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Corrections to density-functional theory band gaps
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An effective exchange-correlation potential for conduction-band states differing from that of the valence-
band states is found within an extension of an extreme tight-binding model. Starting from HE&iM’s
formulation of the self-energy, simplifications are made by including only near-neighbor interactions, and by
an expansion of band energies carried out around their Brillouin-zone averages. The potential difference is
applied as a perturbation to the conduction-band states from a Kohn-Sham calculation with the local-density
approximation, and a scissors-type band-gap correction is then obtained in a simple and efficient manner.
Although the model is valid for strictly insulating systems, it is found that the corre¢titren adjusted to
reproduce the known silicon and carbon band gaps as in a Satemethod leads to semiconductor band
gaps within 0.1-0.3 eV of their experimental values. Both zinc-blende and wurtzite semiconductors of the 1V,
I11-V, and 1I-VI groups are studied her¢S0163-18288)01244-3

[. INTRODUCTION tional burden. Various simplifications for the dielectric
matrix*~*® have therefore been introduced to ease the com-
Significant theoretical effort has been devoted to the subputational effort and avoid the direct calculation dy initio
ject of correcting the excited-state spectrum of electronigneans. With the reduction in effort also comes a slight pen-
systems resulting from density-functional theof@FT)  alty in accuracy, perhaps at the level of 0-1_—0-318‘/19
calculation$ as normally carried out within the local-density  There exist a few attempts at an analytic treatment and
approximation(LDA). It is a well-known problem that the direct simplification of the electron self-energy operator
LDA utilized within the Kohn-Shan(KS) formalisn? leads ~ !eading to band-gap corrections showing some suctes.
to a substantial underestimate of calculated band gaps iHere, we approach the problem along the lines originally
semiconductors and insulators. Differences from experimerfRfoposed by Sterne and Ink$81¢S1) and later by Hanke and
are typically about 50%, but deviations as large as 100% alsg§ham-” The strategy is based on a self-energy correction
occur. It is also well-known that the KS eigenvalues in gen-Within a simple analytic model containing the essential phys-
eral have no strict physical interpretation except for the highjcs of excited electronic states in a semiconductor or insula-
est Occupied orb|t£;4 therefore, any agreement betweentor. In Sec. Il, we introduce the goal of our method, discuss
LDA band gaps and experiment might well be consideredhe approximations of the model, and finally propose a form
fortuitous. Valence-band states in semiconductors that corfor band-gap corrections. The ensuing algorithm is relatively
tribute to the electronic ground-state density do tend to agre&imple, is quite efficient, and may be extended further. We
with experiment although the total valence-band width mayemphasize now that the necessary inputs to the proposed
be underestimated. On the other hand, conduction-bangPrrections are obtained from prior LDAb initio calcula-
states of a semiconductor are often found to agreferim>  tions. In Sec. Ill, we apply the correction to LDA band gaps
but generally not in location, with respect to the valenceOf @ range of common semiconducting materials. As will be
bands. The difficultly in achieving useful excitation energiesseen, the results generally compare well with experiment
with the DFT and the LDA has largely been attributed to thelFigs. 2a) and 2b)]. In Sec. IV, we conclude with a discus-
presence of a discontinuity in the true DFT exchangesion of possible extensions of this work.
correlation functional derivative, a property not manifested

within the LDA S’ Il. APPROACH TO THE MODEL GW CORRECTION
A major approach to correcting this state of affairs has o .

which an energy dependent, nonlocal self-energy replaceeds from the solution of the KS equations
the LDA for the exchange-correlation energy, and true qua-

siparticle eigenvalues are then found by correcting the LDA [T+ Vexd() +Vu(r) +Vy(N]¥i(r)=e;¥i(r), (1)
eigenvalues through perturbation theory. The “fullGW . L

method with direct calculation and inversion of the dielectricWhereT is the kinetic-energy operatov, the external po-
matrix in the random-phase approximatiRPA) has been tential, Vi the Hartree potential, an¥,. the exchange-
shown to be capable of an accuracy near 0.1 eV for a rang(‘eorrelatlon potential given by _the standard functlonal deriva-
of materials such as Si, C, GaAs, SiC, and Efct?and it is tive of the_exchang_e—corr(_elatlon energy with respect to the
the standard by which any other technique is often judgedSingle-particle density(r), i.e.,
Although highly accurate, calculation of the necessary self-

energy term requires the full frequency dependent, inverse V(1) = oExd p]
dielectric matrix and it involves a considerable computa- xe Sp(r) "’

@
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and is usually given by the local-density approximation. Inwhere P is just the random-phase-approximation polariza-

the ground state, the electron density) is simply the sum tion, namely,

of the single-particle densities of the lowest occupied KS

states. , D) (D () o (1)
Given a set of eigenvalues, the gapis the difference in P(r,r;0)=22 (fi—fy) -

energy between the lowest unoccupied and highest occupied kk! koK 9)

states. As noted, with the exception of the highest occupied

state, the KS eigenvalues from E() cannot be directly with all valence-band states assumed to be doubly occupied

identified with quasiparticle energies because the KS equder an insulating system.

tions merely provide the formal machinery for finding the  Proceeding with a typical semiconductor, we may assume

electron density and corresponding total energy within DFTa two-atom basis associated with, for instance, the zinc-
The band gap is also given by the difference between thelende or diamond-crystal structures. The single-particle

ionization potentiall =Ey_;—Ey and the electron affinity statesy, are expanded in Wannier staté§(r —R), local-

A=EN—Epny1, WhereEy represents the total energy of a ized in the unit cell designated by the lattice sRe The

system withN particles. Both are found within DFT by dif- jndex n represents the bond’s character for a bonding

ferences of well-defined ground-state total energies and argrbital orc an antibonding orbita) andv is the bond number

related to the highest occupied eigenvalues ofNh@ndN  that identifies the location within the unit cell, i.e., one of the

+1-electron systems, respectivélyn principle, with two  oriented molecular hybrids composed of two neighboring

separate KS calculations, the band gap is given by sp® orbitals in a tetrahedrally bonded semiconductor. There-
N+l N fore, the model includes valence-band states derived from
Ey=I—A=enii—en, 3 the bonding Wannier orbitals, and similarly conduction

bands derived from the antibonding orbitals. The resulting

where we have written the eigenvalef with N the total :
Bloch states are written as

particle number and the eigenstate of thi particle system.
Any band-gap underestimatehich we will call A) resulting

from the use of then+1 excited state eigenvalue from the Y1) = J2INY, expik-R)¢"(r—R), (10)
KS calculation for arN particle system z(,ﬁ‘ﬂ) is then for- R
mally given by

whereN is the number of atoms in the crystdf2 being the
_ /. N+1_ Ny_ /. N _ Ny__N+1_ N number of unit cells

A=(enii=en)=(enia=on)=enii—8nia (4 Now we assume that each bond orbital indexedh gsep-

Given that a discontinuity exists in the exchange-correlatiorresenting botty andn) gives rise to a well-defined band, and

potential when one electron is added toNparticle system, we write the associated eigenvalsig as

A will be finite. Accordingly, we need to determine a correc-

tion to the unoccupied orbital eigenvalues arising from this skEsnk=sﬂ+ den(k), (11

discontinuity. 0. )

We can derive thelifferencein the exchange-correlation Where e, is some reference energy level for bandwith
energy of an electron in the valence-band and conductionden(k) describing the dispersion about that reference level.
band states of a Semiconducting system within G\ ap- To establish such a referenpe |e.VE|, we examine the denomi-
proximation, and this provides us with an approximation tonator of Eq.(9) by expanding in terms of smabe,(k),
the discontinuityA. In Hedin’s GW approximation(Ref. §  Writing the polarization with Eq(10) as

the self-energy is given by ¢ ¢
P(rre)=2 2 onko—n/k/
nn’ vk,k sn—gn,—w—l5

[ do’ .
2(w)=|f EG(w—w')W(w')eXK—I&w’), (5)
58n(k)—58n/(k’)+“.

whereG is the Green’s function X1+ 0 0
EnTET @
, PP (r') _
G(r,r ;w)=; To—e 15 (6) x > kKD R-RD g0 R

vR,R’

with g, the self-consistent single-particle energigg(r) the

n’* _ n* [ =Y n' [ =Y
associated single-particle state, aMl is the linearly X¢, (r=R)¢, (r'=R")¢, (r'=R").

screened Coulomb interaction Here we ignore the overlap between all orbitals, i&(r
—R)¢”'(r—R’)oc5R,R,5V,V/. Physically, this approxima-
W(r,r’;w)zf dr”e Y(r,r"; w)u(r"—r"). (7) tion misses contributions to the polarization for whicknd

r' are within the region of two overlapping neighbor-bond
This screened interaction requires the frequency-dependentbitals, but these terms are shorter range than the on-site
dielectric function terms because of the exponential decay of the Wannier func-
tions. Although these contributions would be important if we
were attempting to produce an accurate picture ofctluke-

e(r,riio)=o(r,r )_f driv(r=r")P(r",r;e), (8  hendence of the dielectric function itself, here we only re-
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quire a satisfactory approximation for use in obtaining theequivalent for both the valence- and conduction-band states,

self-energy. Continuing, we now make the choice, and the main difference arises solely from the screened
exchangé’
2 s (k)=0 With Eg. (13), we are now in position to calculate the
. n self-energy of a valence-band state=(¥,|=(&,)|¥,).

Performing the integratior(within the constraints of the
for eachn by selectings; as the zonaverageband energy, ETBM) and simplifying the remaining electron-hole field
a choice that eliminates the terms lineasi,(k) and leaves termsD,(r—R) with a dipole approximation for the Cou-
the remaining terms necessarily of second and higher ordesmb interaction, i.e.,
in the ratio of the bandwidth to average band gap.

Hence, the polarization reduces to d-R
D,,(r—R)Ee<V—3V), (14)
fo—fo IR,|
P(r,r’;w)=22 > 0,0 s B R

nn’ PR EnTE&, T

with dvzefg/;‘,’,(r)rgé‘,’,*(r), leads to the result
X ) (=R} (' =R) 4} (' ~R),

< e? [Ny d,-R,\?
(12 S -3+5 (32 (|RV|3>

€0/R,#0
which has the same form as in the extreme tight-binding ) )
model (ETBM) examined by Ortuno and Inks8hbut now € (&) (dy' Rv>
with the energy Ievel&ﬂ defined as the average energy of 2 \ €/ R, R,+0 IR,?
bandn. With Eqg. (12) the dielectric matrix is next foundee
Eq. (A13) in the Appendi}. The expansion is retained to all oy ,(dv’ ) Rv’) (15
orders as we wish to make a resummation of the self-energy IR P

resulting from this screened interaction; this allows for a ) ) ) ) o )
more general form for the exchange-correlation potentialVe write R, to identify the dipole location in unit ceR at

within the ETBM. bond numbew, N, and ¢, as the static limits of EqgA2)
Equation(A13) can now be inserted into E@5) to de-  and(A10), respectively, an&};+ the Hartree-Fock exchange
velop the self-energy analytically as energy of a bonding orbital. The first dipole-field sum in Eq.
(15) includes all vectorR, except the zero vector. In the
2(rr'e)=—p’(r,rov(r—r’) second sum, we include all vectoRs, such thatR, is a

neighbor-bond site oR,, neither being zero(When zero

— v ! !
pPrrHwr.rs(w,e,) modulus lattice vectors occur, integrals inside the sum are

also zero by symmetry.
n ’ ' S(a),sn) . .
+ > p(rrw(r,r') 5 The second sum is further manipulated to produce one
nefo.ch equivalent to the first, as follows: noting that thg . is
—p?(r,r W' (r,r")s(w,e,)? independent ob' for the symmetrically related tetrahedral
( )2 bonds, we write it as a certain fraction of the on-site electron-
S(w,e i i H , = .28 = ,
" 2 P(rE W (1) "oy hole self-interaction(i.e., V,,,=V,,);”° R,,=R,+a,,

wherea,, is a vector from bond to bondv’, so with a
(13) small order expansion ia,: /R,,, the second sum is approxi-
mately

nefo.cl 2

where we introduce the definitions

v, S (d,,RV)(dV,-RV) 16
, * YV IERERIEERE
p"(r,r ):% HN(r—R)¢" (r'—R), R 0. | IR IR,|
where sums over' involving a,, only once have been set to
w(r r')=2 D,(r—R)D*(r'—R) zero owing to the symmetry of near-neighbor bonds in a
' Ry g ’ tetrahedral configuration. Neglecting higher order terms in

the expansion leads to errors ©f|a|?/R?), which is fully
consistent with the dipole approximation that introduced er-

w'(r,r')= E D.(r=R)V,,/D}.(r'=R), rors of O(1/R%). Given a set of dipoles oriented along the
Row tetrahedral bonds in diamond the sum owvérin Eq. (16)
and may be completed to give
S(w,80) =4Eq/[(0—&n)?— (E5+ wd)]. d,-R,\2
. N - . —29V,, 2 (?) : (17)
Terms in Eq(13) involving only the bonding orbital density Ry70 | [R|

p’ are associated with the screened exchange and those cor-
responding to the Coulomb hole are symmetric in the band Following Sl we transform the summations into integrals
indexn. The Coulomb hole component of the self-energy isas



PRB 58 CORRECTIONS TO DENSITY-FUNCTIONAL THEOR. .. 15551

d,-R,\? (ﬁwp)Z 2.7\ 13 U3 case of a system of highly localized orbitals. We obtain, of
—) ) (18 course, the same result in the=0 limit, but a more general
K70 | |R,|3 4E 3 i
form resulting from our extended ETBM can now be pro-
and recognize thavwz(ﬁwp)2/4Eg_ Hence, the valence posed, which is also valid for systems of delocalized orbitals.
state self-energy in Eq15) becomes In Egs.(22) and(23) it can be seen that the introduction of
interactions renormalizes the magnitude of the correlation

g

1(e—1) ,(2m 13 3 energy and dielectric constant; the effective dielectric
2, EHF+ & 3/ P strength [given by (1-1v)ep] is reduced by the near-
neighbor interactions as the cost of polarizing the medium is
1/e—1\? o[ 2™ 7 13 increased. It is now apparent that we can effectively intro-
2 e ez P 19 guce these interactions into the model by making the simple

) replacements
where the factor of 2 from Eq17) has been absorbed info

keeping only the sign. This is merely a convenience since (27)1/3< 1/3)
—ap

3

such factors consistently appear together in higher-order
terms in the self-energy expansion. The conduction-band
self-energy is achieved similarly. and
In the Appendix we show that each dipole-field summa-

tion may be approximated in the manner of E¢&5) and (1—vy)eg—€g
(17), and the series is convergent for any valuegfireater
than unity. Deducing a prefactofN Y[ (e,— 1)/¢e,]" at ev-
ery orderN (where Hartree-Fock terms are order 2deads
to Nth-order terms given by

1-vy

wherea modifies the exchange-correlation magnitude and
now represents the dielectric constant of a real material. We
can again make replacements of @éplacing =} with
—ae?p'®) to obtain a self-energy difference between a

1(e—1\N 27\ 13 conduction- and valence-band state with the form
52N: E ( ) ny(N_l)e ( ) 1/3 (20)
. . A=S.—3,=ae?p! i_ i (24)
Summing to all orders we obtain c Ple Y&l
0 0
_2 Z Essentially, local-field effects are now incorporated in an av-
= J erage way throughy. By spherically averaging the dipole

sums in Eq(15), an assumption of a diagonal dielectric ma-
trix is made, and the interaction represented Jpgimply
allows for the approximate inclusion of the nonzero off-
diagonal terms in the dielectric matrix, which contribute the
(21 local-field effects.
Where before we had an expansion in terms offtbkariza- A great simplification of the self-energy occurs by way of
tion [ (eo— 1)/€o], valid for e;— 1, we now expand in terms the primary approximations, the dipole and nonoverlapping
of small y/e, and keep only terms to orderef/ The self- bond approximation. Making the dipole approximation first

Y
1+
(1-v)e

energies then may be written in Eq. (13) and performing the spherical average of the sum-
mations reduces the nonlocal self-energy to a local one with
1 [2a\ W3 p1B an exchange-correlation potential difference for the valence-
=3t = ez(—) (—) and conduction-band states given by
2 3 1—vy
1 1
X { 1— ! + Y , (22) Avye=— aezplli[e_o_ Y _2 (25
(1-7e (1-79’€

Assuming for the moment that we complete a calculation of
27\ 3 p3 the conduction-band eigenvalues utilizing the valence-band
3 1—y exchange-correlation potential, then it becomes necessary to
add Av,. as a perturbation to produce the correct
Y conduction-band eigenvalu&sThis corrective potentialap-
(1-y)eg + (1— y)26§ plied as a perturbatigrsimply reproduces the the model dis-

continuity A in Eq. (24).
and the effort of summing terms to all orders in the polariza- |f the LDA adequately represents the exchange-
tion leads to an expansion in the inverse dielectric constardorrelation effects in the valence-band states of semiconduc-
rather than the polarization. tors (or at least the highest occupied valence-band )state
Originally, SI omitted near-neighbor interactiofi®., ¥y ~ then we might includeAv,. as a perturbation to DFT

=0) and kept only the first-order term in the inversion of theconduction-band states calculated by the KS method within
dielectric matrix. By approximately replacing}j with  the LDA. First, however, we make the assumptias in the
—(2m/3)e?p' they were led to a correction to LDA band LDA) that the average electron density of the model can be
gaps of the formAE = ae’p ¥ ey,%° which is valid for the  replaced by the local-electron density of the semiconductor

1
2 EHF——E(

X[ 1=

: (23
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[i.e., p—p(r) in Eq.(25)]. Hence, the resulting correction as This will be our method for finding a single dielectric con-
given by first-order perturbation theory is stant for the anisotropic materials considered here; it is cer-
tainly satisfactory for relatively small anisotropies.
1 Determination of the parametarcan be accomplished by
6—0— Y ?} (26) invoking the known LDA exchange-correlation potential. By
0 considering the limiting case of a homogeneous electron gas,
which has a diverging static-dielectric constany=1
—(wp/w)z], and taking the same limit in EqR2) and(23),
we find the discontinuityA is zero; there is no gap correc-
<p(r)1/3>C=f dr \Ifz(r)p(r)lfﬁ‘qfc(r) tion, and the same exchange-correlation potential applies to
both the conduction- and valence-band states. Assuming then
and ¥(r) is the conduction-band eigenstate being per_that this model rgmains valid for a metallic system, it fo'IIows
€ that [by comparison of the valence-band self-energy in Eq.

turbed. This then is our primary result for band-gap correc,, ; .
. I . ~~(22) with the expectation value of the LDA exchange poten-
tions to DFT band gaps. The model correction is denveiial for some eigenstate(vx>=—(3/77)1’3<p(r)1’3)], o

from the difference between an “average” valence-band an L5 (3/m 13 Clearly th b I ion f
conduction-band state, and the exact locatiotk ispace to ( 7T.) - Clearly there must be some small correction for
which these average étates correspond in a real system r%grrelatlon effects, but the exchange-only component is a
) g P : Y reasonable choice for this example. Now given that silicon
mains unknown. Also, currently undetermined are the pay, f b . | f
rametersy and as an LDA gap o 0.45_ eV but an experimental gap of 1.17
' eV, and takingex determined by resort to the LDA exchange
limit above, the first-order correction from the model can be
lll. APPLICATION TO LDA BAND GAPS found. Returning to Eq26) and keeping only the first-order
result (i.e., first order in 1¢,), the band-gap correction is
calculated to be 1.42 e\(p)Z? for silicon can be found in
Jable | along withey. This correction is nearly twice the
constant are given by the value ef , which is taken di- magnitude of the necessary gap correction of O_.72 ev. N_ote
that we do not expect this model to be accurate in the regime

rectly from published experimental datebut may in prin- f metall ; b iqinall idered hiahl
ciple be calculated within DFT. The perturbation is applied0 metafiic systems because we onginally considered highly
localized orbitals and only nearest-neighbor interactions.

to the lowest conduction-band state at the Brillouin-zone(_l_hiS is certainly not a usual description of a métakcord-
center(I'), which locates the direct optical gap for the tetra-. y TP .
ly then, we choose to determireas with a SlateiX- «

hedrally bonded systems considered and allows a consisteY

application to both direct and indirect gap semiconductors:.methOOI and require the model correction to reproduce the

The resulting correction is then taken as a scissors translatio?f(pe”mental gap of silicon. . .

to the entire conduction-band compléxe., all bands are In what follows, the calculation of semiconductor energy
- : B bands, wave functions, and the electronic density are deter-
rigidly shifted upward by an amourtec). {nined usingab initio DFT methods within the LDA using a

We comment on one potential concern with materials that . . : ; i
have tetrahedral bonding but lack the diamond or zinc-Conjug"’lte gradient technique in a plane-wave formaftsm.

blende symmetrye.g., hexagonal structures hese materi- High guality norm- and hardness-conserving pseudopoten-
als have anisotropic dielectric tensors, and clearly our mod%alcseareeﬁ_scidntg?lé%hZytéfsqz;ogy ﬂét?:: Zrlgcsiféiczjeedntsqtpro-
assumes a scalar dielectdonstantassociated with an over- 24¢€ W verg '9 = ity

all average band gap. In the case of a hexagonal systerjr'? detgrmlned ata set of 10 spedlabomt_s for the diamond .
bonding along the perpendicularaxis leads to bands of a ahd zinc-blende structures and a six-point set for the wurtzite

5 ; ; ~
different average energy and bandwidth compared with thosgtructureé Expe_nmental_ lattice parameter_s have been cho
sen for all materials. Spin-orb{§8O) corrections have been

along thea axes; therefore, a different average gap and d!;j]rjtroduced by subtracting one third of the experimental

valence-band maximum SO splitting from the band gap. This
Has almost zero effect on the overall resliits., the average
ccuracy of the model correction is neither reduced nor en-

Ag.= _aez<P(r)l/3>c

where

As a test of this band-gap correction we apply E2§) to
a set of semiconductors from the group 1V, IlI-V, and II-VI
classes. The electronic contributions to the static-dielectri

cipal direction. To obtain a singlapproximatedielectric
constant for use here, we consider each principal direction i
k space separately, envisioning a fictitious cubic system wit hanced
a dielectric constant given by the corresponding tensor com-="_""~"" .

ponent. This implies the existence of an average gap to F|gure 1 summarlzes the LDA bgnd gaps for all systems
which we can now apply the model correction. With three Ofcor!S|Qered here§24_ in alp a!’ld provides a measure of the
these fictitious systems we obtain three separate correction ariation of errors |nhe(ent in the LDA' The deviation fr'om
and the final gap correction for the real system is reasonabl € theory-exper_|ment line can be quite large and no _S|mple
a simple average of these. We observe then that the avera onstant correction appears appropriate. Results obtained for

. : L : first-order Sterne-Inkson-type correction, i.e., keeping only
ing of three first-order correctiorige., keeping only terms to i . 4 : -
9 o bing only the first term in Eq(26), are given in Table | aBg,,and also

order 1k, in Eq. (26)] provides an effective inverse dielec- ;| . . . . ;
tric constant given by in F|g_. 2@). In th|§ caseq is adjusted to give the correct gap
for silicon and it is found to have the value 27.1 eV bblm
general, the first-order results agree moderately well with
27) experiment as seen in the figure, but the notable exceptions

are a few wide-band semiconductors, e.g., C and BN, where

1 1
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TABLE I. Material parameters utilized in the mod&W correction along with resulting gapée™®).
represents the expectation valuepdfi(r) for the lowest conduction-band state at the Brillouin-zone center,
€., is the static-dielectric constant, and BW is the measured LDA bandwidth of the pgjper valence
bands taken from thab initio results. Numbers in parentheses indicate the spin-orbit correctimthird of
which estimates the band-gap decrease applied to the model bandgepsotion 3C, 2H, and WZ indicate
cubic, hexagonal, and wurtzite for those semiconductors that have a number of recognized stfeictyres
GaN has also been grown in the zinc-blende phase

(P e BW(V) EgV) EgeV*  Egev)  EgR(eV)

C 0.519 5.7 13 4.09 6.56 5.28 5.48
Si 0.321 12.1 7 0.45 1.%7 117 1.17
Ge 0.347 15.9 8 0.00 0.57 0.58.18 0.74
Sn 0.399 24.1 7 —-0.30 -0.12 —0.08 (0.80 0.10
SiC (30) 0.434 6.5 11 1.30 3.11 2.5@.00 2.39
SiC (2H) 0.402 6.6 9 2.05 3.68 3.3710.00 3.30
BN 0.456 4.5 10 4.34 7.09 5.9%.00 6.10%
BP 0.391 10.8 11 1.31 2.33 2.1®.00 2.05
AIN 0.421 4.8 7 4.18 6.55 6.010.00 6.28
AlP 0.327 75 6 1.44 2.62 2.56.00 2.51
AlAs 0.313 8.2 6 1.29 2.22 2.180.33 2.23
AlSh 0.376 10.2 6 1.16 1.94 1.9®.67) 1.67
GaN (WZ) 0.429 5.6 8 2.45 4,54 4.07.00 3.42
GaP 0.344 9.1 7 1.50 2.52 2.48.00 2.35
GaAs 0.331 10.6 7 0.42 1.16 1.10.34 1.52
GaSb 0.384 14.4 6 0.00 0.51 0.%2.70 0.81
InN 0.608 9.3 5 0.00 1.77 1.760.00 1.89
InP 0.397 9.6 6 0.43 1.55 1.50.00 1.42
InAs 0.399 12.3 6 0.00 0.76 0.7®.39 0.42
Zno 0.4469 3.7 5 0.60 3.87 3.2®.00 3.44
zZns 0.3977 5.1 5 1.64 3.75 3.60.00 3.78
ZnSe 0.3867 5.4 5 0.82 2.63 2.46.40 2.82
cds 0.3624 5.5 4 0.77 2.62 2.68.00 2.58
CdSe 0.3533 6.2 4 0.24 1.65 1.68.42 1.83

#Experimental gaps for BN range from 6.0 to 6.5 eV. A recent result from Ref. 37 is used here for compari-
son.

®The semiconductor was used as a reference for the model parameters.

a nearly 1-eV discrepancy remains. The standard deviation
of this set is about 0.35 eV compared with the original de-
viation in LDA band gaps of greater than 1 eV.

Proceeding further, we examine the consequences includ-
ing of the second-order correction. The second-order termin %9 [ T
Eq. (26), however, includes the interactiofy) between o
neighboring bonds. As stated previously, this interaction is a
constant for the near-neighbor bonds but nevertheless must
be realized by appeal to some physical property indbe
initio calculation. Here we shall associate it with the band-
width of the upper valence-ban@type states because these 20 - © .
states produce the prototypical bonding orbitals in the tetra- 020 &
hedrally bonded semiconductors, and their near-neighbor in- 1.0 | ° o
teractions are then directly related to the tight-binding band- - D
width. We also recognize that a number of semiconductors 00K o @
require inclusion of local-field effects in their dielectric de- ° } ‘ ‘ ‘ ; .
scriptions to obtain accurat8W corrections. These tend to 6o 10 20 30 40 50 60 70
be the wide-band semiconductors C, BN, etc., so, on this Experimental Gap [eV]
basis, y is reasonably expected to be related to the band- FiG. 1. Theoretical bands gaps calculated within the LDA of the
width. Incorporation of this effect at the level of a linear semiconductors listed in Table I. Circles, diamonds, and squares

dependence then introduces a single additional parametespresent group IV, group llI-V, and group 1I-VI semiconductors,
leading to a subsequent correction of the form respectively.

6.0 - J

>
(=]
T
o
o
.

LDA Gap [eV]
@
=)

o0
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' ' IV. DISCUSSION AND CONCLUSION

We have obtained a correction to Kohn-Sham LDA band
gaps by extending the Stern-Inkson first-order result to in-
clude a second-order term that includes local-field effects in
an approximate manner. Experimental band gaps are repro-
duced to within 0.1-0.3 eV for an extensive range of semi-
conducting materials. This band-gap correction is at the level
of a scissors translation and could be useful for further cal-
culations of the dynamical dielectric properties of semicon-
ductors in addition to providing an estimate for the band gap
‘ , | of novel semiconductor systems.

Theoretical Gap [eV]

7.0 In principle, a simple method for applying the same form

6.0 of correction to nonhomogeneous systems such as layered
= superlattice systems exists. From the microscopic picture of
.50 the ETBM in which the semiconductor is composed of a set
a0t of localized bonds with some excitation energy between
_Té 50 valence- and conduction-state orbitals. We can then propose
- a spatially dependent static-dielectric function whose value
£ 20 within the region of any bond is given by the equivalent

homogeneous semiconducting system composed of those
bonds(i.e., near a GaAs bond we use the dielectric constant

1.0

00 ‘ . . ‘ ] of GaAs. This possibility will be considered in further work

66 10 20 30 40 50 &0 70 when full ab initio GWresults are available for nonhomoge-
Experimental Gap [eV] neous systems. Such test cases will also determine whether
FIG. 2. Theoretical band gaps resulting from the LDA bandthe choice ofa is universal and whether the near-neighbor
gaps in Table | corrected witfe) the first-order(Sterne-Inkson ~ @pproximation is a significant limitation. Treed hocnature
GW result[Eq. (26) with y=0] and(b) the second-ordeBWresult ~ Of the conduction-band corrections must also be tested in
[Eq. (26) with y chosen as described in the texXEircles, diamonds, these novel systems because it is based on the assumption
and squares represent group 1V, group 1lI-V, and group II-VI semi-that the LDA is a reasonable approximation for the valence-
conductors, respectively. band exchange-correlation potential. It may be appropriate to
introduce corrections to valence states also.
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~Because the second-order term now includes this band:pde needed to obtain tha initio electronic structure and
width, we have chosen to use both silicon and carbon agharge density for the semiconductors.

reference materials; silicon as a prototypical narrow gap, nar-

row bandwidth material and carbon corresponding to a large

bandwidth, wide-gap material. The parameterand 8 then APPENDIX: DERIVATION OF THE SCREENED
take on the values 31.1 eV bdrand 0.225/eV, respectively. INTERACTION

Numerical results for a range of semiconductors corrected Tg gptain the screened interaction, it is first necessary to

. : : : del . . . . Ly . .
with these choices are listed in Table | undgl,;® and  jnvert the dielectric matrix8) within the ETBM. This was

plotted versus experimental values in Figb2 We see that accomplished in Ref. 26, and we briefly repeat the steps re-
the second-order correction now considerably reduces the eguired to obtain higher order terms employing the same no-
ror in the wide-band materials while leaving the other semi+ation where possible. The polarization for a system with a

conductor gaps relatively unchanged. Applying E2f) 10 single optical gafE, (here assumed to be the average ETBM
the entire set, we find the corrected gaps now generally fadugap discussed in Sec) lis given by

within 0.1-0.3 eV of the experimental values with a standar
deviation of 0.24 eV.

The gap in GaN is least well given with an error of about P(r,r';o)=N(0)>, A(r=R)AY(r'—=R), (A1)
0.65 eV. This discrepancy may be explained by the model vR
assumption of a single near-neighbor bond interaction intro-
duced to simplify higher order terms in the series expansior‘{vhere
of Eq. (15). For a semiconductor with inversion symmetry,
this assumption is valid because there is no distinction be- _ 4E,
tween bonds in a unit cell; however, the IlI-V and 1I-VI
semiconductors are partially ionic, and therefore two distinct
bond interactions exist. and

(A2)
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A (r—=R)=¢%(r—R) ¢S (r—R) (A3)

is an approximate electron-hole pair state in the eelat

bond sitev. The dielectric matrix in Eq(8) is then written

e(r,r';0)=8(r,r')—N(w)>D D,(r—=R)A%(r'—R), (A4)
vR

with

Dy(r—R)=fdr’dfy(r’—R)v(r—r’)cﬁi*(r’—R) (A5)

being the Coulomb field due to an electron-hole pair at lat-

tice siteR and bond sitev.

Inversion of the dielectric matrix is carried out using the

relation
e 1=(1-DA) '=[1+D(1-AD) *A].  (A6)
Identifying D},=N(w)D,(r—R) and A} =A%*(r—R) we
can write
e rr;e)=8rr)+ X N(o)D,(—R)
vR,v'R’
x QR A% (1 —RY), (A7)

where

(Q HE =5 (AD)RR = 5FR'_N(w)VTE (A8)

2%

with the definition

vff,’=fdrfdr'A:(r—R)u(r—r')AV,(r’—R'). (A9)

Now, S| assumed only on-site interactions Ieading\/ﬁf
=(hwp)2/4Eg and a diagonal matrix with elements

(hwp)?
1+ ESC_Opwz) =e(w)

(Q HRR= (A10)

CORRECTIONS TO DENSITY-FUNCTIONAL THEOR. ..
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W(r,r';o)=v(r—r')+ %LE D,(r—R)D*(r'—R)
N(w)]? .o,
) RE D,(r—R)V,, D*(r'=R)
T (A13)

TheV,,.’'s may be approximated by expanding the Cou-
lomb potential to the quadrupole level, which is the first
nonzero term in the integral. This leads to

d,-d, (d,-a,)(d, -a,)
V,, = 3e )
|av’|3 |av’|5

i.e., the dipole-dipole interaction energy for two neighboring
bonds. Given a pair of dipoles oriented along the tetrahedral
bonds (and symmetry requires we need only examine any
pair of our choicg, d=(1,1,1)a andd’'=(—1,—1,1)«a for
instance, and the vector between thens=a,
=(1,1,0)a0/4, we haveV,, =e5a?/s*=e5v2|d|?p/6 after
substituting for the average electron densify;= 32/a8
=v2/s®. Now with |d|?= 3% 2e*/4mE, we find

5v2 (fiwp)? 52
8w 4E, 8w

, (A14)

vv

Continuing, we consider the summations owenr’, etc.
in Eq. (A13) directly. At each order we introduce sums over
longer chains of bonds through near-neighbor interactions.
The first-order sum includes on-site terms, and the second-
order sum includes near-neighbor terms that reduce approxi-
mately to Eq.(17). We can separate the third-order sum into
those chains that return to the same site, a first-neighbor site,
or a second-neighbor site. For a tetrahedral configuration
each bond has six near neighbors, so six possible sequences
exist for a chain of two interactions leading from sitd¢o a
first neighbory’ and back tov. If we consider the number of
paths to get to any first neighbor by two near-neighbor inter-

given by a simple, single-pole approximation for the dielec-actions, we find only two. Only one path to each second

tric function with the average optical gaR, being the

pole3®

neighbor through two near-neighbor interactions exists. The
third-order sum is proportional to

Here, however, we shall include the off-diagonal compo-

nents as a small perturbation and wrige ! as Q51+ Q’,
where the diagonal elements le are given in Eq(A10)

and the off-diagonal elements o)’ are @QFYX')~!
=— N(w)fo,/ . We now write the inverse dD ! as

Q=[Q '+ Q"1 '=Qu[1-Q' Qo+ (Q'Qp)%+--], (All)
with matrix elements

QRR/: 1 RR'+ N(w) RR’
vv'! E(w) 2 6((0)2 vv!

(A12)

We further consider only first-neighbor electron-hole pair in-

I’
teractions iV, , which is now written a&/,,, , wherev’

indicates a neighbor of. Finally, the the screened interac-

tion becomes

d-R,\2 d-R\/d, R,
6V2 ( v V) +2V2 ( 14 V)( v V)
2 R 22 VRE ) TRLP

dR dH‘RH
+V22 ( 14 V)( 14 v

R,R,» |R | |R |

v "

, (A15)

14

where the number of primes indicates the neighbor distance,
V is the constant near-neighbor interaction, and we immedi-
ately apply the dipole approximation to the electron-hole
field terms. Making the small-order approximations to the
bond vectorsk,», as in Eq.(16), with the second sum al-
ready considered in Eq17), the third-order term is

2 dV'RV 2
4VR2 R’ - (A16)
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Examining the fourth-order sum using the same approximaand the pattern continues. Hence, we may identify a factor of

tions we find

3 dV'RV 2
—8v; R”RE) (A17)

(—2V)N~1 appearing at each ordéM, so that with Egs.
(A14) and(18) we can write theNth-order expansion of the
static screened interaction asC(5v2/4m)N " (e
—1)/e0]Np*3, which converges for (8/4m)[(eo— 1)/€o]
<1 or anyey>1.
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