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Electronic dielectric constants of insulators calculated by the polarization method
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We discuss a nonperturbative, technically straightforward, easy-to-use, and computationally affordable
method, based on polarization theory, for the calculation of the electronic dielectric constant of insulating
solids at the first-principles level. We apply the method to GaAs, AlAs, InN, SiC, ZnO, GaN, AlN, BeO, LiF,
PbTiO3 , and CaTiO3 . The predicted«`’s agree well with those given by density-functional perturbation
theory ~the reference theoretical treatment!, and they are generally within less than 10% of experiment.
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The electronic dielectric constant«`, measuring the re-
sponse to a uniform electrostatic field, is a fundamen
quantity in basic and applied solid-state physics. Besides
intrinsic interest, knowledge of«` is crucial to a calculation
of the static dielectric constant«0. Ab initio calculations of
«` have been performed in recent times by dens
functional perturbation theory~DFPT! ~Refs. 1–3! for a host
of different materials. Here we discuss a method to comp
«` based on density-functional theory4 and the modern
theory of dielectric polarization,5 and apply it to a set of
polar crystals. Despite its simplicity and ease of use,
method predicts«`’s in close agreement with those obtain
by DFPT. This suggests that theoretical predictions dev
from ~and typically overestimate! the experimental value on
account of density-functional theory, and not of the spec
method or implementation.

We have sketched the basics of the method in a repor
the calculation of the static dielectric constant.6 Almost all
the ingredients needed to evaluate the latter can be obta
from ab initio calculations of total energy, stress, forces, a
dielectric polarization in zero field~by the Berry-phase
approach5,7! for bulk systems. The notable exception is t
electronic dielectric constant«`, for which we follow the
alternate approach described below.

Theory. The core of the argument is that«` can be ob-
tained from the relationship between macroscopic polar
tion in zero field and interface charge accumulation6,8,9 in
appropriate superlattices. An insulating superlattice is c
structed, which consists of periodically alternating slabs
equal length, stacked along some fixed direction and mad
materials 1 and 2. In such a superlattice, in the absenc
external sources of fields, the displacement field orthogo
to the interfaces is conserved:

D15E114pP1~E1!5E214pP2~E2!5D2 . ~1!

We expand the polarization to first order in the screen
fields in the two materials, indexed byi :

Pi~E!5Pi
~0!1x iEi , ~2!
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wherePi
0 is thezero-fieldpolarization, andx i the suscepti-

bility of material i . The presence of a zero-field polarizatio
is important: substituting the last relation into Eq.~1!, one
obtains

4p~P2
~0!2P1

~0!!5«1
`E12«2

`E2 . ~3!

~In this context, it does not matter whether the zero-fie
polarization is spontaneous or piezoelectric, or a combi
tion of the two.! Only for a null Pi

0 does one recover the
familiar equality

«1
`E15«2

`E2 . ~4!

To proceed further, one notes that periodic boundary con
tions imply

E[E152E2 , DE[E12E252E,

and therefore Eq.~3! becomes

4p~P2
~0!2P1

~0!!5 1
2 ~«1

`1«2
`!DE. ~5!

Recalling that the charge accumulation per unit area at
interface between materials 1 and 2 issint56DE/4p, we
finally obtain

sint562~P2
~0!2P1

~0!!/~«1
`1«2

`!562DP~0!/~«1
`1«2

`!.
~6!

This relation connects thedifference in macroscopic bulk
polarization at zero field with the components«1,2

` of the
dielectric tensors of the interfaced materials along the in
face normal.10

In an undistorted homojunction, i.e., a superlattice
which material 1 is identical to material 2, there is effective
no interface. Therefore, there is no polarization change,
the interface charge is zero. It is nevertheless possible
generate a polarization difference in a controlled manner
inducing a small distortiond of one of the atomic sublattice
in half of the superlattice unit cell. This produces a diffe
ence in polarization, and a charge accumulation at the in
face. The interface chargesint at the interface between dis
torted and undistorted regions can be easily calculated
macroscopic averaging8,11of the charge density. On the othe
hand, the zero-field polarizationsP2 for the bulk material in
15 292 ©1998 The American Physical Society
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the undistorted state, andP1 for the bulk material in the sam
strain state as in the superlattice, are evaluated using
Berry-phase technique. From Eq.~6!, one then extracts the
average electronic dielectric constant«̄`5(«1

`1«2
`)/2.

By construction«2 equals the dielectric constant, whi
«1 , the dielectric constant in the distorted state, of cou
does not. Therefore«̄ does not equal the sought-after diele
tric constant fordÞ0. However,«̄ does equals the dielectri
constant~the tensor component alongn̂) in the limit of zero
distortion:

«`5 lim
d→0

«̄.

This limit can be evaluated with essentially arbitrary acc
racy by extrapolation or interpolation. Also, since the ma
rials involved in the heterojunction are identical modulo
vanishingly small distortion, it is virtually guaranteed that
interface state exists, so that no band bending or electros
perturbation adulterates the polarization effects.

Summarizing, in the present approach the dielectric c
stant is simply obtained using the geometric quantum ph
polarization and relatively small, accurately controllable s
percell calculations. In the latter calculations, the sla
should be short enough that the constant electric field
not cause metallization, and the slabs should be sufficie
long to recover bulklike behavior away from the interface
Both requirements are generally also met by materials w
small calculated gaps if sufficiently small strains are appli
Unlike DFPT, the present method does not resort to per
bation theory, and it is interesting in that the determination
the electronic screening uses the connection with the g
metric quantum phase.12 The calculations involved are non
intensive, and can be performed even on Pentium-like p
sonal computers. Also, since the implementation is v
much simpler than that of DFPT, the method seems prom
ing as a general-purpose tool for nonspecialists.

Applications. We now apply the method to a set of repr
sentative polar materials of general interest: SiC, Ga
AlAs, InN, GaN, AlN, BeO, ZnO, LiF, cubic PbTiO3 , and
cubic CaTiO3 . All our calculations, as detailed below, a
done in the local-density approximation to density-functio
theory.4 Our results are compared to results of DFPT cal
lations ~where available!, which effectively function as ref-

TABLE I. Theoretical structural parameters for the materi
being studied.

Structure a0 ~bohr! c0 /a0 u0

GaAs zinc blende 10.60
AlAs zinc blende 10.62
LiF rocksalt 7.50
AlN wurtzite 5.82 1.619 0.380
GaN wurtzite 6.04 1.634 0.376
InN wurtzite 6.66 1.627 0.377
BeO wurtzite 5.00 1.610 0.377
ZnO wurtzite 5.98 1.616 0.376
PbTiO3 cubic 7.34
CaTiO3 cubic 7.20
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erence for computational methods in this area. Compari
with experiment is also presented when possible.

In the calculations we use the Ceperley-Alder exchan
correlation energy13 and ultrasoft pseudopotentials14 for the
electron-ion interaction. The pseudopotentials have b
constructed to include the following semicore states in
valence manifold: Zn and Ga 3d, In 4d; Li 1s; Pb 5d, Ti
and Ca 3s3p. A plane-wave basis with 25-Ry cutoff i
found to be sufficient to converge the quantities of interes
all the materials investigated. Bulk Brillouin-zone summ
tions are done over appropriate Chadi-Cohen15 k-point
meshes for the relevant structures. Bulk polarizations are
tained in all cases via the Berry-phase technique5,7 using a
16-point Monkhorst-Pack16 k-point mesh in thea-plane di-
rection, and a ten-point uniform mesh in thec direction. For
the supercell calculation, we have employed superlattices
cluding typically 16–20 atoms, oriented along~0001! for
wurtzites,~111! or ~100! for zinc blende,~100! for the NaCl
structure, and~100! for cubic perovskites.~Note that wurtzite
has two independent components of the dielectric tensor,
the one we are actually calculating is that along the po
axis.! In the supercell calculations, downfolded meshes w
used comprising 12k points for wurtzite and zinc blende
eight points for the NaCl structure, and 12 points for pero
kites. The cation sublattice displacementsd are typically
0.05–0.1 % of the bond length. Ionic relaxation is never
lowed, so that the response is purely electronic. All the c
culations are performed at the theoretical lattice consta
that are reported in Table I.

With the above reported theoretical ingredients, we o
tained the theoretical values of«` listed in Table II together
with DFPT and experimental values, and plotted in Fig
versus the experimental values for the different materi

TABLE II. Electronic dielectric constants of several polar ins
lators. Our calculated values are compared with theoretical DF
values and with experiment.

Present DFPT Expt.

GaAs 12.53 12.3a 10.9b

AlAs 9.37 9.2a 8.2b

InN 8.49 8.40b

w-SiC 7.07 7.28c 6.65c

GaN 5.69 5.41d 5.70e

ZnO 4.65 4.60b

AlN 4.61 4.62f 4.68g

BeO 3.15 2.99h

LiF 2.19 1.96b

PbTiO3 8.28 8.24i 8.64j

CaTiO3 5.87 5.81j

aReference 2.
bReference 20.
cReference 17.
dReference 18.
eReference 21.
fReference 19.
gReference 22.
hReference 23.
iReference 3.
jReference 24.
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The general level of agreement seems quite good on the s
of Fig. 1. To give a closer view, in Fig. 2 we display th
relative percental deviation of the theoretical«` with respect
to experiment, both for our method and DFPT.

Discussion. The main content of Fig. 2 is that DFPT an
the present method agree quite closely~the deviation for
GaN is probably due to a different treatment of the Gad
electrons!. It thus appears that deviations from experime
are not related to the specific method used, but are likel
be a token of the underlying density functional formalis
Most theoretical values are overestimates of the experime
data, the main exception being the 4% underestimate
PbTiO3 , both in DFPT~Ref. 3! ~at the experimental lattice
constant! and in the present method~at the theoretical lattice
constant!. This is possibly due to the uncertainties in t
experimental values, which are in fact plasmon-p
extrapolations24 to optical v50 of values measured in th
visible at relatively high temperature, while the calculation
at zero temperature and zerov ~in fact, this holds also for
CaTiO3). Indeed, the situation for perovskites~even in the
paraelectric phase! is far from settled in general; other rece
linear response results of another group25,26 overestimate ex-
periment considerably: the«` reported for cubic SrTiO3 is
6.63 compared with 4.69 experimental,25 and also 6.63 com-
pared with 5.18 experimental for cubic KNbO3.26

It should be mentioned that«` in our scheme is actually a
finite-q value due to the finiteness of the simulation sup
cell, and this may cause some additional deviation as c
pared to DFPT. However, in our supercells the minimumq is
quite small (;0.03 bohr21), and inspection of the typica
structure27 of «` as a function ofq reveals that the deviation
to be expected are in the order of 1%.

In closing, we discuss the case of nonpolar materials
such a case, the procedure outlined above does not a
since no macroscopic polarization can occur in a system c

FIG. 1. Present theoretical«` vs experimental values.
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taining only a nonpolar material. However, since the inter
fields in the superlattice layers areproportional to DP, we
can set up a superlattice by alternating layers of the unpo
ized material of interest and layers of some appropriate
larized material. The latter effectively function as a polariz
tion supply for the unpolarized layer. In practice, to compu
the dielectric constant of Si, we first calculate the dielect
constant and zero-field polarization for some polarized m
terial, say SiC, in the wurtzite structure. We then stack alo
the ~111! direction of zinc blende@i.e. ~0001! of wurtzite#, a
superlattice such as@ . . . /SiC/Si/SiC/Si/ . . .#. Since SiC is po-
larized and we use periodic boundary conditions, the in
face charge is

sint562PSiC
~0! /~«SiC

` 1«Si
` !, ~7!

from which the dielectric constant of Si is trivially extracte
SiC should have the in-plane lattice constant of Si in orde
avoid strain effects in the Si layer. Clearly its calculat
properties in this specific, hypothetical realization are irr
evant: what counts is that it provides the polarization to c
ate an interface charge and a depolarizing field inside Si.
above scheme, it turns out, is more of conceptual inte
than of practical use for nonpolar solids: interface states
cur fairly easily at heterovalent junctions, spoiling the app
cability of Eq. ~7!. Applying the scheme in practice to non
polar solids will require quite some trial and error to identi
a ‘‘clean’’ interface, and we did not pursue this further he

Summary. In conclusion, our results indicate that th
polarization-based method can produce theoretical dielec
constants within;5 –10 % of experiment, and is as accura
as DFPT. While much more limited in its general scope, o
method appears to be a useful alternative to DFPT for
kind of calculations.

We thank Elena Manca for help in the perovskite calc
lations, and acknowledge special support from INFM with
the PAISS program.

FIG. 2. Relative percental error in«` for DFPT and the presen
method~see text!.
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