are very similar and have a square of the sum
from surface plasmon losses. Then follows a sequence aff amplitudes for the extrinsic and intrinsic terms, while in
multiple bulk plasmon loss peaks, each followed by a weakhe BS case we have a sum of the intensities from the extrin-
surface loss peak. The double surface loss peak is marginalic and intrinsic contributions. One can question how accu-
visible. A blow up of the threshold region at a somewhatrately our quasiboson model represents reality, but we be-
lower energy, 10 a.u., is shown in Fig. 8, where we alsdieve it is the best model presented so far, which also has
compare with the first-order spectrum. The two spectra arbeen quantitatively evaluated in detail.
identical out to the onset for two surface losses, except for The most important result is that the quasi-particle asym-
the different treatment of the damping. In the exponentiaimetric line is found to follow the expected power law for
expression, Eq(36), the damping comes from the integral several eV, and here is determined solely by the intrinsic
IB(k,o")dw', which only asymptotically equals the expo- term (cf. Fig. 9. From this one may guess that the widths
nent of the prefactor in Eq34), a+ 7oz and asymmetries of valence electron quasiparticles also are
Results from an RPA calculation, which include particle-intrinsic effects given by the one-electron spectral function.
hole pairs, are shown in Figs. 9 and 10. In Fig. 9 the energyrhe asymmetry index depends on how far from the surface
is 5 a.u., and the core distance 20 a.u. The bulk plasmothe atom sits, and is strongly enhanced close to the surface
contribution is not included. The different contributions to (cf. Fig. 10.
the total spectrum, the intrinsic, the extrinsic and the inter- Another important result is the energies when QM be-
ferences parts are shown separately. We see that out to, s&@pmes well represented by SC, and when(&a thus QM
2 eV the intrinsic part dominates. becomes well represented by B&. Figs. 2—4. The first
At the surface plasmon peak the intrinsic part is fairly energy is approximately 5 a.u., while the second is say 50
small, and the extrinsic and interference parts strongly cana.u.(if we require, say, a 90% agreemgriiowever already
cel. We also see that interference effects are important onlgt, say, 20 a.u. the SC and BS cases give similar curves for
in a narrow region at the peak of the surface plamon, and ithe satellites, mainly differing by a scale factor.
particular they are very small in the quasipatrticle tail. Since For the effect of extrinsic scattering in the say, 5-eV-wide
the intrinsic contribution dominates at threshold we can ob+ange, which is important for strongly correlated systems, it
tain an energy-independent singularity indey fitting our  is hard to make any guesses from our present results. In this
numerical results to a power-law~ 1~ in a narrow re- case the incoherent part is supposed to have important con-
gion at threshold. The smaliness of the interference contributributions from more short-range interactions, while for our
tion in the quasi-particle tail indicates that a BS convolutionmodel system the incoherent part was dominated by fairly
may work well here. sharp plasmon peaks coming from long-range interactions.
Results for different core distances are shown in Fig. 10This difference could make the approach to the sudden
We see that we have to go to a distance of about 6 a.u. befofe=BS) limit much faster for strongly correlated systems
the bulk asymptotic limit is reached. The coupling functionwithout any pronounced plasmon excitations.
Vq(2) [cf. Eq. (31)] behaves like— qZ%/2 for smallz. Thus That we have a close relation between the QM and SC
V4(0)=0, which leads toe=0, the vanishing of all satel- cases was indicated in an early work by Ashley and
lites, and as-function quasiparticle line. This unrealistic re- Ritchie3* The classical probability of having collisions
sult depends on our neglect of the possibility for backscatterwhen the particle has traveled a distarzcis given by the
ing of the photoelectron, see remarks just before @§).  Poisson distribution,
Thus the behavior ofr for very smallz is unrealistic. We
can, however, conclude thatis enhanced close to the sur-
face. A more detailed estimate could be made fairly easily. Pn(2)= nr

5) -
N .
They studied the same quasiboson Hamiltonian as in our
paper, and showed that under certain conditions the quantum
We have studied three different levels of approximationtreatment also gives this Poisson distribution. However, they
for describing the photoemission current. In the quantumonly derived the probability of having a certain number of
mechanical approad®@M, Sec. || B—I1 D) we have an elec- energy losses, not of losing a certain amount of energy.
tron fully quantum-mechanically coupled to bosons, which Fluctuation potentials have been widely used for a long
represent electron-hole and plasmon excitations. In the semiime. Here we put them on a rigorous basis by relating them
classical approackSC, Sec. Il F the electron moves on a to the exact, and even more important, to the RPA dielectric
trajectory with a given velocity, and we evaluate the lossesesponse function. In the RPA case we find that formally we
from the corresponding time-dependent perturbation by &an defing(and, in principle, usefluctuation potentials also
guantum-mechanical calculation. Finally in the Berglund-for the electron-hole continuum, and not only for the plas-
Spicer approachBS, Sec. Il B we convolute the intrinsic mon contributions. The form of the electron-hole potential
spectrum with an energy loss function. In the SC and BSV!(r), Eq. (52), is physically appealing. It shows explicitly
cases we found exact solutions on an exponential form. Ththat we work with a dynamically screened potentaith
QM case cannot be solved exactly, but we find an exponersn-shell energigs In the usual Green’s function expansions
tial form, which reproduces the main features of the exactve also have a dynamically screened potentw). How-
solution (cf. Sec. 11D, and also of experimer(cf. Figs. 7  ever in this case we integrai®¥(w) over o, and W(w) is
and 9 with experimental data in Pardeteal > Note that we  practically unscreened in some energy ranges.

V. CONCLUDING REMARKS
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To motivate our quasiboson model we study the high- 1
energy limit, and find that it can be exactly represented by [H.cil=> c, it 2 > (kiKol[v|[Kks)c cf ci,,
having a coupling between the photoelectron and density k1 kikaks
fluctuations. This is of course not much support when wawhere (kqk,||v||kk3) is an antisymmetrized Coulomb ma-
want to discuss the fairly low energies, say, 5 a.u., where wgix element. We add and subtract a term
go from QM to SC, and even less when we try to evaluate
the strong relative enhancement in the satellite intensities at,
say, 2 a.u(cf. Fig. 4. A stronger argument for the quasibo- > ¢l (kiko||v||kks)(N—1s|c} c, IN—1,s)
son picture is probably that it makes physical sense, and that ~ kikzks 23
it has been successfully used before, both for the coupling t
plasmon&® and to phonon&®

Langreth and co-worketiave presented comprehensive
formal discussions of photoemission. For more detailed con-
siderations they turned to a similar quasiboson model as used _ t _
in our work. However, they took a simpler coupling function hk1k+k22ks (kakel[o[[kkz)(N 1’S|Ck2ck3|N 18).
[Eqg. (12) in the second reference of Ref],3and they ne- ) ) _
glected the bulk and surface plasmon dispersions. They aldor the continuum states we use scattering states. Since we
made further approximations that reduced their expressiorRaVve scattering states, the diagonal element must equal the
to the SC limit. We confirm their conclusion that the devia- free-electron energy, . The e,c; terms inV, then cancel,
tion from the BS result goes as) Y for large ¢,. It ~ and we have
would be very interesting, but not simple, to find out how the
choice of diagrams of Langreth and co-workers or N
Almblad!? are related to our model. VCL:kak Ci (Kakal[v|[Kk3)

We have studied a very simple model case since our main 1
purpose is to get a qualitative understanding of the relation . N
between photoemission and the spectral function. Our ap- X 50k20k3—<N_1a5|Ck20k3|N—1,5> .
proach is, however, general, and the one-electron Hamil-
tonianh can stand for a real solid with a surface. This caseWe now discuss which are the dominant terms when the
can be treated by taking the ionic potentials as perturbationghotoelectron has a high energy.
and calculating elastic scattering. We have used a constant In the last termthe statesk, and k; must have limited
self-energy. A possible next step is to evaluate the selfenergies, since the stdd—1,s) has a limited range of vir-
energy using fluctuation potentials. The effects of elastidual one-electron energies. Further must have a large en-
scattering should actually be very important as discussed iBrgy, otherwise the matrix eleme¢k,k,||v||kk ;) becomes
an early paper by Tougaard and Sigmdnd related ap-  small.

8nd choose the one-electron basis to diagonalize the HF-like
one-electron Hamiltonian,

proach can also be used for electron scatteting. In the first term ¢_must have a limited energy since it
works on |[N—1,s). Thus one ofk,; and k, must have a
ACKNOWLEDGMENTS limited energy, and one a high enerégincek has a high

imi . ¢ thi K energy, otherwise the matrix elemenk;k,||v||kks) be-
A preliminary version of this work was presented at &comes small. The first term is symmetrickp andk,, and

workshop on Photoemission Lineshapes: the Sudden ARie can thus choosk, to have a high energy, and omit the
proximation and Beyond, at the Institute of Theoretical Phys'factor 1
3

ics in Santa Barbara, April 1997. Constructive discussions, : - :
particularly with Jim Allen, Olle Gunnarsson, Walter Kohn, Iim\i{c\é% gﬁg?éi E;atzsn&/vggvi high energy kyand with a
David Langreth, and Jerry Mahan, are gratefully acknowl- '
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APPENDIX A: HIGH-ENERGY LIMIT % (CIT ¢ —<N— 1,S|C|T c |N— 1s)).
OF PHOTOEMISSION 172 172

The general expression for photoemission was given if\gain utilizing the properties of the Coulomb matrix ele-

Egs.(1) and(2). We follow Chew and Lowf and rewrite the Ments we can writéwhere we have dropped the small ex-
final state as change part in the antisymmetrized Coulomb matrix ele-

mend

1
E—H—inVCL|N_l’S>’ W)=

—olIN—
Wi =Cr[N—1.8)+ ciIN—1s), (A1)

1+ ! Vv
E-H-iy
VCL:[HyCE]_kal- fast slow

, v=> > Cllck2<k1|1|v|k2|2>
Evaluating the commutator we have kikz I1lp
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X[C|T c|2—<N—1,s|c,T c|2|N—1,s>]. (A2)  With the. approximations above, it is reasonable to replace
! ! the HamiltoniarH by an electron-boson model Hamiltonian,

We can rewriteV in terms of the density operator,
unocc

R He=2> wala,h= > eclc,
p(r)=2 v (N (rel e, t K
12

and have
V= > VleZ(atjL atT)CEleZ,
thiky
fast
V= cl ¢ f * (Nov(r—r’
k12kz Ok, | i (Do ) VL1k2:<k1|Vl(f)|k2>-

X[p(r")=(p(r")) i (r)drdr’. (A3)  Here we have representés})(s,| by a] whens; has one

) . bosont more thans,, and bya; when it has one less. All
We now have the expected result high energies we can == wheres, differs froms, by more than one boson exci-
treat the photoelectron as a distinguishable particle interact-iation are neglected.

ing with the density fluctuations of the target system.
In the high-energy limit we can further write the full

Hamiltonian as APPENDIX B: THE FLUCTUATION POTENTIALS

CORRESPONDING TO THE RPA DIELECTRIC
FUNCTION
H=Hsth+V, (A4)

In Eq. (49) we gave the exact formal expression for the
where Hg describes the solid with all the electron-electronscreened potentidlv in terms of fluctuation potential¥”,
interactions(only | operator§ h the photoelectrorfonly k  which can be taken as real. We will here show that also in
operatory andV [Eq. (A3)] is the interaction between the the RPA,W can be written as in Eq49).
photoelectron and the solid. We have dropped terms in the
full Hamiltonian containing Coulomb interactions with one
or three fast electrons, since the involved Coulomb integrals
are small. We have also dropped Coulomb interactions with We rewriteW=v(1—Pv)~* as
four fast electrons since they do not contribute witeop-

1. Regular case

erates orvcj|N—1,s). Thus in a perturbation expansion of W=v(1—Pv) }(1-PTv)(1-PTp) 1
Eqg. (A1) we can work with eigenstates ¢i+h, which + t 1 M
form a product basigs’)|k’) (for simplicity we have writ- =v(1=Pv=P v+P vPv) "~WPW.

ten|s’) for [N—1s")). . . We write P in Eq. (51) asP,+iP,, whereP; andP, are
In an extended system we may think of an excited statya mitian. which gives
|s’) as having a finite number of extended boson-type exci- '
tations. Since each boson excitation only changes the charge . .
density by a term proportional to (volume) we take W=W,;-WP,W'+IWP,W,
(s'|p(r)|s’y=(0|p(r)|0), for all s’. In a one-electron
theory the charge-density operajir) creates electron-hole
pairs.(s’|p(r)|s") is then different from zero only when the _
states<’ cc|)ntai||fls >one more or one less electron-hole pair, say, W1= v 1= 202P P+ 0 VP p Pyt T 12

N, ; i
L, t_har_1 we h_ave is” (the cases when an (_)perator In one pairg, ., Wl—Wle’r and WPZWJr are Hermitian, and thus
coincides with an operator in another pair are so rare that w

i - ) fheir diagonal parts are real in any basis set. We choose a
can neglect theim With a finite number of pairs we can : _
replace(s'|p(1)|s") by (t|p(r)|0) or (0] p(r)|t) The charge complete set of real functiofg;}, and have
fluctuations(t|p(r)|0) determine thecharge fluctuation po- :
tentials Eq. (50), which can be chosen to be real. The ap- Im(g;|W|gi) =(gi|lm W|g;) =(gi|WP,W'|g;).
proximations we have made are actually in accordance Witf,]_-
RPA, where the excited states are built of electron-hole pairs,
and no multielectron multiholes are considetédnd also
with recent successful descriptions of exciton efféets.

The interactiorV can be written

where

rom Eq.(51) it follows that

Pz(r,r';w>=—w2 @D e(r) 8(w— ),

where the function$e,} are chosen as real, which gives

v=> > f<k1|V5152|k2>|51><32|Cllck2:

kikp s157

(A5) <gi||mvv|gi>=—w2 Kgil W @) P8(w— ).

v = [ o= sl (plr s

We will now show that IMN=1Im W,,;,; where,
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1M Weiar(1.130) = = 2.2 [V(NVA()* +ccla(o—w) B e 5o
t

Equation(B5) gives a complete representation WM It is,

(BD) however, not on the spectral form we have in Ep), ex-
with cept when\;(w)=0 has a real pole. Assuming that we can
take the functionsv; as real we have
Vi(r sz rr'; o r')dr’. B2
(r) ( Der’) (B2) e 2 on(w)] L . N
Both ImW [cf. Eq.(49)] and ImW,,;,, are real, and they are MW, =—m m dw Wi @)wi(r'; o)
both symmetric ir andr’. Their difference, which we call
D(r,r") is thus also real and symmetric. Further the diagonal X 6(w— wim).
elements oD are zero. We have, for arbitrary function) We can now identify a fluctuation potential coming from a
andg(r), .
singular part ofW as
0=(f+g|D|f+g)=(f[D[g)+(g|D|f)=2(f|D|g). ()| -1
. ilw
Hence all matrix elements @ are zero, an® itself must be VM(r)y= (;w ‘ wi(r;w) (B7)

zero. From Eq(B1) we obtain, by using the Kramers-Kronig 0=0
relation, the corresponding expression ¥ur

Finally we introduce the real functiong) =3 (V'+ V)

im

For bulk and surface plasmonscorresponds tk and Q,

andVL=1/2(Vi—V**), and have respectively, qnd in the cases we discuss, there is only one
rootmfor eachi. For an electron gas the functiows are not
2 real, but rather plane waves. However, we can then take a

reoN_ t to, _ Fourier transform, and EqB7) still holds. The presence of
M Wiriay (1,1 ) = WZ .21 ViVi(r) ol =wy). singular contributions is connected with having very simple
(B3)  models like the electron gas, and for a solid with band struc-
ture they do not appear. Still approximations of plasmon-

2. Singular cases pole type may be useful also for more complex systems.

] ) In Sec. llID we also will need the charge fluctuations
In RPA for an electron ga(|ql, ) is zero outside the 5, \yhich satisfy

parabolas in the ||, ») plane that limit the particle-hole
excitations, as discussed in Sec. lll A. In this region there are

simply no particle-hole excitationsoy q= ey q— ex(€k+q (1=Pv)dpi=Ni(@)dpi, Wi=vdp;. (B8)

=gr=g)), due to phase-space restrictions. As is well

known, we still have contributions from this region in the APPENDIX C: HARMONIC OSCILLATOR

(lg|,®) plane from plasmon excitations. Similarly for a solid WITH TIME-DEPENDENT POTENTIAL

with a surface, we can have singular bulk plasmon contribu- _ _ _ o _

tions in addition to those in EqB3). To obtain these con- In treating the semiclassical approximatithe trajectory

tributions we follow another approach. approximatio), we have a problem described by the Hamil-
Write W on a symmetrized form, tonian

— 12 1/2 U2y—-1 12 1/7;-1_1/2
W=v" H1-v"Pv7) v v'%e vV (BY) H(t)=2 [wqagaq+vq(t)(aq+a;)],
The effective dielectric functio is symmetric. We solve d
for eigenvalues and eigenfunctions
Vqy(t)=0 for t<O0.

s(@)ei=Ni(w)¢i(w). We first treat the problem with one oscillator, and can then
Taking the se{¢;} as orthonormalized, we have easily obtain the solution for a sum of oscillators. The time
evolution is written|t)=U(t)|0), where|0) is the ground
- state ofH(0)=wa'a. We have =1)
2(rr'0)=2 N(0)gi(ro)e(r'; o),

_da(t)
B 1 H(t)=wa*a+V(t)[a+aT]:>|T=wa(t)+V(t),
e—l(r,r';w>=2i (e fi@ e o),
(BS) a(t)=U(t)Tau(t)=e "*Ta—ig(t)],

Wi(r;)wi(r'; w)

wW(r,r'w)y=2, —————,

(r,r';o) Z (@) -

. _ _ _ g(t)=f et v(t")dt'.
The fluctuation potentiala/;(r; w) satisfy the equation 0
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The probability amplitude for the stafe) to haven excita-
tions is

1 1
(nlty= W<0|a”U(t)|0>=W<0lU(t)a(t)”|0>
e " —ig(n)]"
nt

Using the fact thal ,|(n|t)|?=1, we have

(0Ju(1)|0).

Pa=l(nlD]*=

t 2n
e—lg(t)IZ%_ (CD

We are interested in the case when time goes to infinity, and

denote|g(«)|=g. It is, further, convenient to introduce the
energy distributiorP(¢),
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1 (= e
P(S):E Pnﬁ(s—nw):_J eietag?le Ut-1] gt
n 27 )

When we have many oscillatogs each with a probability
Pﬁq of having nq excitationsw,, we are interested in the

energy distribution

Plw)= X (Pﬂqu;" ) 8(@—Ngwq—Ng @wg —- - +)

nqan s

1

e ‘”‘ezq: laglte ™"~ 1] ¢, (C2)

:277 %

lagl= :

fo e'“a'Vy(t)dt

This is the result we need in Sec. Il F.
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