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Fluctuation-induced diamagnetism below the critical temperature in highd . superconductors
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We have calculated the fluctuation-induced diamagnetisg) of the highT. superconductors below the
critical temperaturd . and in the weak-field region. The theoretical formulation estimates the relation between
Ay and the reduced temperatuf80163-182@08)02242-5

I. INTRODUCTION region by taking into account the high magnetic fild.
Ramallo, Torron, and Vidal have studied the fluctuation-
The thermodynamic fluctuations are important in high- induced diamagnetism abov&, in biperiodic HTSC
superconductorgHTSC) because of their short coherence systems! Dorin et al. have studied fluctuation conductivity
length. There are numerous studies both theoretical as wellf layered superconductors in a magnetic field parallel to the
as experimental of the fluctuation-induced conductivity,c direction. The contributions from the fluctuation in
magnetoconductivity, specific heat, and diamagnetism aboviae single quasiparticle density of statd30S) and the
the critical temperaturé? The fluctuation in the diamagnetic Maki-Thompson contribution are compared to the
susceptibility was first theoretically studied by Schmidt Aslamazov-Larkin contribution in terms of an effective qua-
above the critical temperatufeAccording to this formula-  siparticle nearest-neighbor interlayer hopping enéfgy.

tion the diamagnetic susceptibility aboWe caused by the Skocpol and Tinkham have discussed the fluctuation be-
thermal fluctuation is expressed as follows: low the critical temperaturé.Bulaevskii, Ginzburg, and

Sobyanin have suggested that the fluctuation can be

Xo*(T=To) ™% (1)  studied below the critical temperature in the layered

Above the critical temperature, the fluctuation in diamagne—S uperconductors’ Later Bulaevskii, Ledvij, and Kogan

tism is calculated by Schmid starting from the Ginzburg-have reported the fluctuation of vortices in layered

Landau free-energy functionlAccording to this formula- superconductors! The entropy contribution to the free en-

tion the fluctuation in diamagnetism is expressed as follows® Y 'S not too small in a broad temperature region belqw t.he
critical temperature and they have calculated magnetization

B ngf(O) for a magnetic fieldB>B,, below the critical temperature.

X=——=1r—. (2)  According to this formulation magnetization is field and tem-
3d¢oe perature dependefit.Varlamov and Livanov have invest-
Here e is the reduced temperature defined as igated the effect of superconducting fluctuations on the elec-
tronic part of the thermoelctric force and thermal conductiv-
T-T. ity at a temperature above the critical temperatdr&hey
€= T, have reported that thermoelectric force possesses a maxima

at the critical temperature and then rapidly decreases to zero
and T, is the critical temperature where a HTSC starts toin the superconducting state. In a recent paper Hoessh
show negative susceptibility during the coolimand£(0)  have described the fluctuation contribution in thermal con-
are the interlayer seperation and taé-plane coherence ductivity below the critical temperatur@ Below the critical
length at absolute zero, respectively, amg is the flux temperature thermal conductivity is enhanced both from the
quanta. Koshelev has estimated the magnetization as a funelectronic and phonon contribution. A dimensional crossover
tion of the applied magnetic field and reduced temperature ofom three to two dimensions is observed for normalized
high-T . superconductors above the critical temperature usinjuctuation contribution below the critical temperature. The
the Ginzburg-Landau free-energy functioRdlhe magneti- Ginzburg-Landau parameter is extracted in this paper from
zation is estimated both for the high and low magnetic fieldsthe crossover temperature and the critical temperafiife.
Baraducet al. have reported the fluctuation in magnetizationour knowledge, there is no explicit study of fluctuation-
in the highT,. superconductors above the critical tempera-induced diamagnetism below the critical temperature in the
ture with the help of the Lawrence-Doniach free-energyweak-field region in HTSC. We have estimated the
functional® Klemm has described fluctuation in diamagne-fluctuation-induced diamagnetistyy below the critical tem-
tism in multiperiodic layered superconduct&ﬂsee, Klemm, perature as a function of the reduced temperature in the high-
and Johnston have reported the fluctuation in diamagnetisrhc System.

of biperiodic superconductors above. The result shows

that fluctuation is observed from around 2in the weak-

field regime® The magnetization measurement of Bi-2212 up Il. THEORETICAL FORMULATIONS

to 5 T belowT. by Keset al. has revealed that quasi-two-
dimensional fluctuations are responsible for the field-induced
suppression of phase transitidesanovicet al. have stud- The Lawrence-Doniach functional describes the fluctua-
ied the thermodynamic quantities in HTSC in the critical tion phenomena in layered highs superconductors with the

A. Magnetic moment of high-T; superconductors belowT
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weak coupling between the Cy@lanes. If a magnetic field Wwith

is applied, the free-energy functional takes the forth as ]
0

b 2 2ie |2 Sr=2 T1+T,+Ts, 9
— 2 2, — 4 =
F[lﬁ]—; fd rlal | JF2|<ﬂn| am, (V| ﬁcA) n=0
whereT,, T,, andT; can be expressed as follows:
+t|wn+1—wn|2}, (3
— _ 2_ 2\—-1/2
where s, is the order parameter of theh superconducting = h[ P+ (P?— p2)Y2] [1+P(P p°) ]
layer anda=a(T—T.)/T.= ae. (10)

As the magnetic field is applied to a superconductor, the
order parameter will be perturbed. The thermal energy
causes another perturbationn . So the free-energy func-

1+{(P+|6))2—p2} " YA P+|0)) (I’-‘re

tional will be perturbed byAF;, which is termed as the 2 (P+]0)+{(P+]|0))°—pZ¥? | 2n?
fluctuation contribution to the free energy. This is writtefi as (11)
AFq(hT)=— —keTh J*”dz S (Ut 05 U L) (r—e)
; > =_ ]
4m2£(0)d 3 (P—[8])+{(P—|6])2—p2*2 | 2n2
- wkgT (12
B
an:o In a[(2n+1)h+r(1—cosz)+e]’ In expressions foll;, T,, and T, we get
(4) P 1 r+e 13
; _— . . +6l=n+ =+
with h=B/H{, and the magnetic field is applied along the |6]=n 2 2h (13
direction or thec axis. The parametar is given by q
an
£(0)
:2 ¢ 2 L] P . 1 r—e 14
—|0|—n+§+ T (14)

where&.(0) is the coherence length along tbalirection.

Baraducet al. have calculated the magnetic moment us-In the limit r>€, P becomes equal t®+|6| and P—|4|,
ing the fluctuation in the free energy below and above thevhich can be expressed as follows:
critical temperature as a function of the magnetic field and
reduced temperatufe.

The magnetic moment below the critical temperature is P=Px[f|=n+5+ ﬁ (15)
given as follows?
Therefore, in the above limiAM becomes zero and is in-

M(~[el)=AM+2M(e=0)—M([e]). ) dependent ot otherwise so that
B. Calculation of AM and its variation dAM
with the reduced temperature de =0. (16)
AM is expressed as
" VkgT 9 i | B(P)? C. Calculation of M (|€])
T TS n ] 1 1 -
2m€2(0)dH,, I o d(P+[0)p(P—16]) The third part of_the magnetic moment ded.uced by Ko
©6) shelev below the critical temperatuké(| e|) is written a8
where T
M(B,e)=— ——ms(b), 17
B(N)=N+N*—p?, (7) do *

with N=n+ e/2h+ p andp=r/2h. Then has the cutoff with where
a valueny=1/h, because the Ginzburg-Landau approxima-
tion is valid only for this choicé. d o +1/2 1+b[2(n+x)+1]
We have derived\M presented in Appendix A that can ~ Msc(P)= g bz oy dx In 1+b2n+l) |
be expressed as (18)

AM=— VkgT i $(P)? hs; with b=h/e and ¢o=2mE3(0)H.,. After the integration
“bod | & ¢(P+|0|)¢(P [0]) ' followed by the differentiation in Eq(18), given in Appen-
(8) dix B, we getmg(b) as given below,
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No

mMe(b)= 2, [(n+1)In(1+2nb+2b)—n In(1+2nb)

n=0

2n+1

—In(1+2nb+ b)—bm}

(19

So, the term for magnetizatiohl (| e|) is obtained in the
form

No
dTi)o n=0
—n In(1+2nb)—In(1+2nb+b)

M(|e|)=— (n+1)In(1+2nb+ 2b)

2n+1

-b m} . (20)

D. Calculation of M(e=0)

Now to calculateM(e=0), we reformmg(b) as (see
Appendix Q follows:

(n+1){e+2(n+1)h}—n In(e+2nh)

No
msc( €)= nZO

I 2n+1)h —(2n+1)h 21
net@nt = ool @Y
So, from Eq.(21), we get
No
Ms(e=0)= >, [(n+1)In(2n+1)h—n In 2nh
n=0
—In(2n+1)h—1]. (22
On simplification, Eq(22) is transformed to
Y n+l1 n+1
Me(e=0)= 2, | n In——+1n )
n=0 n n+ i

2

This is same as that fang(b>1) and is equal to-0.346.
At €e=0,T=T,, so thatM(e=0) can be written as follows:

0.346T

M(e=0)=—5 -

(24

Therefore, we have

dM(e=0)
de

(29

E. The diamagnetic susceptibilityy and dx/de
We know that the susceptibility is obtained by the rela-
tion
~ M(—|e))

B (26)

So, the variation ofy with the reduced temperature is given
by the relation
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dxy 1 dM(—|e)
de~ B de @7

It follows from Eg. (3),
dM(—|e|) dAM dM(e=0) dM(|e|)

de ~ de +2 de - de (28)

Using Eqgs.(16), (25), and(28) we get

dM(— dMm

(-leh__am(e) 29

de de

We know thatb=B/H/,e. Therefore it is found that

B
db

de= .
H.,b?

(30

Therefore, the variation gf with the reduced temperature is
found from Eqgs.(27), (29), and(30) as follows:

1 dM(|e])

2 db -

(31
Hiy€

F. Calculation of dM(|e|)/db
Differentiating Eq.(20), as shown in Appendix D, we get

dM(lel)  To(l+e) & | 2(n+1)? 4n
db~ d¢o o|1l+2nb+2b 1+2nb
(2n+1)(2+2nb+hb)
+ (32
(1+2nb+b)?

G. Calculation of diamagnetic fluctuation below the critical
temperature T,

If the applied magnetic field is very small or zero, then
usingb=0 we have

No

dM(|€|) . 2T (1+e€)

b dau nzo (n?+2n+2). (33
Using Eqgs.(31) and (33) we get
3—’E(= % 1;6Q(n), (34
with
Q(n)zﬁo (n°+2n+2). (35)

Integrating Eq.(34) we have the susceptibility below the
critical temperaturd . represented by
47T E0)

a4l (n)f

The above expression fgr can be rewritten as

1
_+_
€

de. 36
= (36

X




15186 AJAY KUMAR GHOSH AND A. N. BASU PRB 58

1 ACKNOWLEDGMENT
=g|In e——|+C, 3 . .
A S One of the author§A.K.G.) acknowledges the University
with Grants Commission, Government of India, for financial sup-
port.
4mT E2(0)
n= d#g (n). (38 APPENDIX A
0
) ) o ) We have the expression farM as follows:
The diamagnetic susceptibility saturates with a vajgeat
some lower temperatur@<T., where |e|=1. With this g Mo B(P)?
boundary condition we can write the diamagnetic suscepti- AM =const><—h2 . (AD)
bility as follows. dh i ¢(P+]6))p(P—|6])
We get from the above equation,
x=7|In €= + xo0+ 7. (39

I < $(P)?
At the cri_tical temperatu_re the superco_nq_uctors should show gh nzo d(P+|6]) p(P—|6])

perfect diamagnetism with the susceptibility. But the per-

fect diamagnetism is found at a temperature lower than PR

The differenceyo— x is the fluctuation in diamagnetism = nZO [2In ¢(P)—In ¢(P+[6])—In $(P—|6])]
(Ay) caused by the thermal fluctuations. The temperature

dependence oy is obtained from the above equation as 0 2¢'(P)dP ¢’ (P+6]) d(P+]6])
expressed below, :nzo 3 - ST 6) -
1 :
Ax=xo=x=—7/Ine=—+1]. (40) _¢'(P=[6) a(P—|6)) a2
(P—l6])  oh

Now we have Ine=e—1 because it is known that=2e=0.

Using this we can write\y as follows: Now, T, can be expressed as

_24'(P) P _2¢'(P) 4

1 T - A 2
(41) " @(P) oh &(P) oh

€— —|.
€

+p+3
Ax=Xxo—X=—7 [n+p+3],

Since €2< 1 for the discussed temperature region, thesO that
fluctuation-induced diamagnetism is given by the following
equation:

2 o [r
I (P)a_h(%

Again putting¢’ (P) in the above expression we can rewrite
T, as follows:

7 ATTEH(0) .
AX=—Z=—T¢%Q(n)e 1, (42

. SUMMARY

r 1
S _ 2_ 2\—1/
The fluctuation-induced diamagnetism of HTSC is esti- Tl_p+ [PZ—p2 ( pz /[ P(PT=p%) 7. (A3)

mated as a function of the reduced temperature below the

critical temperature. Below the critical temperatutg, var-  The second ternT, can be evaluated as follows:

ies inversely proportional to the reduced temperaturso,

the critical temperature and the number of superconducting ¢’ (P+16|) 9

layers influence the absolute magnitude\af There may be 2= 410 n(P+ 6]). (Ad)
a dimensional crossover below the critical temperature ob-

tained between two regimes with differanas is reported in  Finally, after the differentiation we have

the case of thermal conductivity.Depending upon the na-

ture of the pair-breakingweak or strony Maki-Thompson 1+{(P+]6])2— p2~Y%P+|4)) F+e
contribution belowT, may be an important study. Though To= ~opZ)
the contribution from the density of states is larger above the P+[6]+V(P+[6)*~p

crossover temperature abovg, the contribution ta\y may (A5)

be affected to a certain extent in weak magnetic field be|OV\Sim”ar|y the third termiT, can be expressed as follows:
the critical temperature. These two contributions are con- ’ 3 '
trolled by the applied magnetic field. In addition, the

_ 2_ N -12p__ _
ab-plane coherence length is an important factor to alter the 4= 1H{(P—[6)*—pT "(P—16]) “;E
fluctuation effect in diamagnetism in HTSC. This is unlike P—|6|+\(P+]6])°—p? 2h

the fluctuation above the critical temperature. (AB)
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APPENDIX B
d| &
mwjgbsz, (BD)
with
_f+1/2 l+b[2(n+x)+1]d B2
) 1+b(2n+1) (B2)

Let us assume b[2(n+x)+1]=y so thatl,; can be writ-
ten as

1 1+b(2n+2) y

Il:% 1+2nb Inl+b(2n+l)dy' (B3

On integration of the above we havg as given below,
1
I1=%[(1+2nb+2b)|n(1+2nb+2b)—2b

—(1+2nb)In(1+2nb)—2b In(1+2nb+b)].

(B4)
Now we can rewriteng(b) as follows:
No
b)=—|b>, i{(1+2nb+2b)
Mse)=3b| 2% 2b
XIn(1+2nb+2b)—2b—(1+2nb)
XIn(1+2nb)—2b In(1+2nb+b)}|. (B5)

After the differentiation we have

No

msc(b)=n§=‘,0 (n+1)In(1+2nb+2b)—n In(1+2nb)

—In(1+2nb+b)—b

2n+1
e

1+(2n+1)b

APPENDIX C

Theb is defined with the help of the reduced temperatur

as follows:

b=

h
p (Cy

Puttingb in the expression fomg(b) we get after a simpli-
fication,
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Mo
msc(b)=20 (n+1)In{e+2(n+1)h}—n In{e+2nh}
(2n+1)h

—In{e+(2n+ 1)h}— 6+(2n—+1)h .

(C2
Now putting e=0 in the above expression we rewrite
ms(e=0) as follows:

No

Me(e=0)= nzo [(n+1)In{2h(n+1)}

—n In2nh—=In{(2n+1)h}—-1]. (C3

After rearrangement of the above equation we get
No

Ms(e=0)= E

n=0

n+1 n+1
nInTJrIn

-1/. (9

1
2

APPENDIX D

Differentiating both sides of Eq18) with respect td we
obtain

dM(le) T S| 2(n+1)? ) 2n
db ~ d¢yiSh|1+2nb+2b “1+2nb
2n+1 2n+1
" 1+2nb+b 1+(2n+1)b
(2n+1)?
—_— (DY)
(14+2nb+b)?
After simplification we get
dM(le)) T & | 2(n+1)? 4n
db ~ d¢yiSh|1+2nb+2b 1+2nb
(2n+1)(2+2nb+hb)
+ (D2)
(1+2nb+b)?

uttingT=T¢(1+ ¢€) in the above equation we get

dM(le])  Te(1+e) O
db ~ déy

2(n+1)>? 4n
1+2nb+2b 1+2nb

n=0

N (2n+1)(2+2nb+hb)
(1+2nb+b)?

(D3)
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