PHYSICAL REVIEW B VOLUME 58, NUMBER 23 15 DECEMBER 1998-I

Correlation energy of an electron gas in strong magnetic fields at high densities
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Institut fir Physik, Humboldt Universitazu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany
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The high-density electron gas in a strong magnetic f@ldnd at zero temperature is investigated. The
guantum strong-field limit is considered in which only the lowest Landau level is occupied. It is shown that the
perturbation series of the ground-state energy can be represented in analogy to the Gell-Mann Brueckner
expression of the ground-state energy of the field-free electron gas. The role of the expansion parameter is
taken byrg=(2/372) (B/m?) (Arge)® instead of the field-free Gell-Mann Brueckner parameter The
perturbation series is given exactly uparg) for the case of a small filling factor for the lowest Landau level.
[S0163-182698)03348-1

[. INTRODUCTION garded as a filling parameter. It must satisfy the condition
<1 in order to describe a quantum system in the strong-field
The calculation of the correlation energy of a field-freelimit. In both equations we have made use of the relation
and fully degenerate electron gas has a long history. Sinceetween the Fermi wave vectig and the particle density in
the pioneering work of Gell-Mann and Brueckheand the strong-field limit, where the system behaves essentially
Wigner? who derived analytic results for the high-density as a one-dimensional electron gas
and the low-density limit, respectively, various interpolation
formulas between these two limits have been established. For 1
a free electron gas the ground-state energy is a function of m
the interelectron spacing, only, which is related to the par- B
ticle densityn by n~t=4zr3 aB/3 whereag is the Bohr Now the kinetic energy of the noninteracting degenerate
radius. Especially for a high-density electron gas the groundelectron gas per particle in rydbergs becomes
state energy takes the fotm
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The leading term is the kinetic energy. The next term is theThus the kinetic energy is a function of the dimensionless
first-order exchange energy, while the remaining terms irparameterg only. In the limitrg<1, the kinetic energy will
this series are called the correlation energy. give the dominant contribution to the ground-state energy,
The purpose of our work is to find an analogous expanwhile the Coulomb interaction acts as a small perturbation to
sion of the ground-state energy for a system of a large numthe motion of the electrons. We investigate here this physi-
ber of electrons moving in a fixed uniform distribution of cally interesting high-density regime. We show that in this
positive charge and in an external uniform magnetic field. Incase the ground-state energy takes the form
particular, we focus on the strong-field limit, where all the

Gg:

electrons are in the lowest Landau eigenstate and the spins 11 AW

are all aligned antiparallel to the magnetic field. The system €g= -t —+ B(t)In(rg)+C(t)

is assumed to be at zero temperature. In our analysis we 37’ e

essentially follow the calculation originally developed by +(terms that vanish asg—0). (5)

Gell-Mann and Brueckner. A homogeneous magnetic fild

modifies the energy spectrum of a charged particle and th€he second term in this series comes from the first-order
Fermi energy(i.e., the chemical potential of the noninteract- exchange energy. Its calculation was given by Danz and
ing magnetized electron gas no longer a function of;  Glasser and will be reviewed in Sec. Il. The terms in the
alone, but also of the magnetic field. Therefore, it is conveenergy beyond the Hartree-Fock approximation can be ob-

nient to introduce the new parameters tained by a formal summation of all ring diagrams. In addi-
tion to that, we must include the second-order exchange dia-
12 € 97?1 gram that contributes t€(t). Depending on the values of
C magke 3472 @ r t= hoe 8 56" @ the magnetic field and the density, the filling parameteay

vary within the range &t<1. An analytical calculation for
where w,=eB/m is the cyclotron frequencyg=ag/lg is  the coefficientsA(t), B(t), and C(t) is too difficult as it
the ratio of the Bohr radius, and the magnetic lentgh involves a troublesome summation over Landau indices.
= h/eB. At strong magnetic fieldsg takes the role of the Therefore, we give explicit expressions for the contributions
expansion parameter. The second parameteray be re- to the constantg\(t), B(t), andC(t) and find analytic re-
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3 § FIG. 2. First-order exchange diagram.
. \ © tures (T>10° K) and lower densitiesn(<10°® m~3) the
O \ magnetized plasma B=10° T) is nondegenerate and

weakly coupled. This situation has been recently considered
by Refs. 9 and 10.

FIG. 1. Sketch of the validity domain of the various expansions The high-density strong-field limit may also be achieved
in ther gt plane:(a) high-density regiorithe cross-hatched area at in laboratory plasmas, such as semiconductors or laser-
the bottom shows the validity domain of the analytic results for theinduced plasmas. In particular, one may consider semicon-
asymptotic behaviot—0 of the coefficientsA(t), B(t), and  ductors with small effective mas®*=0.01m, and carrier
C(t).], (b) intermediate-density region, artd) low-density region.  densities of 5 10°> m™~2 in strong magnetic fields of 40 T,
such as indium antimonide. At these valuesBo&nd n the

sults for their asymptotic behavior dsgoes to zero. The Parametersg~0.02 andt~0.04 lie within our approxima-
validity domain of this expansion in the-t plane is sche- tion scheme. Throughout this paper the energies are given
matically shown in Fig. 1, in which we have made use of thePer particle and in rydbergs.
relationshiprg~r/t'* to indicate the high-density region
(rg<<1). The regime of a coupled electron gag¥ 1) was
investigated by Fushilét al3 using the Thomas-Fermi—type
statistical model. At sufficiently low densities the electron In this section we shall briefly review the calculation of
gas should form a Wigner crystal. Following Kleppmann andthe first-order exchange energy, which is diagrammatically
Elliott* (see also Ref. )5 a strong magnetic field would in- represented in Fig. 2. This contribution has been examined
crease the density at which crystallization occurs. The resultsy Danz and Glassét. Following the rules of calculating
obtained in this work may be used to establish interpolatiorFeynman diagrams we have
formulas between the various limiting results.

The strong-field limit has also been investigated by Hor-

Ts

Il. EXCHANGE ENERGY

ing et al® and Isihara and TsdiWe have partially adopted P 1 Tr 1d_)‘f d1d2 VMN(12)G=(12)G=(21).
the notation of Horinget al. and additionally we have intro- HF2nR 7 o N 7 7
duced the parameteto clarify the structure of the perturba- (6)

tion expansion of the ground-state enef§y. This was not

explicitly given in Ref. 6. Horinget al® carefully analyzed The trace is over the spin variable=— 1,+1. Throughout
the spectrum of the plasma oscillations within the random+his work we shall use the closed form of the Green’s func-
phase approximation to calculate the correlation energy. It iggn G:(12) in space-time representatioret,,t; as given

found to be proportional to Ing). We show that the same py Horing 2 which has also been exploited in Refs. 9 and 11
result can be obtained by expanding the polarization function

in powers of the momentum transfer, which gives a better

understanding of the structure of the ground state energ&[z](lz)zc(”,)f d_w[—i[l—fo(w)]]

expansion and simplifies the calculation. Furthermore, this o ' 2 ifo(w)

enables us to find the constai{t) of this series. This will

be discussed in Sec. Ill. CioT (7 e dp D (r1-12)
The calculations of Isihara and Téaire performed in the xe J dT J (2m)3 er e

grand canonical ensemble. Within our notation their ground-

state energy agrees with that of Horiegal® up to the order _ p§

A(t)/rg, but differs in the constarB(t) by a factor 2. We Xex;{ —I(MBBUZ+ %—w)T’

2

—

confirm in our calculation the result of Horireg al® Isihara

and Tsall also give contributions to the ter@(t); however, 1 p2+ p§ we

within this order their calculation is not complete. X exg —i tar(—T’) . (™
cos( )

We We
iy,

Our work is motivated by the observation that all of these > 2

conditions[degeneracy, weak couplingg<1), and small
filling factor (t<1)] may be realized on the surface of some
strongly magnetized neutron stdr§he outermost layers of Here we have introduced the Fermi-Dirac distribution func-
these objects are likely to form a degenerate hydrogetion fy(w), the Bohr magnetoug=e#/2m and a unitary
plasma at magnetic field strengths of 1T, at temperatures phase factoC(r,r'). After inserting expressiot?) into Eq.

of 10° K, and at densities of 810** m~3. Then the expan- (6) and considering the quantum strong-field limit only, i.e.,
sion parameter and the filling factor are found to ¢ 7% w.>e€p, one can perform all elementary integrals to obtain
~0.01 andt~0.05. On the other hand, at higher tempera-the Hartree-Fock exchange energy
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<:> FIG. 4. Second-order exchange diagram.

FIG. 3. Ring approximation for the correlation energy.

rg 1 o1
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In the limit t— 0 the exchange energy takes the simple form

Here we have introduced our notatipEg. (2)]. We have
epp(t—0)=— i iz[g_c_z In(2)—In(t)], (9) also made use of E(ﬁ.3), which relates the Fgrmi wave vec-
B T tor kg to the expansion parameteg. Equations(10) and
(12) represent the basis of our further calculations. From the
whereC is Euler's constan€C~0.5772. This result was al- ring approximatione, we may find the contribution t&(t)
ready obtained by Danz and Glas$eOne can easily iden- and C(t) by expanding the polarization function in powers
tify the coefficientA(t) from Eq.(8) and its asymptotic limit  of the momentum transfep. Only the lowest-order term

t—0 from Eq.(9). independent ofp must be considered, while higher-order
terms proportional tp? will give higher powers of g in the
lIl. CALCULATION OF THE CORRELATION ENERGY final expression of the ground-state energy. An additional

) _contribution toC(t) arises in the exchange interaction of the
In second-order perturbation theory, one expects a highegrdere?. This energy may be represented diagrammatically
order contribution in the interaction parameggror rg, that a5 in Fig. 4. Higher-order exchange terms lead to contribu-

is, a constant independent of. Like in the zero-magnetic- tjons in higher powers of ; and need not be considered in
field counterpart, this contribution diverges logarithmically gyr calculation.

at small momentum transfers. As was shown by Gell-Mann

and Brueckner, this difficulty can be overcome by summing _ o

ring diagrams up to infinite ord€Fig. 3), which is known as A. Ring approximation

the random-phase approximation. We may start our calculation with the investigation of the
Given the polarization functionlI(p,w) within the ring approximation. Following the original work of Gell-

random-phase approximation, the correlation energy may bglann and Brueckner, we first establish an expansion of the

written as polarization function in powers of the transfer momentum.
For this we introduce the dimensionless frequengy
hkd dp do [ e’ —mw/fikZ|p,]. Now we fix this quantity and let the mo-
“To2nR (2m)° (217)['” 1+ EH(p,w) mentum transfer approach zero to obtain the limiting form
e 2e%t
—EH(p,w) : (10 ?H(p,u)%Rl(u)wLpZRz(u,cos{G))Jr e (13)

Here and in the remainder of this paper we have express

all momenta in terms of the Fermi wave vectar. For a qﬂ general the function®,, R,, etc., will depend on the

direction of the transferred momentum with respect to the

further detailed analy3|_s, the p.ola.r Ization fgnctﬂ(p,w) magnetic field that is taken into account by the additional
must be evaluated. This quantity is determined solely by %rgument cos) in R,. However, as may be easily shown

c_oII|S|onIess, €., nonlnterac.tlng, Fermi §ystem na magnetuhl is independent of this angle and takes the simple form
field and may be calculated in a space-time representation by

I(12)=i%a"1Tr,[G,(12)G,(21)]. (11)

Ri(u)=
By using Eq.(7), the polarization function was studied in 1+u?
detail by Horing'? He obtained useful analytical results for
the nondegenerate as well as for the degenerate region. Now we perform the integral ovey in Eq. (10) from 0 to 1
particular he derived an exact expression for the polarizatiomnd correct to orderg exactly. This may be achieved by
function in the quantum strong-field linfiRef. 12, p. 61, Eq. introducing §(t), which restores the second-order perturba-
(A.111.6)], which is given by tion term to its exact value. Thus we have

(14
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~—3 d f du| In u B(t)= 19
& f pp Ry(u) (0= (19
2,[ Rl(u) +5(1), (15 Note thatB(t) is exact for arbitrary filling factor. This result
p is in agreement with that of Horingt al® Furthermore, we
are able to determine the next term in the perturbation series.
where s is defined by Again, we can perform the integrél8) and take into ac-
count the contributions coming fro(t) and ec,(t) to ob-
tain
o(t)=¢€; dpJ du—. (16)
1 /1
C(t)= o2t > —21In(2)—In(t) | + 8(t) + €, (1).
This is a finite expression since the logarithmic divergence (20

cancels. Substituting Eq412) into this equation, one obtains
the general form of thisi(t) as given in Appendix AEq.
(A1)]. There we have derived an asymptotic expansion th
is found to be

Y\/e may proceed with the calculation of the second-order
exchange term in the next subsection.

B. Second-order exchange term

In(t) C+3 In(2) 4 This contribution may be written in a space-time repre-

1
B(t=0)=~ - — ~ % 5 §— —%43). sentation as
17

1 1dA
where we have introduced the Rieman zeta funcgomith ~ €ex()= 5075 | J dlj dZJ d3j
{(3)=1.202 057. The integration over the momentum in Eq.
(15) is readily carried out with the result X d4 VM14VM(23)G,(12)G,(23)G,(34G,(41).

(21)

€~

[ aurgr ln(ZtRl<u>) 3}, (18)

3
32m Now we may use Eq(7) and employ the expansion of the
Green'’s function in terms of the Laguerre polynomialéx)
where we have dropped all terms that vanishgs:0. The  [Ref. 11, p. 96, Eq(2.3)]. Then theT’ andw integrations are
remaining integral may be performed exactly and we find fortrivial and in the limitA w > € this contribution can be writ-

the logarithmic contribution, i.e., foB(t), the result ten as

an?g > 1 1 1
d d f dk— -
Z 52:: fpz q,)%+s/t>100 IpJ<1 p k<1 P |q+k—p|2q B (515
z z

(dy+kp2+s'/t>1

€ex(t)=

Xexp{—2t[ p2+ K2+ (p,— 0,) 2+ (d,+K,)2TH— 1S S {LJ 4t(p,— q,) ?ILs [ 4t(q,+K,)?]

+0(s—1)0(s' — 1)Ls-1[4t(p,—0,)*ILs -1[4t(q,+k,) 1} (22

Herep, denotes the two-dimensional vecigy=p,,p, . This expression is the basis for the calculatiorC¢t) at arbitrary

filling factor t<<1. For small values of we may seek an asymptotic exact resultgyt). We find that in this limit only the
states=s’ =0 contributes to the exchange energy, while the other tegmsl(or s'=1) vanish ad goes to zero. Thus we
have, fort<1,

ZIJ f 1
€oy(t d d dk—
AV= 5 a1 WPy Tk p2 e R o)

exp{— 2t[p2+ K2+ (p,—0,)2+ (0, +K,)2]}.
(23)
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The detailed evaluation of this integral in the asymptoticpoor convergence. Including the results of our earlier work,

limit is given in Appendix B. It shows an interesting loga- where the thermodynamic perturbation expansion in the

rithmic dependence on the filling factor, which is given by Boltzmann limit has been performed, we have now found
exact results of the thermodynamic functions in the limiting

1 2 C 8{(3) cases of a degenerate and a nondegenerate weakly coupled
€ex(t—0)= g'nz('[)Jr —3t3TIn@2)+——/In(t) electron gas. A third known limiting case is the region of
™ Wigner crystallization(see Refs. 4 and 5 and references
4 2C C2 1372 3In2(2) therein. One may now try to connect the known limiting
o results by a Padapproximation in order to describe the in-

—+ In(2)+
3 376 90 2 termediate region as indicated in Fig. 1. A survey of several

{(3) Padeapproximations for the case of the zero-field electron
+CIn(2)+-—-[24In(2)+8C~16]. (24)  gas was recently given by Stolzmann and dler® A Pade

™ approximation for the thermodynamic functions of the elec-

tron gas in the quantum strong-field limit will be given else-

IV. CONCLUSIONS where.

In this paper the ground-state energy of a degenerate elec- ACKNOWLEDGMENTS
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(2)]. We have shown that in the case of a dense electron gas
rg<<1 the internal energy per partidimeasured in rydbergs APPENDIX A: CALCULATION OF &
may be expressed in the form of Eg). The constanf(t) is
fully determined by the Hartree-Fock exchange energy an
may be identified by using Eq8). The next term in this
expansion comes from the random-phase approximation cor- 1 —2p X
relation energy. The constaB{t) of the Infg) contribution 8(t)= f J' dow— €
is given by Eq.(19). For the calculation of the consta@(t) 32 p* |pz|2
one needs to include the second-order exchange energy. ) )
Given §(t) and eq,(t) by Egs.(Al) and (22), respectively, n " &_| |
one may calculate the constap(t) using Eq.(20) at anyt. - 2t 2 z

For the case of very strong magnetic fields with a small E nimi (Ppt) In
filling factor t (but sufficiently smalkg) we have given ana- w’+
lytic expressions for the constamgt) by Eq.(9) andB(t)
by Eq.(19). Our results forA(t—0) andB(t—0) coincide
with earlier calculations of Danz and GlasSeand of Horing w?+ >
etal® The calculation of the constar@(t—0) is, to our xIn t
knowledge, given for the first time. We can use the
asymptotic result fop(t) [Eq. (17)] and fore,,(t) [Eq. (24)]
to get an expression for small valuestof

This contribution may be written in terms of the polariza-
%on function(12) as

2
p
+?Z_|pz|

2

p

m
2

! 1d T Ri (A1)
1 + 3J’ pJ w—.
_ 8m7°tJo — 2P
In(t) Zln(2)+2+ln2(t)
1672t 1672t 6

C(t—0)=— We are interested in small values pftherefore we can re-
strict the calculation t/=m=0 asn or m=1 give rise to

higher-order terms in. Note that the term& or m=1 are

+| = E+ C+|n(2)+ 84(3) In(t) convergent expressions even without subtracting the loga-
6 2 rithmic divergent part, while the lowest-order temm=m
2 2 =0 would show singular behavior. The integration in Eq.
E _ g + C_ + +ClIn(2) (A1) may be performed exactly. The result may be split into
3 6 6 9 small- and large-wave-number contributiort) = 5,(t)
+ 8,(t) with

| In?
o ’;(2)+3 n2(2) g(sz)(24ln(2)+80—20).

1 1 1 —8tp(1/iz—1)
o (t)=— zfdpJ dz—————[(p—p?)In(p—p?)
(25) 8mtJo 0 P

One should emphasize that E&) with the asymptotic re- 5 5

sults for the constant$Egs. (9), (19), and (25)] is an +(p+p9)In(p+p“)—2pin(p)]+
asymptotic expansion of the ground-state energy of an elec-

tron gas in the limitrg;—0 and thent—0 with a possibly (A2)
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and We have also introduced the Rieman zeta funct{gr).
Following the same steps as discussed before, we obtain for
g™ 8tP*(1iz-1) the large momentum part
S () =——— dz—4[<p —p)In(p?~p)
8t p "
+(p?+ p)ln(p2+ p)—2p?In(p?)] (A3) So(t)=— Ldelo > ;p‘zk‘z
' ? grit)1 | & 2k(2k—1)
First we focus on the calculation @ (t). The z integration - ok 8tpe: 2
may be expressed in terms of the exponential integral +8tk21 2k(2k—1)P € PEi(—8tp%) .
Ei(—x),
(A8)
The transformatiop?— p, the expansion of the exponential,
5.(t)= 2 Btszi(—Stpz)] and an integration by parts yield
X[(1=p)In(1=p)+(1+p)in(1+p)] . )
St)=——52
11 2 20 &1 2k(2k—1)(2k+1
+ ZJW (Ad) 82t =1 2k(2k—1)(2k+1)
87Tt 0 o

= (8)" Ei(—8t)
2 2k(2k 1)n20 n! |(2n—2k+1)

Now we can expand the logarithm and subtract the divergent
part from the lowest-order contributions. Thus we have p2n—2k .
ID— —oT
+2f d (2n— 2k+1)e } (A9)

2k—3

81(t) ! f ' > 2
0= 520 P & 2k P | » |
By expanding the exponential integral the relevant contribu-
tions for the asymptotics are identified to come from the

2k—1,8tp% =i 2 _ -
+8t2 2k(2k 1)p e P Ei(—8tp7) . =0 term. Then we find
(AS5) 50— 1-2In(2) 1 i 2[C+In(8t)]
Again, we can expand the exponential and the exponential 2(t=0)= grt w2 & 2k(2k—1)?
integral and retain only contributions that do not vanish as
t—0, = 4
- . (A10)
» ) k=1 2k(2k—1)3
0,(t—0)=—
! 82t k=2 2k(2k—1)(2k—-2) Performing the sums exactly, the result reads as
1 2[C+In(8t)] 4 w2
- 3 . 2| =——1In(2)
m?k=1 | (2k)2(2k—1) (2k) (2k—1) 1-21In(2) 8
S8,(t—0)= S~ 5 In(t)
(A6) 8t T
This may be simplified by expressing the sums in terms of 2
the ¢ function and observing that they give elementary con- 2(@ —=In(2) |[C+31In(2)]
stants for integer arguments. Therefore, the final result may — 5
be written as ™
2 81In(2)—7%+7¢(3)
4In(2)-3 2(21‘"“”) - - . (AL1)
5,(t—0)= + In(t)
1672t 2 .
One can combine the results féy(t—0) [Eg. (A7)] and
w2 5,(t—0) [Eqg. (A11)] to find the asymptotic result fo(t
2 z—m(Z) [C+3In(2)] —0) [Eq. (17)].
+
71_2
APPENDIX B: CALCULATION
4( £(3) €3 in2)- 772) OF THE SECOND-ORDER EXCHANGE TERM
+ 8 _ (A7) After the substitutiork’ = (p—k—q) Eq. (23) may be re-

T written as
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2t
eex(t): - _5 ‘qZ+ pz+kz|<1 d
T2 Jagtpd>1
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a Ip <1 P p+kl>1 O K2 K,
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1
——exp{ = 2t[p’+ (0, +p,+K,) 2+ (0,+p,) %+ (p,+k,)?]}.
(BY)

The Gaussian integrals can be done immediately. The analyrirst we concentrate ohy(t), where after the substitutions

sis of the conditions on the region of integration gives thenkplkf—> K,

2 1

)= = 5| da,q, [ akk, [ ap,
2 —1-p,

f dsz dag,
1-p; —1-p,=k,

fdkfl Pk, )11
1-p,—k, 2 k2 Ok,

X exf —2t(g2+k2)]. (B2)

X

Performing thep, andq, integration we find

qupfd
o k
2f dk,In 1+q—2" |n(1+—”)
2 Kt (2—k,)%t
K, 2
—In 1+— —f dk,In| 1+
K2t 0

z

2k

que o

€ex(l)=—

Ll
k2t

xIn| 1+ (B3)

ol
(2—kp2t) |

We split up the integral into two contributionge,(t)
=14(t)+1,(t) with

e 24, e 2kp

1
Il(t):_ﬁf dqpf dkp a kp

X 2J dk,In 1+i In 1+—”)
0 K2t (2—ky%

k
—In| 1+ - —jl 1+&

kst 0 K2t

kp

XIn| 1+ —2— (B4)

(2— k)t

and

15(t) 1fd Jdkeque%prdkl 14+
)=—— n| 1+ —=
872 % dp kp 0 z kgt

X3 21In —2In(1+L> (B5)
(2—k)2t/ |’

k
1+
K2t

, etc., thek, integration is again of the Gaussian
form. After the transformationk=q,k,/(q,+k,) andq
=k,/(q,+k,) we have

()= — — fld fxdk et |(1+ k)
()= 8+32)0 a, k32q(1—q) n 2qt

XInl 1+ (B6)

2(1—q)t)'

Now we investigate this integral in the limit of smalbnd
find for the asymptotic behavior a logarithmic divergence.
Noting that

—4k _

1 1 ® 1
- In?(t j d J’ dk————=
87T3/2 ( ) 0 aq 0 k3/2 q(l_q)

1
=5 In%(0),

! | (t)fld fxdk—e it | (—k )
n n
47302 049, k¥2q(1—q) \29

=(3In(2)—2+C)In(t),

87%2Jo  Jo  K¥q(1—q) \2d/ 12(1-q)
c? =?
:(4—2c+7+7+3cm(2)

2

9
—61In(2)+ —|n2(2) o

(B7)

and neglecting all terms that vanish &&s 0, this contribu-
tion becomes

2

1 C
E|n2(t)+[3 In(2) =2+ CJin(t) +4-2C+ —-

2 9 )
+€+30In(2)—6ln(2)+ zln (2)]. (B8)
We now find an appropriate approximation scheme for the

calculation ofl,. We may perform the identicét and q
integration[see Ref. 14, p. 530, E@6)] to obtain the result

1 2
z(t)—— f dkiIn2(2k2t)+2C|n(2k2t)+cz+_

0

_22
n=1

—2[K2=(2—ky)?]}. (B9)

2n~ 1+ y(n)—In(2k?t)

2
o (2kst)"

{2(kZK2)

We find this may be exactly rewritten as
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I,(t)=C1 In¥(t)+ C2 In(t)+ C3+ Zl [C4(n)In?(t)

+C5(n)In(t)+C6(n)]t", (B10)

with the constant coefficients

_ 1 2 2 _ 2\ 2
c1-— jo di In(2K2){In(2[2~ k,12) —In(2k2)}
_ !
co- — fzdk (2 In(2k3)[2C+In(2K3) 1{In(2[2—k,]?)
1672Jo " ’ ’ i

—In(2k2)} + 2 In(2k2){In?(2[ 2— k,]?)

+2CIn(2[2—k,]?) —In?(2k?)—2C In(2k2)})

_4 2 8 |
= §— §C+ ;§(3)—2 n(2),
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1

C3=
1672

fzdkz|n(2k§)[2c+|n(2k§)]{|n2(2[2—kz]2)
0

+2CIn(2[2—k,]?) —In?(2k?)—2C In(2k2)}

=-31In%2 420|2C282 4
= n=(2)+( )n()?gg) 3

{(3)

+=—-[24In(2)+8C~ 16]. (B11)
w

We neglect higher-order terms in this calculation. Thus we
get the asymptotic expansion

4 2 8
3~ 3C+ pg(s)—z In(2) | In(t)

1
I,(t—0)=— §In2(t)+
2

—31In%(2)+(4-2C)In(2) - ¢8
3 3

_2 ety @(24 In(2) +8C—16)
90" T3~ 2 '

(B12)

Summingl, andl,, we have the final expression for the
second-order exchange energy at small values of the filling
parametet given in Eq.(24).
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