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Correlation energy of an electron gas in strong magnetic fields at high densities

M. Steinberg and J. Ortner
Institut für Physik, Humboldt Universita¨t zu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany

~Received 13 July 1998!

The high-density electron gas in a strong magnetic fieldB and at zero temperature is investigated. The
quantum strong-field limit is considered in which only the lowest Landau level is occupied. It is shown that the
perturbation series of the ground-state energy can be represented in analogy to the Gell-Mann Brueckner
expression of the ground-state energy of the field-free electron gas. The role of the expansion parameter is
taken by r B5(2/3p2) (B/m2) (\r S/e)3 instead of the field-free Gell-Mann Brueckner parameterr s . The
perturbation series is given exactly up too(r B) for the case of a small filling factor for the lowest Landau level.
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I. INTRODUCTION

The calculation of the correlation energy of a field-fr
and fully degenerate electron gas has a long history. S
the pioneering work of Gell-Mann and Brueckner1 and
Wigner,2 who derived analytic results for the high-dens
and the low-density limit, respectively, various interpolati
formulas between these two limits have been established
a free electron gas the ground-state energy is a functio
the interelectron spacingr s only, which is related to the par
ticle densityn by n2154pr s

3aB
3/3, whereaB is the Bohr

radius. Especially for a high-density electron gas the grou
state energy takes the form1

eg5
2.21

r s
2

2
0.916

r s
10.0622 ln~r s!20.094. ~1!

The leading term is the kinetic energy. The next term is
first-order exchange energy, while the remaining terms
this series are called the correlation energy.

The purpose of our work is to find an analogous exp
sion of the ground-state energy for a system of a large n
ber of electrons moving in a fixed uniform distribution
positive charge and in an external uniform magnetic field
particular, we focus on the strong-field limit, where all t
electrons are in the lowest Landau eigenstate and the s
are all aligned antiparallel to the magnetic field. The syst
is assumed to be at zero temperature. In our analysis
essentially follow the calculation originally developed b
Gell-Mann and Brueckner. A homogeneous magnetic fielB
modifies the energy spectrum of a charged particle and
Fermi energy~i.e., the chemical potential of the noninterac
ing magnetized electron gas! is no longer a function ofr s
alone, but also of the magnetic field. Therefore, it is con
nient to introduce the new parameters

r B5
1

paBkF
5

2

3p2
a2r s

3 , t5
eF

\vc
5

9p2

8

1

a6r s
6

, ~2!

where vc5eB/m is the cyclotron frequency,a5aB / l B is
the ratio of the Bohr radius, and the magnetic lengthl B

5A\/eB. At strong magnetic fieldsr B takes the role of the
expansion parameter. The second parametert may be re-
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garded as a filling parameter. It must satisfy the conditiot
<1 in order to describe a quantum system in the strong-fi
limit. In both equations we have made use of the relat
between the Fermi wave vectorkF and the particle density in
the strong-field limit, where the system behaves essenti
as a one-dimensional electron gas

n5
1

~2p l B!2E2kF

kF
dkz , kF52p2l B

2n. ~3!

Now the kinetic energy of the noninteracting degener
electron gas per particle in rydbergs becomes

ekin5
1

~2p l B!2S E2kF

kF \2kz
2

2m
dkzD 1

nR5
1

3p2

1

r B
2

'
0.0337

r B
2

.

~4!

Thus the kinetic energy is a function of the dimensionle
parameterr B only. In the limit r B!1, the kinetic energy will
give the dominant contribution to the ground-state ener
while the Coulomb interaction acts as a small perturbation
the motion of the electrons. We investigate here this phy
cally interesting high-density regime. We show that in th
case the ground-state energy takes the form

eg5
1

3p2

1

r B
2

1
A~ t !

r B
1B~ t !ln~r B!1C~ t !

1~ terms that vanish asr B→0!. ~5!

The second term in this series comes from the first-or
exchange energy. Its calculation was given by Danz a
Glasser and will be reviewed in Sec. II. The terms in t
energy beyond the Hartree-Fock approximation can be
tained by a formal summation of all ring diagrams. In ad
tion to that, we must include the second-order exchange
gram that contributes toC(t). Depending on the values o
the magnetic field and the density, the filling parametert may
vary within the range 0,t<1. An analytical calculation for
the coefficientsA(t), B(t), and C(t) is too difficult as it
involves a troublesome summation over Landau indic
Therefore, we give explicit expressions for the contributio
to the constantsA(t), B(t), andC(t) and find analytic re-
15 460 ©1998 The American Physical Society
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PRB 58 15 461CORRELATION ENERGY OF AN ELECTRON GAS IN . . .
sults for their asymptotic behavior ast goes to zero. The
validity domain of this expansion in ther s-t plane is sche-
matically shown in Fig. 1, in which we have made use of
relationshipr B;r s /t1/3 to indicate the high-density regio
(r B!1). The regime of a coupled electron gas (r B.1) was
investigated by Fushikiet al.3 using the Thomas-Fermi–typ
statistical model. At sufficiently low densities the electr
gas should form a Wigner crystal. Following Kleppmann a
Elliott4 ~see also Ref. 5!, a strong magnetic field would in
crease the density at which crystallization occurs. The res
obtained in this work may be used to establish interpolat
formulas between the various limiting results.

The strong-field limit has also been investigated by H
ing et al.6 and Isihara and Tsai.7 We have partially adopted
the notation of Horinget al. and additionally we have intro
duced the parametert to clarify the structure of the perturba
tion expansion of the ground-state energy~5!. This was not
explicitly given in Ref. 6. Horinget al.6 carefully analyzed
the spectrum of the plasma oscillations within the rando
phase approximation to calculate the correlation energy.
found to be proportional to ln(rB). We show that the sam
result can be obtained by expanding the polarization func
in powers of the momentum transfer, which gives a be
understanding of the structure of the ground state ene
expansion and simplifies the calculation. Furthermore,
enables us to find the constantC(t) of this series. This will
be discussed in Sec. III.

The calculations of Isihara and Tsai7 are performed in the
grand canonical ensemble. Within our notation their grou
state energy agrees with that of Horinget al.6 up to the order
A(t)/r B , but differs in the constantB(t) by a factor 2. We
confirm in our calculation the result of Horinget al.6 Isihara
and Tsai7 also give contributions to the termC(t); however,
within this order their calculation is not complete.

Our work is motivated by the observation that all of the
conditions@degeneracy, weak coupling (r B!1), and small
filling factor (t!1)# may be realized on the surface of som
strongly magnetized neutron stars.8 The outermost layers o
these objects are likely to form a degenerate hydro
plasma at magnetic field strengths of 109 T, at temperatures
of 105 K, and at densities of 331034 m23. Then the expan-
sion parameter and the filling factor are found to ber B
'0.01 andt'0.05. On the other hand, at higher tempe

FIG. 1. Sketch of the validity domain of the various expansio
in the r s-t plane:~a! high-density region@the cross-hatched area
the bottom shows the validity domain of the analytic results for
asymptotic behaviort→0 of the coefficientsA(t), B(t), and
C(t).#, ~b! intermediate-density region, and~c! low-density region.
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tures (T.105 K) and lower densities (n,1030 m23) the
magnetized plasma (B5109 T) is nondegenerate an
weakly coupled. This situation has been recently conside
by Refs. 9 and 10.

The high-density strong-field limit may also be achiev
in laboratory plasmas, such as semiconductors or la
induced plasmas. In particular, one may consider semic
ductors with small effective massm!50.01me and carrier
densities of 531023 m23 in strong magnetic fields of 40 T
such as indium antimonide. At these values ofB and n the
parametersr B'0.02 andt'0.04 lie within our approxima-
tion scheme. Throughout this paper the energies are g
per particle and in rydbergs.

II. EXCHANGE ENERGY

In this section we shall briefly review the calculation
the first-order exchange energy, which is diagrammatica
represented in Fig. 2. This contribution has been exami
by Danz and Glasser.11 Following the rules of calculating
Feynman diagrams we have

eHF5
1

2nRTrsE
0

1dl

l E d1 d2 Vl~12!Gs
,~12!Gs

,~21!.

~6!

The trace is over the spin variablesz521,11. Throughout
this work we shall use the closed form of the Green’s fun
tion Gs

,(12) in space-time representation 15r1 ,t1 as given
by Horing,12 which has also been exploited in Refs. 9 and

Gs
H.
, J

~12!5C~r,r 8!E dv

2p H 2 i @12 f 0~v!#
i f 0~v! J

3e2 ivTE
2`

`

dT8 E dp

~2p!3
eip•~r12r2!

3expF2 i S mBBsz1
pz

2

2m
2v DT8G

3
1

cosS vc

2
T8D expF2 i

px
21py

2

mvc
tanS vc

2
T8D G . ~7!

Here we have introduced the Fermi-Dirac distribution fun
tion f 0(v), the Bohr magnetonmB5e\/2m and a unitary
phase factorC(r,r 8). After inserting expression~7! into Eq.
~6! and considering the quantum strong-field limit only, i.
\vc.eF , one can perform all elementary integrals to obta
the Hartree-Fock exchange energy

s

e

FIG. 2. First-order exchange diagram.
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eHF52
1

r B

4

p2E0

`

dpFarctanS 1

pD
2

p

2
lnS 11

1

p2D Gexp~24tp2!. ~8!

In the limit t→0 the exchange energy takes the simple fo

eHF~ t→0!52
1

r B

1

p2
@32C22 ln~2!2 ln~ t !#, ~9!

whereC is Euler’s constantC'0.5772. This result was al
ready obtained by Danz and Glasser.11 One can easily iden
tify the coefficientA(t) from Eq.~8! and its asymptotic limit
t→0 from Eq.~9!.

III. CALCULATION OF THE CORRELATION ENERGY

In second-order perturbation theory, one expects a hig
order contribution in the interaction parametere2 or r B , that
is, a constant independent ofr B . Like in the zero-magnetic-
field counterpart, this contribution diverges logarithmica
at small momentum transfers. As was shown by Gell-Ma
and Brueckner, this difficulty can be overcome by summ
ring diagrams up to infinite order~Fig. 3!, which is known as
the random-phase approximation.

Given the polarization functionP(p,v) within the
random-phase approximation, the correlation energy ma
written as

e r5
\kF

3

2nRE dp

~2p!3E dv

~2p!F lnS 11
e2

p2
P~p,v!D

2
e2

p2
P~p,v!G . ~10!

Here and in the remainder of this paper we have expres
all momenta in terms of the Fermi wave vectorkF . For a
further detailed analysis, the polarization functionP(p,v)
must be evaluated. This quantity is determined solely b
collisionless, i.e., noninteracting, Fermi system in a magn
field and may be calculated in a space-time representatio

P~12!5 i\21Trs@Gs~12!Gs~21!#. ~11!

By using Eq.~7!, the polarization function was studied i
detail by Horing.12 He obtained useful analytical results fo
the nondegenerate as well as for the degenerate regio
particular he derived an exact expression for the polariza
function in the quantum strong-field limit@Ref. 12, p. 61, Eq.
~A.III.6 !#, which is given by

FIG. 3. Ring approximation for the correlation energy.
r-

n
g

be
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a
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by
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n

P~p,v!52
r B

2e2t

1

upzu
e~2pr

2t ! (
n50

`
1

n!
~pr

2t !n

3 lnS S mv

\kF
2 D 2

1F n

2t
1

pz
2

2
2upzuG2

S mv

\kF
2 D 2

1F n

2t
1

pz
2

2
1upzuG2D . ~12!

Here we have introduced our notation@Eq. ~2!#. We have
also made use of Eq.~3!, which relates the Fermi wave vec
tor kF to the expansion parameterr B . Equations~10! and
~12! represent the basis of our further calculations. From
ring approximatione r we may find the contribution toB(t)
and C(t) by expanding the polarization function in powe
of the momentum transferp. Only the lowest-order term
independent ofp must be considered, while higher-ord
terms proportional top2 will give higher powers ofr B in the
final expression of the ground-state energy. An additio
contribution toC(t) arises in the exchange interaction of th
ordere4. This energy may be represented diagrammatica
as in Fig. 4. Higher-order exchange terms lead to contri
tions in higher powers ofr B and need not be considered
our calculation.

A. Ring approximation

We may start our calculation with the investigation of t
ring approximation. Following the original work of Gell
Mann and Brueckner, we first establish an expansion of
polarization function in powers of the transfer momentu
For this we introduce the dimensionless frequencyu
→mv/\kF

2 upzu. Now we fix this quantity and let the mo
mentum transfer approach zero to obtain the limiting form

2e2t

r B
P~p,u!'R1~u!1p2R2„u,cos~u!…1•••. ~13!

In general the functionsR1 , R2 , etc., will depend on the
direction of the transferred momentum with respect to
magnetic field that is taken into account by the additio
argument cos(u) in R2 . However, as may be easily show
R1 is independent of this angle and takes the simple form

R1~u!5
2

11u2
. ~14!

Now we perform the integral overp in Eq. ~10! from 0 to 1
and correct to orderr B exactly. This may be achieved b
introducingd(t), which restores the second-order perturb
tion term to its exact value. Thus we have

FIG. 4. Second-order exchange diagram.
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e r'
1

2p3

t

r B
2E0

1

dp p3E
2`

`

duF lnS 11
r B

2t

1

p2
R1~u!D

2
r B

2t

1

p2
R1~u!G1d~ t !, ~15!

whered is defined by

d~ t !5ec
~2!1

1

8p3t
E

0

1

dpE
2`

`

du
R1

2

2p
. ~16!

This is a finite expression since the logarithmic divergen
cancels. Substituting Eq.~12! into this equation, one obtain
the general form of thisd(t) as given in Appendix A@Eq.
~A1!#. There we have derived an asymptotic expansion
is found to be

d~ t→0!52
1

16p2t
2

ln~ t !

6
2

C13 ln~2!

6
1

1

3
2

4

p2
z~3!,

~17!

where we have introduced the Rieman zeta functionz with
z(3)'1.202 057. The integration over the momentum in E
~15! is readily carried out with the result

e r'
1

32p3t
E

2`

`

du@R1~u!#2F lnS r B

2t
R1~u! D2

1

2G , ~18!

where we have dropped all terms that vanish asr B→0. The
remaining integral may be performed exactly and we find
the logarithmic contribution, i.e., forB(t), the result
e

at

.

r

B~ t !5
1

16p2t
. ~19!

Note thatB(t) is exact for arbitrary filling factor. This resul
is in agreement with that of Horinget al.6 Furthermore, we
are able to determine the next term in the perturbation se
Again, we can perform the integral~18! and take into ac-
count the contributions coming fromd(t) andeex(t) to ob-
tain

C~ t !5
1

16p2t
S 1

2
22 ln~2!2 ln~ t ! D1d~ t !1eex~ t !.

~20!

We may proceed with the calculation of the second-or
exchange term in the next subsection.

B. Second-order exchange term

This contribution may be written in a space-time rep
sentation as

eex~ t !5
1

2nRTrsE
0

1dl

l E d1E d2E d3E
3d4 Vl~14!Vl~23!Gs~12!Gs~23!Gs~34!Gs~41!.

~21!

Now we may use Eq.~7! and employ the expansion of th
Green’s function in terms of the Laguerre polynomialsLs(x)
@Ref. 11, p. 96, Eq.~2.3!#. Then theT8 andv integrations are
trivial and in the limit\vc.eF this contribution can be writ-
ten as
eex~ t !5
4n2l B

6

p (
s50

`

(
s850

` E~pz2qz!21s/t.1

~qz1kz!21s8/t.1

dqE
upzu,1

dpE
ukzu,1

dk
1

q2

1

uq1k2pu2
1

qz~qz1kz2pz!1
~s1s8!

2t

3exp$22t@pr
21kr

21~pr2qr!21~qr1kr!2#%~21!s1s8$Ls@4t~pr2qr!2#Ls8@4t~qr1kr!2#

1Q~s21!Q~s821!Ls21@4t~pr2qr!2#Ls821@4t~qr1kr!2#%. ~22!

Herepr denotes the two-dimensional vectorpr5px ,py . This expression is the basis for the calculation ofC(t) at arbitrary
filling factor t,1. For small values oft we may seek an asymptotic exact result foreex(t). We find that in this limit only the
states5s850 contributes to the exchange energy, while the other terms (s>1 or s8>1) vanish ast goes to zero. Thus we
have, fort!1,

eex~ t !5
2t

p5Eupz2qzu.1
uqz1kzu.1

dqE
upzu,1

dpE
ukzu,1

dk
1

q2

1

uq1k2pu2
1

qz~qz1kz2pz!
exp$22t@pr

21kr
21~pr2qr!21~qr1kr!2#%.

~23!
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The detailed evaluation of this integral in the asympto
limit is given in Appendix B. It shows an interesting loga
rithmic dependence on the filling factor, which is given b

eex~ t→0!5
1

6
ln2~ t !1S 2

2

3
1

C

3
1 ln~2!1

8z~3!

p2 D ln~ t !

1
4

3
2

2C

3
1

C2

6
1

13p2

90
22 ln~2!1

3ln2~2!

2

1C ln~2!1
z~3!

p2
@24 ln~2!18C216#. ~24!

IV. CONCLUSIONS

In this paper the ground-state energy of a degenerate e
tron gas in a strong-magnetic field has been investigated.
electron gas in the strong-field limit is characterized by t
parameters: the dimensionless inverse Fermi wave vector B
and the filling factor of the lowest Landau levelt @see Eq.
~2!#. We have shown that in the case of a dense electron
r B!1 the internal energy per particle~measured in rydbergs!
may be expressed in the form of Eq~5!. The constantA(t) is
fully determined by the Hartree-Fock exchange energy
may be identified by using Eq.~8!. The next term in this
expansion comes from the random-phase approximation
relation energy. The constantB(t) of the ln(rB) contribution
is given by Eq.~19!. For the calculation of the constantC(t)
one needs to include the second-order exchange ene
Given d(t) and eex(t) by Eqs.~A1! and ~22!, respectively,
one may calculate the constantC(t) using Eq.~20! at anyt.

For the case of very strong magnetic fields with a sm
filling factor t ~but sufficiently smallr B) we have given ana
lytic expressions for the constantsA(t) by Eq. ~9! andB(t)
by Eq. ~19!. Our results forA(t→0) andB(t→0) coincide
with earlier calculations of Danz and Glasser11 and of Horing
et al.6 The calculation of the constantC(t→0) is, to our
knowledge, given for the first time. We can use t
asymptotic result ford(t) @Eq. ~17!# and foreex(t) @Eq. ~24!#
to get an expression for small values oft:

C~ t→0!52
ln~ t !

16p2t
2

2 ln~2!1
1

2

16p2t
1

ln2~ t !

6

1S 2
5

6
1

C

3
1 ln~2!1

8z~3!

p2 D ln~ t !

1
5

3
2

5C

6
1

C2

6
1

13p2

90
1C ln~2!

2
5 ln~2!

2
1

3 ln2~2!

2
1

z~3!

p2
~24 ln~2!18C220!.

~25!

One should emphasize that Eq.~5! with the asymptotic re-
sults for the constants@Eqs. ~9!, ~19!, and ~25!# is an
asymptotic expansion of the ground-state energy of an e
tron gas in the limitr B→0 and thent→0 with a possibly
c-
he

as

d

r-

gy.

ll

c-

poor convergence. Including the results of our earlier wor9

where the thermodynamic perturbation expansion in
Boltzmann limit has been performed, we have now fou
exact results of the thermodynamic functions in the limiti
cases of a degenerate and a nondegenerate weakly co
electron gas. A third known limiting case is the region
Wigner crystallization~see Refs. 4 and 5 and referenc
therein!. One may now try to connect the known limitin
results by a Pade´ approximation in order to describe the in
termediate region as indicated in Fig. 1. A survey of seve
Padéapproximations for the case of the zero-field electr
gas was recently given by Stolzmann and Blo¨cker.13 A Padé
approximation for the thermodynamic functions of the ele
tron gas in the quantum strong-field limit will be given els
where.
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APPENDIX A: CALCULATION OF d

This contribution may be written in terms of the polariz
tion function ~12! as

d~ t !52
1

32p4t
E dpE

2`

`

dv
1

p4

e22pr
2t

upzu2

3(
n,m

1

n!m!
~pr

2t !n1mlnS v21F n

2t
1

pz
2

2
2upzuG2

v21F n

2t
1

pz
2

2
1upzuG2D

3 lnS v21F m

2t
1

pz
2

2
2upzuG2

v21F m

2t
1

pz
2

2
1upzuG2D

1
1

8p3t
E

0

1

dpE
2`

`

dv
R1

2

2p
. ~A1!

We are interested in small values oft, therefore we can re-
strict the calculation ton5m50 asn or m>1 give rise to
higher-order terms int. Note that the termsn or m>1 are
convergent expressions even without subtracting the lo
rithmic divergent part, while the lowest-order termn5m
50 would show singular behavior. Thev integration in Eq.
~A1! may be performed exactly. The result may be split in
small- and large-wave-number contributionsd(t)5d1(t)
1d2(t) with

d1~ t !52
1

8p2t
E

0

1

dpE
0

1

dz
e28tp2~1/z21!

p4
@~p2p2!ln~p2p2!

1~p1p2!ln~p1p2!22pln~p!#1
1

8p2t
E

0

1

dp
1

p

~A2!
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and

d2~ t !52
1

8p2t
E

1

`

dpE
0

1

dz
e28tp2~1/z21!

p4
@~p22p!ln~p22p!

1~p21p!ln~p21p!22p2ln~p2!#. ~A3!

First we focus on the calculation ofd1(t). Thez integration
may be expressed in terms of the exponential integ
Ei(2x),

d1~ t !52
1

8p2t
E

0

1

dp
1

p3
@118tp2e8tp2

Ei~28tp2!#

3@~12p!ln~12p!1~11p!ln~11p!#

1
1

8p2t
E

0

1

dp
1

p
. ~A4!

Now we can expand the logarithm and subtract the diverg
part from the lowest-order contributions. Thus we have

d1~ t !52
1

8p2t
E

0

1

dpH (
k52

`
2

2k~2k21!
p2k23

18t (
k51

`
2

2k~2k21!
p2k21e8tp2

Ei~28tp2!J .

~A5!

Again, we can expand the exponential and the exponen
integral and retain only contributions that do not vanish
t→0,

d1~ t→0!52
1

8p2t
(
k52

`
2

2k~2k21!~2k22!

2
1

p2 (
k51

` H 2@C1 ln~8t !#

~2k!2~2k21!
2

4

~2k!3~2k21!
J .

~A6!

This may be simplified by expressing the sums in terms
the c function and observing that they give elementary co
stants for integer arguments. Therefore, the final result m
be written as

d1~ t→0!5
4ln~2!23

16p2t
1

2S p2

24
2 ln~2! D
p2

ln~ t !

1

2S p2

24
2 ln~2! D @C13 ln~2!#

p2

1

4S 2
z~3!

8
1 ln~2!2

p2

24D
p2

. ~A7!
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s

f
-
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We have also introduced the Rieman zeta functionz(x).
Following the same steps as discussed before, we obtain
the large momentum part

d2~ t !52
1

8p2t
E

1

`

dpH (
k51

`
2

2k~2k21!
p22k22

18t (
k51

`
2

2k~2k21!
p22ke8tp2

Ei~28tp2!J .

~A8!

The transformationp2→p, the expansion of the exponentia
and an integration by parts yield

d2~ t !52
1

8p2t
(
k51

`
2

2k~2k21!~2k11!

1
1

p2 (
k51

`
2

2k~2k21! (n50

`
~8t !n

n! F Ei~28t !

~2n22k11!

12E
1

`

dp
p2n22k

~2n22k11!
e28tp2G . ~A9!

By expanding the exponential integral the relevant contri
tions for the asymptotics are identified to come from then
50 term. Then we find

d2~ t→0!5
122 ln~2!

8p2t
2

1

p2H (
k51

`
2@C1 ln~8t !#

2k~2k21!2

2 (
k51

`
4

2k~2k21!3J . ~A10!

Performing the sums exactly, the result reads as

d2~ t→0!5
122 ln~2!

8p2t
2

2S p2

8
2 ln~2! D
p2

ln~ t !

2

2S p2

8
2 ln~2! D @C13 ln~2!#

p2

2
8 ln~2!2p217z~3!

2p2
. ~A11!

One can combine the results ford1(t→0) @Eq. ~A7!# and
d2(t→0) @Eq. ~A11!# to find the asymptotic result ford(t
→0) @Eq. ~17!#.

APPENDIX B: CALCULATION
OF THE SECOND-ORDER EXCHANGE TERM

After the substitutionk85(p2k2q) Eq. ~23! may be re-
written as
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eex~ t !52
2t

p5Euqz1pz1kzu,1
uqz1pzu.1

dqE
upzu,1

dpE
upz1kzu.1

dk
1

q2

1

k2

1

qzkz
exp$22t@pr

21~qr1pr1kr!21~qr1pr!21~pr1kr!2#%.

~B1!
a
en

s
n

e.

the
The Gaussian integrals can be done immediately. The an
sis of the conditions on the region of integration gives th

eex~ t !52
2

p2E dqrqrE dkrkrE
21

1

dpz

3S E
12pz

2

dkzE
212pz2kz

212pz
dqz

1E
2

`

dkzE
212pz2kz

12pz2kz
dqzD 1

q2

1

k2

1

qzkz

3exp@22t~qr
21kr

2!#. ~B2!

Performing thepz andqz integration we find

eex~ t !52
1

8p2E dqrE dkr

e22qr

qr

e22kr

kr

3F2E
2

`

dkzlnS 11
qr

kz
2t
D H lnS 11

kr

~22kz!
2t
D

2 lnS 11
kr

kz
2t
D J 2E

0

2

dkzlnS 11
qr

kz
2t
D

3 lnS 11
kr

~22kz!
2t
D G . ~B3!

We split up the integral into two contributionseex(t)
5I 1(t)1I 2(t) with

I 1~ t !52
1

8p2E dqrE dkr

e22qr

qr

e22kr

kr

3F2E
0

`

dkzlnS 11
qr

kz
2t
D H lnS 11

kr

~22kz!
2t
D

2 lnS 11
kr

kz
2t
D J 2E

0

2

lnS 11
qr

kz
2t
D

3 lnS 11
kr

~22kz!
2t
D G ~B4!

and

I 2~ t !52
1

8p2E dqrE dkr

e22qr

qr

e22kr

kr
E

0

2

dkzlnS 11
qr

kz
2t
D

3H 2 lnS 11
kr

kz
2t
D 22 lnS 11

kr

~22kz!
2t
D J . ~B5!
ly-First we concentrate onI 1(t), where after the substitution
kr /kz

2→kr , etc., thekz integration is again of the Gaussia
form. After the transformationsk5qrkr /(qr1kr) and q
5kr /(qr1kr) we have

I 1~ t !52
1

8p3/2E0

1

dqE
0

`

dk
e24k21

k3/2Aq~12q!
lnS 11

k

2qtD
3 lnS 11

k

2~12q!t D . ~B6!

Now we investigate this integral in the limit of smallt and
find for the asymptotic behavior a logarithmic divergenc
Noting that

2
1

8p3/2
ln2~ t !E

0

1

dqE
0

`

dk
e24k21

k3/2Aq~12q!
5

1

2
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1
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dqE
0

`
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e24k21
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lnS k

2qD
5~3 ln~2!221C!ln~ t !,

2
1

8p3/2E0

1
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0

`
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e24k21

k3/2Aq~12q!
lnS k

2qD lnS k

2~12q! D
5S 422C1

C2

2
1

p2

4
13C ln~2!

26 ln~2!1
9

2
ln2~2!2

p2

12D ~B7!

and neglecting all terms that vanish ast→0, this contribu-
tion becomes

I 1~ t→0!5S 1

2
ln2~ t !1@3 ln~2!221C# ln~ t !1422C1

C2

2

1
p2

6
13C ln~2!26 ln~2!1

9

2
ln2~2! D . ~B8!

We now find an appropriate approximation scheme for
calculation of I 2 . We may perform the identicalk and q
integration@see Ref. 14, p. 530, Eq.~6!# to obtain the result

I 2~ t !52
1

8p2

1

4E0

2

dkzH ln2~2kz
2t !12C ln~2kz

2t !1C21
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n51

` 2n211c~n!2 ln~2kz
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n!n
~2kz

2t !nJ $2~kz
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22@kz
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2#%. ~B9!

We find this may be exactly rewritten as
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I 2~ t !5C1 ln2~ t !1C2 ln~ t !1C31 (
n51

`

@C4~n!ln2~ t !

1C5~n!ln~ t !1C6~n!#tn, ~B10!

with the constant coefficients
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@24 ln~2!18C216#. ~B11!

We neglect higher-order terms in this calculation. Thus
get the asymptotic expansion

I 2~ t→0!52
1

3
ln2~ t !1S 4

3
2

2

3
C1

8

p2
z~3!22 ln~2!D ln~ t !

23 ln2~2!1~422C!ln~2!2
C2

3
2

8

3

2
2

90
p21

4

3
C1

z~3!

p2
~24 ln~2!18C216!.

~B12!

Summing I 1 and I 2 , we have the final expression for th
second-order exchange energy at small values of the fil
parametert given in Eq.~24!.
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