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Twenty years ago active experimental studies of plasma oscillations in two-dimensional electron systems
(2DES’s in Si metal-oxide-semiconductor field-effect transistors and GaA&&l ,As heterostructures be-
gan. From the outset the idea of using the radiative decay of grating-coupled 2D plasmons for creation of
tunable solid-state far-infrared sources has been discussed in the literature; however, numerous attempts to
realize it in far-infrared 2D plasmon emission experimeiiswvhich the plasmons are excited by a strong dc
current flowing in the 2DEBhave failed: the intensity of radiation turned out to be too small to be promising
for device applications. We present a complete analytic theory of a grating-coupled 2DES with a flowing
current. We show why the devices have not worked properly so far, and what should be done to increase the
radiation, to get an amplification of light, and to reduce threshold currents of amplification down to experi-
mentally achievable values. The main idea of the work—to replace the commonly empheyaidjrating by
a quantum-wireone—allows one essentially to reduce threshold currents, and to increase the amplification of
waves by several orders of magnitude. We show that tunable far-infrared emitters, amplifiers, and generators
can be created at realistic parameters of modern semiconductor heterostructures. This work opens new ways to
the practical implementation of plasma waves in low-dimensional electron sy$®@i63-18208)01127-9

I. INTRODUCTION strips passes through the structure in the direction perpen-
dicular to the 2D layefz direction), and the spectrum of the
The motion of a fast electron beam across a periodidransmitted waveT(w) is registered. Well-defined reso-
metal structure results in the radiation of electromagneticiances that correspond to an excitation of 2D plasmons with
waves. This phenomenon, often referred to as the Smitheciprocal lattice vector&,,=(27m/a,0) are observed in
Purcell effect provides the basis for a number of vacuum the transmission spectrutherea is the grating period anch
devices, such as traveling wave tubes and backward wavé integel. In experiments of this type the energy of the
tubes. In these devices electrons accelerated by an appli€ternal electromagnetic wave is converted to the energy of
electric field up to a velocity 4, move in vacuum across a the 2D plasmons.
periodic metal structuré grating or a spiral which leads to Figure 1 resembles the geometry of the tunable vacuum

an amplification or generation of electromagnetic waves a?mplllfle;s andengeratoLs: thelsytstem consists in agon?#d'
the frequencyf ~v g4 /a, wherea is the grating period. The ing electron(2D) layer where electrons can move under the

drift velocity v, here is determined by the applied electric action of an applied electric field, and an adjacent grating.

oltade. so that these devices amitage tunableamplifiers The first attempts to observe the emission of light from the
voltage, Vi ge tu pim grating-coupled 2DES were made, to the best of our knowl-
and generators.

The vacuum devices successfully operate in the radio and

microwave range. A further enhancement of the operating 7 E
frequency presents severe difficulties because of the me- reflected incident
chanical instability of a freely standing in vacuum periodic wave N _ wave
structure of metal wires with a very small period. The oper- Bl E k
. . X W a
ating frequency of vacuum devices cannot therefore be ex- e
tended up to the far-infrare@IR) range. Grating D
In the late 1970s active experimental research of plasma >Dla —
L ) . . ' yer . . Vir
oscillations in two-dimensiondPD) electron systeméS's) B E
in Si metal-oxide-semiconductor field-effect transistors z irod
(MOSFET'S and GaAs/AlGa,_,As heterostructures ransmitte
begar?~® In a considerable part of the experimental work 7
(for a review see Ref.)6FIR transmissiorspectroscopy has
been used for the detection of 2D plasmaRg. 1, where FIG. 1. The geometry of the considered structure. The system is

vgr=0). In this technique, the 2D plasmons, which are nor-jnfinite in they direction. 2D electrons are moving in tixedirec-
mally nonradiative modeSare coupled to electromagnetic tion perpendicular to the grating strips with the drift veloaity. A
radiation by a metal grating placed in the vicinity of the 2D transmission spectroscopy experiment correspondsgte 0, |,
layer. An incident electromagnetic wave with the intensify +0, an emission spectroscopy experiment corresponds; 60,
and the electric field polarized perpendicular to the grating ,=0, wherel, is the intensity of the incident wave.

0163-1829/98/5)/151716)/$15.00 PRB 58 1517 © 1998 The American Physical Society



1518 S. A. MIKHAILOV PRB 58

edge, in 198&?° In these FIRemissionexperimentgFig. 1,  remarkable enhancement of the grating coupler efficiency,
where the drift velocity 4# 0, but the intensity of the inci- and finally to an improvement of device characteristics.
dent lightl, is zerg a strong dc current is passed through the  The paper is organized as follows. In Sec. Il we develop a
2D layer (in the x direction perpendicular to the grating general theory of th_e scattering of_electromagnetic waves on
stripg, and the emitted electromagnetic radiation is registhe structure “grating coupler—thin conducting layer.” In
tered. The grating period in these solid-state structures can z€C- Il we apply the general formalism to an analysis of the
made smaller than Lm, and the typical frequency of 2D FIR_transmlssmn, reﬂec_tlon, and absorptpn spectra of the
plasmons falls in the terahertEIR) range. A successful re- 9rating-coupled 2DES without the dc electric current. In Sec.
alization of the 2D plasmon emission experiment could leadY We study an amplification of FIR radiation passing
to a creation of a tunable solid-state source of the FIR elecdhrough the system with a flowing current. In Sec. V we
tromagnetic radiation. In spite of the strong appeal of thisdiSCuss an emission spectrum of the structurg+0, Io
idea and a number of more recent experiméfits the in- =0) and compare our approach with that of Re_f. 18. In Sec.
tensity of radiation from the 2DES remains very small, and¥! We summarize our results and formulate particular recom-
successfully working solid-state devices based on the dignendations for a designing tunable solid-state FIR amplifi-
cussed principle are absent so far. ers.

The energy of the dc current passing through an electron
system in the presence of the grating is converted to electro4l. SCATTERING OF LIGHT ON A GRATING-COUPLED
magnetic radiation in two steps. First, it is transformed to the  THIN CONDUCTING LAYER: GENERAL THEORY
energy of plasma oscillations in the beam by means of a : )
current-driven plasma instabilify:1> Then the energy stored In th_|s section we deveIPp a_general theory of the scatter-
in the plasmon field is converted to electromagnetic radiatior"d ©f light on a structure “grating coupler—thin conducting
by means of the grating. The plasma instability develops ida}’ezr2 (Fig. 1). The grating coupler is treated as an infinitely
the system when the drift velocity of electrons exceeds 4NN~ conducting layer with an electron density
threshold valuevy,, estimated as the plasma frequency of
electrons in the beam divided by a typical grating wave vec- Ny (X)8(z) = > ny(x—ak) 8(z), (1)
tor G,=2m/a [see Eq.(55) below, as well as Ref. 15In K
vacuum devices the plasma frequency in the electron beam is ) i i )
much smaller than that in the 2DES, and electrons can bBlaced in the plang=0. The continuous function,(x) is
accelerated up to velocities much higher than those achie@Ssumed to be zero &|>W/2 and an arbitrary nonzero
able in solid-state structures. The threshold condition for amfunction at|x|<W/2, whereW is the width of the grating
plification is thus more difficult to satisfy in solid-state struc- StiPS anda is the grating period. The conducting layer
tures than in their vacuum counterparts, therefore the first?DES is placed in the plang=D and described by the
attempts to realize the emission of light from the grating-fequency —and  wave-vector-dependent  conductivity
coupled 2DES have failed. o2p(d, ) [all quantities related to the gratingDES will

The aim of this paper is to develop a general theory of th?® Supplied by the index 1 or 1[2 or 2D)]. The electro-
transmission, amplification, and emission of light in theMagnetic wave is assumed to be incident upon the structure
structure “grating coupler—2DES,” and to find realistic @l0ng thez axis with the electric vector polarized in the
ways to reduce the threshold velocity of amplification. Wedirection, perpendicular to the grating strips. The system is
consider a propagation of light through the structure “grat-infinite in they direction, and a background dielectric con-
ing coupler—2DESwith a flowing currerit (Fig. 1 withvy, ~ Stanteis uniform in all the space.
#0 andl,#0), and calculate the transmissiai(w,vg,), ~ The total electric fieldE'" satisfies the Maxwell equa-
reflection R(w,vq,), absorption A(w,vq), and emission UONS,
E(w,vg) (at 1=0) coefficients as a function of the light > tot
frequencyw, the drift velocityvy,, and other physical and VX (VX E©) + €9 E
geometrical parameters of the system. In the literature the c? ot?
problem of the transmission of ligi¢ 4= 0, |1 ,# 0) has been
solved analytically in gerturbativeapproach®® (the grating _

—4—77i[le(X)c?(Z)HZD(X)é(Z—D)] 2
has been treated as an infinitely thin metal layer with a c’ gt ’

weakly modulated densityand numerically in a nonpertur-
bative approach’ An emission of light from the structure
“metal grating—2DES"(v4#0, | ;=0) has been considered
by Kempaet all® using a numerical nonperturbative ap-
proach. We solve the probleamalytically using thenonper- E°(r,2)=>, [EZYz)+EN(z)]e/C T iet, (3)
turbative technique recently proposed in Refs. 19-21. One G

of the main results of our work is that the amplification of
waves can be drastically increased, and the threshold velo
ity can be essentially reducetown to experimentally
achievable valugsn structures “2DESguantum-wiregrat- oxt
ing” (contrary to commonly employed structures witietal Exoc o

gratings. The effect is due to the resonant interaction of 2D EX(z)=| 0 |e“'¥e EP{=Eydspo. (4)
plasmons with plasmons of the grating, which leads to a 0

with scattering boundary conditions at-+o. We search
for a solution in the form

g\;hererGm:(Zwm/a,O), and the incidentexternal and
the scatteredinduced electromagnetic waves are written as
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andEgY(z) =[EY'%(2),0EXS(2)]. The fieldE)y'S(2) satisfies
the equation
PEL
972 ~Kg

i 2
x,G™

[ix%8(2)+]2%8(z—D)],
(5)

wWE

and has a solution
(6a)

Ex&(2)|o<z<p=Bgsinh(kz) + Cecostikgz), (6b)

EIXndG( 7)|,<o=Acexp kgz),

EN(2)|,~p=DeeXp — k62), (60)

where

Kg= KGZ\/GE—wze/CZ. (7)

If G,,=27m/a=0, the valuexg_o= —iw\/e/c is imaginary
(the radiative boundary conditions at—*oco imply that
Im k5<0), and the valueé\s_o andEy+ Dg—( give the am-
plitudes ofnormallyreflected and transmitted waves i is
imaginary for several nonzenm (i.e., atw\/E/c>Gm), the

valuesAg and D¢ describe the amplitudes of reflected and

transmitted waves in correspondigth) diffraction orders.
For all |[m|>a/\, where\ =2mc/w\/e is the wavelength of
light, Ac and Dg give the amplitudes of evanescegmon-
propagating electric field.

Using boundary conditions at the planes0 andz=D
we relate the amplitudes of the electric fidld , ... ,Dg to
the Fourier components of the electric current:

2’7TiKG ) )
Ac=Co=———Tlixeticeexp—xeD)l. (8
2mikg 1D 2D
Bs= we [Jxc—JxcEXR —xksD)], 9
2mikg 1D . .2D
Dg=-— s [ixcTixceXP kcD)]. (10

Together with the relation

22 =0,0(G,0)ELY|,—p (11)
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is the (relative “dielectric permittivity” of the 2DES.
Properties of the grating should now be introduced into
the theory. Usuallf~*®one assumes the local Ohm'’s law for
the grating,j:°(x)=o1p(X,»)E(x,z=0), where the con-
ductivity o1 p(X,w) is proportional to the local electron den-
sity (1). Then Eq.(12) is rewritten in the form of an integral
equation,
tot P w?e
EX (X): EoW(O,(D)"‘ m'ﬁ‘ ?

dx’
xf W19(x')L(x—x')E;°t(x'), (15)
where

EX(x)=EQ(x,z=0),
F(X) =n1(xX)/(n1(X))

is a normalized electron density in a grating strip, the kernel
L(x—x") is defined as

2mif(op(w))

L(x—x")= e

D W(G, ) QiG(r=1")
G Kg '
(16)

f=Wr/a is the geometrical “filling factor” of the grating,
and the angular brackets mean the average over the area of a
grating strip,(--+)=[(---)dx/W.

A general scheme of solving E(L5) is presented in Ap-
pendix A. Here we solve this equation approximatély’!
assuming that the tota&nd inducedlelectric fieldinsidethe
strips is uniform, EM%=E{(|x<W/2,z=0)=const. This
approximation works very well in a metal grating if the fre-
guency of electromagnetic wave is small as compared to the
plasma frequency of the metal, and the width of the grating
strips is large as compared to the Thomas-Fermi screening
length. Under these conditions the electric field inside the
strips is completely screened aB§*“= const=0. This ap-
proximation is also valid in a quantum wifguantum dot
grating at an arbitrary frequency, if the wir&ots are con-
sidered in an oblate cylind®r (oblate spheroftf) model.

between the current in the 2DES and the total electric field af his follows from the well-known fact that an internal elec-
the planez=D we have five equations for six unknowns tric field in an arbitrary ellipsoid is uniform if the external

1D 2D
Ag,....Daiixcixc:
total field at the plane=0 to the currenf;% at the same
plane,

2mikg |

ke 0= W(G.0)| ESbluco- TSt (2
where

W(G w)=1—(1— ;) e~ 2xb (13

1 €20(G, w) ’
and
2mikg
ep(G,w)=1+ oop(G,w) (14

Using these equations we relate the ©ne is uniform?® This is also valid for wires or dots formed

by a parabolic confining potenti#l. The validity of the
model has been recently checked using a number of numeri-
cal approaches in Ref. 27. It has been shown that the model
gives reliable results for experimentally measufethcro-
scopig values like for instance the transmission coefficient.

Assuming thatE"s%=const, we get a relation between
the total electric field inside the grating strips and the exter-
nal field (see Appendix A It has a form of a response equa-
tion

. Eg
E|xns|de:

{(w)' 47

where the response functidiw) is given by
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1 2mif(o1p(w)) 1 27f{o1p(w))
{(w)= (1+ t(w)= 1- >, 23
W(0,0) we (@)= 0.0 Vel (@) @3
x> KGa(G)W(G,w)>. (18)  where e,p(0,0)=1+2m0,5(0,w)/c\/e. The reflection,
G transmission, and absorption coefficients are then deter-
The form factor in Eq/(18), mined, as usual, by the relaticAs
a(G)=|(d(xe' M), (19 R(@)=[r(@)|%  T(0)=|t(w)?, (24
is determined by Fourier components of the equilibrium
electron density in the grating strips. A(w)=1-R(w)—T(w). (25

The response equatidh7) and the response functigh8)
are the main points of our theor_y. Having derived th_ese equa- gecond, we assume that the distaBcbetween the 2DES
tions we can now calculate_ fields Qnd currents in aI_I theand the grating is also small as compared Mo Then
space. In particular, for Fourier amplitudes of electric fleldsW(0 ©)= 6_1(0 ), and
atz<0 andz>D, which describe the reflected and transmit- ’ 2DA T
ted field in all diffraction orders as well as the evanescent

field, we get MNw)=-1+t(w), (26)
Ac wheret(w) is given by Eq.(23).
E_o: — 86,0t W(G,0) Third, we specify the model for the conductivity of the

2DES. We postpone an analysis of the nonlocal and
guantum-mechanical effects in the 2DES to a subsequent
publication, and describe the properties of the 2DES in the
hydrodynamic modéf of o,(q, ). Linearizing the conti-

Dg 1 nuity and Euler's equatiori% for the densityn and the ve-
locity v of 2D electrons,

27T| f KG<0'1D((U)><19(X)e7iG.r>
G0 wel(w)

. (20

Eo €2p(G, )
y 2if KG<01D(w)><19(X)e_iG'r>) an
G,0 wel(®) . E-I—V(nv):(), (27
(21)
Equations(20),(21) give the general solution of the formu- ﬂJr V)v=— iE— _ 28
lated problem. They have been derived under quite general ot (v-V)v m, Y2V~ Ve, 8

assumptions and include both the electrodynamics of the
grating coupler and nonlocal and quantum-mechanical efwhere E=Ey+ 6E, n=n,+n, v=vg+dv, we get vy
fects in the response of the 2DES's that enter the theory viee — (e/m,y,)E,, and

an appropriate model of the conductivity (G, w). In sub-

sequent sections we apply the general theory to the problem n,e? iw

of FIR response of the system “grating coupler—2DES with oop(Q,w)= - .
and without a flowing current.” Mz (@=QVar) (@~ QVarti72)

(29

For the average conductivity of the grating we assume, simi-

Ill. THEORY OF THE GRATING COUPLER: larly

TRANSMISSION OF FIR RADIATION

A. Approximations and preliminary notes n,e? i

<Ulo(w)>:m_l w+iy,

Before applying the general results of Sec. Il to the prob- (30

lem of FIR response of the grating coupled 2DES we specify
the conditions of a typical experiment and make necessarin Egs. (28)—(30) n;, m;, and y; are the average electron
approximations. First, we assume that the grating peaiegl ~ density, the electron effective mass, and the momentum re-
small as compared to the wavelength of lightin a typical  laxation rate in the gratingi&1) and in the 2DESiE2),
experimental situatiol.~300 um, a<1 wum). Under this respectively.

condition only theG=0 components of the electric field de- Substituting the model expressiof®9),(30) for the con-
scribe outgoing waves, while all components w@k=0 are  ductivity of the 2DES and the grating into E®3) we get
evanescent. The reflectioffw) and transmissiom(w) am-  the following result for the transmission amplitutfe:

plitudes are then determined by the coefficieAts_, and

D¢-¢, respectively, and we have w+iys

t(w)= - -
27Tf<0'1D(w)>) - w+iy+il,
cVel(w) |

o+iy; {(w)

) . (3D

Nw)=—1+W(0O,w)| 1— )
where the response function assumes the form
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- |F1 |F2 R _ wzl"z 40b
g(w)_w—l—iyl_l— +(1)+i‘)/2 (w)_(w2_92)2+w2(,}/+l—*)21 ( )

U1 2),231 27fn,e? 20%yT
(1)((1)+i’yl) mlEZ)IZJl A(w)_ (w2_02)2+w2(,y+r)2! (400)

< |Gl (G e 2%nlPw2,(Gyy)

i > diative and the radiative decay rates, respectively. The total
mz0 (0= Gug)(@—Guugtiy)— wpz(Gm)

linewidth of the resonance is thus determined by the sum of
the radiative and the nonradiative decay rates; the resonant
(32 L : ) .

values of the transmission, reflection, and absorption coeffi-
Here cients, T.=T(Q), R.=R(Q), A=A(Q), are deter-
mined by the ratioy/T",

] where(} is the resonance frequency;andI” are the nonra-

27n,e2|G |\ 12
pr(Gm = —) (33 )/2 r? 24T
mae Tess 2 Res—7r2 Aes T2
_ (y+1I') (y+1') (y+I)
is the frequency of 2D plasmong,,,=27m/a, (41
2 mf. 2 The resonant value§41) characterize the strength of the
= (34)  resonant features. Note that the reflectiabsorption reso-
mlc\/E nant amplitude is negligible as compared to the absorption
(reflection amplitude if'<y (I'>v). In the following, we
27n,€2 specify the values of), y, and I in different considered
0= , (35 cases.
mzc\/E The rest of this section is devoted to an analysis of the
and system without flowing current, i.e., at,=0. In Sec. IV we
analyze the general formulas at a finite drift velocity.
~  2mfne?
“’Slzm—l Y Gyla(Gy). (36) B. Two limiting cases
1€ m#0

B We start our analysis from two simple limiting cases, of a
The physical meaning of the valu€g, T',, andwy; willbe  2DES without grating coupler and of a grating without the

discussed in Sec. Il B. 2DES.
Finally, we specify the density profile functiof(x) that ) _
determines the form factow(G). In the main part of the 1. 2DES without grating
paper we will use a semielliptic density profile, If the grating is absent, theli; =0, and the transmission,
4 reflection, and absorption coefficients assume the f@tan
()= —[1—(2W)2]*2, @n W

0=0, y=v,;, I'=I,. (42)
for which the form factora(G,,) is given by . o . o
The nonradiative contribution to the linewidth is deter-

a(G)=[234(2)IZ]?, z=G, WI2, (39 mine_d by the momentum relaxation rate of 2D electr%\s_
and is due to the Drude absorption in the 2DES. The physical
whereJ; in the Bessel function. In some cases we will alsomeaning of the valué',, Eq. (35), is the radiative decay of
consider a steplike profila}ix) = O(W/2— |x]), for which  oscillating 2D electrons in the 2DES taken in isolat{@rith-
out the grating Indeed, if one electron is placed in an elec-
Asted Gm) = (siN 22)?, z=G,WI2. (39  tric field Egexp(—iwt), it oscillates with an amplitudeSx
~eE,/me?. This creates an oscillating dipole moment
Using Egs.(31), (32), as well as Eqs(24) and (25), one  ~e?E,/mw?, which produces a dipole radiatinwith the
can show that the function§(w), R(w), and A(w) have intensity | ~w*d?/c®. Dividing the radiated intensity by
one or more resonant features related with an excitation ahe average energy of the oscillating dip#e- mw?6x? one
plasma modes in the system. The resonance frequencies ageéts the radiative decay of asingle electron T
linewidths depend on the drift velocity of 2D electrong, ~e?w?/mc®. When asheet of electronwith an area density
as well as on other physical and geometrical parameters of; is placed in an oscillating electric field, and the interelec-
the structure. If a resonant feature is well separated frongron distancen;l is small as compared to the wavelength of
others, i.e., when its linewidth is small as compared to thejght A, all N~ne\? electrons within the coherence area

distance between adjacent resonances, the funcli¢a3,  —) x\ radiate in phase. The average energy should then be
R(w), andA(w) assume the following general form: multiplied by a factor ofN, while the radiated intensity by a
) ) factor of N. The radiative decay of an electron sheet is then
T(w)=1— w(2yI'+17) (403 given by the product oN~T gn\?>~n.e?/mc in agreement

(02— Q%)%+ 0?(y+1)?’ with the exact expressiof85).
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FIG. 2. The transmission, reflection, and absorption coefficients Frequency (THz)
of a quantum-wire grating wittn;=3Xx10" cm 2, m;=0.067
(GaAs, ancli t\/\{o different values of the relaxation rat@ v; FIG. 3. The transmission coefficient of the structure metal
=1.33x 10" s* (corresponds toy;/T'1=5.0), and (b) y1=0.53  grating—2DES at three different values of the raia. Geometri-
X 10 s™* (y,/T1=0.2). The ratiow/a=0.4. cal parametersa=1 um, D=60 nm. Parameters of the 2D layer:
o Ne=3X10" cm™2, y,=0.7X10" s7%, m,=0.067 (mobility u,
2. Grating without 2DES =375 000 cr/V s). The grating parameter@g;=6x 108 cm2,

If the 2DES is absent, thefi,= w,»(Gy) =0, and the ~7:=11x10**s™, my=1) correspond to a typicalAu) grating

transmission, reflection, and absorption coefficients assurf@UPIer- The dielectric constantés=12.8. Triangles show the cal-
the form (40) with culated positions of the 2D plasmon harmonit33) for m

=1,...,4.Note the differences in the vertical axis scales for dif-
~ ferent plots.
Qprl, Y=Y1, F:Fl (43) P
The nonradiative contribution to the linewidth is now due
to the Drude absorption in the grating strips. The vdlyds
proportional to the average electron density in the gratin

Veu(X) =Kx2/2, Eq. (36) reproduces an exact resudtf]l
g: K/m;, of the generalized Kohn theorethsee Appendix B.
i L i Figure 2 shows the frequency dependencies of the trans-
I.nl’ E.q' t(r?4)’ antt_j IS :hE radllat_lvel dt(_acaytﬁf t;;lasma OSCéj”a'mission, reflection, and absorption coefficients of a quantum
lons in the grating ta (_an in isolatiofwi € removed e array at two ratios of the collisional damping to the
2DES. The valuewy; gives the resonance frequency of radjative decayyy,;/I';>1 [Fig. 2@] and y,/T';<1 [Fig.
plasmons in a periodic array of grating strifir quantum  2(p)]. In the former case the reflection of waves is negligibly
wires). Eqg. (36) provides a functional dependencewf; on  small, and the transmission minimum is due to a peak in the
the equilibrium electron density(x) in wires (similar func-  absorption coefficient. In the latter case, the absorption of
tional dependencies for arrays of quantum dots and antidotgaves is small as compared to their reflection, and the trans-
have been found in Refs. 19 and 32, respectivelfythe  mission minimum is mainly due to the reflection peak. The
equilibrium electron density in strips has a semielliptic formwidth of the resonance in the second case is smaller than that
(37), Eq. (36) gives(see Appendix B in the first casé€but does not tend to zerand is determined
mainly by the radiative decay.
(wf)?  (af )

1= 960 } “4

wﬁﬁwﬁlﬁ(f )Ewﬁl
C. Grating coupled 2DES

Now we consider the transmission of FIR radiation
\/Flez through a coupled structure “grating—2DES”, under the
wpl: m1€W

where

(45  condition when no current is flowing in the 2DE$ 4
=0). We consider two different cases: the case ohetal

is the resonance frequency of plasmons in a single wire, andrating, when the plasma frequency in the grat%gl is

the factors(f ) is due to the interwire interaction. If the wire much largerseveral orders of magnitude in a typical experi-

is formed by an externaparabolic confining potential menjy than the 2D plasmon frequenay,,(G,), and the case
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FIG._ 4. Normalized resonance frequencﬁb&(m)/wpz(Gl) for _ FIG. 5. (a) Normalized radiative decay of the mod&s(m)
thr|e$||Q|ﬁe;ent m;)gemlz 1, i and.S a7 a_functlon of thﬁ gechfrfr]etrl- and (b) the resonant transmission coeffici@int{ m), for three dif-
cal fifling hactor '_\IN a. T el rat;oD _&f‘f_o'OS' Note the differ- ferent modesn=1, 2, and 3 as a function of the geometrical filling
ences in the vertical axis scales for different modes. factor f=W/a. The ratioD/a=0.08; the scattering rate of elec-

. . ~_ trons in the 2DESin (b)] is y,=0.7x 10" s ™%

of a quantum-wiregrating, when the plasma frequencies in
the grating and in the 2DES are of the same order of magtransmission, reflection, and absorption coefficients near the
nitude. resonancev ={),(m) assume the fornf40) where

1. Metal grating szﬁfz(m)zwéz(Gm)(l—Am), (46)

Figure 3 demonstrates the frequency dependent transmis- r, (mf )2
sion coefficient of the structure “metal grating—2DES” at F:rlz(m)Engz(gmmm:rzﬁmmm’
different values of the geometrical filling factor of the grat- w1 B(f)
ing f. Three characteristic features are seen in the figure. 47
First, the position of resonances that we denot&lagm) _
does not coincide with the frequencies of the 2D pIasmongndy 72. The parameter
wp2(Gm), EQ. (33), shown in Fig. 3 by triangles for four (mrf )?
lowest harmonicen=1,2,3,4. The index “12"” here is a re- Am=2B(f )
minder that we are dealing with thecoupled 1D
(grating—2D electron system. Second, the position and thénere depends on the harmonic indexand on geometrical
amplitude of resonances for different essentially depend parameters of the structure. Note that the physical parameters
on the filling factorf =W/a. At some values of the ampli-  of the grating—the electron density;, the momentum re-
tude of higher harmonics can be comparable with or evemaxation ratey,, and the effective masa;—do not enter the
larger than those of lower harmoniéss is the case for the formulas(46)—(48), in which the grating is presented only
modesm=1 andm=2 at W/a=0.2, Fig. 3c), or for the via the geometrical parameteas W, andD. The resonant
modesm=2 andm=3 atW/a=0.6, Fig. 3a). At certain  values of the transmission, reflection, and absorption coeffi-
values off some harmonics are not excited at @lg., the cients,T,.{m), R{m), andA{m), are determined by Eq.
modem=2 atW/a=0.6, Fig. 3a). Third, the amplitudes of (41) wherey= 1y, andI'=1";5,(m).
the transmission resonances become smaller when the reso-As seen from Eqs(46), (47), and (41), the resonance
nance positiong),(m) approach the 2D plasmon frequen- frequency, the radiative contribution to the linewidth, and the
cies wp(Gy), see, e.g., the evolution of the;,(1) mode  strength of the resonance essentially depend on the parameter
amplitude with decreasingV/a [note the difference in the A,,, which exponentially decreases with the distabcée-
vertical axis scales in Figurega3—3(c)]. tween the 2DES and the grating and oscillates as a function

In order to understand these features we take the limitsf the grating filling factorf [via the oscillatingf depen-
v¢=0 (no drift) andn;—« (metal grating in the general dence of the form facta#(G,,), Eqs.(38),(39)]. If A, tends
formulas (31) and (32). The resulting expressions for the to zero, the resonance frequenci@s,(m) tend to the 2D

Ima(Gpy)exp(—2[Gy|D) (48)



1524 S. A. MIKHAILOV PRB 58

1_00:' N A A A V o8
0.95 |
0.90 |
s 06
0.85 F U=16
< 1.00 F - -
] s hel =
vé 0.95 | §_0_4_ U=12
: 2
0.90
] F Qo
= i < U=08
0.85 F
F———t 02F o~
1.00 F 1\ ~U=04
oss gﬂﬁg
oso0 b Transmission E oo A IU=O-0
E ¥ 2D plasmons ] 0.2 04 06 0.8 1.0 1.2 1.4

v Grating plasmon

0.85 F Frequency (THz)
ol U T W T YO [N S T S W N "
0.0 0.5 1.0 1.5 2.0 FIG. 7. The absorption coefficient of the structure metal
Frequency (THz) grating—2DES at the frequency interval corresponding to the first

(m=1) 2D plasmon harmonic, and at small values of the dimen-
FIG. 6. The transmission coefficient of the structure quantum-sionless drift velocityU=uv4,/vg,. Physical and geometrical pa-
wire grating—2DES at three different values of the grating plasmorrameters of the structure are the same as in Fig. Ihe black
frequencyw,; ata=1um, D=60 nm, andW=0.2 um. Param-  triangle at the bottom of the plot shows the position of the 1,
eters of the 2D layer and the dielectric constaate the same as in 2D plasmon harmoni¢33). The weak mode that intersects the pro-
Fig. 3. The parameters of the grating ayg=0.7x 10! s™%, m¥ nounced resonances ld&0.8 andU~1.5 is the mode (3;).
=0.067; and the electron densitfg) ngy=4x 10" cm™2, (b) ng;

=2.5<10" cm?, and(c) ng; = 1x 10" cm™2 Triangles show the layer with similar plasma parameteréthe quantum-wire
calculated positions of the 2D plasmon harmoni@8) for m  orating the observable resonances are determined by both
=1,...,4,0pen triangles show the positions of the grating plasmonthe 2D plasmons in the 2DES, and the plasma modes in the
(44). grating. This gives additional possibilities to control the
transmission spectra, especially in the finite drift velocity
regime(Sec. V).

Figure 6 shows the transmission coefficidrfiw) of the

plasmon frequencie&,,(G,,), but the radiative decay and
the strength of the resonances vaniBhy(m)=0, T,{M)
=1. The value ofA, vanishes whenrfm coincides with structure ‘guantum-wiregrating—2DES” at three different
any of zeros of the Bessel functiahy, for a semielliptic _ ~ :
density profile(37), or with any of zeros of the sine function, V&lues of the grating plasma frequenay,. Geometrical
for a steplike profile. In order to get the maximum strengthP@rameters of the structure are the same as in Ho, 3

of themth plasma resonance one should thus satisfy the coﬁ’l’herle the trar)smki]ssion cr:)efficient of theetal grating-
dition J2(«rfm) = maximum(a semielliptic profilg, or coupled 2DES is shown. Three new features are seen in Fig.

6 as compared to Fig.(8. First, due to the presence of the

W grating plasmon resonanaq)l an additional resonance peak
§m20-57' Em:1_7, (49) appears in the plot. Second, due to the interaction of 2D
plasmons and the grating plasmon the resonance peaks are
etc. Figures 4 and 5 demonstrate thelependencies of the slightly shifted relative to their positions in Fig(c3. Third,
resonance frequenciék,;(m) [normalized byw,(G1)], ra-  and the most important feature, is a dramatic enhancement of
diative contribution to the linewidtf';,(m) (normalized by  the amplitudes of the 2D plasmon resonances, in situations

I';), and the resonant transmission coefficidipg{m) for  \nen the frequencyj)pl approaches the 2D plasmon fre-
three lowest modes=1, 2, and 3 aD/a=0.08, for the 4 encies, Figs. @),6(b). This effect is due to a resonant

semielliptic density profilg(37). The behavior of1(M), interaction of the grating plasmon with the 2D ones, and is
I'15(m), andT,.{m) at the steplike profile is qualitatively the especially pronounced for higher 2D plasmon modes, for
same. which the amplitude of resonances is increased by about an

order of magnitudénote the difference in the vertical axis
scales in Figs. 6 and(®]. This effect is of a particular im-

If the grating coupler is made out of a metal, only the portance in the 2DES with a flowing current, as it allows one
geometrical(but not the physicalparameters of the grating to increase the amplification and to reduce the threshold ve-
determine the observable transmissi@eflection, absorp- locity in the structure with the quantum wire gratit§ec.
tion) resonances. If the grating is made out of a 2D electronV B).

2. Quantum-wire grating
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IV. AMPLIFICATION OF WAVES lim Qym,+)=wpy(Gp), (50)
.. . —0
Now we analyze the transmission of electromagnetic odr
waves through a grating-coupled 2DES with a flowing cur- lim Qq(m,—)=0Q,(m), (51)

rent. We start from the case of a structure “metal grating—
2DES.”

Udr"O

where Q,5(m) is defined in Eq.(46). The strength of the
(m,+) mode vanishes when the drift velocity tends to zero.
In order to get a quantitative description of the resonant

Figure 7 shows the absorption coefficient of the structurdeatures shown on Fig. 7 we take the linni{—c (metal
“metal grating—2DES” at relatively small values of the dc 9rating in the general formulag31)—~(32). Assuming that

A. Metal grating

current U=vy/ve,=<1.6) in the frequency interval corre-
sponding to an excitation of the firsm=1) 2D plasmon
harmonic. Here i, is the Fermi velocity of 2D electrons in

the 2DES. The physical and geometrical parameters of th

structure are the same as in Fida3(W/a=0.6). The tri-
angle at the bottom of the plot shows the position of itihe

w+ivy,|>T, and 0p2(Gm)>v,, and taking into account
only the terms withm= = |m| in the sum in Eq(32), we find
that near the i), =) resonance the transmission, reflection,
nd absorption coefficients assume the f@a), where the
esonance frequenc2=Q,(m,*) is determined by the
equation

=1 2D plasmon harmoni¢33). As seen from Fig. 7, in ) ) An )
contrast to the case of the vanishing currédt=0, lower Q(m, %)= wp5(Gm)| 1 2 +(Gmvar)** @p2(G)
curve, at finite drift velocities of 2D electrons there are two
modes,(),5(m,*), associated with each harmonic number \/ ) A2 ) A
m. We label these modes by two indexes, ), where the X\ @p2(Gr) 2 +(2Gpa)| 1- Rk
frequency of thet+(—) mode increase&ecreaseswith vy
at small vy, dQq(m,+)/dvg>0 and dQq(m,—)/dvg (52
<0 atvy—0. As seen from the figure, the radiative deca¥y' =I";,(m,*) is given by
2 2
Py ™ [ wgz(Gmm? (2Gmv o) ] -
2 0p2( Grm) Vo Gr) A+ (4G v ) *(1— A/2)

and the nonradiative decay= y,. Figure 8 shows the drift
velocity dependencies of the resonance frequefigym,
+) and the normalized radiative dec&yj,(m,=)/T"15(m)
for the modem=1 at parameters of Fig(8. The frequency
Q(m,+)[Qq5(m,—)] increases (decreases with the
square of the drift velocity aGv4<wpo(Gr)An/4, and
linearly,

QlZ(m:i)%|wp2(Gm) V1= An/2+Ghogl,

at G ¢ wp2(Gy) A /4 (the Doppler shifted plasma reso-

nances In the regionwp,(Gp) V1— A <G g < wp(Gr)
the frequency Qq(m,—) vanishes, and atG,vqy

(54

>wp(Gy) it increases again with the positive slope,

dQ(m,—)/dvg>0 at Gpu g™ wpa(Gp).** The radiative
decay, as well as the strength of thg,(m,+) resonance,

versely, from the current driven electron systémwentually
from the battery that supplies the curretd the electromag-
netic wave. The plasma mode,;,(m,—) thus becomes un-
stable aiG v 4> wp2(Grr) . *° Figure 9 demonstrates the drift
velocity dependencies of the transmission, reflection, and ab-
sorption coefficients at the resonanoe= Q) ,,(m,x) for m

=1. An amplification of the transmitted electromagnetic
waves is explicitly demonstrated in Fig. 10 where we draw
the frequency dependence of the transmission coefficient at
different drift velocities at a larger randas compared with
Fig. 7) of v4(0=<U<8).

In the above calculations we have assumed that the reso-
nance atw=1{,,(m,*) is well separated from other reso-
nanceqi.e., that the width of the resonance line is small as
compared to the distance to neighbor resongndd®re are
two effects in which this approximation is insufficient. The

equal zero ab4=0 and increase monotonously when thefirst one concerns an accurate evaluation of the threshold

drift velocity increase$Fig. 8b)]. The radiative decay of the
Q45(m,—) mode decreases from a finite value 1g}=0,
vanishes atGnvq=wp(Gn), and changes its signat
Gmv g™ wp2(Gyy). As seen from Egs(4l), whenI” equals

velocity of the amplification of waves. We define the thresh-
old velocityvy, by the conditionT s> 1. As follows from the
above discussion and Fig. 9, the resonant transmission coef-
ficient exceeds unity whe® v 4> wp2(G). This inequal-

zero, the reflection and absorption coefficients at the resaty gives, however, only the lower estimate for thg. In
nance w={) disappear, and the transmission coefficientorder to evaluate the threshold velocity more accurately one
equals unity. Whed™ becomes negative, the resonant transshould take into account that the amplification of waves
mission coefficient exceeds unity, which means an amplifishould exceed the Drude absorption in the 2DE®c.
cation of waves, while the absorption coefficient becomesll B 1) that is essential at low frequencies. Including this
negative, which means that the energy is transfered not frorfact we get the following expression for the threshold veloc-
the electromagnetic wave to the electron system, but cority:



1526

Resonance frequency (THz)

1"12(1,-)/1“12‘(1‘)\

Radiative decay (normalized)

Val Ve

FIG. 8. (@) The resonance frequendyq5,(m,*) and (b) the
normalized radiative decaly,,(m,*)/T"15(m) atm=1 as a func-

S. A. MIKHAILOV

res

'_

0.12
g 0.08 F
el i
0.04

0.00

ValVeo

FIG. 9. The resonant values @&) the transmission(b) the
reflection, and(c) the absorption coefficients for the modes

tion of the dimensionless drift velocity of the 2D electrobs ~ {12(m, =) atm=1 as a function of the dimensionless drift velocity
—vq/ve,. Physical and geometrical parameters of the structure ar8f the 2D electrons)=vy./vg,. Physical and geometrical param-

the same as in Fig. 7.

(59

_pr(Gm) ( A )
Uth™" ~ '

m
G 1+ 7)(
where the(positive factor X is determined by the cubic

equation

8y2I'2(2y,+T,)

A M w2y (Gr) A3 (58

X3+ X?=A=

eters of the structure are the same as in Fig. 7.

the parametew/a satisfies the conditiongl9), the distance
between the 2DES and the grating is small as compared to
the width of the grating strip€) <W, and the grating period

a, as well as the momentum relaxation ratg are taken to

be as small as possible. Thalependence of the normalized
threshold velocityvy,/vg, for several lowest modesn
=1,...,4, and for parameters of Fig. 3(ns,=3

x 10" ecm™2, y,=0.7x10" s, D=60 nm is shown in

The threshold velocity thus consists of two contributions.Fig. 11. The divergencies afy, are related to zeros of the

The first one,

pr(Gm) . / a
G =Up2 2’7Ta.g|m|’ (57)

m

can be reduced by choosing the structures with a low 2

electron densityn, and a small perio@d, and exploiting an
excitation of higher 2D plasmon harmoni@sereag is the

effective Bohr radius The second contribution due to the
correctionA ,X/2 in Eq. (55) has a complicated dependence

on the densityn,, the momentum relaxation rate,, the

mode indexm, and the geometrical parameters of the struc
ture. Qualitatively these dependencies can be understood

we note that the factoX equalsA'?, if A>1, andA'?, if
A<1, while the parameted, in its turn, is proportional to

a exp8G,D)
£239(rfm)

2,

T, (59

(we consider the semielliptic density profil& hus, the sec-

D

factorA,,.

The second effect which is not described by our single-
resonance approximation is an anticrossing of modes with
different m, which can be seen in Fig. 7 &t~0.8 and at
U=1.5, where the relatively weak mode {3) intersects the
modes (1+) and (1;-), respectively, as well as in Fig. 10 at
U=5.0, where the mode (3,) (which has a positive slope
with respect tovy, at so largeU) intersects the mode (1,
+) for a second time. The intersection points of modes
(my,—) and (m,, =) (Mm;>m,) are determined by the rela-
tion Q15(my,—)=Q45(mM,,*) [the moded,;,(m,;,+) and
Oq5(m,, =) do not intersect am;>m,], and the transmis-
dion, reflection, and absorption coefficients near the anti-
crossing can be found from Eg&1) and (32) in the limit
n,;— (metal grating if we take into account only the terms
with m=m; and m=m, in the sum in Eq(32). The most
interesting situation is realized at a large drift velocity,
>“’PZ(Gm1)/Gm1’ when anunstableplasma modé),(m,,

—) intersects one of the stable plasma moflg(m,,*+)

ond contribution to the threshold velocity can be reduced ifilm;>m,). This occurs at the drift velocity
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structures with the low-density high-mobility 2D electron
gas are restricted by the value df=1.8.
As seen from the above examples the threshold velocity is
still well above the desired limity~1.8. It can be reduced,
as compared to the numerical examples discussed above, by
) using smaller 2D electron gas density, smaller grating
U=8.0 perioda, and larger 2D plasmon harmonios One of the
—) problems in using the highem in the structures tetal
18l  (=6.4 grating—2DES” is a small amplitude of 2D plasmon reso-
= )] nances withm>1 and their rapid decrease with increasing
16l =) U=4.8 m, see Fig. 3. As we saw, however, in Sec. Il C 2, the use of
== the quantum-wiregrating allows one to increase the ampli-
3-)f D .
QHU=3_2 tudes of the higher 2D plasmon resonances by an order of
= magnitude[compare Figs. 6 and(8], at the cost of the
1ok L(&HEE’Uﬂ.G resonant interaction of 2D plasmons in the 2DES and the
= == plasmons in wires. Using this effect, along with other meth-

1
s Ve
N
—~——

P U=0.0 ods discussed above, one can reduce the threshold velocity
(1) ' down to experimentally achievable values. An amplification
of electromagnetic waves in the structure quantum-wire

grating—2DES is considered in the next section.

Transmission

0.8

06}
J s 3 B. Quantum-wire grating
r Frequency (THz) In order to make a realistic estimation of the transmission
coefficient of electromagnetic waves in the structure
FIG. 10. The transmission coefficient of the structure metalquantum-wire grating—2DES we do this for a hypothetic

grating—2DES at the frequency interval corresponding to the firssample with parameters taken from published experimental
(m=1) 2D plasmon harmonic in a wide range<@W=<8) of the = papers. We assume that our sample is a Gaj&&l ,As
dimensionless drift velocity) =v 4. /vg,. Physical and geometrical heterostructure ri;=m,=0.067) with the density of 2D

parameters of the structure are the same as in Fa. 3 electrons in the 2DES af,=6x 10'° cm2 (taken from Ref.
35). The low-field mobility in Ref. 35 was about,~8
; - 0e1
P 0p2Grny) + wpa( G X 10° cn?/V s, which corresponds te,~3.25x 100 s,

(59 In the high-field regime Ey~150 V/cm) the mobility was
by a factor of~4 smaller, due to a heating of 2D electrons
by a strong dc current. The dependence of the mobility on
and is accompanied by an enhancement of the amplificatiotihe dc currenfor on the drift velocity could be included into
of waves, due to a resonant interaction of different plasmahe theory through a phenomenological dependence of the
modes. In Fig. 10 one sees this effectls=5.0 [the inter- momentum relaxation ratg,(T,) on the electron tempera-
section of modes (3;) and (17)]. A small resonance fea- ture. For our estimations we use, for simplicity, the drift
ture can be also seen at the intersection of modes)and velocity independentalue y,=1.3x 10'* s, which corre-
(1,-) atU~2.6 in the low-frequency range. sponds to the mobilityu,~2x10° cn?/V s (roughly, this
In vacuum devices one can easily achieve the drift velocequals the ratiw 4, /Ey at Eq~150 V/cm in Ref. 3%. Thus
ity sufficient for the amplification of electromagnetic waves. we assume the worst value of the momentum relaxation rate
In solid-state structures Metal grating—2DES” the dis- and take into account, effectively, the heating of 2D elec-
cussed values of the threshold velocity are rather large. Itrons by the strong dc current. For the grating we assume the
order to make realistic estimations of achievable drift veloci-same momentum relaxation rate of electropss v».
ties in semiconductor heterostructures with the 2D electron Choosing the geometrical parameters of the structure we
gas we refer to the paper of Wirnet al,*® in which the have assumed that modern experimental technique allows
dependence of the average drift velocity of 2D electrons as ane to create periodic microstructures with lateral dimen-
function of the applied electric field has been experimentallysions of order of 0.Jum; see, e.g., Refs. 36, 37. The width of
investigated. The authors studied a GaAgld, _,As het-  the grating strips is therefore taken toWe=0.1 um, while
erostructure with the density of 2D electrons n§=6  the perioda=0.175um is chosen in accordance with the
x10%cm 2 and the (low-field) mobility of w,=8  rule (49 for m=3. The distance between the 2DES and the
X 10° c?/V's. The corresponding Fermi velocity of 2D quantum-wire grating is assumed to Be= 20 nm.
electrons iw,=1.06< 10" cm/s. The measured drift veloc- Figures 12 and 13 demonstrate the calculated transmis-
ity of 2D electrons increases linearly with the applied electricsion coefficient of the structure quantum-wire grating—
field up toEy~50 V/cm, sublinearly at larger fields and then 2DES, near the intersection point of the unstable 2DES
saturates ab 4~1.8X 10’ cm/s when the field is increased plasma mode,,(3,—) and the grating plasmon. Two dif-
up toEy=~150 V/cm. Based on the results of this experimentferent values of the electron density in the grating=n,
we will assume that the really achievable experimental val=6x10* cm 2 (Fig. 12 and n;=2n,=1.2x10" cm™2
ues of the ratioU=uvy /v, in GaAs/ALGa _,As hetero- (Fig. 13, are used. Three important features seen in Figs. 12

v —_— 1
dr Gm1+ sz
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FIG. 11. Threshold velocity of the amplification as a function of . . . . .
the grating filling factorf =W/a for several lowest mode numbers N OUr €xample; in Ref. 35 this velocity has been achieved at
m, and at,=3x 10 cm 2, y,=0.7x 101 s L, D=60 nm. Thin  Eo~50 V/cm. Second, the operating frequency of the ampli-
lines show the first contribution to the threshold velod&y). fier lies in the vicinity of the intersection point of the grating

plasmonwy; and the unstable modeq,(m,—), at

and 13 should be mentioned. First, the resonant amplification

of electromagnetic waves occurs at the drift velocities well ~
below the experimentally achievable linkit~1.8. The value Vg~ @p1+ 0pa(Gm) V1~ An/2 w~oy.. (60
of U~1.4 (Fig. 12 corresponds to the drift velocity g ' Gm ’ P

~1.4x 10" cm/s and the dc current densify=~0.13 A/cm

It is varied by the dc currer(the drift velocity within about

10% with respect tm~2)p1 if the physical and geometrical
U=1.44 parameters of the structure are kept constémt instance,
from =~0.73 to~0.8 THz whenU changes from 1.36 to 1.4
in Fig. 12, or from~1.03 to~1.13 THz whenU changes
from 1.52 to 1.58 in Fig. 13 The operating frequency can be

also varied by changing the frequerﬁxyl (compare Figs. 12
and 13, in quantum-wire structures tunable, e.g., by a gate
voltage. Third, the absolute value of the amplification of
U=1.36 waves near the resonances can be as great as several tens of
percents, which is due exclusively to the resonant interaction
of the 2D plasmons with the grating plasmon in the
quantum-wiregrating. For a comparison, in Fig. 14 we show
the transmission coefficient of the structure metal grating—
2DES for the same parameters of the 2DES, the same geo-
metrical parameters, and in the same frequency and drift ve-
obs | 00 | 0%5 | o0B0 o085 | 050 !ocny intervals as in Fig. 13. A weak rgsonant feature that
Frequency (THz) intersects the plot along t_he diagonal is _the gnstable mode
015(3,—). As seen from Fig. 14, the amplification of waves
FIG. 12. Transmission coefficient of the structure quantum-wirel the metal grating structure geveral orders of magnitude
grating—2DES  for n,=n,=6x10°cm™2  y,=v,=1.3 Smaller than in the structure with the quantum wire grating
X10" s71 a=0.175um, W=0.1 um, andD=20 nm. The fre- (note the very large difference in the vertical axis scales in
quency and the drift velocity intervals correspond to an intersectiorFigs. 13 and 1%
of the grating plasmon and the (3) 2D plasma mode. The black ~ Thus an amplification of FIR radiation in structures with
triangle at the bottom of the plot shows the position of the gratingthe quantum-wire grating can be obtained at realistic, experi-
plasmon(36). mentally achievable parameters.
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FIG. 14. The same as in Fig. 13, but for a metal grating with Frequency (THz)
ng=6x10"%¥ cm?, y;=1.1x10" s, andm,;=1. Note the large
difference in the vertical axis scales in this figure and in Fig. 13. FIG. 15. The absorptionthin curve$ and emission(thick
curves spectra of the structure metal grating—2DES for parameters
V. EMISSION OF WAVES taken from Ref. 13. The curves are vertically shifted for clarity, the

. . . ...__,. absorption and emission are plotted in arbitrary units.
In previous sections we have discussed an amplification

of electromagnetic waves in the structure influenceddbth

the incident electromagnetic waead the strong dc current the environment temperaturéo=4.2 K, and T.=100 K

(Te=50 K) for the sample witte=2 um (a=3 um). The
whole behavior of the emission spectra qualitatively agrees

magnetic waves due to a disturbance of the thermal equili 9_\/|th the measured ones, the position of peaks in Fig. 151s in

rium (spontaneous radiatipnThis situation has been real- a good quantitative agreement with those measured in Ref.
: : : : 13, see Table I.
ized in experimental papers published so®dF In order to

describe the emission spectrum using the formalism devel: It should be noted that the problem of the emission of
P 9 : ‘ight from the grating-coupled 2DES with a flowing current

ﬁas been considered in Ref. 18. It has been solved in a com-

into account that the sample has a higher temperaflige (
than the environmentT(,). Taking into account that the
sample reflects and transmits the incident blackbody radi
tion with the intensityl,,(w,Tg), and emits the radiation
with the intensityA(w,vg) ! pp(w, Te),>¢ We obtain that the
emitted radiation registered by an external de\(@éer) in
the frequency interval between and w+dw is given by

tion of the emission problem is, however, not well defined
and cannot give the emission spectr(6i) (the fact that the

% mission of light from the system is due to the blackbody
radiation of a sample heated by the dc current has been ig-
nored in Ref. 18 Indeed, when the transmission of light is
calculated, one gets a set of equations for Fourier compo-
nents of the total electric fiel(Bec. Il or Ref. 1Y

E(w,vg) =A(@,09)[lpp(@,Te) —lpp(@,Tg)].  (61)

Here A(w,vy,) is the absorption coefficient of the structure
calculated in Sec. Ill, Eg25), and

E MG'GrEtGOE = EeXt, (63)
GV

whereM c.c IS an infinite matrix over reciprocal lattice vec-

% 03dw tors. The spectrum of eigenmodes is determined by the equa-
lpp(@,To)= Znc( oMo 1)’ (62)  tion detM=0, the total self-consistent electric field can be

is the intensity of the blackbody radiation in the interval _ TABLE I. Position of resonance peak$Hz) for two samples

(0,0+dw) with the perioda=2 um anda=3 um, measured in Ref. 13 and
i:igure 1'5 demonstrates the absorptidnin curves and calculated in this work; see Fig. 15. For other parameters see the

emission (thick curves spectra of the structure metal text.

grating—2DES under the conditions of the experiment of Ref.

13 (n,=5.4x10" cm2, a=2um anda=3 um for two m-1 m=2 m=3
different samplesWW/a=0.6 in both cased) =62 nm, and a=2um, expt. 0.69 1.3

the filter linewidthAf =85 GH2. Plotting the figure we have a=2 um, theor. 0.68 1.24

assumed a steplike electron density profile in the graasgy a=3um, expt. 0.47 0.9 1.26
the more relevant one in the case of the metal grating with a=3 um, theor. 0.50 1.00 1.25

wide strip3, as well as the scattering rajg=5x 10" s7 1,
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found from Eq.(63), if the matrixM is inverted'’ Thetrans-
missionproblem is thus well defined.

In Ref. 18 the authors have derived a similar equation for

the emissionproblem, wherv 4,# 0 andE®*'=0. In this case
however, the right-hand side of E¢3) vanishes, and the
drift velocity v, enters only the matri#. The spectrum of
eigenmodes of the systefincluding unstable ong¢san be

PRB 58

(4) The grating period should be as small as possible. This

condition seems to be in some contradiction with another
one,a>D, which follows from the requirement that the
interaction of plasma modes in the 2DES and in the grat-
ing [described by the exponent expG,D), Eq. (48)]
should be sulfficiently larg€or instance, in Ref. 13 the
grating period was by an order of magnitude larger than

the one we have used in Figs. 12, 1Revertheless, the
inequality D<a (more accuratelyD<W, see below
should be considered as a condition for while the
period should be taken to be small. As seen from Eqgs.
(57),(59), this leads to a reduction of the threshold ve-
locity.

calculated from the equation deét=0, but the induced radi-
ated fieldE)? , cannot be found in this fashion, as the right-
hand side of Eq(63) is zero. Instead of the intensity of the
emitted waves, Kempat al.ll8 calculated the ratio of the
macroscopiqradiated field Egio to the microscopidnon-
propagating field Egio. This ratio characterizes the grating

as a coupler of the plasmon field to the propagating electro® The width of the quantum wiresiust satisfythe condi-
magnetic radiation, but is not an appropriate characteristic of ~tons (49) (or, Wna=1,2,3,..., if the steplike profile

the emission process, as it does not vanish, for instance, at Seems to be more appropriate for a description of a par-
vg=0. ticular systerf). As seen from Fig. 11, a correct choice

of the ratioW/a is of particular importanceespecially
when the higher 2D plasmon harmonics are used.
(6) The distanceD between the 2DES and the grating
We have developed a general analytic theory of the trans-  should meet the conditioB <W. This requirement fol-
mission, reflection, absorption, and emission of electromag- |ows from maximizing the exponent expG,D), Eq.
netic waves in the structure “2DE&V|th and without the (48)’ if we take into account that the ratWnva is al-
flowing dc current—grating coupler.” We have demon- ready fixed by the conditiong9).
strated that an amplification, and hence a generation, of FI ) The operating frequency of amplifiers can be varied by
radiation(the lasing effegtcan be obtained in semiconductor the dc electric current flowing in the 2DES and/or by
microstructures with realistic experimental parameters. Sum- changing the electron density, (more generally, the

marizing our results we formulate the requirements that ¢ S Vinth i . "
should be met in order to create a successfully working am- resonance frequenayy,) in the quantum-wire grating.

plifier of FIR radiation based on the grating coupled 2DES
with a flowing current.

VI. SUMMARY

We hope that these recommendations will be helpful in
creating tunable FIR sources and lasers, based on electron
(1) The density of electrons in the 2DES should be smallsemiconductor microstructures of low dimensionality.

This requirement seems to be paradoxical, as the inten-
sity of the transmission resonance at the vanishing drift
velocity v4,=0 becomes very small whem, decreases.
Nevertheless, at a large drift velocity the intensity of
resonances becomes sufficiently landgeég. 10, espe-
cially in the structures with a quantum wire grating
(Figs. 12, 13, but the threshold velocity of amplification
decreases with,, Egs.(55), (57). Note that this require- APPENDIX A: SOLVING THE INTEGRAL EQUATION

ment has not been satisfied in previous emission experi- (15)

ments(for instance, in Ref. 13 the 2D electron density A general scheme of solving the integral equatids)
was by an order of magnitude larger than the value thatonsists of the following. Le©,(x) be a set of orthogonal
we have used in Figs. 12, 13ote also that in vacuum polynomials with respect to the weight functiah(x) that
devices the plasma frequency in the electron beam usesghtisfy the condition

to be very small G v 4> wp).

(2) The mobility of 2D electrons should be sufficiently
large; however, this requirement is not so crucial as oth-
ers. ‘_\.5 we have seen in Figs. 12 a_\nd 13, a conmderabﬁor the profile(37) O, (x) are the Chebyshev polynomials
amp!lﬁcatlon of light could be achieved at a moderateSubstituting an expansion
mobility of u,~2x10° cn?/V s.

(3) The most important requirement imposed on the grating
is that it must be @uantum-wiregrating, but not a com-
monly employe& 2 metal one. It is the resonant inter-
action of plasma modes in the 2DES and in the gratingnto Eq. (15), multiplying by 9(x)O,,(x), and integrating
that allows one to significantly increase the amplificationover dx we get an infinite set of equations
of light when using the higher 2D plasmon harmonics,
and hence to reduce the threshold velocity of amplifica-
tion.
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 P00u(X)0(X) = 81y (A1)
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which can be solved approximately by truncating the matrixThe expansion(44) can now be easily obtained from Eq.

Smnt Lmn to a finite sizeNXN. Here

2mif({op(w

L= DS W(G.0)k6hn(GIB(O)
G
(A4)

(B5) at f<1.

2. Relation to the generalized Kohn theorem

In many publications concerning the electromagnetic re-
sponse of a confined system of electrons like quantum wires

Bm(G)=(F(x)Om(x)e'® "), and the star means the complex or quantum dots, the resonance frequencies are discussed in
conjugate. The approximation accepted in the main body oferms not of an equilibrium electron density, see EB§),

the paper corresponds td=1. Physically, truncating the but of a confining potential. One can state a relation between
matrix to the 1x 1 size we neglect effects related to an ex-these two approaches.

citation of quadrupole and higher plasma eigenmotes
the grating strips.

APPENDIX B: RESONANCE FREQUENCY IN AN ARRAY
OF WIRES

Let an array of wires be formed by an external confining
potential(potential energy

vexmx>=2k Ve X— Y- (B6)

Equation(36) gives an expression for a dipole excitation The total self-consistent potentilo(X)=Ve(X) + Ving(X) is
resonance frequency in an array of wires as a functional Oéiven by the sum of external and induced potentials, where

the equilibrium ele_ctron d(_ensitﬁ(x). It can b(_a presgntgd N the induced potentia¥;4(x) relates to the densitfl) by the
different forms which clarify the role of the interwire inter- pgisson equation

action and the relation to the generalized Kohn theotém.

1. Interwire interaction

In view of Eq.(45) one can write

Z)Sl 7TfW
5 =5 2 |Gunla(Gn). (BD)
wpl Gn#0

For a semielliptic density profil€37) the form factora(G)
is given by Eq.(38). Using the transformation

adq :
2 F(Gp)= f 2 P2 €% (82)
wherea,=ak, we get
NI L PR,
— = HJl(qW/z)kZ glaak, (B3)
pl — o0 =—00

The term of the sum witk=0 is independent of the grating

period a and gives, after the integration ovdg, unity. It

47e®N4(x
1( )5

AVing(X,2)=— p

(2). (B7)

Equation(36) can be written as

2
~> 2Te

W1 =7 GnN f dxny(x)e X,
pl mlewnl 29&0 | m| 1G,, cell 1( )
(B8)

where the integral is taken over an elementary cell. Due to
Eq. (B7) the Fourier component of the denshy ¢ is related

to the Fourier component of the induced potentigly g
=2me?N; ¢/ €|G|, so that we can write E¢B8) for a single
wire in the form

1

2 _ '
Wl = T f dxm(X)A,Ving(X),

(B9)

whereA, is the two-dimensional Laplacian and the integral

describes the contribution of a single wire. The correctiondS €xpanded onto the whole axis. Replackig, by the dif-

due to the interwire interaction are then written as

~> "
1) » dx ) )
—Sr=1+23 | IX(txik)(e*+e ™). (B4)
Wp1 k=1 Jo X
In the first(second integral in Eq.(B4) we rotate the inte-
gration path by an angle /2 (— 7/2) to the uppeklower)
complex half-plane. The functiod, is transformed td,,
and we have

~ "
w » dx
214> f — e 2(fx/2K).
wpy k=1 Jo X

(B5)

ferenceV,,—Vey, ONe sees that the contribution due to the
total self-consistent potential vanishes,\4g is constant in
points where electrons are. Thus, we have

w3, = !
PL myn,W

dXNy(X) AoV X). (B10)

In a parabolic confining potentials,(x)=Kx2/2, and Eq.
(B10) reproduces the statement of the generalized Kohn
theorem?®

wd =K/m. (B11)
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