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Significant decrease of the lattice thermal conductivity due to phonon confinement
in a free-standing semiconductor quantum well

Alexander Balandin and Kang L. Wang
Device Research Laboratory, Electrical Engineering Department, University of California–Los Angeles,
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Lattice thermal conductivity of a quantum well limited by umklapp, impurity, and boundary scattering was
investigated theoretically by taking into account dispersion of confined acoustic-phonon modes. We show that
strong modification of phonon group velocities due to spatial confinement leads to a significant increase in the
phonon relaxation rates. From the numerical calculations, we predict a decrease by an order of magnitude of
the lattice thermal conductivity in a 100-Å-wide free-standing quantum well. Our theoretical results are con-
sistent with recent experimental investigations of the lateral thermal conductivity of nitride/silicon/oxide mem-
branes conducted in our group.@S0163-1829~98!00928-X#
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I. INTRODUCTION

Thermal properties of semiconductor nanostructures
superlattices have recently attracted a lot of attention. Th
primarily due to two major factors. The first one is a co
tinuous scaling down of the feature sizes in microelectro
devices and circuits, which leads to an increase in po
dissipation per unit area of the semiconductor chip. Un
such conditions, the influence of size effects on thermal c
ductivity becomes extremely important for device design a
reliability.1 The problem of thermal management is ev
more severe for photonic devices such as vertical cavity
face emitting lasers, in which the heat generation den
reaches 106 W/cm3. The second factor is a rebirth of th
field of thermoelectric materials, which has been brou
about by the emergence of large numbers of new artifici
synthesized materials, including those structured on
atomic scale.2 In order to dissipate the increasing amount
heat from the chip area, one has to engineer material pa
eters or structure geometry in such a way that thermal c
ductivity is large along particular directions. To improve pe
formance of thermoelectrics, one needs to achieve
thermal conductivity. These are two contradictory deman
but both can be approached with appropriate modification
phonon modes, e.g., phonon engineering.

The quest for superior thermoelectric materials gener
requires finding conditions such that the thermoelectric
ure of meritZT5S2sT/(k l1ke) ~whereS is the Seebeck
coefficient,s is the electrical conductivity,k l is the lattice
thermal conductivity,ke is the electronic thermal conductiv
ity, and T is absolute temperature! is as large as possible
Recent reports that predicted strong enhancement of the
ure of merit3–6 for semiconductor superlattices and quantu
wells treated rigorously only electronic contributionke while
ignoring the effects of spatial confinement onk l . However,
a smaller value ofk l would lead to even further increase
ZT.

It was shown earlier that phonon transport in superlatti
can be significantly modified due to formation of miniban
and emergence of the mini-umklapp process, a new typ
PRB 580163-1829/98/58~3!/1544~6!/$15.00
d
is
-
c
er
r

n-
d

r-
ty

t
ly
n

f
m-
n-
-
w
s,
f

ly
-

g-

s

of

umklapp scattering processes associated with transitions
tween the mini-Brillouin zones.7,8 A dramatic suppression o
the perpendicular thermal transport in superlattices at h
temperatures was also predicted in Ref. 9. In the structu
considered in Refs. 7 and 8, the modification of phon
transport comes from the periodicity~additional to the crys-
tal lattice periodicity! in the direction of superlattice layer
ing. In such a case, the minireciprocal lattice vectors ass
ated with superlattice minizones give rise to mini-umkla
processes that contribute to the thermal resistance.7 The situ-
ation is quit different in single quantum wells, which a
either free standing or embedded into material with disti
tively different elastic properties. Here, the phonon disp
sion changes due to the phonon spatial confinement indu
by the boundaries. This affects all phonon relaxation ra
and makes the thermal transport properties of quantum w
rather different from those of superlattices. In this paper,
address the issue of howspatial confinement of acoustic pho
non modes directly modifies the lateral lattice thermal co
ductivity in a free-standing quantum well.

Recently, some of us reported the results of experime
investigation of the lateral thermal conductivity of nitrid
silicon/oxide membranes measured with a suspen
microstructure.10 An extremely large reduction ofk l ~more
than an order of magnitude! was observed in the temperatu
range fromT5293 to 413 K. Such a huge drop in therm
conductivity cannot be attributed entirely to boundary sc
tering and structure imperfections, and is likely to be rela
to modification of phonon modes and corresponding cha
in the thermal transport. The geometry of the structure, m
terial parameters, and temperature regime used in our m
approximately correspond to the conditions of the expe
ment. The results of numerical simulations presented be
were obtained for a free-standing quantum well since
boundary conditions for the elasticity equation are the s
plest in this case. But the model can be easily extende
include quantum wells embedded into rigid materials
proper modification of the boundary conditions. Qualit
tively, the change due to different boundaries will be d
cussed below.

The rest of the paper is organized as follows. In the n
1544 © 1998 The American Physical Society
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PRB 58 1545SIGNIFICANT DECREASE OF THE LATTICE THERMAL . . .
section we describe the calculation of the lattice thermal c
ductivity, which takes into account modification of th
acoustic-phonon dispersion due to spatial confinement.
model is based on the proper modification of the correspo
ing bulk formulas and phonon group velocities obtain
from the continuous medium approximation with speci
boundary conditions. It also takes into account new selec
rules for three-phonon umklapp processes imposed by
emergence of additional phonon dispersion branches. In
III, we present the results of numerical simulations. Confi
ment of acoustic phonons and corresponding change in
group velocity lead to an increase in the phonon relaxa
rates and, thus to the drop in thermal conductivity. Disc
sion and comparison of the theoretical results with availa
experimental data are given in Sec. IV. We present our c
clusions in Sec. V.

II. THEORY

A. Calculation of the thermal conductivity

We consider a generic quantum well structure~see Fig. 1!
at relatively high temperatures so that three-phonon inte
tion is expected to be the dominant scattering mechan
limiting heat transfer. The electronic contributionke is as-
sumed to be small in undoped fully depleted semicondu
structures, and will be neglected in our calculations. It is w
known that the normal three-phonon scattering processe~N
processes! in which the total momentum is conserved cann
by themselves lead to a finite thermal resistance, altho
they influence it indirectly by redistributing phono
modes.11,12 Only processes that do not conserve crystal m

FIG. 1. Geometry of the structure used for model simulatio
~lower part!. Geometry of the experimental structure~upper part!.
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mentum contribute to the lattice thermal resistance. S
processes, further referred to as resistive, are boundary
tering, impurity scattering, and the three-phonon umkla
scattering process~U process!, in which the sum of phonon
wave vectors is not conserved but changes by a recipro
lattice vectorG. Impurity scattering, in its turn, can be sep
rated for isotope scattering arising from the presence of
oms with different mass, dislocation scattering, a
scattering on atoms of different elements. In a high-qua
material, all of these impurity scattering mechanisms can
strongly reduced except for the isotope scattering. For
reason, we will be primarily interested in examining the e
fects produced by phonon confinement on the resistive p
cesses, which include the three-phonon umklapp proces
isotope scattering, and boundary scattering.

In order to calculatek l , we use Callaway’s expression fo
the thermal conductivity under the assumption that the re
tive processes are dominant,11

k l5
kB

2p2v S kB

\ D 3

T3E
0

u/T tCx4ex

~ex21!2 dx, ~1!

wherekB is the Boltzmann constant,\ is the Plank constant
u is the Debye temperature,x5\v/kBT, tC is the combined
relaxation time, andv is the velocity of sound. Limiting our
consideration to only three major contributions to the res
tive process, we can write the following relation:

1

tC
5

1

tU
1

1

tB
1

1

t I
, ~2!

wheretU , tB , andt I are the relaxation times due to theU
processes~all allowed channels!, boundary scattering, an
impurity scattering, respectively. As it will become cle
later, all relaxation times are affected by the phonon confi
ment.

From the first-order perturbation theory, the single-mo
relaxation rate of theU process for a thermal modeq can be
written as12,13

1

tU
5(

q8
2uC3u2

\

M3vv8v9

12cosDvt

Dv2t
~N082N09!,

~3!

where Dv5v1v82v9, uC3u25(4g2/3na)(M2/
v2)v2v82v92, na is the number of atoms per unit volume
M is the atomic mass,g is the Grüneisen parameter,N08
[N0(v8) andN09[N0(v9) are the equilibrium occupancie
of modesq8 and q9, respectively, and the resonance fac
defined by (12cosDvt)/Dv2t'pd(Dv) ensures that the
only significant contribution comes from frequencies f
which Dv5v1v82v950. The summation overq8 for
each polarization branch can be approximated
(q8'n„na3/(2p)3

…*dq8*dS8, where n is the number of
polarizations of the interacting modeq8, a is the lattice con-
stant, andS8 is the locus ofq8 satisfying the restriction
Dv50. The equilibrium occupancy is given by the usu
Plank distributionN051/@exp(\v/kBT)21#. We can rewrite
Eq. ~3! in the following form:

s
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1

tU
'

ng2\

3p2rv2 E
q8

dS8E dDv

vg
vv8v9d t~Dv!

3„N0~v8!2N0~v9!…, ~4!

where Dv5v1v82v9, r is the density of the crystal
vg5u]Dv/]q8un is the group velocity perpendicular to su
faceS8. In order to evaluate relaxation rates of Eq.~4!, we
should use the actual dispersion relations and group ve
ties, vg[vg„v(q)…, for phonons in a quantum well. Th
modification of wave vector selection and frequency cons
vation rules due to the spatial confinement should also
taken into account. Evaluation of the single-mode relaxat
rate of the modeq, requires the integration over all possib
q8 modes. Details of calculation ofvg„v(q)… and 1/tU are
given in the next two sections.

The impurity scattering mechanism, which is most
fected by spatial confinement through the group velocity
the so-called isotope scattering arising from the presenc
atoms with different mass. The relaxation time for this ty
of impurity scattering was given by Klemens as12

1

t I
5

V0v4

4pvg
3 G5

V0v4

4pvg
3 (

i
f i@12~Mi /M !#2, ~5!

whereV0 is the volume per atom,Mi is the mass of an atom
f i is the fractional content of atoms with massMi , which is
different fromM .

The relaxation time for the boundary scattering can
evaluated from the semiempirical relation12,14

1

tB
5

vg

W
, ~6!

whereW is some characteristic thickness of a bulk semic
ductor or the width of a quantum well. More precise descr
tion of the boundary scattering can be obtained using
approach of Ref. 1, which takes into account effects indu
by partially diffuse and partially specular interfaces a
boundaries. Equations~3!–~5! were derived for bulk and
cannot be applied for strictly 2D systems since in this cas
reduced zone picture and the umklapp formalism do
work in the growth direction. In our calculations we wi
consider rather thick quantum wells~many atomic layers! so
that the formulas can still be applied.

B. Phonon dispersion and group velocities

Confined phonon modes can be calculated using the e
ticity equation15–17

]2u

]t2 5st
2¹2u1~sl

22st
2!grad divu, ~7!

where u is the displacement vector, andsl and st are the
speeds of longitudinal and transverse acoustic waves in
bulk. For Si, sl59.043105 cm/s andst55.343105 cm/s.
The normal components of the stress tensor on the f
standing quantum well must vanish. These boundary co
tions, substituted instead ofperiodic boundary conditionsof
the bulk material, bring about a significant change to
ci-
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phonon dispersion and group velocities. One should n
here that a significant modification of phonon modes can
attained not only in a free-standing quantum well but also
a quantum well embedded in rigid material~Si3N4 and SiO2,
for example! or in a heterostructure with relatively large di
ference of lattice constants. In the case of a quantum w
embedded in rigid material, the normal components of
stress tensor are unrestricted but the displacementu is zero at
the boundary. This corresponds to the clamped-surf
boundary conditions.17

There are three different types of confined acoustic mo
in a quantum well characterized by their distinctiv
symmetries:15 shear (S) waves, dilatational (D) waves, and
flexural (F) waves. TheS modes are similar to the trans
verse (T) modes in bulk semiconductor and have only o
nonzero component of the displacement vectoru5(0,uy,0),
which is perpendicular to the direction of wave propagatio
qi5(qx,0), and lies in the plane of the quantum well. Th
dispersion relation for theS modes can be written asvn

5stAqx
21qz,n

2 , where subscriptn denotes different branche
of the same polarization type, and theqz,n is quantized as
qz,n5pn/W. TheD andF phonon modes have two nonze
componentsu5(ux,0,uz) with dispersion relation given by
vn5slAqx

21ql
2 where the set of parametersql defines dif-

ferent branches of the same polarization denoted by subs
l . Since these types of confined waves have a compone
the direction of propagation, they can be viewed as a mo
fication of the bulk longitudinal (L) mode.

III. NUMERICAL RESULTS

Solving numerically Eq.~7!, we first find confined phonon
modes for a particular well width and material paramet
and then, by numerical differentiation, determine the gro
velocities. The phonon group velocity in thenth branch is
defined asvg

(n)5]vn /]q. The dispersion relation for the
phononS and D modes are shown in Fig. 2 for a 10-nm
wide Si quantum well. Corresponding group velocities f
the S andD modes are presented in Fig. 3. It is easy to s
that there are more dispersion and velocity branches for e
polarization type as compared to the bulk, and group velo
ties of all branches decrease. The higher the mode num
the smaller the group velocity so that for thermal modes
decrease in group velocities is up to 3–4 times.

The change of polarization types and thev[v(q) depen-
dence brings also modifications of the energy and mom
tum conservation laws. It is known that for isotropic sem
conductors only two general types of processes
allowed:12,18 T1T↔L, or L1T↔L. This restriction fol-
lows from the requirement that~i! all three interacting modes
cannot belong to the same polarization branch, and~ii ! the
resultant mode should be above two initial~interacting!
modes. It turns out that for confined acoustic phonons, thD
mode is almost always above theS mode corresponding to
the same branchn ~see Fig. 2!. Comparing dispersion on
Figs. 2~a! and 2~b!, one can see that only for a small fractio
of phonons with in-plane wave vectors close to the zo
center (qx,0.5 nm21), some branchesn8 of the D mode
may have a smaller energy than that of the correspondinS
mode. Thus, the processesDn1Sn↔Dn and Sn1Sn↔Dn
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are allowed and can be treated by analogy with the bu
processesL1T↔L and T1T↔L, respectively. In our
model calculations we have neglected theS and D mode
intermixing for the n8 branches close to the zone cent
More precise treatment would require separation of the
quency range where theS mode is higher in energy than th
D mode, and consideringDn81Sn8↔Sn8 as an allowed pro-
cess.

In order to obtain the scattering rate for theU process that
goes through all possible channels, we write Eq.~4! for each
of these channels, substitute dispersion relation and gr
velocity calculated for the relevant range ofq, and then sum
all together. As an example, we show how to estimate
relaxation rate for a dilatational mode of frequencyvD(q) in
the scattering process that goes through the cha
D1S↔D. Following the derivation in Ref. 13, we assum
in Eq. ~4! that frequenciesv8'vS and v9'vD(q)1vS .
We use the calculated dispersion forvD(q) over the relevant

FIG. 2. Dispersion relation for the shear~a! and dilatational~b!
modes in a 10-nm-wide silicon quantum well. The dashed li
show the dispersion relation for the bulk transverse~a! and longi-
tudinal ~b! acoustic-phonon modes.
.
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range ofq, and vS at the zone boundary. Thus, the rela
ation rate can be written as

1

tU
'

ng2\vD~q!vS@vD~q!1vS#

3p2rv2vg

3S 1

e\vS /kBT21
2

1

e\@vD~q!1vS#/kBT21D E
q8

dS8.

~8!

Here the integration over surfaceS8 is being carried out the
same way as in Ref. 13. One can note in Eq.~8! that the
relaxation rate is positively defined sincevD(q)1vS.vS .
The latter holds for all allowed channels. In our calculati
we neglect optical phonon modes since for Si, particularly

s FIG. 3. Group velocity as a function of the in-plane wave vec
for the shear~a! and dilatational~b! modes in a 10-nm-wide silicon
quantum well. The dashed lines show the group velocity for
bulk transverse~a! and longitudinal~b! acoustic phonon modes
respectively.
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^110& direction, their contribution in thermal transport is le
significant than that one of the confined acoustic phon
modes. Although, for some material systems~like LiF or
NaF!, the optical dispersion curve intercepts all longitudin
bulk modes in all directions —̂100&, ^110&, ^111& — and
thus has to be included. Since optical phonon modes are
significantly affected by spatial confinement, the situation
quantum wells is not expected to be different from the bu

Finally, we evaluate phonon scattering rates us
Eqs. ~5!–~8! for a bulk Si 10-mm-thick slab and Si 10- and
155-nm-wide quantum wells. The material paramet
used in simulation were the following:a55.45 Å,
r52.423103 kg/m3, M546.6310227 kg, na'7.3,
g50.56, u5625 K, and G310452.64 for three Si
isotopes.19 The relaxation rates due to different scatteri
mechanisms are shown in Fig. 4 as functions of phonon
quency. In the case of bulk material, theU process is a
dominant scattering mechanism over almost the entire
quency range which is important for Si~from 1.8031013 to
6.0631013 rad/sec!. The latter is expected at high temper
tures. The scattering rate due to boundaries is not sh
since it is two orders of magnitude smaller than shown ra
for a given slab thickness. For a quantum well, the impu
scattering rate that is proportional tov4 takes the lead a
frequencies above 2.531013 rad/sec. The dominant mecha
nism at low frequencies is the boundary scattering. The o
all scattering rate increases in a quantum well. One impor
thing to note is that by improving crystal and surface qua
one can reduce the impurity and boundary scattering r
but not the umklapp scattering rate. The increase of
U-process scattering rate in a quantum well is a direct re
of the modification of phonon dispersion due to spatial c
finement of the phonon modes. The latter leads to the red
tion of the group velocity, which also strongly increases
impurity scattering as it is proportional to 1/vg

3.

FIG. 4. Phonon relaxation rates due to different scatter
mechanisms as functions of phonon frequen
~v'431013 rad/sec is a thermal mode atT5300 K!. The left
panel corresponds to the bulk material while the right panel to
quantum well. The relaxation rates due to the umklapp (U), impu-
rity ( I ), and boundary (B) scattering processes are depicted. N
the change in scale.
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IV. DISCUSSION

In Fig. 5 we show the lattice thermal conductivity as
function of the temperature for the quantum well and t
bulk material. In order to illustrate the contribution of diffe
ent scattering mechanisms to the thermal resistivity, the c
ductivities limited only by the umklapp scattering and by t
umklapp and impurity scattering are also shown. The u
klapp limited conductivity drops about 3.5 times because
spatial confinement of phonons. The overall thermal cond
tivity of a quantum well at 300 K is about 13% of the bu
Si.

The calculated value and temperature dependence o
thermal conductivity are consistent with the results of t
experimental investigation recently reported by some of u10

The measurements were conducted with a suspended m
structure which served as a thermal bridge using the dif
ential and equivalent circuit methods. These measurem
have shown that the lateral thermal conductivity of
Si3N4 ~150 nm!/monocrystalline Si~155 nm!/SiO2~300 nm!
structure was about 1.5% of the conductivity of the bulk
and was almost a constant in the temperature range froT
5293 to 413 K. The total error for the measurements w
estimated to be less than 20%. Although our model assu
a free-standing quantum well, the results can be extende
quantum wells with rigid boundaries. The lowest confin
phonon modes in a quantum well with clamped-surfa
boundary conditions are higher in energy than those i
free-standing quantum well, but the overall behavior and
decrease of the group velocities are very similar in b
cases. The model presented here can be developed furth
include mixed boundary conditions and interface quali
Our model applied to a 155-nm-wide Si well give
kl566.7 W/m K. For comparison, experimentally measur
thermal conductivity of bulk Si is 148 W/m K. This is
significant drop although much less than that observed in
experiment. The temperature dependence of the calculatekl

g

e

FIG. 5. Lattice thermal conductivity as a function of temper
ture for bulk material~dashed! and the quantum well~solid!. Each
case is illustrated by three curves that correspond to the the
conductivity limited by the umklapp scattering only (U), the um-
klapp and impurity scattering only (U1I ), and by all processes
including boundary scattering (U1I 1B).
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is very close to the measured one. The discrepancy in
calculated and measured values ofkl may be attributed to~i!
underestimated in our model boundary scattering,~ii ! the
presence of other defect scattering processes~like scattering
on dislocations!, or ~iii ! crystal anisotropy, strain effects, an
related phonon focusing.

Our results are in excellent agreement with the most
cent data reported in Ref. 20. In Ref. 20, the authors p
dicted a significant reduction of the in-plane lattice therm
conductivity for Si layers thinner than 0.2mm at tempera-
tures as high as 700 K. In accordance with their model,
thermal conductivity of a 0.05mm pure Si film at 400 T in
silicon-on-insulator structures is about 30% of the bu
value. Although their theoretical approach is different fro
ours and it is applied to thicker Si layers, the obtained res
confirm our own conclusions. Our results are also in l
with experimental data presented in Ref. 21. It was repo
there that the lattice thermal conductivity of the Bi0.5Sb1.5Te3
films is considerably lower thankl of bulk crystals of the
same solid solution. The experimentally observed temp
ture dependence in Ref. 21 is very close to the one calcul
on the basis of our model. Further experiments and calc
tions are needed in order to completely clarify the physics
extremely low thermal conductivity of semiconductor qua
tum wells with free-surface or rigid boundaries. A possib
experimental verification of the phonon confinement nat
of the observed drop in the thermal conductivity can be
observation of substantial dependence ofkl on quantum well
thickness. An absence of such dependence would be a
dication that the decrease is mostly due to phonon scatte
from boundary imperfection. Such work is currently
progress.22
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V. CONCLUSIONS

We have presented a study of the effects of phonon sp
confinement on the lateral lattice thermal conductivity
semiconductor quantum wells with free-surface boundar
It was shown that strong modification of the phonon disp
sion and group velocities due to spatial confinement lead
a significant increase of the relaxation rates in three-pho
umklapp scattering, impurity scattering, and boundary sc
tering processes. From the numerical calculations we pre
a strong decrease of the lattice thermal conductivity o
quantum well ~13% of the bulk value for a 10-nm-wide
well!. Our theoretical results favorably agree with the rec
experimental investigation of the lateral thermal conductiv
of a 155-nm-wide Si quantum well. Modification of the la
tice thermal conductivity by confined phonon modes ope
up a novel tuning capability of thermoelectric properties
heterostructures, and may lead to a strong increase ofZT in
specially designed semiconductor nanostructures.
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