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Corrections to density-functional theory band gaps

Kurt A. Johnson and N. W. Ashcroft
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

~Received 12 January 1998!

An effective exchange-correlation potential for conduction-band states differing from that of the valence-
band states is found within an extension of an extreme tight-binding model. Starting from Hedin’sGW
formulation of the self-energy, simplifications are made by including only near-neighbor interactions, and by
an expansion of band energies carried out around their Brillouin-zone averages. The potential difference is
applied as a perturbation to the conduction-band states from a Kohn-Sham calculation with the local-density
approximation, and a scissors-type band-gap correction is then obtained in a simple and efficient manner.
Although the model is valid for strictly insulating systems, it is found that the correction~when adjusted to
reproduce the known silicon and carbon band gaps as in a SlaterX-a method! leads to semiconductor band
gaps within 0.1–0.3 eV of their experimental values. Both zinc-blende and wurtzite semiconductors of the IV,
III-V, and II-VI groups are studied here.@S0163-1829~98!01244-2#
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I. INTRODUCTION

Significant theoretical effort has been devoted to the s
ject of correcting the excited-state spectrum of electro
systems resulting from density-functional theory~DFT!
calculations1 as normally carried out within the local-densi
approximation~LDA !. It is a well-known problem that the
LDA utilized within the Kohn-Sham~KS! formalism2 leads
to a substantial underestimate of calculated band gap
semiconductors and insulators. Differences from experim
are typically about 50%, but deviations as large as 100%
occur. It is also well-known that the KS eigenvalues in ge
eral have no strict physical interpretation except for the hi
est occupied orbital;3,4 therefore, any agreement betwe
LDA band gaps and experiment might well be conside
fortuitous. Valence-band states in semiconductors that c
tribute to the electronic ground-state density do tend to ag
with experiment although the total valence-band width m
be underestimated. On the other hand, conduction-b
states of a semiconductor are often found to agree inform,5

but generally not in location, with respect to the valen
bands. The difficultly in achieving useful excitation energ
with the DFT and the LDA has largely been attributed to t
presence of a discontinuity in the true DFT exchan
correlation functional derivative, a property not manifest
within the LDA.6,7

A major approach to correcting this state of affairs h
been through the use of Hedin’sGW approximation8,9 in
which an energy dependent, nonlocal self-energy repla
the LDA for the exchange-correlation energy, and true q
siparticle eigenvalues are then found by correcting the L
eigenvalues through perturbation theory. The ‘‘full’’GW
method with direct calculation and inversion of the dielect
matrix in the random-phase approximation~RPA! has been
shown to be capable of an accuracy near 0.1 eV for a ra
of materials such as Si, C, GaAs, SiC, and LiC,10–12and it is
the standard by which any other technique is often judg
Although highly accurate, calculation of the necessary s
energy term requires the full frequency dependent, inve
dielectric matrix and it involves a considerable compu
PRB 580163-1829/98/58~23!/15548~9!/$15.00
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tional burden. Various simplifications for the dielectr
matrix13–15 have therefore been introduced to ease the co
putational effort and avoid the direct calculation byab initio
means. With the reduction in effort also comes a slight p
alty in accuracy, perhaps at the level of 0.1–0.3 eV.16–19

There exist a few attempts at an analytic treatment
direct simplification of the electron self-energy opera
leading to band-gap corrections showing some success.20–25

Here, we approach the problem along the lines origina
proposed by Sterne and Inkson20 ~SI! and later by Hanke and
Sham.23 The strategy is based on a self-energy correct
within a simple analytic model containing the essential ph
ics of excited electronic states in a semiconductor or insu
tor. In Sec. II, we introduce the goal of our method, discu
the approximations of the model, and finally propose a fo
for band-gap corrections. The ensuing algorithm is relativ
simple, is quite efficient, and may be extended further. W
emphasize now that the necessary inputs to the propo
corrections are obtained from prior LDAab initio calcula-
tions. In Sec. III, we apply the correction to LDA band ga
of a range of common semiconducting materials. As will
seen, the results generally compare well with experim
@Figs. 2~a! and 2~b!#. In Sec. IV, we conclude with a discus
sion of possible extensions of this work.

II. APPROACH TO THE MODEL GW CORRECTION

The general approach toab initio DFT calculations pro-
ceeds from the solution of the KS equations

@T1Vext~r !1VH~r !1Vxc~r !#C i~r !5« iC i~r !, ~1!

whereT is the kinetic-energy operator,Vext the external po-
tential, VH the Hartree potential, andVxc the exchange-
correlation potential given by the standard functional deri
tive of the exchange-correlation energy with respect to
single-particle densityr~r !, i.e.,

Vxc~r !5
dExc@r#

dr~r !
, ~2!
15 548 ©1998 The American Physical Society
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PRB 58 15 549CORRECTIONS TO DENSITY-FUNCTIONAL THEORY . . .
and is usually given by the local-density approximation.
the ground state, the electron densityr~r ! is simply the sum
of the single-particle densities of the lowest occupied
states.

Given a set of eigenvalues, the gapEg is the difference in
energy between the lowest unoccupied and highest occu
states. As noted, with the exception of the highest occup
state, the KS eigenvalues from Eq.~1! cannot be directly
identified with quasiparticle energies because the KS eq
tions merely provide the formal machinery for finding th
electron density and corresponding total energy within DF

The band gap is also given by the difference between
ionization potentialI 5EN212EN and the electron affinity
A5EN2EN11 , whereEN represents the total energy of
system withN particles. Both are found within DFT by dif
ferences of well-defined ground-state total energies and
related to the highest occupied eigenvalues of theN and N
11-electron systems, respectively.3 In principle, with two
separate KS calculations, the band gap is given by

Eg5I 2A5«n11
N112«n

N , ~3!

where we have written the eigenvalue«n
N with N the total

particle number andn the eigenstate of theN particle system.
Any band-gap underestimate~which we will call D! resulting
from the use of then11 excited state eigenvalue from th
KS calculation for anN particle system («n11

N ) is then for-
mally given by

D5~«n11
N112«n

N!2~«n11
N 2«n

N!5«n11
N112«n11

N . ~4!

Given that a discontinuity exists in the exchange-correlat
potential when one electron is added to anN particle system,
D will be finite. Accordingly, we need to determine a corre
tion to the unoccupied orbital eigenvalues arising from t
discontinuity.

We can derive thedifferencein the exchange-correlatio
energy of an electron in the valence-band and conduct
band states of a semiconducting system within theGW ap-
proximation, and this provides us with an approximation
the discontinuityD. In Hedin’s GW approximation~Ref. 8!
the self-energy is given by

S~v!5 i E dv8

2p
G~v2v8!W~v8!exp~2 idv8!, ~5!

whereG is the Green’s function

G~r ,r 8;v!5(
k

ck~r !ck* ~r 8!

v2«k1 id
, ~6!

with «k the self-consistent single-particle energies,ck(r ) the
associated single-particle state, andW is the linearly
screened Coulomb interaction

W~r ,r 8;v!5E dr 9e21~r ,r 9;v!v~r 92r 8!. ~7!

This screened interaction requires the frequency-depen
dielectric function

e~r ,r 8;v!5d~r ,r 8!2E dr 9v~r2r 9!P~r 9,r 8;v!, ~8!
ied
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where P is just the random-phase-approximation polariz
tion, namely,

P~r ,r 8;v!52(
k,k8

~ f k2 f k8!
ck~r !ck8

* ~r !ck* ~r 8!ck8~r 8!

«k2«k82v2 id
~9!

with all valence-band states assumed to be doubly occu
for an insulating system.

Proceeding with a typical semiconductor, we may assu
a two-atom basis associated with, for instance, the z
blende or diamond-crystal structures. The single-part
statesck are expanded in Wannier statesfn

n(r2R), local-
ized in the unit cell designated by the lattice siteR. The
index n represents the bond’s character (v for a bonding
orbital orc an antibonding orbital!, andv is the bond number
that identifies the location within the unit cell, i.e., one of t
oriented molecular hybrids composed of two neighbor
sp3 orbitals in a tetrahedrally bonded semiconductor. The
fore, the model includesv valence-band states derived fro
the bonding Wannier orbitals, and similarlyv conduction
bands derived from the antibonding orbitals. The result
Bloch states are written as

cnk~r !5A2/N(
R

exp~ ik•R!fn
n~r2R!, ~10!

whereN is the number of atoms in the crystal (N/2 being the
number of unit cells!.

Now we assume that each bond orbital indexed byn ~rep-
resenting bothv andn! gives rise to a well-defined band, an
we write the associated eigenvalue«k as

«k[«nk5«n
01d«n~k!, ~11!

where «n
0 is some reference energy level for bandn with

d«n(k) describing the dispersion about that reference lev
To establish such a reference level, we examine the deno
nator of Eq. ~9! by expanding in terms of smalld«n(k),
writing the polarization with Eq.~10! as

P~r ,r 8;v!52 (
nn8nk,k

f nk2 f n8k8

«n
02«n8

0
2v2 id

3S 11
d«n~k!2d«n8~k8!

«n
02«n8

0
2v

1¯ D
3 (

nR,R8
ei ~k2k8!•~R2R8!fn

n~r2R!

3fn
n8* ~r2R!fn

n* ~r 82R8!fn
n8~r 82R8!.

Here we ignore the overlap between all orbitals, i.e.,fn(r
2R)fn8(r2R8)}dR,R8dn,n8 . Physically, this approxima-
tion misses contributions to the polarization for whichr and
r 8 are within the region of two overlapping neighbor-bon
orbitals, but these terms are shorter range than the on
terms because of the exponential decay of the Wannier fu
tions. Although these contributions would be important if w
were attempting to produce an accurate picture of theq de-
pendence of the dielectric function itself, here we only
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15 550 PRB 58KURT A. JOHNSON AND N. W. ASHCROFT
quire a satisfactory approximation for use in obtaining
self-energy. Continuing, we now make the choice,

(
k

d«n~k!50

for eachn by selecting«n
0 as the zoneaverageband energy,

a choice that eliminates the terms linear ind«n(k) and leaves
the remaining terms necessarily of second and higher o
in the ratio of the bandwidth to average band gap.

Hence, the polarization reduces to

P~r ,r 8;v!52(
n,n8

(
nR

f n2 f n8

«n
02«n8

0
2v2 id

fn
n~r2R!

3fn
n8* ~r2R!fn

n* ~r 82R!fn
n8~r 82R!,

~12!

which has the same form as in the extreme tight-bind
model ~ETBM! examined by Ortuno and Inkson26 but now
with the energy levels«n

0 defined as the average energy
bandn. With Eq. ~12! the dielectric matrix is next found@see
Eq. ~A13! in the Appendix#. The expansion is retained to a
orders as we wish to make a resummation of the self-ene
resulting from this screened interaction; this allows for
more general form for the exchange-correlation poten
within the ETBM.

Equation~A13! can now be inserted into Eq.~5! to de-
velop the self-energy analytically as

S~r ,r 8;v!52rv~r ,r 8!v~r2r 8!

2rv~r ,r 8!w~r ,r 8!s~v,«v!

1 (
nP$v,c%

rn~r ,r 8!w~r ,r 8!
s~v,«n!

2

2rv~r ,r 8!w8~r ,r 8!s~v,«v!2

1 (
nP$v,c%

rn~r ,r 8!w8~r ,r 8!
s~v,«n!2

2
1¯ ,

~13!

where we introduce the definitions

rn~r ,r 8!5(
n,R

fn
n~r2R!fn

n* ~r 82R!,

w~r ,r 8!5(
R,n

Dn~r2R!Dn* ~r 82R!,

w8~r ,r 8!5 (
R,nn8

Dn~r2R!Vnn8Dn8
* ~r 82R!,

and

s~v,«n!54Eg /@~v2«n!22~Eg
21vp

2!#.

Terms in Eq.~13! involving only the bonding orbital density
rv are associated with the screened exchange and those
responding to the Coulomb hole are symmetric in the b
index n. The Coulomb hole component of the self-energy
e
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g

gy

l
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d

s

equivalent for both the valence- and conduction-band sta
and the main difference arises solely from the scree
exchange.27

With Eq. ~13!, we are now in position to calculate th
self-energy of a valence-band state(v[^Cvu((«v)uCv&.
Performing the integration~within the constraints of the
ETBM! and simplifying the remaining electron-hole fie
termsDn(r2R) with a dipole approximation for the Cou
lomb interaction, i.e.,

Dn~r2R!>eS dn•Rn

uRnu3 D , ~14!

with dn5e*fn
v(r )rfn

c* (r ), leads to the result

(
v

5(
HF

vv

1
e2

2 S N0

e0
D (

RnÞ0
S dn•Rn

uRnu3 D 2

2
e2

2 S N0

e0
D 2

(
Rn ,Rn8Þ0

S dn•Rn

uRnu3 D
3Vnn8S dn8•Rn8

uRn8u
3 D1¯ . ~15!

We write Rn to identify the dipole location in unit cellR at
bond numberv, N0 ande0 as the static limits of Eqs.~A2!
and~A10!, respectively, and(HF

vv the Hartree-Fock exchang
energy of a bonding orbital. The first dipole-field sum in E
~15! includes all vectorsRn except the zero vector. In th
second sum, we include all vectorsRn8 such thatRn8 is a
neighbor-bond site ofRn , neither being zero.~When zero
modulus lattice vectors occur, integrals inside the sum
also zero by symmetry.!

The second sum is further manipulated to produce
equivalent to the first, as follows: noting that theVnn8 is
independent ofv8 for the symmetrically related tetrahedr
bonds, we write it as a certain fraction of the on-site electr
hole self-interaction~i.e., Vnn85gVnn);28 Rn85Rn1an8 ,
where an8 is a vector from bondv to bond v8, so with a
small order expansion inan8 /Rn , the second sum is approx
mately

gVnn (
RnÞ0,n8

S dn•Rn

uRnu3 D S dn8•Rn

uRnu3 D , ~16!

where sums overv8 involving an8 only once have been set t
zero owing to the symmetry of near-neighbor bonds in
tetrahedral configuration. Neglecting higher order terms
the expansion leads to errors ofO(uau2/R4), which is fully
consistent with the dipole approximation that introduced
rors of O(1/R3). Given a set of dipoles oriented along th
tetrahedral bonds in diamond the sum overv8 in Eq. ~16!
may be completed29 to give

22gVnn (
RnÞ0

S dn•Rn

uRnu3 D 2

. ~17!

Following SI we transform the summations into integra
as
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(
RnÞ0

S dn•Rn

uRnu3
D 2

→
~\vp!2

4Eg
S 2p

3 D 1/3

r1/3, ~18!

and recognize thatVnn5(\vp)2/4Eg . Hence, the valence
state self-energy in Eq.~15! becomes

Sv5SHF
vv 1

1

2 S e021

e0
De2S 2p

3 D 1/3

r1/3

1
1

2 S e021

e0
D 2

ge2S 2p

3 D 1/3

r1/31¯ , ~19!

where the factor of 2 from Eq.~17! has been absorbed intog
keeping only the sign. This is merely a convenience si
such factors consistently appear together in higher-o
terms in the self-energy expansion. The conduction-b
self-energy is achieved similarly.

In the Appendix we show that each dipole-field summ
tion may be approximated in the manner of Eqs.~16! and
~17!, and the series is convergent for any value ofe0 greater
than unity. Deducing a prefactorg (N21)@(e021)/e0#N at ev-
ery orderN ~where Hartree-Fock terms are order zero! leads
to Nth-order terms given by

dSN5
1

2 S e021

e0
D N

g~N21!e2S 2p

3 D 1/3

r1/3. ~20!

Summing to all orders we obtain

dS[(
N

S d(
N

D
5

1

2
e2S 2p

3 D 1/3S r1/3

12g D S e021

e0
D F11

g

~12g!e0
G21

.

~21!

Where before we had an expansion in terms of thepolariza-
tion @(e021)/e0#, valid for e0→1, we now expand in terms
of small g/e0 and keep only terms to order 1/e0

2. The self-
energies then may be written

Sv5SHF
vv 1

1

2
e2S 2p

3
D 1/3S r1/3

12g
D

3F12
1

~12g!e0

1
g

~12g!2e0
2G , ~22!

Sc5SHF
vc 2

1

2
e2S 2p

3 D 1/3S r1/3

12g D
3F12

1

~12g!e0
1

g

~12g!2e0
2G , ~23!

and the effort of summing terms to all orders in the polari
tion leads to an expansion in the inverse dielectric cons
rather than the polarization.

Originally, SI omitted near-neighbor interactions~i.e., g
[0) and kept only the first-order term in the inversion of t
dielectric matrix. By approximately replacing(HF

vv with
2(2p/3)e2r1/3 they were led to a correction to LDA ban
gaps of the formDEg5ae2r1/3/e0 ,30 which is valid for the
e
er
d

-

-
nt

case of a system of highly localized orbitals. We obtain,
course, the same result in theg50 limit, but a more genera
form resulting from our extended ETBM can now be pr
posed, which is also valid for systems of delocalized orbita
In Eqs.~22! and ~23! it can be seen that the introduction o
interactions renormalizes the magnitude of the correlat
energy and dielectric constant; the effective dielect
strength @given by (12g)e0# is reduced by the near
neighbor interactions as the cost of polarizing the medium
increased. It is now apparent that we can effectively int
duce these interactions into the model by making the sim
replacements

S 2p

3 D 1/3S r1/3

12g D→ar1/3

and

~12g!e0→e0

wherea modifies the exchange-correlation magnitude ande0
now represents the dielectric constant of a real material.
can again make replacements of SI~replacing (HF

vv with
2ae2r1/3) to obtain a self-energy difference between
conduction- and valence-band state with the form

D[Sc2Sv5ae2r1/3F 1

e0
2g

1

e0
2G . ~24!

Essentially, local-field effects are now incorporated in an
erage way throughg. By spherically averaging the dipol
sums in Eq.~15!, an assumption of a diagonal dielectric m
trix is made, and the interaction represented byg simply
allows for the approximate inclusion of the nonzero o
diagonal terms in the dielectric matrix, which contribute t
local-field effects.

A great simplification of the self-energy occurs by way
the primary approximations, the dipole and nonoverlapp
bond approximation. Making the dipole approximation fir
in Eq. ~13! and performing the spherical average of the su
mations reduces the nonlocal self-energy to a local one w
an exchange-correlation potential difference for the valen
and conduction-band states given by

Dvxc52ae2r1/3F 1

e0
2g

1

e0
2G . ~25!

Assuming for the moment that we complete a calculation
the conduction-band eigenvalues utilizing the valence-b
exchange-correlation potential, then it becomes necessa
add Dvxc as a perturbation to produce the corre
conduction-band eigenvalues.31 This corrective potential~ap-
plied as a perturbation! simply reproduces the the model di
continuity D in Eq. ~24!.

If the LDA adequately represents the exchang
correlation effects in the valence-band states of semicond
tors ~or at least the highest occupied valence-band sta!,
then we might includeDvxc as a perturbation to DFT
conduction-band states calculated by the KS method wi
the LDA. First, however, we make the assumption~as in the
LDA ! that the average electron density of the model can
replaced by the local-electron density of the semiconduc
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@i.e.,r→r(r ) in Eq. ~25!#. Hence, the resulting correction a
given by first-order perturbation theory is

D«c52ae2^r~r !1/3&cF 1

e0
2g

1

e0
2G , ~26!

where

^r~r !1/3&c5E dr Cc* ~r !r~r !1/3Cc~r !

and Cc(r ) is the conduction-band eigenstate being p
turbed. This then is our primary result for band-gap corr
tions to DFT band gaps. The model correction is deriv
from the difference between an ‘‘average’’ valence-band a
conduction-band state, and the exact location ink space to
which these average states correspond in a real system
mains unknown. Also, currently undetermined are the
rametersa andg.

III. APPLICATION TO LDA BAND GAPS

As a test of this band-gap correction we apply Eq.~26! to
a set of semiconductors from the group IV, III-V, and II-V
classes. The electronic contributions to the static-dielec
constant are given by the value ofe` , which is taken di-
rectly from published experimental data32 but may in prin-
ciple be calculated within DFT. The perturbation is appli
to the lowest conduction-band state at the Brillouin-zo
center~G!, which locates the direct optical gap for the tetr
hedrally bonded systems considered and allows a consi
application to both direct and indirect gap semiconducto
The resulting correction is then taken as a scissors transla
to the entire conduction-band complex~i.e., all bands are
rigidly shifted upward by an amountDec).

We comment on one potential concern with materials t
have tetrahedral bonding but lack the diamond or zi
blende symmetry~e.g., hexagonal structures!. These materi-
als have anisotropic dielectric tensors, and clearly our mo
assumes a scalar dielectricconstantassociated with an over
all average band gap. In the case of a hexagonal sys
bonding along the perpendicularc axis leads to bands of
different average energy and bandwidth compared with th
along thea axes; therefore, a different average gap and
electric tensor component can be associated with each
cipal direction. To obtain a singleapproximatedielectric
constant for use here, we consider each principal directio
k space separately, envisioning a fictitious cubic system w
a dielectric constant given by the corresponding tensor c
ponent. This implies the existence of an average gap
which we can now apply the model correction. With three
these fictitious systems we obtain three separate correct
and the final gap correction for the real system is reason
a simple average of these. We observe then that the ave
ing of three first-order corrections@i.e., keeping only terms to
order 1/e0 in Eq. ~26!# provides an effective inverse dielec
tric constant given by

1

eeff
5

1

3 S 1

e1
1

1

e2
1

1

e3
D . ~27!
-
-
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This will be our method for finding a single dielectric con
stant for the anisotropic materials considered here; it is c
tainly satisfactory for relatively small anisotropies.

Determination of the parametera can be accomplished b
invoking the known LDA exchange-correlation potential. B
considering the limiting case of a homogeneous electron
which has a diverging static-dielectric constant@e051
2(vp /v)2#, and taking the same limit in Eqs.~22! and~23!,
we find the discontinuityD is zero; there is no gap correc
tion, and the same exchange-correlation potential applie
both the conduction- and valence-band states. Assuming
that this model remains valid for a metallic system, it follow
that @by comparison of the valence-band self-energy in E
~22! with the expectation value of the LDA exchange pote
tial for some eigenstatê vx&52(3/p)1/3^r(r )1/3&#, a
52(3/p)1/3. Clearly there must be some small correction f
correlation effects, but the exchange-only component i
reasonable choice for this example. Now given that silic
has an LDA gap of 0.45 eV but an experimental gap of 1
eV, and takinga determined by resort to the LDA exchang
limit above, the first-order correction from the model can
found. Returning to Eq.~26! and keeping only the first-orde
result ~i.e., first order in 1/e0), the band-gap correction i
calculated to be 1.42 eV;̂r&c

1/3 for silicon can be found in
Table I along withe0 . This correction is nearly twice the
magnitude of the necessary gap correction of 0.72 eV. N
that we do not expect this model to be accurate in the reg
of metallic systems because we originally considered hig
localized orbitals and only nearest-neighbor interactio
~This is certainly not a usual description of a metal.! Accord-
ingly then, we choose to determinea as with a SlaterX-a
method and require the model correction to reproduce
experimental gap of silicon.

In what follows, the calculation of semiconductor ener
bands, wave functions, and the electronic density are de
mined usingab initio DFT methods within the LDA using a
conjugate gradient technique in a plane-wave formalism33

High quality norm- and hardness-conserving pseudopo
tials are used throughout. Energy cutoffs are selected to
duce well-converged eigenstates,34 and the electron density
is determined at a set of 10 specialk points for the diamond
and zinc-blende structures and a six-point set for the wurt
structures.35 Experimental lattice parameters have been c
sen for all materials. Spin-orbit~SO! corrections have been
introduced by subtracting one third of the experimen
valence-band maximum SO splitting from the band gap. T
has almost zero effect on the overall results~i.e., the average
accuracy of the model correction is neither reduced nor
hanced!.

Figure 1 summarizes the LDA band gaps for all syste
considered here~24 in all! and provides a measure of th
variation of errors inherent in the LDA. The deviation fro
the theory-experiment line can be quite large and no sim
constant correction appears appropriate. Results obtaine
a first-order Sterne-Inkson-type correction, i.e., keeping o
the first term in Eq.~26!, are given in Table I asEgap

si and also
in Fig. 2~a!. In this case,a is adjusted to give the correct ga
for silicon and it is found to have the value 27.1 eV bohr3. In
general, the first-order results agree moderately well w
experiment as seen in the figure, but the notable except
are a few wide-band semiconductors, e.g., C and BN, wh
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TABLE I. Material parameters utilized in the modelGW correction along with resulting gaps.^r1/3&c

represents the expectation value ofr1/3(r ) for the lowest conduction-band state at the Brillouin-zone cen
e` is the static-dielectric constant, and BW is the measured LDA bandwidth of the upperp-like valence
bands taken from theab initio results. Numbers in parentheses indicate the spin-orbit correction~one-third of
which estimates the band-gap decrease applied to the model band gaps!. The notion 3C, 2H, and WZ indicate
cubic, hexagonal, and wurtzite for those semiconductors that have a number of recognized structur~e.g.,
GaN has also been grown in the zinc-blende phase!.

^r1/3&c e` BW ~eV! Egap
da ~eV! Egap

st ~eV!a Egap
model ~eV! Egap

expt ~eV!

C 0.519 5.7 13 4.09 6.56 5.48b 5.48
Si 0.321 12.1 7 0.45 1.17b 1.17b 1.17
Ge 0.347 15.9 8 0.00 0.57 0.58~0.18! 0.74
Sn 0.399 24.1 7 20.30 20.12 20.08 ~0.80! 0.10
SiC ~3C! 0.434 6.5 11 1.30 3.11 2.59~0.00! 2.39
SiC ~2H! 0.402 6.6 9 2.05 3.68 3.37~0.00! 3.30
BN 0.456 4.5 10 4.34 7.09 5.93~0.00! 6.10a

BP 0.391 10.8 11 1.31 2.33 2.18~0.00! 2.05
AlN 0.421 4.8 7 4.18 6.55 6.01~0.00! 6.28
AlP 0.327 7.5 6 1.44 2.62 2.55~0.00! 2.51
AlAs 0.313 8.2 6 1.29 2.22 2.18~0.33! 2.23
AlSb 0.376 10.2 6 1.16 1.94 1.93~0.67! 1.67
GaN ~WZ! 0.429 5.6 8 2.45 4.54 4.07~0.00! 3.42
GaP 0.344 9.1 7 1.50 2.52 2.44~0.00! 2.35
GaAs 0.331 10.6 7 0.42 1.16 1.17~0.34! 1.52
GaSb 0.384 14.4 6 0.00 0.51 0.52~0.70! 0.81
InN 0.608 9.3 5 0.00 1.77 1.79~0.00! 1.89
InP 0.397 9.6 6 0.43 1.55 1.54~0.00! 1.42
InAs 0.399 12.3 6 0.00 0.76 0.78~0.38! 0.42
ZnO 0.4469 3.7 5 0.60 3.87 3.23~0.00! 3.44
ZnS 0.3977 5.1 5 1.64 3.75 3.64~0.00! 3.78
ZnSe 0.3867 5.4 5 0.82 2.63 2.46~0.40! 2.82
CdS 0.3624 5.5 4 0.77 2.62 2.63~0.00! 2.58
CdSe 0.3533 6.2 4 0.24 1.65 1.63~0.42! 1.83

aExperimental gaps for BN range from 6.0 to 6.5 eV. A recent result from Ref. 37 is used here for com
son.

bThe semiconductor was used as a reference for the model parameters.
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a nearly 1-eV discrepancy remains. The standard devia
of this set is about 0.35 eV compared with the original d
viation in LDA band gaps of greater than 1 eV.

Proceeding further, we examine the consequences inc
ing of the second-order correction. The second-order term
Eq. ~26!, however, includes the interaction~g! between
neighboring bonds. As stated previously, this interaction
constant for the near-neighbor bonds but nevertheless m
be realized by appeal to some physical property in theab
initio calculation. Here we shall associate it with the ban
width of the upper valence-bandp-type states because the
states produce the prototypical bonding orbitals in the te
hedrally bonded semiconductors, and their near-neighbo
teractions are then directly related to the tight-binding ba
width. We also recognize that a number of semiconduc
require inclusion of local-field effects in their dielectric d
scriptions to obtain accurateGW corrections. These tend t
be the wide-band semiconductors C, BN, etc., so, on
basis,g is reasonably expected to be related to the ba
width. Incorporation of this effect at the level of a line
dependence then introduces a single additional param
leading to a subsequent correction of the form
n
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FIG. 1. Theoretical bands gaps calculated within the LDA of t
semiconductors listed in Table I. Circles, diamonds, and squ
represent group IV, group III-V, and group II-VI semiconductor
respectively.
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D«c5a^r1/3~r !1/3&cF 1

e0
2b

~W!

e0
2 G ,

where we have replacedg as bW with W representing the
bandwidth taken from theab initio calculation.

Because the second-order term now includes this ba
width, we have chosen to use both silicon and carbon
reference materials; silicon as a prototypical narrow gap, n
row bandwidth material and carbon corresponding to a la
bandwidth, wide-gap material. The parametersa andb then
take on the values 31.1 eV bohr3 and 0.225/eV, respectively
Numerical results for a range of semiconductors correc
with these choices are listed in Table I underEgap

model and
plotted versus experimental values in Fig. 2~b!. We see that
the second-order correction now considerably reduces th
ror in the wide-band materials while leaving the other se
conductor gaps relatively unchanged. Applying Eq.~26! to
the entire set, we find the corrected gaps now generally
within 0.1–0.3 eV of the experimental values with a stand
deviation of 0.24 eV.

The gap in GaN is least well given with an error of abo
0.65 eV. This discrepancy may be explained by the mo
assumption of a single near-neighbor bond interaction in
duced to simplify higher order terms in the series expans
of Eq. ~15!. For a semiconductor with inversion symmetr
this assumption is valid because there is no distinction
tween bonds in a unit cell; however, the III-V and II-V
semiconductors are partially ionic, and therefore two disti
bond interactions exist.

FIG. 2. Theoretical band gaps resulting from the LDA ba
gaps in Table I corrected with~a! the first-order~Sterne-Inkson!
GW result@Eq. ~26! with g50# and~b! the second-orderGW result
@Eq. ~26! with g chosen as described in the text#. Circles, diamonds,
and squares represent group IV, group III-V, and group II-VI se
conductors, respectively.
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IV. DISCUSSION AND CONCLUSION

We have obtained a correction to Kohn-Sham LDA ba
gaps by extending the Stern-Inkson first-order result to
clude a second-order term that includes local-field effects
an approximate manner. Experimental band gaps are re
duced to within 0.1–0.3 eV for an extensive range of se
conducting materials. This band-gap correction is at the le
of a scissors translation and could be useful for further c
culations of the dynamical dielectric properties of semico
ductors in addition to providing an estimate for the band g
of novel semiconductor systems.

In principle, a simple method for applying the same for
of correction to nonhomogeneous systems such as lay
superlattice systems exists. From the microscopic picture
the ETBM in which the semiconductor is composed of a
of localized bonds with some excitation energy betwe
valence- and conduction-state orbitals. We can then prop
a spatially dependent static-dielectric function whose va
within the region of any bond is given by the equivale
homogeneous semiconducting system composed of th
bonds~i.e., near a GaAs bond we use the dielectric const
of GaAs!. This possibility will be considered in further wor
when full ab initio GWresults are available for nonhomog
neous systems. Such test cases will also determine whe
the choice ofa is universal and whether the near-neighb
approximation is a significant limitation. Thead hocnature
of the conduction-band corrections must also be tested
these novel systems because it is based on the assum
that the LDA is a reasonable approximation for the valen
band exchange-correlation potential. It may be appropriat
introduce corrections to valence states also.
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APPENDIX: DERIVATION OF THE SCREENED
INTERACTION

To obtain the screened interaction, it is first necessary
invert the dielectric matrix~8! within the ETBM. This was
accomplished in Ref. 26, and we briefly repeat the steps
quired to obtain higher order terms employing the same
tation where possible. The polarization for a system with
single optical gapEg ~here assumed to be the average ETB
gap discussed in Sec. II! is given by

P~r ,r 8;v!5N~v!(
vR

An~r2R!An* ~r 82R!, ~A1!

where

N~v!5
4Eg

v22Eg
2 ~A2!

and

-



la

he

c

o

in

c-

u-
st

ng
dral
ny

er
ns.
nd-
oxi-
to
site,
tion
nces

f
er-
nd
he

ce,
di-
le

he
-

PRB 58 15 555CORRECTIONS TO DENSITY-FUNCTIONAL THEORY . . .
An~r2R!5fn
v~r2R!fn

c* ~r2R! ~A3!

is an approximate electron-hole pair state in the cellR at
bond siten. The dielectric matrix in Eq.~8! is then written

e~r ,r 8;v!5d~r ,r 8!2N~v!(
nR

Dn~r2R!An* ~r 82R!, ~A4!

with

Dn~r2R!5E dr 8fn
v~r 82R!v~r2r 8!fn

c* ~r 82R! ~A5!

being the Coulomb field due to an electron-hole pair at
tice siteR and bond siten.

Inversion of the dielectric matrix is carried out using t
relation

e215~12DA!215@11D~12AD!21A#. ~A6!

Identifying Dr ,n
R 5N(v)Dn(r2R) and An,r

R 5An* (r2R) we
can write

e21~r ,r 8;v!5d~r ,r 8!1 (
nR,n8R8

N~v!Dn~r2R!

3Qnn8
RR8An8

* ~r 82R8!, ~A7!

where

~Q21!nn8
RR85dnn8

RR82~AD!nn8
RR85dnn8

RR82N~v!Vnn8
RR8 ~A8!

with the definition

Vnn8
RR85E drE dr 8An* ~r2R!v~r2r 8!An8~r 82R8!. ~A9!

Now, SI assumed only on-site interactions leading toVnn
RR

5(\vp)2/4Eg and a diagonal matrix with elements

~Q21!nn
RR5S 11

~\vp!2

Eg
22v2D[e~v! ~A10!

given by a simple, single-pole approximation for the diele
tric function with the average optical gapEg being the
pole.36

Here, however, we shall include the off-diagonal comp
nents as a small perturbation and writeQ21 as Q0

211Q8,
where the diagonal elements ofQ0

21 are given in Eq.~A10!

and the off-diagonal elements ofQ8 are (Qnn
RR8)21

52N(v)Vnn8
RR8 . We now write the inverse ofQ21 as

Q5@Q0
211Q8#215Q0@12Q8Q01~Q8Q0!21¯#, ~A11!

with matrix elements

Qnn8
RR85

1

e~v!
dnn8

RR81
N~v!

e~v!2 Vnn8
RR81¯ . ~A12!

We further consider only first-neighbor electron-hole pair

teractions inVnn8
RR8 , which is now written asVnn8 , wheren8

indicates a neighbor ofn. Finally, the the screened intera
tion becomes
t-

-

-

-

W~r ,r 8;v!5v~r2r 8!1FN~v!

e~v! G(
Rn

Dn~r2R!Dn* ~r 82R!

1FN~v!

e~v! G2

(
Rnn8

Dn~r2R!Vnn8Dn8
* ~r 82R!

1¯ . ~A13!

The Vnn8’s may be approximated by expanding the Co
lomb potential to the quadrupole level, which is the fir
nonzero term in the integral. This leads to

Vnn8>e
dn•dn8
uan8u

3 23e
~dn•an8!~dn8•an8!

uan8u
5 ,

i.e., the dipole-dipole interaction energy for two neighbori
bonds. Given a pair of dipoles oriented along the tetrahe
bonds ~and symmetry requires we need only examine a
pair of our choice!, d5(1,1,1)a and d85(21,21,1)a for
instance, and the vector between them,s[an,n8
5(1,1,0)a0/4, we haveVnn85e5a2/s35e5&udu2r/6 after
substituting for the average electron density,r532/a0

3

5&/s3. Now with udu253\2e2/4mEg we find

Vnn85
5&

8p

~\vp!2

4Eg
5

5&

8p
Vnn . ~A14!

Continuing, we consider the summations overn, n8, etc.
in Eq. ~A13! directly. At each order we introduce sums ov
longer chains of bonds through near-neighbor interactio
The first-order sum includes on-site terms, and the seco
order sum includes near-neighbor terms that reduce appr
mately to Eq.~17!. We can separate the third-order sum in
those chains that return to the same site, a first-neighbor
or a second-neighbor site. For a tetrahedral configura
each bond has six near neighbors, so six possible seque
exist for a chain of two interactions leading from siten to a
first neighborn8 and back ton. If we consider the number o
paths to get to any first neighbor by two near-neighbor int
actions, we find only two. Only one path to each seco
neighbor through two near-neighbor interactions exists. T
third-order sum is proportional to

6V2(
Rn

S dn•Rn

uRnu3 D 2

12V2 (
RnRn8

S dn•Rn

uRnu3 D S dn8•Rn8
uRn8u

3 D
1V2 (

RnRn9
S dn•Rn

uRnu3 D S dn9•Rn9
uRn9u

3 D , ~A15!

where the number of primes indicates the neighbor distan
V is the constant near-neighbor interaction, and we imme
ately apply the dipole approximation to the electron-ho
field terms. Making the small-order approximations to t
bond vectorsRn9 , as in Eq.~16!, with the second sum al
ready considered in Eq.~17!, the third-order term is

4V2(
Rn

S dn•Rn

uRnu3 D 2

. ~A16!
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Examining the fourth-order sum using the same approxim
tions we find

28V3(
Rn

S dn•Rn

uRnu3 D 2

, ~A17!
y
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-and the pattern continues. Hence, we may identify a facto
(22V)N21 appearing at each orderN, so that with Eqs.
~A14! and~18! we can write theNth-order expansion of the
static screened interaction asC(5&/4p)N21@(e0
21)/e0#Nr1/3, which converges for (5&/4p)@(e021)/e0#
,1 or anye0.1.
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