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Symmetry of binding in doped antiferromagnets
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Using variational wave functions the construction of which is based on the “string” or “spin bag” picture,
we calculate the energies of two-hole states classified according to the momentum and the different irreducible
representations of th€,, point group. We study different ratiod/t, interesting from the experimental
viewpoint, and compare our results to exact diagonalization. The energetically most favorable pair symmetries
ared,2_,2 andp like. The mechanism of hole binding is the caterpillar-type motion of two holes connected by
a string of spin defects, whereas the well-known “broken bond” mechanism does not produce binding for
t/J>0/4.[S0163-18208)05442-3

I. INTRODUCTION also by Dagotto, Nazarenko, and Mor&oSuch a Hamil-
tonian in a more general, however implicit form that repre-
The highT. cuprate materials display the basic connec-sented many ways in which two dressed holes in an antifer-
tion between antiferromagnetism and superconductivityromagnetic environment interact with each othel! was
This fundamental property must be explained by any conalso discussed for the one- and two-hole probtéfi.The
vincing theory. That conviction has led to an attempt to for-effective interaction of three holedthree-body terms
mulate a unified theory of superconductivity and antiferro-which is relevant to the issue of phase separation was derived
magnetism based on $8 symmetry® Some recent for the one-dimensionalJ model in a staggered magnetic
numerical resulfs® additionally support SG&) symmetry as field.!’
a concept that unifies superconductivity and antiferromag- The necessity of understanding weakly doped antiferro-
netism. We devote ourselves to a slightly different questiormagnets in terms of an effective Hamiltonian follows from
as to why interaction of holes with antiferromagnetic envi-the failure of the Fermi-liquid-like calculations, based on the
ronment favors particular symmetries of bound pairs. Fermi surface consistent with the local-density approxima-
The simplest Hamiltonian that may be expected to contairiion, to describe the doping dependence of either dc resistiv-
the key features of a doped Mott-Hubbard insulator and béty or the Hall constant on the hole concentration. Experi-
capable of resolving some of the numerous anomalies of cunental results for both quantities suggest that the carrier
prate superconductors is the) model: density is proportional to the hole concentrati8ihe later
feature is at odds with the local-density approximation,
At oA nin; which leads to a conclusion that transport is electronic in
Hz—t_z (Ci,ocj,0+H'C-)+‘JZ SS]-—T . (l) origin.
(e o Many properties of the high-temperature superconductors,
The S are electronic spin operators{ ,=c{ (1—n; ,)  such as the penetration depth, the Knight shift and the
and the sum ovefi,j) stands for a summation over all pairs nuclear relaxation rat€; ! are consistent with dy2_y2 gap.
of nearest neighbors. Angle-resolved photoemission spectroscdpRPES mea-
Numerical evidence sugge$ttat for hole densitiep,  surements find evidence for a highly anisotropic gap, which
>0.3 the ground state of titeJ model conforms to the con- can be interpreted in terms af2_,2 symmetry. Supercon-
ventional theory of the Fermi liquid. It is not true, however, ducting quantum interference devi¢8QUID) interference
for smaller densitiesp,=0.25. In that region the density experiments, corner Josephson junction studies, and flux
excitations resemble those of condensed bosons with charaguantization measurements in grain boundary rings are also
teristic energy scale while the spin excitations have fermi- consistent with al,2_2 gap. Interpretation of some experi-
onic character with the characteristic energy schteThe  ments in terms of a mixed+d state seems, however to be
low doping behavior of the system may be naturallymore appropriate. The majority of superconducting copper-
explained within the spin b&gr string ~*°picture. The one-  oxide compounds has an orthorhombic structure. Mixing of
to-one mapping between the fermionic degrees of freedom id,2 2 with other symmetries is well understood in that case,
the low-energy sector of the model and a system of spin-1/Pecause gap functions may not be classified according to the
quasiparticles may be establishédThe effective Hamil-  different irreducible representations &f,,. On the other
tonian for those quasiparticles consists of a term that is rehand, the orthorhombic distortion is rather weak, and the gap
lated to next-nearest-neighbor hopping and terms that repréanction should be very reminiscent of a function that be-
sent exchange and attractive nearest-neighbor densitygngs to an irreducible representation®f,. Moreover, the
density interactions. A similar Hamiltonian was proposedsuperconducting La ,Sr,Cu0Q, compound is in the tetrago-
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nal phase fox>0.4, hence one might argue that the ortho- We start to describe the twofold dynamics of holes by
rhombic distortion in not crucial to the origin of supercon- constructing a family of operators, that move a hole by one
ductivity. In these circumstances, discussion of Hamiltoniandattice spacing, and by definition decrease the staggered mag-
that possess the full symmetry Bf,,, like thet-J model, netization by 1 A denotes thg sublattice and € A):

seems to be acceptable.

Our aim is to study interaction of quasiparticles in the T<i,,—>=(Cﬂilcj,ﬁrcjfrﬁcm). (2
moderately dopettJ model, that is, in the presence of anti- . . .
ferromagnetic correlations, and explore the structure ofve ajso cons@em holes create_d at some Sm@? oodm N
bound pairs by comparing the results of an exact diagonal'e NI state witm upturned spins at some sites ... .j,.
ization with an analysis in the framework of the string or ACtiNG consecutively with the operatork; ;,, we obtain
spin bag approach. We concentrate on the symmetry of th%tr!ngi states, where _eac_h hole is connected to its ‘“starting
wave functions of a hole pair in order to understand Whypomt by a trace of misaligned spins. We denote such a state

antiferromagnetic correlations favor states that belong to par@SH(ik P} whereP, parameterizes the _ge_ome_try of
ticular representations @, . the path that has taken the hole created at the sit&tring

In the earliest version of the spin bag picture originally States with the same set of “initial sitegi,j and the same
proposed by Schrieffer, Wen, and ZhArfgr the Hubbard set{]l} of sites where spins were upturned are coupled by the
model, an added hole weakens the antiferromagnetic corrél°PPing term; a superposition of such states therefore de-
lations, creating a region that can be shared by another hol&C"ibes holes trapped at the sif¢g}. As mentioned above
The rise in energy that is caused by a depression of thH'€ key assumption of our approach is the separation of en-
staggered magnetization surrounding the hole may be r&'9y scales between the rapid incoherent zigzag motion qf
duced in such a way. In the opposite lirait=W, where the the self-trapped holes and the slow coherent motion medi-

Hubbard model is basically equivalent to thé model, a ated by spin fluctuations. In order to describe the coherent

similar mechanism is operating. The binding energy of two?/92ag motion we define a state with holes trapped at the

holes with antiparallel spins in the model was calculated SIt€Si1, - - - im Dy the ansatz

by means of the spin bag approach and results of various

extensive numerical calculations were reproduced with rea- )= . . i i

sonable accuracy:*® Those calculations, Eowever, did not V.60 {;k} i o PORAID. @)

cover all representations @,,, because they did not take - .

into account the full possible internal structure of spin bags] e coefficients ay;, ny, () are determined such that

In a study of the one-dimensiongdJ model in a staggered Wiy qj)) iS an eigenstate of a Hamiltoniah’ that repre-

magnetic field, the variational Hilbert space included wavesents dynamics of the self-trapped holes:

functions that represented all different “orbital states” of

spin bags.’ That extension was crucial to achievement of H,|ql{ik}'{jl}>:E{ik}’{j|}|lp{ik}'{jl}>' 4

good agreement with the exact diagonalization. In our varia-

tional calculation we concentrate on the4 cluster; how- In H’ all processes which lead to relaxation of strings have

ever, the spin bag approach is also applicable to the infinitbeen neglected. We also assume at this stage that {7aths

lattice. It would be also possible to compare results of thedo not cross, that is, we solve effectively the problem of a

analytical method with simulations on slightly larger clustersself-trapped hole on the Bethe lattice with the coordination

but the 4x 4 cluster is particularly suitable for visualization numberz=4. The relaxation of strings and crossing of paths

and analysis of finite-size effects. give rise to effective overlap and Hamiltonian matrices
which describe the coherent motion of holes. The problem
defined by Eqgs(3) and (4) has its “internal” symmetry

IIl. SPIN BAG STATES determined by the configuration of the sifég} and{j,}. In

A pronounced separation of energy scales in the motiof® case of a single hole created at a siéd no upturned
of doped holes is the basic assumption of our variationapPinS that symmetry contains all permutations of paths that

calculation. A mobile hole that is created at some site in a2€9in ati. We shall use states which belong to some irreduc-

Néel-ordered spin state feels an effective potential due tdPl€ reépresentations corresponding to those internal symme-
formation of strings®” Coherent hole propagation becomes 11€S in order to construct irreducible representations of the

possible only due to the relaxation of the string of defects by?Mall group for values of the total momentum allowed by the

means of the quantum fluctuations of the spin system. Hoig"ape of the cluster. . _

motion is therefore the superposition of two very different. SiNce each hole e trapped within a typical length
dynamics: the rapid incoherent zigzag motion of the self{Which scales ast(J) 7] around its starting pointy, the
trapped hole on the energy scaleand superimposed onto holes_ will fe_el the presence of o_ther h(_)les_or upturned spins
this, the coherent motion on an energy schibat is enabled only if the distance of their startmg p0|_nt_s is smaller than

by the relaxation of the strings. This separation of energy' if there are some upt‘L‘Jrned_ spins W'tf"”_that range. If the
scales manifests itself by the fact that the creation of a singlg'sfffﬂ?ceS between the starting point$l} in Eq. (3) are
hole in an antiferromagnet lowers the kinetic energy by aPairwise larger tham, Eq.(4) is solved to good approxima-
large and nearlyk-independent amount amount(which ~ tion by a producensatz

stems from the incoherent zigzag motiomhereas the dis-
persion of the low energy statéahich stems from the co-

i 1= a’¥ S 5
herent motioh rigorously scales wittd.2° {0 PR l_k[ (P} ©
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in the expansior{3) for that state depend only on length of
paths QPG PYIBES AP IP) - The second class of

starting points contains sités j such thatR; — Ri=2x+y,
together with all analogous pairs which may be obtained by
acting with symmetry transformations of thex4 cluster.

c) Fig. 1(b) depicts the initial configuration of holes and spins

S

related to the state |<I>i2;(+9>. The coefficients

Q.7 P} B} in the definition(3) of a state with the low-
est energy are given to good approximation by the product
Zq(pi)fn(pj) , Wherea, ) is the totally symmetric solution for

Eq. (4) in the case of a single h°|¢cbis,z§:§/(29ii)> denotes
the corresponding state. The second argument in the sub-
script is equal to the differenc®;—R;. We do not take into

s -
account statez:1;<1>i _2;(+§,(_29+;()> because the vector 2x
FIG. 1. Initial configurations of holes and spins related to spin_ ~,  j~_ =, . Lo N AL~ A Al
polaron statesta) /&%), (b) -[®°.- ). (0 | () Lo y *y(—2y*xx)is an.equwaller)t of the vectorxzy(_Zyix) in
@ ‘ ix/ i2cty/ s VT iyl ixy/* the 4x4 cluster with periodic boundary conditions.

(©) ~[ @515 20s50 (01D, 52, ;). wherei and] belong, respec- Due to the high symmetry 0f|CI>is+;((+9)> and

tively, to the even and odd sublattices. s o g Y )
| i,zit9(29i>2)> it is impossible to construct all irreducible
representations of small groups of the wave veg&ttny us-
(6) ing just these functions. To obtain less symmetric counter-
parts of|d>is+;((+9)) we consider as a firginitial) state in the
wherea(, ) . (Bl 4, ) are the expansion coefficients sum (3), the Neel state with a spin upturned at a sjtend
(eigenenergiesfor the 7th eigenstate of a single-hole self- two holes created at two nearest neighbigrandi,. The
trapped in an antiferromagnet with spins upturned at the sitelinks between the siteis-j andi,-j form a right angle, that
jk1.Jk2, - --- They can be computed from a ScHioger s, Ril—Rj:ii, RiZ—RJ:ig/_ |<I>f1)A ) denotes a

: o : - (0) jixxxy
equation that is discussed in the Append|xE§joJ} denotes state with coefficientSa{(i1,p1),(i2,p2)},“}=a|(p1),|(p2) that

the contribution to the energy from upturned spins at thedepend only on length of path¢P;), |(P,). Figures 1ic)

SiteSjo1.jo., - - - Outside the range of motion of all holes. 54 yq) depict the initial configurations of holes and spins
If one pair of sited,]j is close to each other, but still far (1) (1) . .
related to the statelsbj;_;&) and |<Di;_;’9>, wherei andj

from the other ones, the two holes will only feel the presencebelong respectively. fo the even and odd sublattices. By

of each other. In this case a ScHimger equation for two ? . . i
holes has to be solve@ee the Appendix A Then the two- choosing the antiferromagnetic state with two holes created

particle state and the eigenvalue of the two-particle Schro@! Sitesi, i" and a spin upturned at a sitewhereR;, — R;
dinger equation have to replace the respective quantities iff =x*y and R;—R;=Ry,~R;+[(Ri,—Rj)x]x or Rj—R;
Eq. (6). This procedure is readily generalized to the case o=R;,—R;+[(R;'—R;)y]y, as a first state in the su(®), we
an arbitrary number of groups of several holes that are clusonstruct a less symmetric counterpart |6f’ i A)>
. i,2xty(2yxx)/"
tering togeth_er. : : We shall use the notatiob(2 . ) for such states.
The solution of Eq(4) with a lowest energyEy; , (j is _ _ BT R B _
evidently given by the totally symmetric stat®), which is Figures ]_;e) and Xf) depict the initial confl(gzl)Jratlons of holes
invariant under all group operations related to the internafnd spins related to the statefb;* ... -) and
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symmetry. In that case the coefficients;, p,; ;) depend |<I)§_2;<)+9 2;+9>, wherei andj belong, respectively, to the even
only on the length$(P,) of pathsP,: and odd sublattices. Our assumption, by analogy with
B |} 55 c00ay)s IS that coefficientsay ). v pryy gy N the
Xl P~ M POL - @) exlp’a)%_syii)%(_:?:()) may be factorized:
In order to apply this construction to the problem of two QL) PO QG PLBY G P OV (8)

holes with antiparallel spins on thex# cluster we notice )

that there are only two different nonequivalent configurationé’.\’here (i, P),} {2} gnd i, pryfj) are, respectively, a f50|U'

of starting points if we require that the holes should be origi-tion of the Schrdinger equatior(4) in the case of a single -
nally created at sites that belong to different sublattices. OnB0l€, no upturned spins and a solution for a single hole ini-
category of starting points is composed of all nearestfially created at a nearest neighbor of a site with an upturned

neighbor pairsLCD.S ) denotes the most symmetric state spin. In both cases the ground state possess the highest pos-

. i = X(£y) - sible symmetry, so that the coefficients; p); 7 and
(3) which represents two holes initially created at such a pair 1.1i1 depend only on length of pati3and P

of sitesi,j in the Neel state with no upturned spin®;,  “1("?’
—R;==*x(*y) andi belongs to the spin-up sublattice. Fig- i, P} @)= A(P) » (9)
ure 1@ depicts the initial configuration of holes and spins

related to the Statfﬁbi;() The COGfﬁCient&l{(i’pi)’(j’pj)}'{g} a{(i/ypr)}y{j}=a|(p,) . (10)
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TABLE |. Variational wave functions that realize irreducible representations of small grougsirof

terms of functiond®; .5 . o) and|®] ;.50 5)-
k Representation Wave function
(group
0 A1(Cyq) J%/zzieA[a(|q>f’;>+|cbf’_;)+|c1>j9>+\q>§‘_9>)
+B(P 5, ) D] 5 ) TP 5 D] 5 )]
0 BA(Cay) J%/zzie;\[adcbi;w|<1>?,7;>—|¢’i;>—\fbif;»
+D(|OF 5 ) P 5 )= D] 5, 019 5 )]
0 E(Ca) J%ZziEA[a<|<I>?,;>—|<I>?,,;>)+b<|<1>?,2;+;>—|<I>f,z;+;>)]
(m,0) A1(C2y) \/%Eie/«eim‘[alﬂ@is,;ﬂ|‘1>is,;>)+az(|‘1>is,g,>+|‘bis,g,>)
Fh1(|D5 5,50+ D 50 DD 5 )+ [P 5 N
(m,0) B1(C2,) s A AT [ )b BT~ B )]
N2 A iy i,—y i2x+y i2X-y
(m.0) B2(Ca2.) J%/zziEAeikRi[a<|<I>i;>—|<I>?,_;>)+b<|d>?,2;+;>—|<I>f,2;_;>)]
(ml2,ml2)  Ay(Cy) \/%ZieAe‘kRi[al(|<Di;()+|<I>isy§,))+a2(|fl)is’7i)+|<I>is’79))
+Dy(|B7 5,50 D] 55, D) TD2A D] 5 o)+ D 5 )]
(7/2,m/2) Ay(Cy) \/%EiEAe‘kRi[al(@ﬁ;)f|d>i519))+a2(|d)is‘7;)f|d>i5179>)
+0y(| D 5, )~ 1P 5 )+ 02| D] 5 ) =[BT 5 )]
(/2,0) As(C9 J%/ZziEAeikRi[allfbi;HazI@i;>+as<|<1>f,9>+|‘1>f,9>)
+Dy(|B7 5, 5y D] 5 50 T2 D 55 ) +ba| DT )]
(72,0)  ACY) J%/zziEAeikRi[adcbiy—|<I>?,_;>)+b<|<1>?,2;+9>—|<I>i2;_9>)]
IIl. VARIATIONAL WAVE FUNCTIONS 1@

23y, = 2xey(xe2y)) - The wave functions that realize the
We have to consider few points in the Brillouin zone less symmetric representations in terms of the states

because many of them are either related by symmetry tran$é1)|(_1+); +9> and|CD|(_2+);<+9 +2;<+9(+;(+29)> are listed in Table II.

formations or differ by the antiferromagnetic wave vector =~ T

Q= (m, 7). By choosing an antiferromagnet as a medium in

which holes propagate and interact we have effectively re- IV. INTERACTION OF SPIN POLARONS

duced the size of the Brillouin zone so that the moménta . . . .
andk+ Q are equivalent. Table | gives the variational wave The stateiS) Qescrlbe the trapping of.holes in an ar]tlfer-
@magnetlc medium by local deformation of the spin ar-

functions that realize some irreducible representations o ! X . .
Il arouns ok in terms of the function$d>s .Y and rangement. The notion of a spin polar_on is therefore appli-
lsmsa group LEX(£Y) cable to them. In the previous section we have shown

‘I’i,z;ig(zﬁiﬁ- combinations of polaronic states with given momentum and
Some representations can not be constructed using onsymmetry. To calculate the energy we now need to know the

those states, because their symmetry is too high. Quite gefellowing overlap and Hamiltonian matrix elements:

erally, loss of symmetry brings rise in energy. The most

symmetric solutions of Eq4) that allow us to construct the

remaining representations are statdd". -} and N sty by = (Y tigti Wi 170

I, £x,*y

11
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TABLE Il. Variational wave functions which realize irreducible representations of small grouksrof

; (1) (2)
terms of functiongd, ;- . o) and|® 7o oo ooniy)-

ESED)
k Repr. Wave function
(group
1 1 1 1 1
0 Ay(Cyy) _/N—/Z{EieA[al(|(Di(;;()'y>+|q)i(;z;(,—y>_|(D§;>A(),*y>_|q)§;i;,y>)
(2) (2) (2) (2)
0[P ey TPy o TPy o) TIPSy iy
(2) (2) (2) (2)
Py Py o) T Py xe ) T P o))
y y Y y’ Y. Y Y. Y’
+Zjeala;—ay,by—by,i—=jl}
1
(2) (2) (2) (2)
0 B2(Ca) TS AP y) 1P i) I o) TP )
(2) (2) (2) (2)
A SRR R [ RGP S | ST AP Rl [ IR RP)
+Zjeaba(i—])
1 _
R (1 (1) &) (1)
(m.0) Ay(Ca0) \/le{zieAeI '[al(|q)i;§<,y>+|q)i;—§<,—y>_|q)i;;<,—y>_|(bi;—;<,y>)
(2) (2) (2) (2)
RIS R L P Rl [ P bl L S I)
(2) (2) (2) (2)
ML TP R [N SISl [ SRR b [ F S AP )|

+2jéAeikRj[al_’aval_’b31b2_’b4xi_’j]}

Heivgini 11 =( P il H| Wiy 671, (12 have assumed that the site in the lower left corner of each
i ki 10, 4 -t} et} diagram belongs to the spin-up sublattice. Figui@ Bepre-

These will now be discussed one after another. The simpleSENtS overlap between two string states, which gives rise to a
terms in the diagonal elements of the overlap and Hamil{erm in a matrix elementNg, ;47 )6,y for i
tonian matrices come from self-overlap of staJtds{ik},{jIQ ={i.io}, {i}={2}, {iﬁf}={i3,iz} and {jl’,}:{@};

and from their eigenenergiés; , ;. During the process of whereR; —R; = +x(+v) and Ri,~Ri = +2%(*2y). The
construction of stateisl; , ;) that are solutions of Ed4),  states coupled by that element are ground states of4q.

we have made many simplifications. Crossing of paths anthat represent holes oscillating in the vicinity of a pair of
processes that lead to relaxation of strings have been neearest-neighbor sites. They possess the highest possible
glected. They should now contribute to eleme(®$) and  symmetry: |{i1,i2},{®}>=|¢>f +;((+A)>, [{ig,it {O))=

(12). All such new terms have been represented by a kind of ) 1 ==Y . i
diagrams depicted by Figs. 3—15. Figures 3-5 represent mé@is,:;(:9)>- Figures 2a) and 2b) depict original configu-

trix elements that couple statesICDis+;(+9)> and ge(\ti)ons whicr;{c)orrespond to ;hef!eftl and central parts off_ Fig.

s : . _ U a). Figure Zc) represents the final common spin configu-

| i,ZXty(Zy:x)>’ (\i\;h'le Figs. 6(21)5 represent elements thatration that was formed after the right hole in FigaRand the
couple statesd; ;o) and|d" o o L0 o son)- OPEN  eft hole in Fig. 2b) had moved by one lattice spacing in the
and solid circles in the right part of each figure representhorizontal direction. The corresponding term in
starting sites of holes for both states that contribute to the

matrix element and correspond to two sets of indiéglsand oo 1 X 100 e} 1 o
{i,,}. Open and solid diamonds also represent two sets of iy ip is Q1 iaig  dqipig
sites, namely{j;} and{j,,} where spins have been upturned. (a) (b) ©

Left and central parts of diagrams demonstrate how identical

states can be generated from different original configurations l
of holes. They depict two string staté§(i,,P,)}.{j}| and 0
[{(i . Px)}{i|.}). An arrow represents a path that a hole

has followed. A curved arrow depicts action of the hopping

part of the Hamiltonian on a string state. The action of the 1
exchange part of the Hamiltonian is represented by two 1
slanted crosses. The Appendix B explains rules for obtaining ) ) i)
elements of the overlap and Hamiltonian matrices from dia-

grams presented in Figs. 3—15. Figure 2 shows, for illustra- FIG. 2. Spin configurations related to some contributions to
tion, the spin configurations related to some diagrams. Weverlap and Hamiltonian matrices.
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CO» | 0@ 00 @ -«—(L . eX . @« @
.0 . ex ' .8O
" = = : = =« @ : = = @
I I (b) | |
o) o—I | == ! OO0 @ ! o0 ! { I J (b)
50 1 xx | oo
cos wd® 0@ ©
= = = : = = @ : = = @
1 ! (C)
" = = : L. : = = @ (d) @] O—I : ® X X : g O =
O O—s= | -«—-—: OO0 e
[ I T ] : @ = = : @ =
FIG. 3. Some diagrams that represent processes contributing to é ! : (d)
the overlap and Hamiltonian matrices. Matrix elements couple O | XX ® 006
States|¢)is,tf<(1§/)> and|(bis,:2§<1§/(t2§/t§<)>' \ \
= I—O s X X , = = 0
. . ~ . . e
N{il’iz}'{g};{is'iz}'{g} IS given by—(aoy])z. The minus sign O & = i ® O E 8 ® = (©)
originates from the order in which the holes were created in
the two states represented by Fig&)2and 2Zb), and from . . ' e a X ! = om0
correspondence between holes in the original states and the ' '
final state depicted by Fig.(®. Another process, shown in o= ' @ =X 1 g ()
Fig. 3(b), contributes to the overlap matrix. Figure@Rand = s =@ =@
2(f) depict the starting configurations for the states repre- _
sented by the left and central parts of Figb)3 The final FIG. 4. Processes related to the exchange part of the Hamil-

S

configuration, which is common to both states, is shown irfonian. Matrix elements couple state®; ;. ;) and
Fig. 2(h). The intermediate states are represented by Figéfi’is,ﬂ;t;(ﬂ;t;)%

2(e) and 2g). The central part of Fig.(8) depicts a hopping

process that has been excluded from the Hamiltoriarby ~ Fig. 4(c)], which upturns two antiparallel spins on a pair of
the definition of spin polarong3). It gives rise to a term nearest-neighbor sites, on the state depicted by Kiga&o
tag oo, in the elemently;, i} (z}:(is.iphiey - The action of gives rise to a state shown in Figth2 The corresponding

. . . . . ~ ~2
the kinetic part of the Hamiltonian on the state depicted incontribution to the matrix element is given By2aq ;.

the central part of Fig. @), with the coeﬁicient&ovl in the The periodic boundary conditions allow for some pro-

expansion3) gives rise to the state shown in the left part of CcEesses that are spegﬂc to the4 cluster. F[gure 5 contains
’ i R ) ) diagrams that depict such processes. Figui@®, For ex-
Fig. 3(c) with the coefficientago and a configuration of

holes and spins shown in Fig(€2. Figure 3d) depicts a ample, represents i E:(S?DtrlbutIOHZ[aoyzaO’O/(Z—1.)+(Z
hopping process related to the overlap of states representéd?)Zu=0,=2(2=1)*" " "y, , ] to the matrix ele-
by Fig. ab). Figure Ze) depicts a final configuration com- ment that couples staté®; ;) and|®; _;). Due to the peri-
mon to states shown in the left and central parts of Fid).3 odic boundary conditions the horizontal motion of a hole in
There exists another new term in elements of the overlaghe left part of Fig. §a) brings that hole eventually to the
matrix N analogous to the term represented by Fig).3That  other side of its neighbor. Figures 3, 4, and 5 contain ex-
term is represented by a diagram of different shape andmples of all possible types of processes that involve paths
couples stategb’ -) and|®’ _-), whereR; —R; =x+y; of total length not exceeding two lattice spacings. Many pro-
X '3 Y 201 . cesses that have not been shown explicitly in those figures
and all analogous pairs of states that may be obtained b

. . dre represented by diagrams of different geometry. Neverthe-
action of symmetry transformations of thex4l cluster. less, they are ruled by the same mechanisms.

There exist _three additional new terms_, In element_s of the Diagrams for processes which contribute to elements of
overlap matrix that are represented by diagrams equivalent to (1)

; (2)
Fig. ab) but of different shape. The diagram in FigcBhas ~ COUPING states® ;. o) and|® %5, 5 . oi g5 05)) have
also an equivalent and the diagram in Figd)2has four.

We proceed now to discuss processes related torane- - 0 O—= E ® ® X X E L 8 O = (@
versepart of the Heisenberg Hamiltonian that couple states

S S - . ) \
| 55 and[®] . oo, ). Diagrams which represent o .. . ' xxe®io0o0ee

different categories of these are shown in Fig. 4. As an ex-
ample we discuss in detail Fig(e}, which depicts a process

coupling stateg®’ ;) and|CDiSY2;(+9>. The initial configura- "o E XX = @ E =00
tions of holes and spins for the left and central part of Fig. * * * ® |, = *» = & [ & ®» ®» = )
4(c) are shown in Fig. @) and Fig. 2i), respectively. Figure = s O s | = 2 @ s | = & g ]

2(h) depicts a state created by two jumps of the right hole in
the left part of Fig. 4c). Action of the exchange part of the FIG. 5. Processes that couple sta®s .) and involve effects
Heisenberg Hamiltoniafrepresented by the central part of related to periodic boundary conditions of th& 4 cluster.
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; . ? . . » 830 @ FIG. 8. Diagrams that depict some fictitious states that contrib-
ute to self-overlap of state#@l(;li;(’ig,) a”d|‘D|(;zi;i§,,¢2;¢§/(ii¢29)>
" 00 I "o T =08 N and sums in normalization conditio&6), (A7), and(A8).
O—=—n i < I = ) 9 @ = )
' g site. Fictitious states make contributions to diagonal ele-
w0 O . ® v .
o u | ;I Lige. @ ments that are related to self-overlap of st¢tb§k},{jl}) and

their eigenenergies; , ;. Those contributions should

FIG. 6. Processes that give rise to contributions to matrix eletherefore be subtracted at a later stage of calculations. Figure
ments of the overlap matridl and couple statebbii;(iw and  8(a), for example, represents a subtractionX , _,(z
S ~ .
|q)i,r2;(t§/(t29t;()>' - 1)“‘2a(2,# from the diagonal element for a std@f}};y;).
o ) ) Some contributions to the Hamiltonian matkixoriginate
been presented in Figs. 6, 7, and 8. Figure 6 depicts standagd 5 opvious way from the overlap matrix and eigenen-

processes which give _rise to corjtributipns to the overlap maérgiesE{i (i) Of States coupled by elements lf The dia-
trix. The process depicted in Fig(é gives rise to a term UKk . .
gram in Fig. 3a), for example, gives rise to a term

_ _ mt y—17 ~ H - .

Zu=0r=1(271) %up@-1u+1 1N 2N element that —Ey3,_0,-1(z—1)*""" Y2 , in a matrix element that

les stategd™ ) and [®) ) where R;~R/=Y tatelb® s

couples state _i;—x,y> and |®5 o), where Rj—Ri=Y.  couples statepb’ _:) and|®; ).
The minus sign is related to the fermionic character of the The possibility that a hole that has left the initial site may
hole and a convention according to which holes at the sitegccupy a site that is a nearest neighbor of another hole has
j1,j2 have been created in the same order as holes at the sitggt been taken into account in the Safiirger equations for
|1.,|2. Pro.ces.:ses shoyvn in .Flg. 7 mvolvelbogndarz/zejfzects. Aﬁl, EZ, El, and Ez- On the other hand, such configura-
diagram in Fig. 7a) gives rise to a contribution-[a3¢5(Z  tions give rise to nonstandard contributions from the diago-
—1) ' (z-2)2 0,0z 1)* " P00, 00, 5] 0 nal termJ= ; ;y(S{S{—nin;/4), which are lowered by/2 as

an element that couples state$d|7,;,,;) and compared to the case when the paths of two holes do not

|<b|(_22;+§,_2)}+9). Figure 8 depicts some fictitious states . .

which by definition contribute to statebbl(;li);‘ty and =0 I e . = ) (@)

|(I)I(;2;)A<i§l,i2)2t§/(i;<t2§l)>’ because during the process of con- Ce | 6+ | 9 2

struction of “spin bag” states we have neglected the possi-

bility that paths may cross. Therefore some states that con- —0 | e & . @ 9

tribute to |\If{ik}'{jl}> in Eq. (3) correspond to forbidden o ¢ \ —9 \ o 8 (b)

configurations representing two holes that occupy the same ' '
poeiee e 0g w00 | nee 8%
I‘I LR = . g = QO = = : @ = = : g m =
rroof e .08, 00 06 =83
O s sl s 06 Qs = é E; ig (d)

FIG. 7. Diagrammatic representation of overlap between differ-
ent spin bag states. Due to periodic boundary conditions string FIG. 9. Overlapping string states with reduced diagonal contri-
states in the left and central parts of each diagram are equal. bution to energy.
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FIG. 10. Diagrammatic representation of some processes that
contribute to the Hamiltonian matrix and are related to the kinetic
part of thet-J model.

= @O

? ()

? n

Dielig

touch each other. We therefpre have to ”.‘a"e amgndments n FIG. 12. Some spurious processes related to the hopping term in
some elements of the Hamiltonian mattik [see Fig. 9a) P

. the Hamiltonian.
for an example of such an amendment given by

v—172 . . .
—(2)% y=0,=1(2— 1)fL+ la,u,,v]" ) ~lap matrix. It is analogous to a process depicted by Fig), 6
In general, we restrict our considerations for contributionsand therefore has not been shown in Fig. 6. Figures 10 and
proportional toJ to processes for which the total length of 17 depict examples of processes that are related to the kinetic
paths related to states coupled by those processes does pgft of the Hamiltonian and give rise to some contributions
exceed two lattice spacings. Examples of all relevant typeg, the Hamiltonian matrix. In our considerations we have
of processes related to the diagonal part of the Hamiltoniagaken account of all paths the length of which does not ex-
have been presented in Fig. 9. A process depicted by Figeed two lattice spacings. Many processes that are analogous
g(b) is also related to an additional contribution to the over-ito those in F|gs 10 and 11 have not been shown because
they are ruled by identical mechanisms and the only differ-

00 | = @ =0Q ence is their geometry.
e . @ . C . . I
o= = Qe The diagram in Fig. 1@ gives rise to a contribution
e e t3,—o(z— 1) a, o, +1 to an element that couples states
g-?? LT ’ 5 c') 9 ¢ ® |d>i(ylf);(&) and|¢}?§y79>, whereR; —R;=y. A matrix element
Y 2 t((z— 1) Tagapa;ag
-do Dow ol e @0 ©
O=ri@®=- 8- +(z—2) 2, (2_1)"“_1&0&15M+1&0),
n=0
=00 | == w08
I I (d) .
O-= = | @ ! r Qe which couples state$<Di(2);)+92;(+9> and |<I>§22;79 _2xyh
C il cea - 0g where R;—R;=2x+y, originates from a diagram in Fig.
o b . i 1 g o - &) 11(a)._ Figure _12 depicts _spu_rious processes related_to the
hopping term in the Hamiltonian, which are included in the
re0 1 ree s 0Q Schradinger equation$A3) and (A5) for . Their contribu-
| . Ui
©O0 I e=5 O tions should be subtracted. A diagram in Fig(d3jives rise
. . to an amendmeritx . ; in a diagonal matrix element for a
w00 1 @6 = Q3 ) )
O = = iv. s g @ state|<1>|'_;(’9>. Figures 13, 14, and 15 depict some processes
that involve the exchange part of the Hamiltonian. Processes
00 ff =88 shown in Fig. 15 are specific to thex4 cluster, because
O—e = | fe 8 they are related to periodic boundary conditions. A contribu-
: _ _a\utv=27 - H
FIG. 11. Some processes that couple staité%li;’ig,) and 0N (I2)2—0,-2(2—1) 1) amvamv(*l? to a matrix
|q’|(;zi>‘¢9,iz;¢9(¢;i29)> and involve the kinetic term in the Hamil- €/€Ment that couples Staté@i,i,? and |q)j,§<,§/>* whereR,;

tonian. —R;=X, originates from a diagram in Fig. (3.
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ated by the exchange part of the Hamiltonian.

The diagram in Fig. 14) gives rise to a contribution

—(32)|(z— 1) Tapagag ot (z—2)

+p-37 o~
XM:;/:O(Z—l)“ "Ca,a,an,, o

to a matrix element that couples statek

| ;). whereR;—R;= 2X+Y.
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FIG. 14. Some processes mediated by the exchange part
couple state§®
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FIG. 15. Some processes mediated by the exchange part of the
Heisenberg model that contribute to the Hamiltonian matrix and
involve periodic boundary conditions.

(J12)| (z— 1) tay gag ot (2—2)

+v—37
X,F;;:o (z—1)*™7 Ay @2,

to a matrix element coupling stat{z@l(vli)&) and |<IJ|(117);Y§) is
related to a diagram in Fig. 1&.

Figures 3—15 do not contain all 117 processes that we
have considered. On the other hand, those figures represent
all mechanisms that govern processes involving paths of
length not exceeding two lattice spacings. In the case of cor-
rections to the diagonal contribution to eigenenergy we have
restricted calculations to paths of length not exceeding one
lattice spacing. Each diagram for 117 processes represents a
contribution not only to matrix elements which couple states
represented by the right part of that diagram, but also to all
matrix elements which couple states obtained by action of
lattice symmetry transformations.

V. COMPARISON BETWEEN VARIATIONAL APPROACH
AND EXACT DIAGONALIZATION

Using the Lanczos algorithm we have calculated the low-
est state for all the different space group representations. We
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TABLE Ill. The energy difference between two and no hole st&tes E; k is the total momentum, Rep.
denotes the appropriate representationl, J=1/4, spin bag wave functions were calculated for maximal
string length of 5 lattice spacings. Figures in parentheses denote values obtained by means of the variational

approach.

Aq Az B, B, E
(0,0) —3.72 (—3.74) —3.55 (—3.48) —4.00 (—3.90) —3.42 (—3.56) —3.76 (—3.93)
(7, 7) —3.31 (-3.74) —3.66 (—3.48) —3.81 (—3.90) —3.52 (—3.56) —3.81 (—3.93)
(,0) —~3.66 (—3.60) —3.80 (—3.73) —4.00 (—3.90) —3.81 (~3.90)

(wl2ml2) —3.79 (-3.60) —3.81 (~3.93)

(w/20)  —3.73 (-3.85) —3.77 (~3.85)

(m,ml2)  —3.77 (-3.85) —3.73 (~3.85)

have then repeated that task by means of the variational apetition between states of different symmetry or importance
proach based on the string picture. In the latter case we hawaf different precess and therefore use the energy of the Ne
applied the trial wave functions that have been gathered istate as a point of reference. In Tables Ill and IV we present
Tables | and Il. Binding of holes appears for sufficiently a comparison between structures of eigenenergies obtained
larged/t (=0.27)2°~22We have therefore performed calcu- by means of the variational approach based on the string
lations for two values of)/t just near the critical ratio for picture and by means of an exact diagonalization. The essen-
J/t=0.25 and deep in the binding region fatt=0.5. The tial difference between results of both calculations is that the
region between those values seems to be very interesting alsoergies for momenta that differ byr(7) are not equal in
from the experimental viewpoint and most numerical studieghe case of the exact diagonalization. All such states are by
indicate that those values are low enough to prevent phasgefinition equivalent in the case of the variational approach
separatiorf>?* The variational approach is based on a sim-because the assumption that spins in the background are ar-
plifying assumption, but in general not necessary, that theéanged according to the ‘Mepattern induces a reduction in
spin background is an ideal antiferromagnet. The spin baghe size of the Brilloin zone. Two antiparallel blestates on
scenario is also true for finite range antiferromagnetic correa cluster with an even number &f sites are coupled be a
lations provided that they extend for a sufficiently long dis-finite power of the Hamiltoniafi"'? and their effective hy-
tance. In such a case a tendency towards localization of hold®idization, which is neglected in the variational calculation,
and towards formation of spin polarons determines the dyeomes into play. But, on the other hand, the variational ap-
namics of holes. Correlations in a finite cluster are by defifproach gives correctly the scale of the difference in energies
nition not of infinite range. Two holes in a 16-site cluster of the two-hole state and the equivalent undoped system. It
mean a substantial amount of doping that reduces antiferr@lso selects the same group of states with small energy as the
magnetic correlations. exact diagonalization. Those states awk, for k

The binding energy for the lowest state has been already (#/2,7#/2), B, for k=0,(w,7),(w,0) and E for k
calculated by means of the variational approach and pre=(,7). The system chooses the ground state from that set
sented in a paper by Wbel and Edef (see Figs. 18 and of states. The value of the energy of the representdfids
21). In the present paper we concentrate on the issue of conteo low in the variational calculation, probably because cou-

TABLE IV. The energy difference between two and no hole st&ges Eg; k is the total momentum,
Rep. denotes the appropriate representatien], J=1/2, spin bag wave functions were calculated for
maximal string length of 5 lattice spacings. Figures in parentheses denote values obtained by means of the
variational approach.

A A, B, B, E
(0,0) ~1.49 (-1.33) —1.61 (-1.09) —2.37 (~1.96) —1.33 (~1.07) —1.92 (~1.95)
(,) ~1.33 (-1.33) —1.58 (-1.09) —2.02 (-1.96) —1.22 (-1.07) —2.13 (~1.95)
(7,0) ~152 (-1.32) —2.01 (-1.50) —2.37 (-1.96) —2.02 (~1.96)

(wl2,ml2) —2.01 (—-1.32) —2.13 (—1.95)

(m/2,0)  —2.02 (-1.81) —1.98 (—1.81)

(mml2)  —1.98 (-1.81) —2.02 (~1.81)
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pling between antiparallel N¢ arrangements has been ne- mtmtmtm | mimtmtE | E-mtm-m

glected. How important that coupling is may be seen in the T e

case of the difference between energies for statesr B, + 0+ 4+ + - - - -

andk:O Ork:(’n-,ﬂ'). [ TN B B | : " 4+w +8 4 : H-u48 -8
The variational approach reproduces with some excep- A, B4 E

tions the structure of states for all momenta. As we have . . )
mentioned above, the main exception is the difference be- F'CG- 16. Schematic representation of coherent sums of bipo-
tween energies corresponding to different representations fég"onic stateg®; ;. ;) that realize the representatios, B;
k=0 and 7, ). The hierarchy of states fd=0 is repro- andE for k=0. A sign in the center of a bond represents a bipo-
duced by the analytical approach with the exception ofithe laron that corresponds to two holes created at both ends of that
representation fold/t=1/4 and theA, representation for bond.
J/It=1/2. A state that transforms according to thaepre-
sentation folkk=0 is the overall ground state fd/t=1/4 in  nearest-neighbor sites, the kinetic contribution to energy
the analytical calculation, but its energy is only slightly grows in such a case because hopping of each hole in one
lower than the energy of th&, state, which is the true direction is blocked by its companion. That loss may be
ground state of the cluster. In the cas&ef(,7), whichis  compensated if holes follow each other in such a way that
equivalent to the case=0 for the variational approach, we they jump on upturned spins left by the other hole. The mo-
see that true energies f8; andE states are indeed near in tion of a pair of holes connected by a string seems to deter-
value for J/t=1/4 and the energy of th& state forJ/t  mine the properties of a bound state also for moderate values
=1/2 is lower than the energy of thHg, state. of J/t. We try to understand binding in terms of states that
It is rather surprising why the true energy of the state ~ are coupled by processes corresponding to that type of mo-
is lower than energy of thé\, state forJ/t=1/2. TheA; tion. The reduced Hilbert space consists then of states
representation involves fully symmetric spin bag states Whi|€*<bisy+;(+9)>, wherei belongs to the spin-up sublattice. The
the A, representation consists of less symmetric spin bagich structure of the spin bag stajté)s 9)>, which is a

- i e . i=X(*
states. It has been shown by. Belinicher and co-wofkést combination of many string states, may be represented by a
inclusion of longer-range spin wave exchange can lower a

Qingle operator that corresponds to the creation of a spin
A, (or g-wave state sufficiently, so that it can compete with g P P P

the B, state as the ground state. This state, however, is quitdiPolaron at sitesR; and R;, where R;—R;==x(*y).
different from the present one, which is indeed a ratheSOme coherent sums of bipolaronic stdt§ , ; . ;) realize
highly excited state. In the next section we present a simpléepresentations;, B;, andE for k=0. Figure 16 depicts
explanation for the structure of states for intermediate valueschematically structure of those coherent combinations.
of J/t, which is based on the symmetry of the spin bag states It is not possible to construct the representatiégsand
and a few simple processes. That explanation sheds sonfie for k=0 in terms of fully symmetric bipolaronic states
light on the puzzle of thé\, state. |q)?¢§<(¢§,)> and states which realize them must have higher
The structure of states fde=(,0) is preserved in the energy than states which realize the representa#iqnsB;
variational approach fal/t=1/4,1/2. The only inconsistency and E. Bipolaronic states are combinations of states which
is that the two lowest statds; andB, are degenerate due to may be obtained by consecutive hopping from a state which
equivalence of states with momenta that differ by, €).  represents two holes created at nearest neighbor sites. They
The order of the states witkh=(7/2,7/2) is the same in the also may possess nontrivial internal symmetry. Bipolaronic
case of the variational method as in the case of the exagftates with a minimal loss of symmetry and a minimal rise in
diagonalizati'on. All foyr states de:(w/Z,O),(w,_rr/Z) are  epergy are combinations of stat{a@l(l} .-). The states
degenerate in the variational approach. The different reprﬁ-q)(z) AAAAAA b’.—x(—.y) fafull
sentationsA; and A, for different momenta are degenerate I;t,xty,ZXty(Zth)> reprgsent acom |nat|onp a fully sym-
due to the equivalence of the<# cluster and the 2super- ~ Metric polaron at a sité, and a polaron which has lower
cube, while the same representatighs (A,) also for dif- Symmetry at a sitg§, where R;—R;=2x*y(2y=x). The
ferent momenta are degenerate due to the equivalence 8fatic contribution to the energy from a component of

momenta /2,0) and ¢r,7/2). The true energies fok |(I)i(1+)§(+§,)), which is a string state of shortest lengthn
=(m/2,0),(7,7/2), while not being equal, are close in upturned spin and two holes created at nearest-neighbor
value. site9, is lower than the static contribution from a component
of |<1>|(_23;(+§, 2;(+9(2);+;()) corresponding to a string state of
VI. MECHANISM OF BINDING shortest length, which is a combination of a hole and a
IN DOPED ANTIFERROMAGNETS single-hole string of length 1. The eigenenergy of
1 .
The hierarchy of states witk=0 that correspond to dif- |q)I(i)x .;)) should be therefore lower than the eigenenergy
ferent irreducible representations 6f,, may be interpreted of |q)|(;:)§<:9,2§<:9(2§/:§<)>- A state that realizes the representa-
in terms of a much more reduced Hilbert space that consist§on A, is a combination of Stateiq)fll;ﬁg,)) and

only of states that correspond to pairs of holes created in an. (2) : . ;
antiferromagnetic background at nearest-neighbor sites. T 25,2k 525 ) Whl|€2the representatioB, is a com-

role of such states grows with the rafitt. Although the rise  bination only of 3tate$‘b|(;i);iQ,z;ig(z;t;())- It is therefore

in the magnetic contribution to energy related with creationclear that theA, state should have lower energy than Bie

of a pair of static holes is minimal if they occupy two state. The dominant processes that involve the kinetic part of
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TABLE V. Strength of different process which contribute to the overlap and the energy for represematioBs, andE. Figures in
parentheses denote bare matrix elements.

Rep- Wbp pr Ebb Edif Ecat Eexbb Eexpp Eexbp

Ay 0.27(0.57) 0.73(4.0) —0.05(—0.11) 0.00(0.00)  0.32(0.68) 0.16(0.33) 0.47(2.6) —0.97(-3.3)

B, 0.78(5.9) 0.22(4.0) —0.16(-1.2) 0.00(0.01) —0.15(-1.1) —0.14(-1.0) —0.05(—0.86) —0.09(-1.1)

E 0.52(3.1) 0.48(2.0) —0.10(-0.60) 0.00(0.01) —0.11(-0.66) —0.01(—0.06) —0.10(—0.43) —0.22(1.1)

the Hamiltonian and string states of shortest length are reRrs i 1(Si 2.~ Min;/4)] from states| ¥’ w5 IS lower
. . , , ’ 1L, EX(*y
resented by Flg.(ﬁ)_. By counting states that are coupled by ecause a pair of holes is created on nearest-neighbor sites
those processes with a certain bipolaronic state we conclu nd one “broken” bond is savedEy; is a gain or a loss
: : f R i
the the contribution to energy per bond occupied by a blpoEjue to the difference between the eigenenergy of a bipolaron
laron is 6r; for the representatiod; and —27; for the - ) ~ . .

. ~ o~ E, and eigenenergy of two polaron&?. It is defined as a
representation, andE, wherer; =tao oo, >0 and there- product of a factorE,—2E;—1/3J and the weight of the
fore theA statg -WIII have higher energy than tBg andE pin bipolaron in the2 varial\tional wave function. The term
states. The_posmve sign of the contribution to energy for thes_ 1/3) in the first factor is related to a contribﬁtion from
representatiorA; which originates from that processes ex- ) . .

quantum fluctuations in the spin backgrourtt].,; denotes

lains why the energy of thA, state is lower than the en- L D
P y 9y ; the contribution to energy from processes shown in Figs.

ergy of theA, state forJ/t=0.5. It turns out that the gain 3 d3d). Th t moti £ two hol tod
related to a higher symmetry of spin bag states that contrib-(c) an .3 ). They represent motion of two holes connecte
by a string of upturned spins that resembles motion of a

ute to theA; state is compensated by contributions from terpillar. E is th tribution to th f th
processes represented by elements of the Hamiltonian matrB@EPIar Eexpp IS the CO”I' ution’ 0+ e e”?rgy rqm €
ii(S'S+S'S)) that is restricted

and related to the hopping term. Processes that involvEXchange termy/2)z \

longer strings should decide what symmetBy, or E, pos- {0 the wave functiong¥; .; ;) representing spin bipo-
sess the ground state for the two-hole problem intide larons. Eg,,, denotes an analogous contribution related to
model. Processes that are represented by Kid). &e not  pairs of bipolarons and Statégfz”(+§,(2§,+;)>- Eexbpis that
conclusive because their contribution iSzZOI’ both states part of energy that Originates Yfr6m tﬁe exchange term and
B, andE, wherer,= —tE”ZO(z—l)“EM,1&ﬂ+2,O. We pro-  coupling between states representing spin bipolarons and
ceed then to analysis of processes that involve the exchangmirs of spin polarons. Table V contains values of all quan-
part of the Hamiltonian. A contribution from processes de-tities defined above. Figures in parentheses represent the ab-
picted in Fig. 4a) is —86,, where 6,=(J/2)Z,_o,-2(z  solute strength of each type of contribution and are explicitly
- 1)M+V*ZE#’VE#’D72, in the case of th®, representation elated to elements of overlap and Hamiltonian matrices cou-

and vanishes for th& representation_ That favors tr&l pllng Components of variational wave functions representing
representation for the infinite lattice. In the case of the 4SPin bipolarons or pairs of polarons. Provided that the varia-
X4 cluster with periodic boundary conditions the procesglional wave functions are normalized the numbers outside
depicted by Fig. &) neutralizes the contribution from the the parentheses may be obtained by multiplying those in pa-
process represented by Figay(it gives rise to the contri- rentheses by the produas, bb or ab (defined in Table)l
bution 49, to energy of theB, state and-46; to energy of It iS obvious that the additional variational analysis, the re-
the E state. The contribution from the process depicted by Sults of which are presented in Table V, confirms the heuris-
Fig. 4b) is 46, for both representation8, and E, where fic line of reasoning that we discussed above. The bipo-
0,= —(312)S (z—1)"" "2, @ The pro laronic state has largest weight in the bound stateBof

2= p=1lr=1 nr@u—1p—-1- - _
cess depicted by Fig.(B) favors theB, representation. Its Sﬁlr;mlféryrﬁgtri]c?glo?nr?olfeztaitnestrfzkri:Stvz;}tigigeitowge Cs:g_r
contribution to energy per bond occupied by a bipolaron i ; Y. .
20, for the B, state and— 26, for the E state. That process cesses related to the magnetic exchange that couple bipo-

plays therefore the decisive role in the case of the44 Iqromc states favor.thsl symmetry. The unbinding™ of a
: I o bipolaron into a pair of polarons is in favor of the states
cluster with periodic boundary conditions. andA,, because such a pair takes advantage of the exchange
In order to confront the heuristic way of reasoning with . 12 M= pal 9 ang
interaction in a more efficient way. The latter observation

results obtained by means of the full version of the vana-may explain why theE state has lower energy than the

tional approach we have additionally calculated contribu- tate fom= but we think that the role of brocesses of
tions to the energy from different processes for the represer): rp_—(w,w), out we o P SSes
hat type is overestimated by the variational approach. When

tations A;, By, E, (k=0, J/t=0.4) and wave functions : . : S
gathered in Table I. Table V contains results of that calculatomparing matrix elements related to different contributions

tion. W,,, denotes the weight in the variational wave functiont0 the energy one has to keep in mind that their relevance
! s . . : also depends on the overlap between states that they couple.
of functions| ¥ representing bipolaron¥V,, is the

i,ri(ril)> Elements of the overlap matrix for thg, states are approxi-
weight of functionsi‘l’iz;(tQ(ZQi;)) representing pairs of spin mately two times bigger than those for tiig state. The
polarons.E,, denotes the gain in energy due to the fact thateffectiveness of matrix elements relatedBg,, E.., and

the diagonal contribution to energy[the term Eg,ppis then similar for both representations. Processes that
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contribute toEg,yp, definitely favor theB, representation,

while those which contribute t&yp, are in favor of theE Jow wlz IZO_I 2 ]2? ?'2 v ]

representation, despite the fact that in the later case the io O, 1 O F, . T ", 'g _"

moduli of matrix elements(in parenthesgsare approxi- (@) : b) : © : (@)

mately the same. An interesting observation is that the gain

in energy due to smaller contribution from the diagonal part , , ,

of the Hamiltonian to the eigenenergy of spin bipolarons - _— ''O—m o m | Jom mi2

(Epp) is compensated by a loss of kinetic energy, which is - e 4 .. 6 : 0

due to the fact that holes cannot jump onto each other. A o= | : b I

manifestation of that compensation is that the difference be- (@) (f) () (h)

tween the eigenenergy of the bipolaron and the eigenenergy

of a pair of polarons vanishes almost exactly foft ine i ! ! !

=0.4 (E4;~0.0). The decisive role in formation of the S U L ? : 5'_(1) T

bound stateB; which predominantly consists of the bipo- io =, ! 21 0w & e J’

laronic states is hopping of bipolarons, that is related to the (i : 0 ' ®) ' (0

caterpillarlike motion of hole pairs, and contributions to the

energy related to the magnetic exchange. r O—n i = =0 i L i " H
The mechanism of hole binding thus is a relatively com- I_o = QO = J) O—s ' O 4

plex one, and the simple broken-bond argument, namely, that ' ! '

holes bind because a hole pair on nearest neighbors leaves (m) (n) ©) (P)

intact one more exchange bond, is by no means adequate. O = = |, = Oon

Instead, for physical parameters, the broken-bond contribu- O—e—sn : O =

tion is completely compensated by a loss of kinetic energy :

occurring at the same time, because two holes on nearest ] (s)

neighbors have only Z(- 1) nearest neighbors available for FIG. 17. Simplest string stat ntributing to the hole densit

charge fluctuationswhereas it is 2 for separate holesThe 2 1. Simplest string states contribuling to the hole density=
. . . . . density correlation function for short distances.

actual binding mechanism is provided by the caterpillar-type

motion of the two holes. Pair symmetries that get the most

out of the caterpillar motion, i.eB; and E, are lowest in
energy, both at (0,0) andm( ). negative sign to the wave function that transforms according

to the B, representation fok=0. The contribution from the
string state represented by Fig.(&)7is also negative because
of the Fermi statistics and the fact that holes change the
VII. PAIR STRUCTURE sublattices. The final state consists of two holes that occupy
the sitesi; andj, and two upturned spins at the sitgsand
Some recent density matrix renormalization grupnd  j,. A negative sign and amplification of its amplitude, which

exact diagonalizatidi studies of the two hole problem in reads _a(al,l"' 2}}0’2), actually stems from thed-wave
small ladders and two-dimensional clusters concern the spaymmetry of the ground state. The amplitude of a state rep-
tial distribution of holes and spin correlations in their vicin- rosented by Fig. 4@ is aay,. That state simultaneously
ity. Holes in planes are mainly located at distances\2,  contributes to the spin singlet or triplet at the sitgs j,.
and 5 lattice spacings from each other, while the probabil-pye to the different signs of amplitudes for states repre-
ity that the distance between them is 2 turns out to be mucBented by Fig. 1(®) and by Figs. 1) and 17c), the weight
smaller. Those studies also show that a strong spin singlejf the singlet is amplified. The diagrams represented by Figs.
forms along the diagonal of a lattice cell if the holes occupy17(d)—17(g) give rise to different hole and spin configura-
the sites belonging to the other diagonal. We are themions and therefore they contribute individually to to the
tempted to check whether those findings can be explained byrobability of finding holes at two different sites. Some of
the spin bag scenario. them may favor the spin triplet like Fig. i), which repre-
We restrict the calculation of the hole density-density COr-sents a Configuration with para”e] Spins at the Slmdj 5.
relation function to contributions from statff§i,?),},{<J})  The rest of the diagrams contribute to the same extent to the
related to shortest strings. Figures@#17g) depict differ-  singlet and the triplet. Provided that tBe state in Table I is

ent categories of diagrams which contribute to the probabilnormalized, the probability of finding holes at the distance of
ity of finding two holes at two nearest-neighbor sites. Theone lattice Spacing from each other reads

rest of relevant diagrams may be obtained by applying some

symmetry transformations of the lattice. Two different string

states that belong to the category represented by Figp) 17

and a string state depicted by Fig.(@)7give rise to the same o Afa2r 2 ~ ~ 2 2(RTA L 45272
configuration of holes and spins. The absolute value of thep(l)_‘l{a [ad ot 2(2a0z @) ]+ b6+ 1200a3)},
amplitude for that state is the sum of the absolute values of (13
amplitudes for all three string states. Two string states re-

lated to Fig. 17b) contribute with a negative sign, because while the weight of the spin singlet at the second pair of
spin bag state$d>is’9> and |<I>f’_9> also contribute with a corners of the lattice cell is given by
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2 (agot 2ag oty )?  (2ag,t oy 1)
2 2
a?[ af ot 2(2ag o+ a1 1))+ b(6aj+ 12a5a3)

+b?(af+4ada3)

Ps(1)= (14)

We have calculated both quantities ﬂﬂz 0.4 and o'btai'ned P(2)= a264(31 2+ao 22+ b216E§Zz§. (17)
P(1)=0.16 andP4(1)=0.7. A calculation for contributions ’ ’

from the shortest strings to the hole density-density correlaFor J/t=0.4 we getP(2)=0.09. Figures 1(h)—17(s) repre-
tion function for sites at ends of an elementary cell diagonabent contributions td®(\/5) related to the shortest strings.
is much simpler. Figures 1) and 17i) depict two relevant They give

sets of diagrams that represent strings of length 1. Contribu-

tions from four diagrams obtained from Fig. (hY by trans- P(\5)=a?[16a? 1+ 8(a; 1+ 2% +b%4ag (18

formations that keep the pair of the siigsandi, unchanged o .
and P(y/5)=0.16 forJ/4=0.4 The distribution of probabil-

constitute a perfect spin singlet at the sifgsandj,. That ¢ v : ) .
reason for the preference for the spin singlet along a celty for finding holes at different distances obtained by means

diagonal has been noticed by Riera and Dag8ttofollows of the variational app_roa(_:h qualitatively agrees with results
from thed-wave symmetry of the ground state and the exisOf the exact d|agqnal|zat|on reported by Riera an(.:l. Dagotto
tence of antiferromagnetic correlations. But, on the othefOr J/t=0.4 and slightly larger chste@.The probability of
hand, for similar reasons, contributions from all four dia- finding holes at ends of a cell diagonal is highest, but dis-
grams analogous to Fig. Y amplify the weigh of the spin tances 1 and/5 are also privileged. Holes do not predomi-
triplet. It is therefore an issue of numerical assessment whicRantly occupy nearest-neighbor sites because owing to that,
tendency preva”s_ The contribution from diagrams reprelhe Optlmal balance between kinetic and magnetlc contribu-
sented by Figs. 1) and 17i) to the probability that the tions to the energy may be reached. We also observe that
distance between holes i€ reads effect in numerical solutions of the Scldioger equation for
ZW,. The probability of finding holes at the distance of 2
lattice spacings from each other is lower because contribu-
tions from some diagrams cancel due to th&ave symme-
while the weight of the spin singlet at the ends of a cell”y o_f the _ground state. '_I'he nhumerical values of proba_bilities
diagonal in the case of holes occupying the ends of the sec‘?—btamed In our ca.lculanon are lower than those obtained by
ond diagonal is means o_f exact dlagonallzatu_)n because we have neglected
contributions from longer strings. It seems, on the other
2952 hand, that the role of short strings is underestimated in our
PS(\/§)= — 0,21~2~2_ (16) approach.
a“2ag 1+ bagay

P(\2)=4(a283 + b?4a2a?), (15)

VIIl. DISCUSSION
Numerical calculation fod/t=0.4 givesP(y/2)=0.18 and L
P(1/2)=0.8. Exact diagonalization studies also indicate that[iom considering two hole ground states for all representa-

the probability of finding holes at the distance 2 lattice spac- ns of small groups for the square Ir_;\ttlce, in the case of the
. ; .o 4X 4 cluster, we have found qualitative agreement between
ings between each othd?(2) is much lower than probabili-

. . . the exact diagonalization and the variational approach based

t|e§ fort thg dlstantcef 1,2, and ‘/lg Thelret'ls, %s t\VX/e arethon the string picture. We have constructed polaronic states
going o demonstrate, a very close refation between ?epresenting a hole or a pair of holes trapped in a region in
dy2_,2 symmetry of the bound state, antiferromagnetic cor

Y ) . ‘which the antiferromagnetic spin structure is strongly per-
rglaﬂons, ar_1d that _phenomenon. Flgureg)l_and 17k) de- turbed. Spin polarongbipolarong may propagate without
pict categories of diagrams that might contributé{@) and

i o < disrupting the spin background more than necessary. We
represent strings of length 1. A contribution from Fig(j17 14y taken into account in our calculation a list of more than

. . S
(a string state that is a component|df; :)) cancels a con- 100 processes that induce a perturbation in the spin structure
tribution from an analogous diagram that may be obtained bpn no more than two sites. Such processes give rise to over-
exchanging the sitels andi, (a string, that is a component lap and coupling between polaronic states. An important cat-

of |®° -)). That cancellation is exact due to the structure€90rY of processes that contribute to coupling may be visu-
2 alized as motion of a string of defectsipturned spins

of the B, state and the fact that a hole that starts at thejsite 5o ing 5 sequence of nearest-neighbor sites between two
moves to the different sublattice either to the flt@r to the holes. The ends of a string hop between nearest-neighbor
site i,. A contribution toP(2) from states|®; ; .-} is  sites in such a way that its length does not exceed a few
then related to longer strings and may be smaller than in thiattice spacings. The next important class of processes is re-
case of distances 1,2, and\/5. Figures 1#) and 17m) lated to the exchange term, which may flip two antiparallel
represent contributions t®(2) related to strings of total spins in nearest-neighbor sites and in that way may remove
length 3. A straightforward calculation gives rise to a con-defects from the spin arrangement. Spin polaron or equiva-
clusion that lently spin bag states may have nontrivial symmetry. Lower-
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ing the symmetry of spin bag states raises their eigenenerggrees of freedom and incorporate complicate processes that
The majority of representations may be realized in terms ofnvolve spin excitations and contribute to interaction be-
fully symmetric spin polaron states, but the rest involvestween polarons. The variational approach turned out to be a
nontrivial states. The variational approach reproduces the baery powerful for implementation of that program, because it
sic features of the structure of states. It selects the corredficorporates the relevant part of the interaction and is valid
group of low-energy states and fér=0,(m,7) points to  €ven in the case of shor_t-range antlferromagn_etlc correla-
competition between the representatid®s and E for the  tions. In 5agreement vylth results of Belinicher and
position of the ground state. A qualitative explanationkor C0-workers® our calculations show that the broken-bond
—0 based on the symmetry of spin polaron states and a fef€chanism is not the driving force for hole pairing.

important processes demonstrates why the system selects theOur results for the one-dimensional model in a stag-
representatiom, as a ground state. The agreement betwee§eréd magnetic fiefd suggest, like some previous
the spin bag approach and the exact diagonalization is alsgh@lyse®’, that phase separation in not very likely at low or
satisfactory for momentar,0), (m/2,m/2), (w/2,0), and intermediateJ/t and _Iow doping. Some experiments have
(m,7/2). The variational calculation reproduces with Semi_demonstrsated the eX|stenc_e of an ordered stripe .phase in the
quantitative precision the change in scale of the energy oguprates Such a phase in the shape of domain walls of
two-hole states. The exact diagonalization performed in &°€s separating antiferromagnetically ordered domains
20-site cluster with periodic boundary conditions by RieraMight exist in thet-J model for certain values of doping
and Dagott®’ indicates that a strong singlet is present acros§oncentration. One can imagine “tunneling” of holes
two sites that are diagonally situated in a plaguette, providetrough antiferromagnetic domains, which should be gov-
that two holes occupy the other two sites. These author§™ed by the same processes as hole propagation in the anti-
pointed out that such finding is consistent with thevave fer_romagnetu_: medium. Prow_ded _the the_structure of t_he
symmetry of the pair and antiferromagnetic correlations. OugtriPe phase is known, the string picture might then contrib-
calculation which also takes into account states preferring/te t0 @ better understanding of fermionlike excitations in
the triplet agrees with results of their exact diagonalizationthat phase.

The same conclusion concerns the spin singlet on a pair of

nearest-neighbor sites, when the other two corners of the ACKNOWLEDGMENTS

plaquette are occupied by holes. The diagonalization by Ri- )

era and Dagotto indicates that the density of a hole is spread SUPPOrt of P.W. by KBN under Project No. 2PO3B14612
over the neighborhood of the second hole. It is remarkabl&® 9ratefully acknowledged.

that the probability of finding holes at the distance of two

lattice spacings between each other is much smaller than for APPENDIX A

1, 2, and \5 lattice spacings. Our calculation demon-
strates that this preference is consistent with the spin baﬁl’
scenario. It seems that an important drawback of our varia- ) ]
tional approach is that for two holes it underestimates th&©me upturned spins takes the following form:
role of states related to short strings. In order to deal with

The Schrdinger equation for spin polaron states
{ik}~{1|}> that represent holes trapped in theelNstate with

tshpitcﬁ]rgglem we have restricted their length to five lattice 55({(|k,Pk)},{l|})01{<ik,7>k)},{j|}
Some attempts have been made to describé-theodel
in terms of an effective Hamiltonian that contains only one —t > i PO
interaction term representing attraction between quasiparti- (i Pl e Tl PobliD) ke P
cles on nearest-neighbor sitésThe origin of that attraction
was attributed to reduction of the static diagonal contribution =Efi 002, Pob ) (A1)

to the energy in the case of two holes occupying nearest-

neighbor sites. The quasiparticles then should have much iwhere L({(ix,P)}.{i|}) is the number of broken bonds be-
common with bare holes. The two particles may not be lotween nearest-neighbor sites in a stdie,,?P)}.{j;}) and
cated across the diagonals of a plaquette fordthe 2 sym-  T({(ix,Py)}.{i1}) is a set of state§(iy,Py)}.{j|}) that are
metry to be realized. Numerical studies have shown that suctoupled with the staté{(i.,P)},{ji}) by the hopping term
configuration of holes has a substantial weight in the groun@f the Hamiltonian. We define a bond as “broken” if spins
staté* and therefore a description of a weakly doped  at sites joined by it are parallel or if at least at one of those
model in terms of an oversimplified effective model in not sites a hole has been created. First term in the left side of Eq.
possible. Spin excitations of bosonic character related to UpAl) originates from the ternd=; ;,(S'Sf—n;n;/4) in the
turned spins are apparently important if antiferromagneticdamiltonian.

correlations at short distances are robust. They have a finite We may write, according to E§A1) a Schralinger equa-
lifetime and therefore induce retardation effects in the iterasigp, for coefficients?x#, which represent trapping of a single
tions betwee_n ho_le?. There can be no question that an ef- i in an antiferromagnetic environment,

fective Hamiltonian for weakly doped antiferromagnets
should either deal explicitly with bosonic degrees of freedom
or change the nature of quasiparticles and put the polaronic
complexion on them. We have chosen the second way based _ _ o
on the spin bag scenario in order to get rid of bosonic de- —ta, 1—(z- 1)taﬂ+1+~](§+ﬂ)au:E1aw (A2)

- Zt‘al‘F ZJZ'OZEtho y
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wherep=1. A Schralinger equation for a hole trapped near |y, A configuration of holes and spins that correspond to

a site with an upturned spin takes a similar form, the central part of Fig. @) is identical to a string state that is

a component of the stat@f};} [the left part of Fig. 48)]. It

A turns out that such a type of overlap may wreck linear inde-

anda,=0 for u<O0. pendence of spin bag states. We make therefore an assump-
Motion of two holes created at a pair of nearest neighbotion that quantum fluctuations are prohibited at sites that are

sites is described by the following Scklinger equation the nearest neighbors of sites where holes have been originally

form of which is again determined by the shape of a potentiatreated. Any part of the Hilbert space is not neglected in our

—ta, 1—(z-Dta, 1+I(; +pa,=Eia,, (A3)

well of a spin bag, consideration because the same configuration of holes and
spins is realized as a different string state, as in the case of

—tla,_1,+(z-Dta, 1, +a,, 1+(2z-Dta, 1] the left and central parts of Fig(@. Some fluctuations in
the spin background are nevertheless prohibited and energy

+J(4+u+v— %5,L+V,O)ZV,L,V=~E25M,V, (A4) s raised in comparison with the ground state of the Heisen-
~ berg model. In all calculations we have therefore to make
wherec,, ,=0 for u<0 or »<0. following substitutions in order to take into account the con-

A Schrcdinger equation for two holes creatgd at two dif- tibution from guantum fluctuations in the spin background:
ferent sites that are nearest neighbors of a site with an up-

turned spin is defined as

~ ~ 22
. . - - ®° - o) Ep—Eot—2J, (A10)
—tla,_1,+ (2= Dta, 1,+a, , 1+ (2Z=Dta, 1] [ i) BamBat 33
+J5+ut+v)e, ,=Eza, ,, (A5) . | _ 26
wherea,, ,=0 for u<0 or »<O0. P} giegioges)t  2E1—2E1+ 27 (ALD)
s s (1)
(82§ates|q)i,i)2(i9)>’ |(Di,t2;(i§/(i2§/i;<)>’ |(I)|;i;(,i§/>’ and
|q)|;:§<5§/,:2>2::§/(:§<:2§/)> are normalized provided that coeffi- |<IJ(1) U 21‘] (A12)
cientsa anda are subject to some additional conditions, Lxy/t  =27E2 0 g9
~2 _ -172 _ - . - . 24
a5t > z(z—1)* 1, (A6) @ .
a1 g Py ey e oiegkeay)’  ErtEi—Eit Byt 5.
o (A13)
> (z-1ra’=1, (A7)
#e0 APPENDIX B
i prvT2 We list here rules that connect diagrams with matrix ele-
P (z=1)"" e, =1, (A8) ments. Diagrams correspond in a self-evident way to all
types of contributions described in the main body of the text.
o An important rule that has not been mentioned before fol-
E (z— 1)M+V&i =1 (A9) lows from the definition of spin bag states. It states that each
pw=0r=0 ’ nontrivial contribution to an element of the overlap matrix

Bv choosing the Nel lav the role of th i (and to the Hermitian conjugate tg that couples two spin
y choosing t N st?te tr? E)ayt ehro eoft (Ia antlder- .bag states induces contributions to the equivalent element of
romagnetic environment for holes we have neglected Spify,o"amiltonian matrix related to the action of the hopping

fluctuations that exist in the ground state of the Heisenbergerm on one of coupled spin bag states, which may be chosen
model. Quantum fluctuations produced by the transverse Pait 4n arbitrary way '

of the Hamiltonian are responsible for lowering of the : N .
ground-state energy of the Heisenberg model in comparison Rules  for matrix elements I\_I{"'_}'@}j{""'}'{@}’
with the ground-state energy of the Ising model. One cart{i.il{@}fi’.i’}. iz} @nd Figs. 3—15The sited, i’ belong to
easily understand origin of that lowering by means of thet® even sublattice, whilg, j’ to the odd:
second-order perturbation theory that attributes the reduction (1) Open circles represent the sitiesj; solid circles rep-
of energy byd/12 to presence of a quantum fluctuation in theresent the sites’, j’. _ _

form of two upturned spins on a pair of nearest-neighbor (||)_ The contribution to a matrix element is a product of
sites. Existence of a hole at a site prohibits creation of sucRMPIitudes  aiipy . ryyier @ @i P60 P 0142}
fluctuations at four bonds attached to that site and raisefor ~ “string”  states  [{(i,7).(j.P))}.{T}) and
energy by 4<J/12 in comparison with the ground state of [{(i’,P;:),(j’,P;/)}.{<}) represented by the left and
the Heisenberg model. A quantum fluctuation in the spinmiddle parts of a diagram.

background for spin bag states might give rise to additional (iii) If the final position of a hole which started from the
overlap between them. Let us suppose, for example, that twsitei is the same as the final position of a hole which started
slanted crosses in the central part of Figa)drepresent a from the sitej’, the contribution is multiplied by- 1.
guantum fluctuation in the spin background for the state (iv) A contribution to an element of the overlap matrix is
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accompanied by a contribution to an element of the Hamilbonds which contribution is “saved” due to special shape of
tonian matrix that couples the same spin bag states. Its valigtrings.

is given by the contribution to the overlap matrix multiplied
by the eigenenergy of that spin bag state that is the object %
action of the hopping term in diagrams related to contribu

tions to the kinetic energy.

Modifications of some rules for the matrix elements
{m’ni’{l};{m”n’}’{lr}, H{m,n},{l};{m’,n’},{l’} and Flgs. 6-15 are
as follows:
(i) Open circles represent the siteg n; solid circles

(v) A bent arrow denotes action of the hopping term ONrepresent the sites’, n’. An open diamond corresponds to

the string state and contributes an additional faetorto the
matrix element.

the sitel, while a solid diamond to the sité. (ii) The con-
tribution to a matrix element is a product of amplitudes

(vi) A pair of slanted crosses at two nearest-neighbor siteg, and as/ , .\ for string states
denot fion of th " rerm in the Hamilton {(m Py (n P11} {(m" P ) (07 P b1} 9
enotes action of the exchange term in the Hamiltonian angyyresented by the left and middle parts of a diagréi.

contributes a factod/2 to the matrix element.

(vii) The direct contribution from each diagram should be
expanded by contributions from string states that may b

obtained by applying repeatedly the operatdys;, to the

e

An initial position m is called by definition “left-sided”

if m obeys the reIatioan—R|=t>? for a spin bag

[mnb =10l or it [{mnk{})

I, £x£y

State

common configuration of holes and spins that simultaneouslyt|®r,i)i;i9,i2;t;(t;t2§,)>- The other initial position is
corresponds to the left and middle parts of each diagrantalled by definition right-sided. If the final position of a hole
That construction of new string states must not disturb théhat started from a left-sided site is the same as the final
mechanism of the underlying process, and therefore posPosition of a hole that started from a right-sided site, the
tions of holes and spins that are objects of the Hamiltonia¢ontribution is multiplied by—1.

action must not be changed.

Diagrams we use in the paper may be very easily trans-

(viii) Contributions related to fictitious overlap and ficti- formed into standard interaction vertices. In such a case open

tious processes are additionally multiplied byl.

and solid circles may be interpreted as creation and annihi-

(ix) Amendments related to the diagonal term in thelation operators, respectively. Information about the configu-

Hamiltonian[like Fig. A@)] are given by a contribution from

ration of involved sites should be put into the indices of

the overlap multiplied by—J/2 times number of broken fermionic operators.
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