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Plasma instability and amplification of electromagnetic waves
in low-dimensional electron systems

S. A. Mikhailov*
Max-Planck Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 19 December 1997!

Twenty years ago active experimental studies of plasma oscillations in two-dimensional electron systems
~2DES’s! in Si metal-oxide-semiconductor field-effect transistors and GaAs/AlxGa12xAs heterostructures be-
gan. From the outset the idea of using the radiative decay of grating-coupled 2D plasmons for creation of
tunable solid-state far-infrared sources has been discussed in the literature; however, numerous attempts to
realize it in far-infrared 2D plasmon emission experiments~in which the plasmons are excited by a strong dc
current flowing in the 2DES! have failed: the intensity of radiation turned out to be too small to be promising
for device applications. We present a complete analytic theory of a grating-coupled 2DES with a flowing
current. We show why the devices have not worked properly so far, and what should be done to increase the
radiation, to get an amplification of light, and to reduce threshold currents of amplification down to experi-
mentally achievable values. The main idea of the work—to replace the commonly employedmetalgrating by
a quantum-wireone—allows one essentially to reduce threshold currents, and to increase the amplification of
waves by several orders of magnitude. We show that tunable far-infrared emitters, amplifiers, and generators
can be created at realistic parameters of modern semiconductor heterostructures. This work opens new ways to
the practical implementation of plasma waves in low-dimensional electron systems.@S0163-1829~98!01127-8#
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I. INTRODUCTION

The motion of a fast electron beam across a perio
metal structure results in the radiation of electromagn
waves. This phenomenon, often referred to as the Sm
Purcell effect,1 provides the basis for a number of vacuu
devices, such as traveling wave tubes and backward w
tubes. In these devices electrons accelerated by an ap
electric field up to a velocityvdr move in vacuum across
periodic metal structure~a grating or a spiral!, which leads to
an amplification or generation of electromagnetic waves
the frequencyf ;vdr /a, wherea is the grating period. The
drift velocity vdr here is determined by the applied elect
voltage, so that these devices arevoltage tunableamplifiers
and generators.

The vacuum devices successfully operate in the radio
microwave range. A further enhancement of the opera
frequency presents severe difficulties because of the
chanical instability of a freely standing in vacuum period
structure of metal wires with a very small period. The op
ating frequency of vacuum devices cannot therefore be
tended up to the far-infrared~FIR! range.

In the late 1970s active experimental research of plas
oscillations in two-dimensional~2D! electron systems~ES’s!
in Si metal-oxide-semiconductor field-effect transisto
~MOSFET’s! and GaAs/AlxGa12xAs heterostructures
began.2–5 In a considerable part of the experimental wo
~for a review see Ref. 6! FIR transmissionspectroscopy has
been used for the detection of 2D plasmons~Fig. 1, where
vdr50!. In this technique, the 2D plasmons, which are n
mally nonradiative modes,7 are coupled to electromagnet
radiation by a metal grating placed in the vicinity of the 2
layer. An incident electromagnetic wave with the intensityI 0
and the electric field polarized perpendicular to the grat
PRB 580163-1829/98/58~3!/1517~16!/$15.00
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strips passes through the structure in the direction perp
dicular to the 2D layer~z direction!, and the spectrum of the
transmitted waveT(v) is registered. Well-defined reso
nances that correspond to an excitation of 2D plasmons w
reciprocal lattice vectorsGm5(2pm/a,0) are observed in
the transmission spectrum~herea is the grating period andm
is integer!. In experiments of this type the energy of th
external electromagnetic wave is converted to the energ
the 2D plasmons.

Figure 1 resembles the geometry of the tunable vacu
amplifiers and generators: the system consists in a cond
ing electron~2D! layer where electrons can move under t
action of an applied electric field, and an adjacent grati
The first attempts to observe the emission of light from
grating-coupled 2DES were made, to the best of our kno

FIG. 1. The geometry of the considered structure. The syste
infinite in they direction. 2D electrons are moving in thex direc-
tion perpendicular to the grating strips with the drift velocityvdr . A
transmission spectroscopy experiment corresponds tovdr50, I 0

Þ0, an emission spectroscopy experiment corresponds tovdrÞ0,
I 050, whereI 0 is the intensity of the incident wave.
1517 © 1998 The American Physical Society
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1518 PRB 58S. A. MIKHAILOV
edge, in 1980.8,9 In these FIRemissionexperiments~Fig. 1,
where the drift velocityvdrÞ0, but the intensity of the inci-
dent lightI 0 is zero! a strong dc current is passed through t
2D layer ~in the x direction perpendicular to the gratin
strips!, and the emitted electromagnetic radiation is reg
tered. The grating period in these solid-state structures ca
made smaller than 1mm, and the typical frequency of 2D
plasmons falls in the terahertz~FIR! range. A successful re
alization of the 2D plasmon emission experiment could le
to a creation of a tunable solid-state source of the FIR e
tromagnetic radiation. In spite of the strong appeal of t
idea and a number of more recent experiments,10–13 the in-
tensity of radiation from the 2DES remains very small, a
successfully working solid-state devices based on the
cussed principle are absent so far.

The energy of the dc current passing through an elec
system in the presence of the grating is converted to elec
magnetic radiation in two steps. First, it is transformed to
energy of plasma oscillations in the beam by means o
current-driven plasma instability.14,15 Then the energy store
in the plasmon field is converted to electromagnetic radia
by means of the grating. The plasma instability develops
the system when the drift velocity of electrons exceed
threshold valuev th , estimated as the plasma frequency
electrons in the beam divided by a typical grating wave v
tor G152p/a @see Eq.~55! below, as well as Ref. 15#. In
vacuum devices the plasma frequency in the electron bea
much smaller than that in the 2DES, and electrons can
accelerated up to velocities much higher than those ach
able in solid-state structures. The threshold condition for a
plification is thus more difficult to satisfy in solid-state stru
tures than in their vacuum counterparts, therefore the
attempts to realize the emission of light from the gratin
coupled 2DES have failed.

The aim of this paper is to develop a general theory of
transmission, amplification, and emission of light in t
structure ‘‘grating coupler–2DES,’’ and to find realist
ways to reduce the threshold velocity of amplification. W
consider a propagation of light through the structure ‘‘gr
ing coupler–2DESwith a flowing current’’ ~Fig. 1 with vdr
Þ0 and I 0Þ0!, and calculate the transmissionT(v,vdr),
reflection R(v,vdr), absorption A(v,vdr), and emission
E(v,vdr) ~at I 050! coefficients as a function of the ligh
frequencyv, the drift velocity vdr , and other physical and
geometrical parameters of the system. In the literature
problem of the transmission of light~vdr50, I 0Þ0! has been
solved analytically in aperturbativeapproach16,6 ~the grating
has been treated as an infinitely thin metal layer with
weakly modulated density!, and numerically in a nonpertur
bative approach.17 An emission of light from the structure
‘‘metal grating–2DES’’~vdrÞ0, I 050! has been considere
by Kempa et al.18 using a numerical nonperturbative a
proach. We solve the problemanalyticallyusing thenonper-
turbative technique recently proposed in Refs. 19–21. O
of the main results of our work is that the amplification
waves can be drastically increased, and the threshold ve
ity can be essentially reduced~down to experimentally
achievable values! in structures ‘‘2DES–quantum-wiregrat-
ing’’ ~contrary to commonly employed structures withmetal
gratings!. The effect is due to the resonant interaction of 2
plasmons with plasmons of the grating, which leads to
-
be

d
c-
s

d
s-

n
o-
e
a

n
n
a
f
-

is
e
v-
-

st
-

e

-

e

a

e

c-

a

remarkable enhancement of the grating coupler efficien
and finally to an improvement of device characteristics.

The paper is organized as follows. In Sec. II we develo
general theory of the scattering of electromagnetic waves
the structure ‘‘grating coupler–thin conducting layer.’’ I
Sec. III we apply the general formalism to an analysis of
FIR transmission, reflection, and absorption spectra of
grating-coupled 2DES without the dc electric current. In S
IV we study an amplification of FIR radiation passin
through the system with a flowing current. In Sec. V w
discuss an emission spectrum of the structure~vdrÞ0, I 0
50! and compare our approach with that of Ref. 18. In S
VI we summarize our results and formulate particular reco
mendations for a designing tunable solid-state FIR amp
ers.

II. SCATTERING OF LIGHT ON A GRATING-COUPLED
THIN CONDUCTING LAYER: GENERAL THEORY

In this section we develop a general theory of the scat
ing of light on a structure ‘‘grating coupler–thin conductin
layer’’ ~Fig. 1!. The grating coupler is treated as an infinite
thin22 conducting layer with an electron density

N1~x!d~z!5(
k

n1~x2ak!d~z!, ~1!

placed in the planez50. The continuous functionn1(x) is
assumed to be zero atuxu.W/2 and an arbitrary nonzero
function at uxu,W/2, whereW is the width of the grating
strips anda is the grating period. The conducting laye
~2DES! is placed in the planez5D and described by the
frequency and wave-vector-dependent conductiv
s2D(q,v) @all quantities related to the grating~2DES! will
be supplied by the index 1 or 1D~2 or 2D!#. The electro-
magnetic wave is assumed to be incident upon the struc
along thez axis with the electric vector polarized in thex
direction, perpendicular to the grating strips. The system
infinite in the y direction, and a background dielectric co
stante is uniform in all the space.

The total electric fieldEtot satisfies the Maxwell equa
tions,

¹3~¹3Etot!1
e

c2

]2Etot

]t2

52
4p

c2

]

]t
@ j1D~x!d~z!1 j2D~x!d~z2D !#, ~2!

with scattering boundary conditions atz→6`. We search
for a solution in the form

Etot~r ,z!5(
G

@EG
ext~z!1EG

ind~z!#eiG•r2 ivt, ~3!

whereG5Gm5(2pm/a,0), and the incident~external! and
the scattered~induced! electromagnetic waves are written a

EG
ext~z!5S Ex,G

ext

0
0

D eivAez/c, Ex,G
ext 5E0dG,0 , ~4!
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andEG
ind(z)5@Ex,G

ind (z),0,Ez,G
ind (z)#. The fieldEx,G

ind (z) satisfies
the equation

]2Ex,G
ind

]z2 2kG
2 Ex,G

ind 5
4p ikG

2

ve
@ j x,G

1D d~z!1 j x,G
2D d~z2D !#,

~5!

and has a solution

Ex,G
ind ~z!uz,05AGexp~kGz!, ~6a!

Ex,G
ind ~z!u0,z,D5BGsinh~kGz!1CGcosh~kGz!, ~6b!

Ex,G
ind ~z!uz.D5DGexp~2kGz!, ~6c!

where

kG[kG5AG22v2e/c2. ~7!

If Gm52pm/a50, the valuekG5052 ivAe/c is imaginary
~the radiative boundary conditions atz→6` imply that
Im kG,0!, and the valuesAG50 andE01DG50 give the am-
plitudes ofnormallyreflected and transmitted waves. IfkG is
imaginary for several nonzerom ~i.e., atvAe/c.Gm!, the
valuesAG and DG describe the amplitudes of reflected a
transmitted waves in corresponding~mth! diffraction orders.
For all umu.a/l, wherel52pc/vAe is the wavelength of
light, AG and DG give the amplitudes of evanescent~non-
propagating! electric field.

Using boundary conditions at the planesz50 andz5D
we relate the amplitudes of the electric fieldAG , . . . ,DG to
the Fourier components of the electric current:

AG5CG52
2p ikG

ve
@ j x,G

1D 1 j x,G
2D exp~2kGD !#, ~8!

BG5
2p ikG

ve
@ j x,G

1D 2 j x,G
2D exp~2kGD !#, ~9!

DG52
2p ikG

ve
@ j x,G

1D 1 j x,G
2D exp~kGD !#. ~10!

Together with the relation

j x,G
2D 5s2D~G,v!Ex,G

tot uz5D , ~11!

between the current in the 2DES and the total electric fiel
the planez5D we have five equations for six unknown
AG , . . . ,DG , j x,G

1D , j x,G
2D . Using these equations we relate t

total field at the planez50 to the currentj x,G
1D at the same

plane,

Ex,G
tot uz505W~G,v!S Ex,G

ext uz502
2p ikG

ve
j x,G
1D D , ~12!

where

W~G,v!512S 12
1

e2D~G,v! De22kGD, ~13!

and

e2D~G,v!511
2p ikG

ve
s2D~G,v! ~14!
at

is the ~relative! ‘‘dielectric permittivity’’ of the 2DES.
Properties of the grating should now be introduced in

the theory. Usually16–18one assumes the local Ohm’s law fo
the grating, j x

1D(x)5s1D(x,v)Ex
tot(x,z50), where the con-

ductivity s1D(x,v) is proportional to the local electron den
sity ~1!. Then Eq.~12! is rewritten in the form of an integra
equation,

Ex
tot~x!5E0W~0,v!1S ]2

]x2 1
v2e

c2 D
3E dx8

W
q~x8!L~x2x8!Ex

tot~x8!, ~15!

where

Ex
tot~x![Ex

tot~x,z50!,
q(x)5n1(x)/^n1(x)&

is a normalized electron density in a grating strip, the ker
L(x2x8) is defined as

L~x2x8!5
2p i f ^s1D~v!&

ve (
G

W~G,v!

kG
eiG•~r2r8!,

~16!

f 5W/a is the geometrical ‘‘filling factor’’ of the grating,
and the angular brackets mean the average over the area
grating strip,^¯&5*(¯)dx/W.

A general scheme of solving Eq.~15! is presented in Ap-
pendix A. Here we solve this equation approximately,19–21

assuming that the total~and induced! electric fieldinsidethe
strips is uniform, Ex

inside[Ex
tot(uxu,W/2,z50)5const. This

approximation works very well in a metal grating if the fre
quency of electromagnetic wave is small as compared to
plasma frequency of the metal, and the width of the grat
strips is large as compared to the Thomas-Fermi scree
length. Under these conditions the electric field inside
strips is completely screened andEx

inside5const50. This ap-
proximation is also valid in a quantum wire~quantum dot!
grating at an arbitrary frequency, if the wires~dots! are con-
sidered in an oblate cylinder23 ~oblate spheroid24! model.
This follows from the well-known fact that an internal ele
tric field in an arbitrary ellipsoid is uniform if the externa
one is uniform.25 This is also valid for wires or dots forme
by a parabolic confining potential.26 The validity of the
model has been recently checked using a number of num
cal approaches in Ref. 27. It has been shown that the m
gives reliable results for experimentally measured~macro-
scopic! values like for instance the transmission coefficie

Assuming thatEx
inside5const, we get a relation betwee

the total electric field inside the grating strips and the ext
nal field ~see Appendix A!. It has a form of a response equ
tion

Ex
inside5

E0

z~v!
, ~17!

where the response functionz~v! is given by



m

u
th
ld
it
en

-
e
th
e
v

le
ith

b
cif
a

-

ter-

e
nd
ent

the

mi-

n
re-
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z~v!5
1

W~0,v! S 11
2p i f ^s1D~v!&

ve

3(
G

kGa~G!W~G,v! D . ~18!

The form factor in Eq.~18!,

a~G!5u^q~x!eiG–r&u2, ~19!

is determined by Fourier components of the equilibriu
electron density in the grating strips.

The response equation~17! and the response function~18!
are the main points of our theory. Having derived these eq
tions we can now calculate fields and currents in all
space. In particular, for Fourier amplitudes of electric fie
at z,0 andz.D, which describe the reflected and transm
ted field in all diffraction orders as well as the evanesc
field, we get

AG

E0
52dG,01W~G,v!

3S dG,02
2p i f kG^s1D~v!&^q~x!e2 iG–r&

vez~v! D , ~20!

DG

E0
52dG,01

1

e2D~G,v!

3S dG,02
2p i f kG^s1D~v!&^q~x!e2 iG–r&

vez~v! D .

~21!

Equations~20!,~21! give the general solution of the formu
lated problem. They have been derived under quite gen
assumptions and include both the electrodynamics of
grating coupler and nonlocal and quantum-mechanical
fects in the response of the 2DES’s that enter the theory
an appropriate model of the conductivitys2D(G,v). In sub-
sequent sections we apply the general theory to the prob
of FIR response of the system ‘‘grating coupler–2DES w
and without a flowing current.’’

III. THEORY OF THE GRATING COUPLER:
TRANSMISSION OF FIR RADIATION

A. Approximations and preliminary notes

Before applying the general results of Sec. II to the pro
lem of FIR response of the grating coupled 2DES we spe
the conditions of a typical experiment and make necess
approximations. First, we assume that the grating perioda is
small as compared to the wavelength of lightl ~in a typical
experimental situationl;300 mm, a&1 mm!. Under this
condition only theG50 components of the electric field de
scribe outgoing waves, while all components withGÞ0 are
evanescent. The reflectionr (v) and transmissiont(v) am-
plitudes are then determined by the coefficientsAG50 and
DG50, respectively, and we have

r ~v!5211W~0,v!S 12
2p f ^s1D~v!&

cAez~v!
D , ~22!
a-
e
s
-
t

ral
e
f-
ia

m

-
y
ry

t~v!5
1

e2D~0,v! S 12
2p f ^s1D~v!&

cAez~v!
D , ~23!

where e2D(0,v)5112ps2D(0,v)/cAe. The reflection,
transmission, and absorption coefficients are then de
mined, as usual, by the relations28

R~v!5ur ~v!u2, T~v!5ut~v!u2, ~24!

A~v!512R~v!2T~v!. ~25!

Second, we assume that the distanceD between the 2DES
and the grating is also small as compared tol. Then
W(0,v)5e2D

21(0,v), and

r ~v!5211t~v!, ~26!

wheret(v) is given by Eq.~23!.
Third, we specify the model for the conductivity of th

2DES. We postpone an analysis of the nonlocal a
quantum-mechanical effects in the 2DES to a subsequ
publication, and describe the properties of the 2DES in
hydrodynamic model29 of s2D(q,v). Linearizing the conti-
nuity and Euler’s equations30 for the densityn and the ve-
locity v of 2D electrons,

]n

]t
1“~nv!50, ~27!

]v

]t
1~v–“ !v52

e

m2
E2g2~v2vdr!, ~28!

where E5E01dE, n5n21dn, v5vdr1dv, we get vdr
52(e/m2g2)E0 , and

s2D~q,v!5
n2e2

m2

iv

~v2qvdr!~v2qvdr1 ig2!
. ~29!

For the average conductivity of the grating we assume, si
larly,

^s1D~v!&5
n1e2

m1

i

v1 ig1
. ~30!

In Eqs. ~28!–~30! ni , mi , and g i are the average electro
density, the electron effective mass, and the momentum
laxation rate in the grating (i 51) and in the 2DES (i 52),
respectively.

Substituting the model expressions~29!,~30! for the con-
ductivity of the 2DES and the grating into Eq.~23! we get
the following result for the transmission amplitude:21

t~v!5
v1 ig2

v1 ig21 iG2
S 12

iG1

v1 ig1

1

z~v! D , ~31!

where the response function assumes the form
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z~v!5
iG1

v1 ig1
1S 11

iG2

v1 ig2
D

3H 12
ṽp1

2

v~v1 ig1! F11
2p f n1e2

m1eṽp1
2

3 (
mÞ0

uGmua~Gm!e22uGmuDvp2
2 ~Gm!

~v2Gmvdr!~v2Gmvdr1 ig2!2vp2
2 ~Gm!G J .

~32!

Here

vp2~Gm!5S 2pn2e2uGmu
m2e D 1/2

~33!

is the frequency of 2D plasmons,Gm52pm/a,

G15
2p f n1e2

m1cAe
, ~34!

G25
2pn2e2

m2cAe
, ~35!

and

ṽp1
2 5

2p f n1e2

m1e (
mÞ0

uGmua~Gm!. ~36!

The physical meaning of the valuesG1 , G2 , andṽp1 will be
discussed in Sec. III B.

Finally, we specify the density profile functionq(x) that
determines the form factora~G!. In the main part of the
paper we will use a semielliptic density profile,

q~x!5
4

p
@12~2x/W!2#1/2, ~37!

for which the form factora(Gm) is given by

a~Gm!5@2J1~z!/z#2, z5GmW/2, ~38!

whereJ1 in the Bessel function. In some cases we will al
consider a steplike profile,qstep(x)5u(W/22uxu), for which

astep~Gm!5~sin z/z!2, z5GmW/2. ~39!

Using Eqs.~31!, ~32!, as well as Eqs.~24! and ~25!, one
can show that the functionsT(v), R(v), and A(v) have
one or more resonant features related with an excitation
plasma modes in the system. The resonance frequencie
linewidths depend on the drift velocity of 2D electronsvdr ,
as well as on other physical and geometrical parameter
the structure. If a resonant feature is well separated fr
others, i.e., when its linewidth is small as compared to
distance between adjacent resonances, the functionsT(v),
R(v), andA(v) assume the following general form:

T~v!512
v2~2gG1G2!

~v22V2!21v2~g1G!2 , ~40a!
of
and

of
m
e

R~v!5
v2G2

~v22V2!21v2~g1G!2 , ~40b!

A~v!5
2v2gG

~v22V2!21v2~g1G!2 , ~40c!

whereV is the resonance frequency;g andG are the nonra-
diative and the radiative decay rates, respectively. The t
linewidth of the resonance is thus determined by the sum
the radiative and the nonradiative decay rates; the reso
values of the transmission, reflection, and absorption coe
cients, Tres[T(V), Rres[R(V), Ares[A(V), are deter-
mined by the ratiog/G,

Tres5
g2

~g1G!2 , Rres5
G2

~g1G!2 , Ares5
2gG

~g1G!2 .

~41!

The resonant values~41! characterize the strength of th
resonant features. Note that the reflection~absorption! reso-
nant amplitude is negligible as compared to the absorp
~reflection! amplitude ifG!g (G@g). In the following, we
specify the values ofV, g, and G in different considered
cases.

The rest of this section is devoted to an analysis of
system without flowing current, i.e., atvdr50. In Sec. IV we
analyze the general formulas at a finite drift velocity.

B. Two limiting cases

We start our analysis from two simple limiting cases, o
2DES without grating coupler and of a grating without t
2DES.

1. 2DES without grating

If the grating is absent, thenG150, and the transmission
reflection, and absorption coefficients assume the form~40!
with

V50, g5g2 , G5G2 . ~42!

The nonradiative contribution to the linewidthg is deter-
mined by the momentum relaxation rate of 2D electronsg2
and is due to the Drude absorption in the 2DES. The phys
meaning of the valueG2 , Eq. ~35!, is the radiative decay o
oscillating 2D electrons in the 2DES taken in isolation~with-
out the grating!. Indeed, if one electron is placed in an ele
tric field E0exp(2ivt), it oscillates with an amplitudedx
;eE0 /mv2. This creates an oscillating dipole momentd
;e2E0 /mv2, which produces a dipole radiation31 with the
intensity I;v4d2/c3. Dividing the radiated intensityI by
the average energy of the oscillating dipoleW;mv2dx2 one
gets the radiative decay of asingle electron G0
;e2v2/mc3. When asheet of electronswith an area density
ns is placed in an oscillating electric field, and the interele
tron distancens

21 is small as compared to the wavelength
light l, all N;nsl

2 electrons within the coherence are
;l3l radiate in phase. The average energy should then
multiplied by a factor ofN, while the radiated intensity by a
factor ofN2. The radiative decay of an electron sheet is th
given by the productG0N;G0nsl

2;nse
2/mc in agreement

with the exact expression~35!.
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2. Grating without 2DES

If the 2DES is absent, thenG25vp2(Gm)50, and the
transmission, reflection, and absorption coefficients ass
the form ~40! with

V5ṽp1 , g5g1 , G5G1 . ~43!

The nonradiative contribution to the linewidthg1 is now due
to the Drude absorption in the grating strips. The valueG1 is
proportional to the average electron density in the grat
f n1 , Eq. ~34!, and is the radiative decay of plasma oscil
tions in the grating taken in isolation~with the removed
2DES!. The valueṽp1 gives the resonance frequency
plasmons in a periodic array of grating strips~or quantum
wires!. Eq. ~36! provides a functional dependence ofṽp1 on
the equilibrium electron densityq(x) in wires ~similar func-
tional dependencies for arrays of quantum dots and anti
have been found in Refs. 19 and 32, respectively!. If the
equilibrium electron density in strips has a semielliptic fo
~37!, Eq. ~36! gives ~see Appendix B!

ṽp1
2 5vp1

2 b~ f ![vp1
2 F12

~p f !2

24
2

~p f !4

960 G , ~44!

where

vp15A16n1e2

m1eW
~45!

is the resonance frequency of plasmons in a single wire,
the factorb( f ) is due to the interwire interaction. If the wir
is formed by an externalparabolic confining potential

FIG. 2. The transmission, reflection, and absorption coefficie
of a quantum-wire grating withn15331011 cm22, m150.067
~GaAs!, and two different values of the relaxation rate:~a! g1

51.3331011 s21 ~corresponds tog1 /G155.0!, and ~b! g150.53
31010 s21 (g1 /G150.2). The ratioW/a50.4.
e

g
-

ts

nd

Vext(x)5Kx2/2, Eq. ~36! reproduces an exact resultvp1
2

5K/m1 of the generalized Kohn theorem,33 see Appendix B.
Figure 2 shows the frequency dependencies of the tra

mission, reflection, and absorption coefficients of a quant
wire array at two ratios of the collisional damping to th
radiative decay,g1 /G1@1 @Fig. 2~a!# and g1 /G1!1 @Fig.
2~b!#. In the former case the reflection of waves is negligib
small, and the transmission minimum is due to a peak in
absorption coefficient. In the latter case, the absorption
waves is small as compared to their reflection, and the tra
mission minimum is mainly due to the reflection peak. T
width of the resonance in the second case is smaller than
in the first case~but does not tend to zero! and is determined
mainly by the radiative decay.

C. Grating coupled 2DES

Now we consider the transmission of FIR radiatio
through a coupled structure ‘‘grating–2DES’’, under th
condition when no current is flowing in the 2DES (vdr
50). We consider two different cases: the case of ametal

grating, when the plasma frequency in the gratingṽp1 is
much larger~several orders of magnitude in a typical expe
ment! than the 2D plasmon frequencyvp2(G1), and the case

ts

FIG. 3. The transmission coefficient of the structure me
grating–2DES at three different values of the ratioW/a. Geometri-
cal parameters:a51 mm, D560 nm. Parameters of the 2D laye
ns25331011 cm22, g250.731011 s21, m250.067 ~mobility m2

5375 000 cm2/V s!. The grating parameters~ns15631018 cm22,
g151.131014 s21, m151! correspond to a typical~Au! grating
coupler. The dielectric constant ise512.8. Triangles show the cal
culated positions of the 2D plasmon harmonics~33! for m
51, . . . ,4.Note the differences in the vertical axis scales for d
ferent plots.
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of a quantum-wiregrating, when the plasma frequencies
the grating and in the 2DES are of the same order of m
nitude.

1. Metal grating

Figure 3 demonstrates the frequency dependent trans
sion coefficient of the structure ‘‘metal grating–2DES’’
different values of the geometrical filling factor of the gra
ing f . Three characteristic features are seen in the fig
First, the position of resonances that we denote asV12(m)
does not coincide with the frequencies of the 2D plasm
vp2(Gm), Eq. ~33!, shown in Fig. 3 by triangles for fou
lowest harmonicsm51,2,3,4. The index ‘‘12’’ here is a re
minder that we are dealing with thecoupled 1D
~grating!–2D electron system. Second, the position and
amplitude of resonances for differentm essentially depend
on the filling factorf 5W/a. At some values off the ampli-
tude of higher harmonics can be comparable with or e
larger than those of lower harmonics~as is the case for the
modesm51 and m52 at W/a50.2, Fig. 3~c!, or for the
modesm52 andm53 at W/a50.6, Fig. 3~a!. At certain
values of f some harmonics are not excited at all~e.g., the
modem52 atW/a50.6, Fig. 3~a!. Third, the amplitudes of
the transmission resonances become smaller when the
nance positionsV12(m) approach the 2D plasmon freque
cies vp2(Gm), see, e.g., the evolution of theV12(1) mode
amplitude with decreasingW/a @note the difference in the
vertical axis scales in Figures 3~a!–3~c!#.

In order to understand these features we take the lim
vdr50 ~no drift! and n1→` ~metal grating! in the general
formulas ~31! and ~32!. The resulting expressions for th

FIG. 4. Normalized resonance frequenciesV12(m)/vp2(G1) for
three different modesm51, 2, and 3 as a function of the geomet
cal filling factor f 5W/a. The ratio D/a50.08. Note the differ-
ences in the vertical axis scales for different modes.
g-

is-

e.

s

e

n
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ts

transmission, reflection, and absorption coefficients near
resonancev5V12(m) assume the form~40! where

V25V12
2 ~m![vp2

2 ~Gm!~12Dm!, ~46!

G5G12~m![
G1

ṽp1
2

vp2
2 ~Gm!Dm5G2

~p f !2

4b~ f !
umuDm ,

~47!

andg5g2 . The parameter

Dm5
~p f !2

2b~ f !
umua~Gm!exp~22uGmuD ! ~48!

here depends on the harmonic indexm and on geometrica
parameters of the structure. Note that the physical parame
of the grating—the electron densityn1 , the momentum re-
laxation rateg1 , and the effective massm1—do not enter the
formulas ~46!–~48!, in which the grating is presented onl
via the geometrical parametersa, W, andD. The resonant
values of the transmission, reflection, and absorption coe
cients,Tres(m), Rres(m), andAres(m), are determined by Eq
~41! whereg5g2 andG5G12(m).

As seen from Eqs.~46!, ~47!, and ~41!, the resonance
frequency, the radiative contribution to the linewidth, and t
strength of the resonance essentially depend on the param
Dm , which exponentially decreases with the distanceD be-
tween the 2DES and the grating and oscillates as a func
of the grating filling factorf @via the oscillatingf depen-
dence of the form factora(Gm), Eqs.~38!,~39!#. If Dm tends
to zero, the resonance frequenciesV12(m) tend to the 2D

FIG. 5. ~a! Normalized radiative decay of the modesV12(m)
and~b! the resonant transmission coefficientTres(m), for three dif-
ferent modesm51, 2, and 3 as a function of the geometrical fillin
factor f 5W/a. The ratioD/a50.08; the scattering rate of elec
trons in the 2DES@in ~b!# is g250.731011 s21.
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plasmon frequenciesvp2(Gm), but the radiative decay an
the strength of the resonances vanish,G12(m)50, Tres(m)
51. The value ofDm vanishes whenp f m coincides with
any of zeros of the Bessel functionJ1 , for a semielliptic
density profile~37!, or with any of zeros of the sine function
for a steplike profile. In order to get the maximum streng
of themth plasma resonance one should thus satisfy the c
dition J1

2(p f m)5maximum~a semielliptic profile!, or

W

a
m50.57,

W

a
m51.7, ~49!

etc. Figures 4 and 5 demonstrate thef dependencies of the
resonance frequenciesV12(m) @normalized byvp2(G1)#, ra-
diative contribution to the linewidthG12(m) ~normalized by
G2!, and the resonant transmission coefficientTres(m) for
three lowest modesm51, 2, and 3 atD/a50.08, for the
semielliptic density profile~37!. The behavior ofV12(m),
G12(m), andTres(m) at the steplike profile is qualitatively th
same.

2. Quantum-wire grating

If the grating coupler is made out of a metal, only t
geometrical~but not the physical! parameters of the gratin
determine the observable transmission~reflection, absorp-
tion! resonances. If the grating is made out of a 2D elect

FIG. 6. The transmission coefficient of the structure quantu
wire grating–2DES at three different values of the grating plasm

frequencyṽp1 at a51 mm, D560 nm, andW50.2 mm. Param-
eters of the 2D layer and the dielectric constante are the same as in
Fig. 3. The parameters of the grating areg150.731011 s21, m1*
50.067; and the electron density:~a! ns15431011 cm22, ~b! ns1

52.531011 cm22, and~c! ns15131011 cm22. Triangles show the
calculated positions of the 2D plasmon harmonics~33! for m
51, . . . ,4,open triangles show the positions of the grating plasm
~44!.
n-

n

layer with similar plasma parameters~the quantum-wire
grating! the observable resonances are determined by b
the 2D plasmons in the 2DES, and the plasma modes in
grating. This gives additional possibilities to control th
transmission spectra, especially in the finite drift veloc
regime~Sec. IV!.

Figure 6 shows the transmission coefficientT(v) of the
structure ‘‘quantum-wiregrating–2DES’’ at three differen
values of the grating plasma frequencyṽp1 . Geometrical
parameters of the structure are the same as in Fig. 3~c!,
where the transmission coefficient of themetal grating-
coupled 2DES is shown. Three new features are seen in
6 as compared to Fig. 3~c!. First, due to the presence of th
grating plasmon resonanceṽp1 an additional resonance pea
appears in the plot. Second, due to the interaction of
plasmons and the grating plasmon the resonance peak
slightly shifted relative to their positions in Fig. 3~c!. Third,
and the most important feature, is a dramatic enhanceme
the amplitudes of the 2D plasmon resonances, in situat
when the frequencyṽp1 approaches the 2D plasmon fre
quencies, Figs. 6~a!,6~b!. This effect is due to a resonan
interaction of the grating plasmon with the 2D ones, and
especially pronounced for higher 2D plasmon modes,
which the amplitude of resonances is increased by abou
order of magnitude@note the difference in the vertical axi
scales in Figs. 6 and 3~c!#. This effect is of a particular im-
portance in the 2DES with a flowing current, as it allows o
to increase the amplification and to reduce the threshold
locity in the structure with the quantum wire grating~Sec.
IV B !.

-
n

n

FIG. 7. The absorption coefficient of the structure me
grating–2DES at the frequency interval corresponding to the
(m51) 2D plasmon harmonic, and at small values of the dim
sionless drift velocityU5vdr /vF2 . Physical and geometrical pa
rameters of the structure are the same as in Fig. 3~a!. The black
triangle at the bottom of the plot shows the position of them51,
2D plasmon harmonic~33!. The weak mode that intersects the pr
nounced resonances atU'0.8 andU'1.5 is the mode (3,2).
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IV. AMPLIFICATION OF WAVES

Now we analyze the transmission of electromagne
waves through a grating-coupled 2DES with a flowing c
rent. We start from the case of a structure ‘‘metal gratin
2DES.’’

A. Metal grating

Figure 7 shows the absorption coefficient of the struct
‘‘metal grating–2DES’’ at relatively small values of the d
current (U[vdr /vF2<1.6) in the frequency interval corre
sponding to an excitation of the first (m51) 2D plasmon
harmonic. HerevF2 is the Fermi velocity of 2D electrons in
the 2DES. The physical and geometrical parameters of
structure are the same as in Fig. 3~a! (W/a50.6). The tri-
angle at the bottom of the plot shows the position of them
51 2D plasmon harmonic~33!. As seen from Fig. 7, in
contrast to the case of the vanishing current~U50, lower
curve!, at finite drift velocities of 2D electrons there are tw
modes,V12(m,6), associated with each harmonic numb
m. We label these modes by two indexes (m,6), where the
frequency of the1~2! mode increases~decreases! with vdr
at small vdr , dV12(m,1)/dvdr.0 and dV12(m,2)/dvdr
,0 at vdr→0. As seen from the figure,
-

e,

he

s
n

ns
lifi
e

ro
o

c
-
–

e

e

r

lim
vdr→0

V12~m,1 !5vp2~Gm!, ~50!

lim
vdr→0

V12~m,2 !5V12~m!, ~51!

where V12(m) is defined in Eq.~46!. The strength of the
(m,1) mode vanishes when the drift velocity tends to ze

In order to get a quantitative description of the reson
features shown on Fig. 7 we take the limitn1→` ~metal
grating! in the general formulas~31!–~32!. Assuming that
uv1 ig2u@G2 and vp2(Gm)@g2 , and taking into accoun
only the terms withm56umu in the sum in Eq.~32!, we find
that near the (m,6) resonance the transmission, reflectio
and absorption coefficients assume the form~40!, where the
resonance frequencyV5V12(m,6) is determined by the
equation

V12
2 ~m,6 !5vp2

2 ~Gm!S 12
Dm

2 D1~Gmvdr!
26vp2~Gm!

3Avp2
2 ~Gm!S Dm

2 D 2

1~2Gmvdr!
2S 12

Dm

2 D ,

~52!

the radiative decayG5G12(m,6) is given by
G12~m,6 !5
G12~m!

2 H 17
vp2

2 ~Gm!Dm2~2Gmvdr!
2

vp2~Gm!Avp2
2 ~Gm!Dm

2 1~4Gmvdr!
2~12Dm/2!

J , ~53!
-
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and the nonradiative decayg5g2 . Figure 8 shows the drift
velocity dependencies of the resonance frequencyV12(m,
6) and the normalized radiative decayG12(m,6)/G12(m)
for the modem51 at parameters of Fig. 3~a!. The frequency
V12(m,1)@V12(m,2)# increases ~decreases! with the
square of the drift velocity atGmvdr!vp2(Gm)Dm/4, and
linearly,

V12~m,6 !'uvp2~Gm!A12Dm/26Gmvdru, ~54!

at Gmvdr@vp2(Gm)Dm/4 ~the Doppler shifted plasma reso
nances!. In the regionvp2(Gm)A12Dm,Gmvdr,vp2(Gm)
the frequency V12(m,2) vanishes, and at Gmvdr
.vp2(Gm) it increases again with the positive slop
dV12(m,2)/dvdr.0 at Gmvdr.vp2(Gm).34 The radiative
decay, as well as the strength of theV12(m,1) resonance,
equal zero atvdr50 and increase monotonously when t
drift velocity increases@Fig. 8~b!#. The radiative decay of the
V12(m,2) mode decreases from a finite value atvdr50,
vanishes atGmvdr5vp2(Gm), and changes its signat
Gmvdr.vp2(Gm). As seen from Eqs.~41!, when G equals
zero, the reflection and absorption coefficients at the re
nance v5V disappear, and the transmission coefficie
equals unity. WhenG becomes negative, the resonant tra
mission coefficient exceeds unity, which means an amp
cation of waves, while the absorption coefficient becom
negative, which means that the energy is transfered not f
the electromagnetic wave to the electron system, but c
o-
t
-
-
s
m
n-

versely, from the current driven electron system~eventually
from the battery that supplies the current! to the electromag-
netic wave. The plasma modeV12(m,2) thus becomes un
stable atGmvdr.vp2(Gm).15 Figure 9 demonstrates the dri
velocity dependencies of the transmission, reflection, and
sorption coefficients at the resonancev5V12(m,6) for m
51. An amplification of the transmitted electromagne
waves is explicitly demonstrated in Fig. 10 where we dr
the frequency dependence of the transmission coefficien
different drift velocities at a larger range~as compared with
Fig. 7! of vdr(0<U<8).

In the above calculations we have assumed that the r
nance atv5V12(m,6) is well separated from other reso
nances~i.e., that the width of the resonance line is small
compared to the distance to neighbor resonances!. There are
two effects in which this approximation is insufficient. Th
first one concerns an accurate evaluation of the thresh
velocity of the amplification of waves. We define the thres
old velocityv th by the conditionTres.1. As follows from the
above discussion and Fig. 9, the resonant transmission c
ficient exceeds unity whenGmvdr.vp2(Gm). This inequal-
ity gives, however, only the lower estimate for thev th . In
order to evaluate the threshold velocity more accurately
should take into account that the amplification of wav
should exceed the Drude absorption in the 2DES~Sec.
III B 1 ! that is essential at low frequencies. Including th
fact we get the following expression for the threshold velo
ity:
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v th5
vp2~Gm!

Gm
S 11

Dm

2
XD , ~55!

where the~positive! factor X is determined by the cubic
equation

X31X25A[
8g2G2~2g21G2!

G12~m!vp2
2 ~Gm!Dm

3 . ~56!

The threshold velocity thus consists of two contribution
The first one,

vp2~Gm!

Gm
5vF2A a

2paB
! umu

, ~57!

can be reduced by choosing the structures with a low
electron densityn2 and a small perioda, and exploiting an
excitation of higher 2D plasmon harmonics~hereaB

! is the
effective Bohr radius!. The second contribution due to th
correctionDmX/2 in Eq. ~55! has a complicated dependen
on the densityn2 , the momentum relaxation rateg2 , the
mode indexm, and the geometrical parameters of the str
ture. Qualitatively these dependencies can be understoo
we note that the factorX equalsA1/3, if A@1, andA1/2, if
A!1, while the parameterA, in its turn, is proportional to

A}g2S 11
2g2

G2
D a exp~8GmD !

f 2J1
2~p f m!

~58!

~we consider the semielliptic density profile!. Thus, the sec-
ond contribution to the threshold velocity can be reduce

FIG. 8. ~a! The resonance frequencyV12(m,6) and ~b! the
normalized radiative decayG12(m,6)/G12(m) at m51 as a func-
tion of the dimensionless drift velocity of the 2D electronsU
5vdr /vF2 . Physical and geometrical parameters of the structure
the same as in Fig. 7.
.

D

-
if

if

the parameterW/a satisfies the conditions~49!, the distance
between the 2DES and the grating is small as compare
the width of the grating strips,D!W, and the grating period
a, as well as the momentum relaxation rateg2 , are taken to
be as small as possible. Thef dependence of the normalize
threshold velocity v th /vF2 for several lowest modesm
51, . . . ,4, and for parameters of Fig. 3 ~ns253
31011 cm22, g250.731011 s21, D560 nm! is shown in
Fig. 11. The divergencies ofv th are related to zeros of th
factor Dm .

The second effect which is not described by our sing
resonance approximation is an anticrossing of modes w
different m, which can be seen in Fig. 7 atU'0.8 and at
U'1.5, where the relatively weak mode (3,2) intersects the
modes (1,1) and (1,2), respectively, as well as in Fig. 10 a
U'5.0, where the mode (3,2) ~which has a positive slope
with respect tovdr at so largeU! intersects the mode (1
1) for a second time. The intersection points of mod
(m1 ,2) and (m2 ,6) (m1.m2) are determined by the rela
tion V12(m1 ,2)5V12(m2 ,6) @the modesV12(m1 ,1) and
V12(m2 ,6) do not intersect atm1.m2#, and the transmis-
sion, reflection, and absorption coefficients near the a
crossing can be found from Eqs.~31! and ~32! in the limit
n1→` ~metal grating! if we take into account only the term
with m5m1 and m5m2 in the sum in Eq.~32!. The most
interesting situation is realized at a large drift velocity,vdr
.vp2(Gm1

)/Gm1
, when anunstableplasma modeV12(m1 ,

2) intersects one of the stable plasma modesV12(m2 ,6)
(m1.m2). This occurs at the drift velocity

re

FIG. 9. The resonant values of~a! the transmission,~b! the
reflection, and ~c! the absorption coefficients for the mode
V12(m,6) at m51 as a function of the dimensionless drift veloci
of the 2D electronsU5vdr /vF2 . Physical and geometrical param
eters of the structure are the same as in Fig. 7.
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vdr
~m1 ,2 !,~m2 ,6 !

'
vp2~Gm1

!1vp2~Gm2
!

Gm1
7Gm2

, ~59!

and is accompanied by an enhancement of the amplifica
of waves, due to a resonant interaction of different plas
modes. In Fig. 10 one sees this effect atU'5.0 @the inter-
section of modes (3,2) and (1,1)#. A small resonance fea
ture can be also seen at the intersection of modes (3,2) and
(1,2) at U'2.6 in the low-frequency range.

In vacuum devices one can easily achieve the drift vel
ity sufficient for the amplification of electromagnetic wave
In solid-state structures ‘‘metal grating–2DES’’ the dis-
cussed values of the threshold velocity are rather large
order to make realistic estimations of achievable drift velo
ties in semiconductor heterostructures with the 2D elect
gas we refer to the paper of Wirneret al.,35 in which the
dependence of the average drift velocity of 2D electrons a
function of the applied electric field has been experimenta
investigated. The authors studied a GaAs/AlxGa12xAs het-
erostructure with the density of 2D electrons ofn256
31010 cm22 and the ~low-field! mobility of m258
3105 cm2/V s. The corresponding Fermi velocity of 2D
electrons isvF251.063107 cm/s. The measured drift veloc
ity of 2D electrons increases linearly with the applied elec
field up toE0'50 V/cm, sublinearly at larger fields and the
saturates atvdr'1.83107 cm/s when the field is increase
up toE0'150 V/cm. Based on the results of this experime
we will assume that the really achievable experimental v
ues of the ratioU5vdr /vF2 in GaAs/AlxGa12xAs hetero-

FIG. 10. The transmission coefficient of the structure me
grating–2DES at the frequency interval corresponding to the
(m51) 2D plasmon harmonic in a wide range (0<U<8) of the
dimensionless drift velocityU5vdr /vF2 . Physical and geometrica
parameters of the structure are the same as in Fig. 3~a!.
on
a

-
.
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-
n

a
y

c

t
l-

structures with the low-density high-mobility 2D electro
gas are restricted by the value ofU'1.8.

As seen from the above examples the threshold velocit
still well above the desired limitU'1.8. It can be reduced
as compared to the numerical examples discussed abov
using smaller 2D electron gas densityn2 , smaller grating
period a, and larger 2D plasmon harmonicsm. One of the
problems in using the higherm in the structures ‘‘metal
grating–2DES’’ is a small amplitude of 2D plasmon res
nances withm.1 and their rapid decrease with increasi
m, see Fig. 3. As we saw, however, in Sec. III C 2, the use
the quantum-wiregrating allows one to increase the amp
tudes of the higher 2D plasmon resonances by an orde
magnitude@compare Figs. 6 and 3~c!#, at the cost of the
resonant interaction of 2D plasmons in the 2DES and
plasmons in wires. Using this effect, along with other me
ods discussed above, one can reduce the threshold vel
down to experimentally achievable values. An amplificati
of electromagnetic waves in the structure quantum-w
grating–2DES is considered in the next section.

B. Quantum-wire grating

In order to make a realistic estimation of the transmiss
coefficient of electromagnetic waves in the structu
quantum-wire grating–2DES we do this for a hypothe
sample with parameters taken from published experime
papers. We assume that our sample is a GaAs/AlxGa12xAs
heterostructure (m15m250.067) with the density of 2D
electrons in the 2DES ofn25631010 cm22 ~taken from Ref.
35!. The low-field mobility in Ref. 35 was aboutm2'8
3105 cm2/V s, which corresponds tog2'3.2531010 s21.
In the high-field regime (E0'150 V/cm) the mobility was
by a factor of;4 smaller, due to a heating of 2D electron
by a strong dc current. The dependence of the mobility
the dc current~or on the drift velocity! could be included into
the theory through a phenomenological dependence of
momentum relaxation rateg2(Te) on the electron tempera
ture. For our estimations we use, for simplicity, the dr
velocity independentvalueg251.331011 s21, which corre-
sponds to the mobilitym2'23105 cm2/V s ~roughly, this
equals the ratiovdr /E0 at E0'150 V/cm in Ref. 35!. Thus
we assume the worst value of the momentum relaxation
and take into account, effectively, the heating of 2D ele
trons by the strong dc current. For the grating we assume
same momentum relaxation rate of electrons,g15g2 .

Choosing the geometrical parameters of the structure
have assumed that modern experimental technique all
one to create periodic microstructures with lateral dime
sions of order of 0.1mm; see, e.g., Refs. 36, 37. The width
the grating strips is therefore taken to beW50.1 mm, while
the perioda50.175mm is chosen in accordance with th
rule ~49! for m53. The distance between the 2DES and t
quantum-wire grating is assumed to beD520 nm.

Figures 12 and 13 demonstrate the calculated trans
sion coefficient of the structure quantum-wire grating
2DES, near the intersection point of the unstable 2D
plasma modeV12(3,2) and the grating plasmon. Two dif
ferent values of the electron density in the grating,n15n2
5631010 cm22 ~Fig. 12! and n152n251.231011 cm22

~Fig. 13!, are used. Three important features seen in Figs

l
st
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and 13 should be mentioned. First, the resonant amplifica
of electromagnetic waves occurs at the drift velocities w
below the experimentally achievable limitU'1.8. The value
of U'1.4 ~Fig. 12! corresponds to the drift velocityvdr
'1.43107 cm/s and the dc current densityj 0'0.13 A/cm

FIG. 11. Threshold velocity of the amplification as a function
the grating filling factorf 5W/a for several lowest mode number
m, and atns25331011 cm22, g250.731011 s21, D560 nm. Thin
lines show the first contribution to the threshold velocity~57!.

FIG. 12. Transmission coefficient of the structure quantum-w
grating–2DES for n15n25631010 cm22, g15g251.3
31011 s21, a50.175mm, W50.1 mm, andD520 nm. The fre-
quency and the drift velocity intervals correspond to an intersec
of the grating plasmon and the (3,2) 2D plasma mode. The blac
triangle at the bottom of the plot shows the position of the grat
plasmon~36!.
n
ll

in our example; in Ref. 35 this velocity has been achieved
E0'50 V/cm. Second, the operating frequency of the am
fier lies in the vicinity of the intersection point of the gratin
plasmonṽp1 and the unstable modeV12(m,2), at

vdr'
ṽp11vp2~Gm!A12Dm/2

Gm
, v'ṽp1 . ~60!

It is varied by the dc current~the drift velocity! within about
10% with respect tov'ṽp1 if the physical and geometrica
parameters of the structure are kept constant~for instance,
from '0.73 to'0.8 THz whenU changes from 1.36 to 1.4
in Fig. 12, or from'1.03 to'1.13 THz whenU changes
from 1.52 to 1.58 in Fig. 13!. The operating frequency can b
also varied by changing the frequencyṽp1 ~compare Figs. 12
and 13!, in quantum-wire structures tunable, e.g., by a g
voltage. Third, the absolute value of the amplification
waves near the resonances can be as great as several t
percents, which is due exclusively to the resonant interac
of the 2D plasmons with the grating plasmon in t
quantum-wiregrating. For a comparison, in Fig. 14 we sho
the transmission coefficient of the structure metal gratin
2DES for the same parameters of the 2DES, the same
metrical parameters, and in the same frequency and drift
locity intervals as in Fig. 13. A weak resonant feature th
intersects the plot along the diagonal is the unstable m
V12(3,2). As seen from Fig. 14, the amplification of wave
in the metal grating structure isseveral orders of magnitude
smaller than in the structure with the quantum wire grat
~note the very large difference in the vertical axis scales
Figs. 13 and 14!.

Thus an amplification of FIR radiation in structures wi
the quantum-wire grating can be obtained at realistic, exp
mentally achievable parameters.

e

n

g

FIG. 13. The same as in Fig. 12, but forn152n251.2
31011 cm22.
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V. EMISSION OF WAVES

In previous sections we have discussed an amplifica
of electromagnetic waves in the structure influenced byboth
the incident electromagnetic waveand the strong dc curren
~stimulated radiation!. If the incident wave is absent, but th
sample experiences a current flow, the system emits ele
magnetic waves due to a disturbance of the thermal equ
rium ~spontaneous radiation!. This situation has been rea
ized in experimental papers published so far.8–13 In order to
describe the emission spectrum using the formalism de
oped above one should include into the consideration
equilibrium blackbody radiation around the system, and t
into account that the sample has a higher temperatureTe)
than the environment (T0). Taking into account that the
sample reflects and transmits the incident blackbody ra
tion with the intensityI bb(v,T0), and emits the radiation
with the intensityA(v,vdr)I bb(v,Te),

38 we obtain that the
emitted radiation registered by an external device~filter! in
the frequency interval betweenv andv1dv is given by39

E~v,vdr!5A~v,vdr!@ I bb~v,Te!2I bb~v,T0!#. ~61!

Here A(v,vdr) is the absorption coefficient of the structu
calculated in Sec. III, Eq.~25!, and

I bb~v,T0!5
\v3dv

4pc2~e\v/T021!
, ~62!

is the intensity of the blackbody radiation in the interv
(v,v1dv).

Figure 15 demonstrates the absorption~thin curves! and
emission ~thick curves! spectra of the structure meta
grating–2DES under the conditions of the experiment of R
13 ~n255.431011 cm22, a52 mm and a53 mm for two
different samples,W/a50.6 in both cases,D562 nm, and
the filter linewidthD f 585 GHz!. Plotting the figure we have
assumed a steplike electron density profile in the grating~as
the more relevant one in the case of the metal grating w
wide strips!, as well as the scattering rateg25531011 s21,

FIG. 14. The same as in Fig. 13, but for a metal grating w
ns15631018 cm22, g151.131014 s21, andm151. Note the large
difference in the vertical axis scales in this figure and in Fig. 13
n

ro-
b-

l-
e
e

a-

l

f.

h

the environment temperatureT054.2 K, and Te5100 K
(Te550 K) for the sample witha52 mm (a53 mm). The
whole behavior of the emission spectra qualitatively agr
with the measured ones, the position of peaks in Fig. 15 i
a good quantitative agreement with those measured in
13, see Table I.

It should be noted that the problem of the emission
light from the grating-coupled 2DES with a flowing curre
has been considered in Ref. 18. It has been solved in a c
plete analogy with the transmission problem. Such formu
tion of the emission problem is, however, not well defin
and cannot give the emission spectrum~61! ~the fact that the
emission of light from the system is due to the blackbo
radiation of a sample heated by the dc current has been
nored in Ref. 18!. Indeed, when the transmission of light
calculated, one gets a set of equations for Fourier com
nents of the total electric field~Sec. II or Ref. 17!

(
G8

M̂G,G8EG8
tot

5EG
ext, ~63!

whereM̂G,G8 is an infinite matrix over reciprocal lattice vec
tors. The spectrum of eigenmodes is determined by the e
tion detM̂50, the total self-consistent electric field can b

FIG. 15. The absorption~thin curves! and emission~thick
curves! spectra of the structure metal grating–2DES for parame
taken from Ref. 13. The curves are vertically shifted for clarity, t
absorption and emission are plotted in arbitrary units.

TABLE I. Position of resonance peaks~THz! for two samples
with the perioda52 mm anda53 mm, measured in Ref. 13 an
calculated in this work; see Fig. 15. For other parameters see
text.

m51 m52 m53

a52 mm, expt. 0.69 1.3
a52 mm, theor. 0.68 1.24
a53 mm, expt. 0.47 0.9 1.26
a53 mm, theor. 0.50 1.00 1.25
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found from Eq.~63!, if the matrixM̂ is inverted.17 The trans-
missionproblem is thus well defined.

In Ref. 18 the authors have derived a similar equation
the emissionproblem, whenvdrÞ0 andEext50. In this case
however, the right-hand side of Eq.~63! vanishes, and the
drift velocity vdr enters only the matrixM̂ . The spectrum of
eigenmodes of the system~including unstable ones! can be
calculated from the equation detM̂50, but the induced radi-
ated fieldEG50

ind cannot be found in this fashion, as the righ
hand side of Eq.~63! is zero. Instead of the intensity of th
emitted waves, Kempaet al.18 calculated the ratio of the
macroscopic~radiated! field EG50

ind to the microscopic~non-
propagating! field EGÞ0

ind . This ratio characterizes the gratin
as a coupler of the plasmon field to the propagating elec
magnetic radiation, but is not an appropriate characteristi
the emission process, as it does not vanish, for instanc
vdr50.

VI. SUMMARY

We have developed a general analytic theory of the tra
mission, reflection, absorption, and emission of electrom
netic waves in the structure ‘‘2DES~with and without the
flowing dc current!–grating coupler.’’ We have demon
strated that an amplification, and hence a generation, of
radiation~the lasing effect! can be obtained in semiconduct
microstructures with realistic experimental parameters. S
marizing our results we formulate the requirements t
should be met in order to create a successfully working a
plifier of FIR radiation based on the grating coupled 2D
with a flowing current.

~1! The density of electrons in the 2DES should be sm
This requirement seems to be paradoxical, as the in
sity of the transmission resonance at the vanishing d
velocity vdr50 becomes very small whenn2 decreases
Nevertheless, at a large drift velocity the intensity
resonances becomes sufficiently large~Fig. 10!, espe-
cially in the structures with a quantum wire gratin
~Figs. 12, 13!, but the threshold velocity of amplificatio
decreases withn2 , Eqs.~55!, ~57!. Note that this require-
ment has not been satisfied in previous emission exp
ments~for instance, in Ref. 13 the 2D electron dens
was by an order of magnitude larger than the value t
we have used in Figs. 12, 13!. Note also that in vacuum
devices the plasma frequency in the electron beam u
to be very small (G1vdr@vp).

~2! The mobility of 2D electrons should be sufficient
large; however, this requirement is not so crucial as o
ers. As we have seen in Figs. 12 and 13, a consider
amplification of light could be achieved at a modera
mobility of m2'23105 cm2/V s.

~3! The most important requirement imposed on the grat
is that it must be aquantum-wiregrating, but not a com-
monly employed8–13 metal one. It is the resonant inte
action of plasma modes in the 2DES and in the grat
that allows one to significantly increase the amplificati
of light when using the higher 2D plasmon harmonic
and hence to reduce the threshold velocity of amplifi
tion.
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~4! The grating period should be as small as possible. T
condition seems to be in some contradiction with anot
one,a@D, which follows from the requirement that th
interaction of plasma modes in the 2DES and in the g
ing @described by the exponent exp(2GmD), Eq. ~48!#
should be sufficiently large~for instance, in Ref. 13 the
grating period was by an order of magnitude larger th
the one we have used in Figs. 12, 13!. Nevertheless, the
inequality D!a ~more accurately,D!W, see below!
should be considered as a condition forD, while the
period should be taken to be small. As seen from E
~57!,~58!, this leads to a reduction of the threshold v
locity.

~5! The width of the quantum wiresmust satisfythe condi-
tions ~49! ~or, Wm/a51,2,3,. . . , if the steplike profile
seems to be more appropriate for a description of a p
ticular system40!. As seen from Fig. 11, a correct choic
of the ratioW/a is of particular importance, especially
when the higher 2D plasmon harmonics are used.

~6! The distanceD between the 2DES and the gratin
should meet the conditionD!W. This requirement fol-
lows from maximizing the exponent exp(2GmD), Eq.
~48!, if we take into account that the ratioWm/a is al-
ready fixed by the conditions~49!.

~7! The operating frequency of amplifiers can be varied
the dc electric current flowing in the 2DES and/or b
changing the electron densityn1 ~more generally, the
resonance frequencyṽp1! in the quantum-wire grating.

We hope that these recommendations will be helpful
creating tunable FIR sources and lasers, based on elec
semiconductor microstructures of low dimensionality.
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APPENDIX A: SOLVING THE INTEGRAL EQUATION
„15…

A general scheme of solving the integral equation~15!
consists of the following. LetOn(x) be a set of orthogona
polynomials with respect to the weight functionq(x) that
satisfy the condition

E dx

W
q~x!On~x!Om~x!5dmn ~A1!

@for the profile~37! On(x) are the Chebyshev polynomials#.
Substituting an expansion

Ex
tot~x!5(

n
CnOn~x! ~A2!

into Eq. ~15!, multiplying by q(x)Om(x), and integrating
over dx we get an infinite set of equations

(
n

~dmn1Lmn!Cn5E0W~0,v!dm0 , ~A3!
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which can be solved approximately by truncating the mat
dmn1Lmn to a finite sizeN3N. Here

Lmn5
2p i f ^s1D~v!&

ve (
G

W~G,v!kGbm~G!bn
!~G!,

~A4!

bm(G)5^q(x)Om(x)eiG•r&, and the star means the comple
conjugate. The approximation accepted in the main body
the paper corresponds toN51. Physically, truncating the
matrix to the 131 size we neglect effects related to an e
citation of quadrupole and higher plasma eigenmodes23 in
the grating strips.

APPENDIX B: RESONANCE FREQUENCY IN AN ARRAY
OF WIRES

Equation~36! gives an expression for a dipole excitatio
resonance frequency in an array of wires as a functiona
the equilibrium electron densityq(x). It can be presented in
different forms which clarify the role of the interwire inter
action and the relation to the generalized Kohn theorem.33

1. Interwire interaction

In view of Eq. ~45! one can write

ṽp1
2

vp1
2 5

p f W

8 (
GmÞ0

uGmua~Gm!. ~B1!

For a semielliptic density profile~37! the form factora(G)
is given by Eq.~38!. Using the transformation

(
Gm

F~Gm!5E adq

2p
F~q!(

k
eiqak, ~B2!

whereak5ak, we get

ṽp1
2

vp1
2 5E

2`

` dq

uqu
J1

2~qW/2! (
k52`

`

eiqak. ~B3!

The term of the sum withk50 is independent of the grating
period a and gives, after the integration overdq, unity. It
describes the contribution of a single wire. The correctio
due to the interwire interaction are then written as

ṽp1
2

vp1
2 5112(

k51

` E
0

` dx

x
J1

2~ f x/2k!~eix1e2 ix!. ~B4!

In the first ~second! integral in Eq.~B4! we rotate the inte-
gration path by an angle1p/2 (2p/2) to the upper~lower!
complex half-plane. The functionJ1 is transformed toI 1 ,
and we have

ṽp1
2

vp1
2 5124(

k51

` E
0

` dx

x
e2xI 1

2~ f x/2k!. ~B5!
x

of

-

of

s

The expansion~44! can now be easily obtained from E
~B5! at f !1.

2. Relation to the generalized Kohn theorem

In many publications concerning the electromagnetic
sponse of a confined system of electrons like quantum w
or quantum dots, the resonance frequencies are discuss
terms not of an equilibrium electron density, see Eq.~36!,
but of a confining potential. One can state a relation betw
these two approaches.

Let an array of wires be formed by an external confin
potential~potential energy!

Vext~x!5(
k

vext~x2ak!. ~B6!

The total self-consistent potentialVtot(x)5Vext(x)1Vind(x) is
given by the sum of external and induced potentials, wh
the induced potentialVind(x) relates to the density~1! by the
Poisson equation,

DVind~x,z!52
4pe2N1~x!

e
d~z!. ~B7!

Equation~36! can be written as

ṽp1
2 5

2pe2

m1eWn1
(

mÞ0
uGmuN1,Gm

E
cell

dxn1~x!eiGmx,

~B8!

where the integral is taken over an elementary cell. Due
Eq. ~B7! the Fourier component of the densityN1,G is related
to the Fourier component of the induced potentialVind,G
52pe2N1,G /euGu, so that we can write Eq.~B8! for a single
wire in the form

vp1
2 52

1

m1n1W E dxn1~x!D2Vind~x!, ~B9!

whereD2 is the two-dimensional Laplacian and the integ
is expanded onto the whole axis. ReplacingVind by the dif-
ferenceVtot2Vext, one sees that the contribution due to t
total self-consistent potential vanishes, asVtot is constant in
points where electrons are. Thus, we have

vp1
2 5

1

m1n1W E dxn1~x!D2Vext~x!. ~B10!

In a parabolic confining potentialVext(x)5Kx2/2, and Eq.
~B10! reproduces the statement of the generalized K
theorem,33

vp1
2 5K/m1 . ~B11!
un.

.
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