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Symmetry of binding in doped antiferromagnets
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Using variational wave functions the construction of which is based on the ‘‘string’’ or ‘‘spin bag’’ picture,
we calculate the energies of two-hole states classified according to the momentum and the different irreducible
representations of theC4v point group. We study different ratiosJ/t, interesting from the experimental
viewpoint, and compare our results to exact diagonalization. The energetically most favorable pair symmetries
aredx22y2 andp like. The mechanism of hole binding is the caterpillar-type motion of two holes connected by
a string of spin defects, whereas the well-known ‘‘broken bond’’ mechanism does not produce binding for
t/J.0/4. @S0163-1829~98!05442-3#
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I. INTRODUCTION

The high-Tc cuprate materials display the basic conne
tion between antiferromagnetism and superconductiv
This fundamental property must be explained by any c
vincing theory. That conviction has led to an attempt to f
mulate a unified theory of superconductivity and antifer
magnetism based on SO~5! symmetry.1 Some recent
numerical results2,3 additionally support SO~5! symmetry as
a concept that unifies superconductivity and antiferrom
netism. We devote ourselves to a slightly different quest
as to why interaction of holes with antiferromagnetic en
ronment favors particular symmetries of bound pairs.

The simplest Hamiltonian that may be expected to con
the key features of a doped Mott-Hubbard insulator and
capable of resolving some of the numerous anomalies of
prate superconductors is thet-J model:

H52t (
^ i , j &,s

~ ĉi ,s
† ĉ j ,s1H.c.!1J(

^ i , j &
S SiSj2

ninj

4 D . ~1!

The Si are electronic spin operators,ĉi ,s
† 5ci ,s

† (12ni ,2s)
and the sum over̂i , j & stands for a summation over all pai
of nearest neighbors.

Numerical evidence suggests4 that for hole densitiesrh
.0.3 the ground state of thet-J model conforms to the con
ventional theory of the Fermi liquid. It is not true, howeve
for smaller densities,rh%0.25. In that region the densit
excitations resemble those of condensed bosons with cha
teristic energy scalet, while the spin excitations have ferm
onic character with the characteristic energy scaleJ.5 The
low doping behavior of the system may be natura
explained within the spin bag6 or string7–10 picture. The one-
to-one mapping between the fermionic degrees of freedom
the low-energy sector of the model and a system of spin
quasiparticles may be established.11 The effective Hamil-
tonian for those quasiparticles consists of a term that is
lated to next-nearest-neighbor hopping and terms that re
sent exchange and attractive nearest-neighbor den
density interactions. A similar Hamiltonian was propos
PRB 580163-1829/98/58~22!/15160~17!/$15.00
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also by Dagotto, Nazarenko, and Moreo.12 Such a Hamil-
tonian in a more general, however implicit form that repr
sented many ways in which two dressed holes in an anti
romagnetic environment interact with each other,13,14 was
also discussed for the one- and two-hole problem.15,16 The
effective interaction of three holes.~three-body terms!,
which is relevant to the issue of phase separation was der
for the one-dimensionalt-J model in a staggered magnet
field.17

The necessity of understanding weakly doped antifer
magnets in terms of an effective Hamiltonian follows fro
the failure of the Fermi-liquid-like calculations, based on t
Fermi surface consistent with the local-density approxim
tion, to describe the doping dependence of either dc resis
ity or the Hall constant on the hole concentration. Expe
mental results for both quantities suggest that the car
density is proportional to the hole concentration.18 The later
feature is at odds with the local-density approximatio
which leads to a conclusion that transport is electronic
origin.

Many properties of the high-temperature superconduct
such as the penetration depth, the Knight shift and
nuclear relaxation rateT1

21 are consistent with adx22y2 gap.
Angle-resolved photoemission spectroscopy~ARPES! mea-
surements find evidence for a highly anisotropic gap, wh
can be interpreted in terms ofdx22y2 symmetry. Supercon-
ducting quantum interference device~SQUID! interference
experiments, corner Josephson junction studies, and
quantization measurements in grain boundary rings are
consistent with adx22y2 gap. Interpretation of some exper
ments in terms of a mixeds1d state seems, however to b
more appropriate. The majority of superconducting copp
oxide compounds has an orthorhombic structure. Mixing
dx22y2 with other symmetries is well understood in that ca
because gap functions may not be classified according to
different irreducible representations ofD4h . On the other
hand, the orthorhombic distortion is rather weak, and the
function should be very reminiscent of a function that b
longs to an irreducible representation ofD4h . Moreover, the
superconducting La22xSrxCuO4 compound is in the tetrago
15 160 ©1998 The American Physical Society
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nal phase forx.0.4, hence one might argue that the orth
rhombic distortion in not crucial to the origin of superco
ductivity. In these circumstances, discussion of Hamiltoni
that possess the full symmetry ofD4h , like the t-J model,
seems to be acceptable.

Our aim is to study interaction of quasiparticles in t
moderately dopedt-J model, that is, in the presence of an
ferromagnetic correlations, and explore the structure
bound pairs by comparing the results of an exact diago
ization with an analysis in the framework of the string
spin bag approach. We concentrate on the symmetry of
wave functions of a hole pair in order to understand w
antiferromagnetic correlations favor states that belong to
ticular representations ofD4h .

In the earliest version of the spin bag picture origina
proposed by Schrieffer, Wen, and Zhang6 for the Hubbard
model, an added hole weakens the antiferromagnetic co
lations, creating a region that can be shared by another h
The rise in energy that is caused by a depression of
staggered magnetization surrounding the hole may be
duced in such a way. In the opposite limitU.W, where the
Hubbard model is basically equivalent to thet-J model, a
similar mechanism is operating. The binding energy of t
holes with antiparallel spins in thet-J model was calculated
by means of the spin bag approach and results of var
extensive numerical calculations were reproduced with r
sonable accuracy.13,16 Those calculations, however, did n
cover all representations ofD4h , because they did not tak
into account the full possible internal structure of spin ba
In a study of the one-dimensionalt-J model in a staggered
magnetic field, the variational Hilbert space included wa
functions that represented all different ‘‘orbital states’’
spin bags.17 That extension was crucial to achievement
good agreement with the exact diagonalization. In our va
tional calculation we concentrate on the 434 cluster; how-
ever, the spin bag approach is also applicable to the infi
lattice. It would be also possible to compare results of
analytical method with simulations on slightly larger cluste
but the 434 cluster is particularly suitable for visualizatio
and analysis of finite-size effects.

II. SPIN BAG STATES

A pronounced separation of energy scales in the mo
of doped holes is the basic assumption of our variatio
calculation. A mobile hole that is created at some site i
Néel-ordered spin state feels an effective potential due
formation of strings.19,7 Coherent hole propagation becom
possible only due to the relaxation of the string of defects
means of the quantum fluctuations of the spin system. H
motion is therefore the superposition of two very differe
dynamics: the rapid incoherent zigzag motion of the s
trapped hole on the energy scalet, and superimposed ont
this, the coherent motion on an energy scaleJ that is enabled
by the relaxation of the strings. This separation of ene
scales manifests itself by the fact that the creation of a sin
hole in an antiferromagnet lowers the kinetic energy by
large and nearlyk-independent amount amountt ~which
stems from the incoherent zigzag motion! whereas the dis-
persion of the low energy states~which stems from the co
herent motion! rigorously scales withJ.20
-
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We start to describe the twofold dynamics of holes
constructing a family of operators, that move a hole by o
lattice spacing, and by definition decrease the staggered m
netization by 1 (A denotes the↑ sublattice andi PA):

T^ i , j &5~ci ,↓
† cj ,↓1cj ,↑

† ci ,↑!. ~2!

We also considerm holes created at some sitesi 1 , . . . ,i m in
the Néel state withn upturned spins at some sitesj 1 , . . . ,j n .
Acting consecutively with the operatorsT^ i , j & , we obtain
string states, where each hole is connected to its ‘‘star
point’’ by a trace of misaligned spins. We denote such a s
as u$( i k ,Pk)%,$ j l%& wherePk parameterizes the geometry o
the path that has taken the hole created at the sitei k . String
states with the same set of ‘‘initial sites’’$ i k% and the same
set$ j l% of sites where spins were upturned are coupled by
hopping term; a superposition of such states therefore
scribes holes trapped at the sites$ i k%. As mentioned above
the key assumption of our approach is the separation of
ergy scales between the rapid incoherent zigzag motion
the self-trapped holes and the slow coherent motion m
ated by spin fluctuations. In order to describe the coher
zigzag motion we define a state withm holes trapped at the
sitesi 1 , . . . ,i m by the ansatz

uC$ i k%,$ j l %
&5(

$Pk%
a$~ i k ,Pk!%,$ j l %

u$~ i k ,Pk!%,$ j l%&. ~3!

The coefficients a$( i k ,Pk)%,$ j l %
are determined such tha

uC$ i k%,$ j l %
& is an eigenstate of a HamiltonianH8 that repre-

sents dynamics of the self-trapped holes:

H8uC$ i k%,$ j l %
&5E$ i k%,$ j l %

uC$ i k%,$ j l %
&. ~4!

In H8 all processes which lead to relaxation of strings ha
been neglected. We also assume at this stage that paths$Pk%
do not cross, that is, we solve effectively the problem o
self-trapped hole on the Bethe lattice with the coordinat
numberz54. The relaxation of strings and crossing of pat
give rise to effective overlap and Hamiltonian matric
which describe the coherent motion of holes. The probl
defined by Eqs.~3! and ~4! has its ‘‘internal’’ symmetry
determined by the configuration of the sites$ i k% and$ j l%. In
the case of a single hole created at a sitei and no upturned
spins that symmetry contains all permutations of paths
begin ati. We shall use states which belong to some irred
ible representations corresponding to those internal sym
tries in order to construct irreducible representations of
small group for values of the total momentum allowed by t
shape of the cluster.

Since each hole is trapped within a typical lengthl
@which scales as (t/J)1/3] around its starting pointi k , the
holes will feel the presence of other holes or upturned sp
only if the distance of their starting points is smaller thanl
or if there are some upturned spins within that range. If
distances between the ‘‘starting points’’$ i k% in Eq. ~3! are
pairwise larger thanl, Eq. ~4! is solved to good approxima
tion by a productansatz,

a$~ i k ,Pk!%,$ j l %
5)

k
a

~ i k ,Pk!,$ j k,l %
tk , ~5!
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15 162 PRB 58PIOTR WRÓBEL AND ROBERT EDER
E$ i k%,$ j l %
5E$ j 0,l %

~0! 1(
k8

E
i
k8 ,$ j k8,l %

tk8 , ~6!

wherea ( i k ,Pk),$ j k,l %
t (Ei k ,$ j k,l %

t ) are the expansion coefficien

~eigenenergies! for the tth eigenstate of a single-hole sel
trapped in an antiferromagnet with spins upturned at the s
j k,1 , j k,2 , . . . . They can be computed from a Schro¨dinger
equation that is discussed in the Appendix A.E$ j 0,l %

(0) denotes

the contribution to the energy from upturned spins at
sites j 0,1, j 0,2, . . . outside the range of motion of all holes

If one pair of sitesi , j is close to each other, but still fa
from the other ones, the two holes will only feel the presen
of each other. In this case a Schro¨dinger equation for two
holes has to be solved~see the Appendix A!. Then the two-
particle state and the eigenvalue of the two-particle Sch¨-
dinger equation have to replace the respective quantitie
Eq. ~6!. This procedure is readily generalized to the case
an arbitrary number of groups of several holes that are c
tering together.

The solution of Eq.~4! with a lowest energyE$ i k%,$ j l %
is

evidently given by the totally symmetric state~3!, which is
invariant under all group operations related to the inter
symmetry. In that case the coefficientsa$( i k ,Pk%,$ j l %

depend

only on the lengthsl (Pk) of pathsPk :

a$~ i k ,Pk!%,$ j l %
5a$„i k ,l ~Pk!…%,$ j l %

. ~7!

In order to apply this construction to the problem of tw
holes with antiparallel spins on the 434 cluster we notice
that there are only two different nonequivalent configuratio
of starting points if we require that the holes should be or
nally created at sites that belong to different sublattices. O
category of starting points is composed of all neare
neighbor pairs.uF i ,6 x̂(6 ŷ)

s
& denotes the most symmetric sta

~3! which represents two holes initially created at such a p
of sites i , j in the Néel state with no upturned spins:Rj

2Ri56 x̂(6 ŷ) and i belongs to the spin-up sublattice. Fig
ure 1~a! depicts the initial configuration of holes and spi
related to the stateuF i ,x̂

s
&. The coefficientsa$( i ,Pi ),( j ,Pj )%,$B%

FIG. 1. Initial configurations of holes and spins related to s
polaron states:~a! -uF i ,x̂

s
&, ~b! -uF i ,2x̂1 ŷ

s
&, ~c! -uF j ; x̂,ŷ

(1)
&, ~d! -uF i ; x̂,ŷ

(1)
&,

~e! -uF i ; x̂1 ŷ,2x̂1 ŷ
(2)

&, ~f! -uF j ; x̂1 ŷ,2x̂1 ŷ
(1)

&, wherei and j belong, respec-
tively, to the even and odd sublattices.
es

e

e
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in the expansion~3! for that state depend only on length o
paths a$( i ,Pi ),( j ,Pj )%,$B%5ã l (Pi ),l (Pj )

. The second class o

starting points contains sitesi , j such thatRj2Ri52x̂1 ŷ,
together with all analogous pairs which may be obtained
acting with symmetry transformations of the 434 cluster.
Fig. 1~b! depicts the initial configuration of holes and spi
related to the state uF i ,2x̂1 ŷ

s
&. The coefficients

a$( i ,Pi ),( j ,Pj )%,$B% in the definition~3! of a state with the low-
est energy are given to good approximation by the prod
ã l (Pi )

ã l (Pj )
, whereã l (P) is the totally symmetric solution for

Eq. ~4! in the case of a single hole.uF i ,2x̂6 ŷ(2ŷ6 x̂)
s

& denotes
the corresponding state. The second argument in the
script is equal to the difference:Rj2Ri . We do not take into
account statesuF i ,22x̂6 ŷ(22ŷ6 x̂)

s
& because the vector22x̂

6 ŷ(22ŷ6 x̂) is an equivalent of the vector 2x̂6 ŷ(2ŷ6 x̂) in
the 434 cluster with periodic boundary conditions.

Due to the high symmetry of uF i ,6 x̂(6 ŷ)
s

& and

uF i ,2x̂6 ŷ(2ŷ6 x̂)
s

& it is impossible to construct all irreducibl
representations of small groups of the wave vectork by us-
ing just these functions. To obtain less symmetric coun
parts ofuF i ,6 x̂(6 ŷ)

s
& we consider as a first~initial! state in the

sum ~3!, the Néel state with a spin upturned at a sitej and
two holes created at two nearest neighborsi 1 and i 2 . The
links between the sitesi 1-j and i 2-j form a right angle, that
is, Ri 1

2Rj56 x̂, Ri 2
2Rj56 ŷ. uF j ;6 x̂,6 ŷ

(1)
& denotes a

state with coefficientsa$( i 1 ,P1),(i 2 ,P2)%,$ j %5â l (P1),l (P2) that

depend only on length of pathsl (P1), l (P2). Figures 1~c!
and 1~d! depict the initial configurations of holes and spi
related to the statesuF j ;2 x̂,ŷ

(1)
& and uF i ;2 x̂,ŷ

(1)
&, where i and j

belong, respectively, to the even and odd sublattices.
choosing the antiferromagnetic state with two holes crea
at sitesi , i 8 and a spin upturned at a sitej, whereRi 82Ri

56 x̂6 ŷ and Rj2Ri5Ri 82Ri1@(Ri 82Ri) x̂# x̂ or Rj2Ri

5Ri 82Ri1@(Ri 82Ri) ŷ# ŷ, as a first state in the sum~3!, we
construct a less symmetric counterpart ofuF i ,2x̂6 ŷ(2ŷ6 x̂)

s
&.

We shall use the notationuF i ;Ri i8
2Ri ,Rj 2Ri

(2) & for such states.

Figures 1~e! and 1~f! depict the initial configurations of hole
and spins related to the statesuF i ; x̂1 ŷ,2x̂1 ŷ

(2)
& and

uF j ; x̂1 ŷ,2x̂1 ŷ
(2)

&, wherei andj belong, respectively, to the eve
and odd sublattices. Our assumption, by analogy w
uF i ,2x̂6 ŷ(2ŷ6 x̂)

s
&, is that coefficientsa$( i ,P),(i 8,P 8)%,$ j % in the

expansion~3! may be factorized:

a$~ i ,P!,~ i 8,P 8!%,$ j %5a$~ i ,P!,%,$B%a$~ i 8,P 8!%,$ j % , ~8!

wherea$( i ,P),%,$B% anda$( i 8,P 8)%,$ j % are, respectively, a solu
tion of the Schro¨dinger equation~4! in the case of a single
hole, no upturned spins and a solution for a single hole
tially created at a nearest neighbor of a site with an uptur
spin. In both cases the ground state possess the highest
sible symmetry, so that the coefficientsa$( i ,P),%,$B% and
a$( i 8,P 8)%,$ j % depend only on length of pathsP andP 8:

a$~ i ,P!,%,$B%5ã l ~P! , ~9!

a$~ i 8,P 8!%,$ j %5â l ~P 8! . ~10!
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TABLE I. Variational wave functions that realize irreducible representations of small groups ofk in
terms of functionsuF i ,6 x̂(6 ŷ)

s
& and uF i ,2x̂6 ŷ(2ŷ6 x̂)

s
&.

k Representation Wave function
~group!

0 A1(C4v)
1

AN/2
( i PA@a~ uF i ,x̂

s
&1uF i ,2 x̂

s
&1uF i ,ŷ

s
&1uF i ,2 ŷ

s
&)

1b~ uF i ,2x̂1 ŷ
s

&1uF i ,2x̂2 ŷ
s

&1uF i ,2ŷ1 x̂
s

&1uF i ,2ŷ2 x̂
s

&)]

0 B1(C4v)
1

AN/2
( i PA@a~ uF i ,x̂

s
&1uF i ,2 x̂

s
&2uF i ,ŷ

s
&2uF i ,2 ŷ

s
&)

1b~ uF i ,2x̂1 ŷ
s

&1uF i ,2x̂2 ŷ
s

&2uF i ,2ŷ1 x̂
s

&2uF i ,2ŷ2 x̂
s

&)]

0 E(C4v)
1

AN/2
( i PA@a~ uF i ,x̂

s
&2uF i ,2 x̂

s
&)1b~ uF i ,2ŷ1 x̂

s
&2uF i ,2ŷ1 x̂

s
&)]

(p,0) A1(C2v)
1

AN/2
( i PAeikRi@a1~ uF i ,x̂

s
&1uF i ,2 x̂

s
&)1a2~ uF i ,ŷ

s
&1uF i ,2 ŷ

s
&)

1b1~ uF i ,2x̂1 ŷ
s

&1uF i ,2x̂2 ŷ
s

&)1b2~ uF i ,2ŷ1 x̂
s

&1uF i ,2ŷ2 x̂
s

&)]

(p,0) B1(C2v)
1

AN/2
( i PAeikRi@a~ uF i ,ŷ

s
&2uF i ,2 ŷ

s
&)1b~ uF i ,2x̂1 ŷ

s
&2uF i ,2x̂2 ŷ

s
&)]

(p,0) B2(C2v)
1

AN/2
( i PAeikRi@a~ uF i ,x̂

s
&2uF i ,2 x̂

s
&)1b~ uF i ,2ŷ1 x̂

s
&2uF i ,2ŷ2 x̂

s
&)]

(p/2,p/2) A1(Cs)
1

AN/2
( i PAeikRi@a1~ uF i ,x̂

s
&1uF i ,ŷ

s
&)1a2~ uF i ,2 x̂

s
&1uF i ,2 ŷ

s
&)

1b1~ uF i ,2x̂1 ŷ
s

&1uF i ,2ŷ1 x̂
s

&)1b2~F i ,2x̂2 ŷ
s

&1uF i ,2ŷ2 x̂
s

&)]

(p/2,p/2) A2(Cs)
1

AN/2
( i PAeikRi@a1~ uF i ,x̂

s
&2uF i ,ŷ

s
&)1a2~ uF i ,2 x̂

s
&2uF i ,2 ŷ

s
&)

1b1~ uF i ,2x̂1 ŷ
s

&2uF i ,2ŷ1 x̂
s

&)1b2~ uF i ,2x̂2 ŷ
s

&2uF i ,2ŷ2 x̂
s

&)]

(p/2,0) A1(Cs)
1

AN/2
( i PAeikRi@a1uF i ,x̂

s
&1a2uF i ,2 x̂

s
&1a3~ uF i ,ŷ

s
&1uF i ,2 ŷ

s
&)

1b1~ uF i ,2x̂1 ŷ
s

&1uF i ,2x̂2 ŷ
s

&)1b2uF i ,2ŷ1 x̂
s

&1b3uF i ,2ŷ2 x̂
s

&]

(p/2,0) A2(Cs)
1

AN/2
( i PAeikRi@a~ uF i ,ŷ

s
&2uF i ,2 ŷ

s
&)1b~ uF i ,2x̂1 ŷ

s
&2uF i ,2x̂2 ŷ

s
&)]
a
to

r
a
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III. VARIATIONAL WAVE FUNCTIONS

We have to consider fewk points in the Brillouin zone
because many of them are either related by symmetry tr
formations or differ by the antiferromagnetic wave vec
Q5(p,p). By choosing an antiferromagnet as a medium
which holes propagate and interact we have effectively
duced the size of the Brillouin zone so that the momentk
andk1Q are equivalent. Table I gives the variational wa
functions that realize some irreducible representations
small groups ofk in terms of the functionsuF i ,6 x̂(6 ŷ)

s
& and

uF i ,2x̂6 ŷ(2ŷ6 x̂)
s

&.
Some representations can not be constructed using

those states, because their symmetry is too high. Quite
erally, loss of symmetry brings rise in energy. The m
symmetric solutions of Eq.~4! that allow us to construct the
remaining representations are statesuF l ;6 x̂,6 ŷ

(1)
& and
ns-
r

in
e-

e
of

nly
en-
st

uF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)
(2)

&. The wave functions that realize th
less symmetric representations in terms of the sta
uF l ;6 x̂,6 ŷ

(1)
& anduF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)

(2)
& are listed in Table II.

IV. INTERACTION OF SPIN POLARONS

The states~3! describe the trapping of holes in an antife
romagnetic medium by local deformation of the spin a
rangement. The notion of a spin polaron is therefore ap
cable to them. In the previous section we have sho
combinations of polaronic states with given momentum a
symmetry. To calculate the energy we now need to know
following overlap and Hamiltonian matrix elements:

N$ i k%,$ j l %;$ i k8
8 %,$ j

l 8
8 %5^C$ i k%,$ j l %

uC$ i
k8
8 %,$ j

l 8
8 %&, ~11!
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TABLE II. Variational wave functions which realize irreducible representations of small groups ofk in
terms of functionsuF l ,6 x̂(6 ŷ)

(1)
& and uF l ;6 x̂6 ŷ,62x̂6 ŷ(62ŷ6 x̂)

(2)
&.

k Repr. Wave function
~group!

0 A2(C4v)
1

AN/2
$( i PA@a1~ uF i ; x̂,y

~1!
&1uF i ;2 x̂,2y

~1!
&2uF i ; x̂,2y

~1!
&2uF i ;2 x̂,y

~1!
&)

1b1~ uF i ; x̂1 ŷ,2x̂1 ŷ
~2!

&1uF i ;2 x̂2 ŷ,22x̂2 ŷ
~2!

&1uF i ;2 x̂1 ŷ,2 x̂12ŷ
~2!

&1uF i ; x̂2 ŷ,x̂22ŷ
~2!

&

2uF i ; x̂2 ŷ,2x̂2 ŷ
~2!

&2uF i ;2 x̂1 ŷ,22x̂1 ŷ
~2!

&2uF i ; x̂1 ŷ,x̂12ŷ
~2!

&2uF i ;2 x̂2 ŷ,2 x̂22ŷ
~2!

&)]

1( j P” A@a1→a2 ,b1→b2 ,i→ j #%

0 B2(C4v)
1

AN/2
@( i PAb1~ uF i ; x̂1 ŷ,2x̂1y

~2!
&1uF i ;2 x̂2 ŷ,22x̂2y

~2!
&1uF i ; x̂1 ŷ,x̂12y

~2!
&1uF i ;2 x̂2 ŷ,2 x̂22y

~2!
&

2uF i ; x̂2 ŷ,2x̂2 ŷ
~2!

&2uF i ;2 x̂1 ŷ,22x̂1 ŷ
~2!

&2uF i ;2 x̂1 ŷ,2 x̂12ŷ
~2!

&2uF i ; x̂2 ŷ,x̂22ŷ
~2!

&)

1( j P” Ab2~ i→ j !

(p,0) A2(C2v)
1

AN/2
$( i PAeikRi@a1~ uF i ; x̂,y

~1!
&1uF i ;2 x̂,2y

~1!
&2uF i ; x̂,2y

~1!
&2uF i ;2 x̂,y

~1!
&)

1b1~ uF i ; x̂1 ŷ,2x̂1 ŷ
~2!

&1uF i ;2 x̂2 ŷ,22x̂2 ŷ
~2!

&2uF i ; x̂2 ŷ,2x̂2 ŷ
~2!

&2uF i ;2 x̂1 ŷ,22x̂1 ŷ
~2!

&)

1b2~ uF i ; x̂1 ŷ,x̂12ŷ
~2!

&1uF i ;2 x̂2 ŷ,2 x̂22ŷ
~2!

&2uF i ;2 x̂1 ŷ,2 x̂12ŷ
~2!

&2uF i ;2 x̂2 ŷ,2 x̂22ŷ
~2!

&)]

1( j P” AeikR j@a1→a2 ,b1→b3 ,b2→b4 ,i→ j #%
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H $ i k%,$ j l %;$ i k8
8 %,$ j

l 8
8 %5^C$ i k%,$ j l %

uHuC$ i
k8
8 %,$ j

l 8
8 %&, ~12!

These will now be discussed one after another. The simp
terms in the diagonal elements of the overlap and Ham
tonian matrices come from self-overlap of statesuC$ i k%,$ j l %

&
and from their eigenenergiesE$ i k%,$ j l %

. During the process o

construction of statesuC$ i k%,$ j l %
& that are solutions of Eq.~4!,

we have made many simplifications. Crossing of paths
processes that lead to relaxation of strings have been
glected. They should now contribute to elements~11! and
~12!. All such new terms have been represented by a kind
diagrams depicted by Figs. 3–15. Figures 3–5 represent
trix elements that couple statesuF i ,6 x̂(6 ŷ)

s
& and

uF i ,2x̂6 ŷ(2ŷ6 x̂)
s

&, while Figs. 6–15 represent elements th

couple statesuF l ;6 x̂,6 ŷ
(1)

& and uF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)
(2)

&. Open
and solid circles in the right part of each figure repres
starting sites of holes for both states that contribute to
matrix element and correspond to two sets of indices$ i k% and
$ i k8

8 %. Open and solid diamonds also represent two set
sites, namely,$ j l% and$ j l 8

8 % where spins have been upturne
Left and central parts of diagrams demonstrate how ident
states can be generated from different original configurati
of holes. They depict two string states^$( i k ,Pk)%,$ j l%u and
u$( i k8

8 ,P k8)%,$ j l 8
8 %&. An arrow represents a path that a ho

has followed. A curved arrow depicts action of the hoppi
part of the Hamiltonian on a string state. The action of
exchange part of the Hamiltonian is represented by
slanted crosses. The Appendix B explains rules for obtain
elements of the overlap and Hamiltonian matrices from d
grams presented in Figs. 3–15. Figure 2 shows, for illus
tion, the spin configurations related to some diagrams.
st
l-

d
e-

of
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.
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-
e

have assumed that the site in the lower left corner of e
diagram belongs to the spin-up sublattice. Figure 3~a! repre-
sents overlap between two string states, which gives rise
term in a matrix element N$ i k%,$ j l %;$ i k8

8 %,$ j
l 8
8 % for $ i k%

5$ i 1 ,i 2%, $ j l%5$B%, $ i k8
8 %5$ i 3 ,i 2% and $ j l 8

8 %5$B%;

whereRi 2
2Ri 1

56 x̂(6 ŷ) andRi 3
2Ri 1

562x̂(62ŷ). The
states coupled by that element are ground states of Eq~4!
that represent holes oscillating in the vicinity of a pair
nearest-neighbor sites. They possess the highest pos
symmetry: u$ i 1 ,i 2%,$B%&5uF i 1 ,6 x̂(6 ŷ)

s
&, u$ i 3 ,i 2%,$B%&5

uF i 3 ,7 x̂(7 ŷ)
s

&. Figures 2~a! and 2~b! depict original configu-

rations which correspond to the left and central parts of F
3~a!. Figure 2~c! represents the final common spin config
ration that was formed after the right hole in Fig. 2~a! and the
left hole in Fig. 2~b! had moved by one lattice spacing in th
horizontal direction. The corresponding term

FIG. 2. Spin configurations related to some contributions
overlap and Hamiltonian matrices.
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N$ i 1 ,i 2%,$B%;$ i 3 ,i 2%,$B% is given by 2(ã0,1)
2. The minus sign

originates from the order in which the holes were created
the two states represented by Figs. 2~a! and 2~b!, and from
correspondence between holes in the original states and
final state depicted by Fig. 2~c!. Another process, shown i
Fig. 3~b!, contributes to the overlap matrix. Figures 2~d! and
2~f! depict the starting configurations for the states rep
sented by the left and central parts of Fig. 3~b!. The final
configuration, which is common to both states, is shown
Fig. 2~h!. The intermediate states are represented by F
2~e! and 2~g!. The central part of Fig. 3~c! depicts a hopping
process that has been excluded from the HamiltonianH8 by
the definition of spin polarons(3). It gives rise to a term
tã0,0ã0,1 in the elementH $ i 1 ,i 2%,$B%;$ i 3 ,i 2%,$B% . The action of
the kinetic part of the Hamiltonian on the state depicted
the central part of Fig. 3~a!, with the coefficientã0,1 in the
expansion~3! gives rise to the state shown in the left part
Fig. 3~c! with the coefficientã0,0 and a configuration of
holes and spins shown in Fig. 2~a!. Figure 3~d! depicts a
hopping process related to the overlap of states represe
by Fig. 3~b!. Figure 2~e! depicts a final configuration com
mon to states shown in the left and central parts of Fig. 3~d!.
There exists another new term in elements of the ove
matrix N analogous to the term represented by Fig. 3~a!. That
term is represented by a diagram of different shape
couples statesuF i 1 ,x̂

s
& and uF i 3 ,2 ŷ

s
&, whereRi 3

2Ri 1
5 x̂1 ŷ;

and all analogous pairs of states that may be obtained
action of symmetry transformations of the 434 cluster.
There exist three additional new terms in elements of
overlap matrix that are represented by diagrams equivale
Fig. 3~b! but of different shape. The diagram in Fig. 3~c! has
also an equivalent and the diagram in Fig. 3~d! has four.

We proceed now to discuss processes related to thetrans-
versepart of the Heisenberg Hamiltonian that couple sta
uF i ,6 x̂(6 ŷ)

s
& and uF i ,2x̂6 ŷ(2ŷ6 x̂)

s
&. Diagrams which represen

different categories of these are shown in Fig. 4. As an
ample we discuss in detail Fig. 4~c!, which depicts a proces
coupling statesuF i ,x̂

s
& and uF i ,2x̂1 ŷ

s
&. The initial configura-

tions of holes and spins for the left and central part of F
4~c! are shown in Fig. 2~d! and Fig. 2~i!, respectively. Figure
2~h! depicts a state created by two jumps of the right hole
the left part of Fig. 4~c!. Action of the exchange part of th
Heisenberg Hamiltonian@represented by the central part

FIG. 3. Some diagrams that represent processes contributin
the overlap and Hamiltonian matrices. Matrix elements cou
statesuF i ,6 x̂(6 ŷ)

s
& and uF i ,62x̂6 ŷ(62ŷ6 x̂)

s
&.
n

the

-

n
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n
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e
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-

.

n

Fig. 4~c!#, which upturns two antiparallel spins on a pair
nearest-neighbor sites, on the state depicted by Fig. 2~i! also
gives rise to a state shown in Fig. 2~h!. The corresponding
contribution to the matrix element is given byJ/2ã0,2ã0

2 .
The periodic boundary conditions allow for some pr

cesses that are specific to the 434 cluster. Figure 5 contains
diagrams that depict such processes. Figure 5~a!, for ex-
ample, represents a contributionJ/2@ã0,2ã0,0/(z21)1(z
22)(m50,n52(z21)m1n23ãm,nãm,n22# to the matrix ele-
ment that couples statesuF i ,x̂

s
& anduF i ,2 x̂

s
&. Due to the peri-

odic boundary conditions the horizontal motion of a hole
the left part of Fig. 5~a! brings that hole eventually to th
other side of its neighbor. Figures 3, 4, and 5 contain
amples of all possible types of processes that involve pa
of total length not exceeding two lattice spacings. Many p
cesses that have not been shown explicitly in those figu
are represented by diagrams of different geometry. Never
less, they are ruled by the same mechanisms.

Diagrams for processes which contribute to elements oN
coupling statesuF l ;6 x̂,6 ŷ

(1)
& and uF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)

(2)
& have

to
e

FIG. 4. Processes related to the exchange part of the Ha
tonian. Matrix elements couple statesuF i ,6 x̂(6 ŷ)

s
& and

uF i ,62x̂6 ŷ(62ŷ6 x̂)
s

&.

FIG. 5. Processes that couple statesuF
•,•
s & and involve effects

related to periodic boundary conditions of the 434 cluster.
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been presented in Figs. 6, 7, and 8. Figure 6 depicts stan
processes which give rise to contributions to the overlap
trix. The process depicted in Fig. 6~a! gives rise to a term
2(m50,n51(z21)m1n21âm,nân21,m11 in an element that

couples statesuF i ;2 x̂,ŷ
(1)

& and uF j ; x̂,2 ŷ
(1)

&, where Rj2Ri5 ŷ.
The minus sign is related to the fermionic character of
hole and a convention according to which holes at the s
j 1 , j 2 have been created in the same order as holes at the
i 1 ,i 2 . Processes shown in Fig. 7 involve boundary effects
diagram in Fig. 7~a! gives rise to a contribution2@ã2

2â0
2(z

21)211(z22)(m52,n50(z21)m1n23ãmânãn12âm22# to
an element that couples statesuF l ; x̂1 ŷ,2x̂1 ŷ

(2)
& and

uF l ;2 x̂1 ŷ,22x̂1 ŷ
(2)

&. Figure 8 depicts some fictitious state

which by definition contribute to statesuF l ;6 x̂,6 ŷ
(1)

& and

uF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)
(2)

&, because during the process of co
struction of ‘‘spin bag’’ states we have neglected the pos
bility that paths may cross. Therefore some states that c
tribute to uC$ i k%,$ j l %

& in Eq. ~3! correspond to forbidden
configurations representing two holes that occupy the s

FIG. 6. Processes that give rise to contributions to matrix e
ments of the overlap matrixN and couple statesuF i ,6 x̂(6 ŷ)

s
& and

uF i ,62x̂6 ŷ(62ŷ6 x̂)
s

&.

FIG. 7. Diagrammatic representation of overlap between dif
ent spin bag states. Due to periodic boundary conditions st
states in the left and central parts of each diagram are equal.
rd
a-

e
s

ites
A

-
i-
n-

e

site. Fictitious states make contributions to diagonal e
ments that are related to self-overlap of statesuC$ i k%,$ j l %

& and

their eigenenergiesE$ i k%,$ j l %
. Those contributions should

therefore be subtracted at a later stage of calculations. Fi
8~a!, for example, represents a subtraction2(m52(z
21)m22â0,m

2 from the diagonal element for a stateuF l ,2 x̂,ŷ
(1)

&.
Some contributions to the Hamiltonian matrixH originate

in an obvious way from the overlap matrixN and eigenen-
ergiesE$ i k%,$ j k% of states coupled by elements ofN. The dia-
gram in Fig. 3~a!, for example, gives rise to a term
2Ẽ2(m50,n51(z21)m1n21ãm,n

2 in a matrix element that
couples statesuF i ,2 x̂

s
& and uF i ,x̂

s
&.

The possibility that a hole that has left the initial site m
occupy a site that is a nearest neighbor of another hole
not been taken into account in the Schro¨dinger equations for
Ẽ1 , Ẽ2 , Ê1 , and Ê2 . On the other hand, such configur
tions give rise to nonstandard contributions from the dia
nal termJ(^ i , j &(Si

zSj
z2ninj /4), which are lowered byJ/2 as

compared to the case when the paths of two holes do

-

-
g

FIG. 8. Diagrams that depict some fictitious states that cont
ute to self-overlap of statesuF l ;6 x̂,6 ŷ

(1)
& and uF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)

(2)
&

and sums in normalization conditions~A6!, ~A7!, and~A8!.

FIG. 9. Overlapping string states with reduced diagonal con
bution to energy.
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touch each other. We therefore have to make amendmen
some elements of the Hamiltonian matrixH @see Fig. 9~a!
for an example of such an amendment given
2(J/2)(m50,n51(z21)m1n21âm,n

2 ].
In general, we restrict our considerations for contributio

proportional toJ to processes for which the total length
paths related to states coupled by those processes doe
exceed two lattice spacings. Examples of all relevant ty
of processes related to the diagonal part of the Hamilton
have been presented in Fig. 9. A process depicted by
9~b! is also related to an additional contribution to the ov

FIG. 10. Diagrammatic representation of some processes
contribute to the Hamiltonian matrix and are related to the kine
part of thet-J model.

FIG. 11. Some processes that couple statesuF l ;6 x̂,6 ŷ
(1)

& and

uF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)
(2)

& and involve the kinetic term in the Hamil
tonian.
in

y

s

not
s
n

ig.
-

lap matrix. It is analogous to a process depicted by Fig. 6~a!,
and therefore has not been shown in Fig. 6. Figures 10
11 depict examples of processes that are related to the kin
part of the Hamiltonian and give rise to some contributio
to the Hamiltonian matrix. In our considerations we ha
taken account of all paths the length of which does not
ceed two lattice spacings. Many processes that are analo
to those in Figs. 10 and 11 have not been shown beca
they are ruled by identical mechanisms and the only diff
ence is their geometry.

The diagram in Fig. 10~a! gives rise to a contribution
t(m50(z21)mâm,0â0,m11 to an element that couples stat

uF i ,2 x̂,ŷ
(1)

& anduF j ,x̂,2 ŷ
(1)

&, whereRj2Ri5 ŷ. A matrix element

t„~z21!21ã0â0ã1â0

1~z22! (
m50

~z21!m21ã0â1ãm11â0…,

which couples statesuF i ,x̂1 ŷ,2x̂1 ŷ
(2)

& and uF j ,2 x̂2 ŷ,22x̂2 ŷ
(2)

&,

where Rj2Ri52x̂1 ŷ, originates from a diagram in Fig
11~a!. Figure 12 depicts spurious processes related to
hopping term in the Hamiltonian, which are included in t
Schrödinger equations~A3! and ~A5! for â. Their contribu-
tions should be subtracted. A diagram in Fig. 12~a! gives rise
to an amendmenttâ0,2â0,1 in a diagonal matrix element for a
stateuF l ,2 x̂,ŷ

(1)
&. Figures 13, 14, and 15 depict some proces

that involve the exchange part of the Hamiltonian. Proces
shown in Fig. 15 are specific to the 434 cluster, because
they are related to periodic boundary conditions. A contrib
tion 2(J/2)(m50,n52(z21)m1n22âm,nâm,n22 to a matrix
element that couples statesuF i ,x̂,ŷ

(1)
& and uF j ,x̂,ŷ

(1)
&, whereRj

2Ri5 x̂, originates from a diagram in Fig. 13~b!.

at
c

FIG. 12. Some spurious processes related to the hopping ter
the Hamiltonian.
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The diagram in Fig. 14~a! gives rise to a contribution

2~J/2!F~z21!21ã2â0â0,01~z22!

3 (
m52,n50

~z21!m1n23ãmânân,m22G
to a matrix element that couples statesuF i ,x̂1 ŷ,2x̂1 ŷ

(2)
& and

uF j ,2 x̂,2 ŷ
(1)

&, whereRj2Ri52x̂1 ŷ.
A contribution

FIG. 13. Diagrammatic representation of some processes m
ated by the exchange part of the Hamiltonian.

FIG. 14. Some processes mediated by the exchange
of the Hamiltonian that couple statesuF l ;6 x̂,6 ŷ

(1)
& and

uF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)
(2)

&.
~J/2!F ~z21!21â2,0â0,01~z22!

3 (
m52,n50

~z21!m1n23âm,nâm22,nG
to a matrix element coupling statesuF l ,x̂,ŷ

(1)
& and uF l ,2 x̂,ŷ

(1)
& is

related to a diagram in Fig. 15~a!.
Figures 3–15 do not contain all 117 processes that

have considered. On the other hand, those figures repre
all mechanisms that govern processes involving paths
length not exceeding two lattice spacings. In the case of c
rections to the diagonal contribution to eigenenergy we h
restricted calculations to paths of length not exceeding
lattice spacing. Each diagram for 117 processes represe
contribution not only to matrix elements which couple sta
represented by the right part of that diagram, but also to
matrix elements which couple states obtained by action
lattice symmetry transformations.

V. COMPARISON BETWEEN VARIATIONAL APPROACH
AND EXACT DIAGONALIZATION

Using the Lanczos algorithm we have calculated the lo
est state for all the different space group representations.

di-

art

FIG. 15. Some processes mediated by the exchange part o
Heisenberg model that contribute to the Hamiltonian matrix a
involve periodic boundary conditions.
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TABLE III. The energy difference between two and no hole statesE22E0; k is the total momentum, Rep
denotes the appropriate representation,t51, J51/4, spin bag wave functions were calculated for maxim
string length of 5 lattice spacings. Figures in parentheses denote values obtained by means of the va
approach.

A1 A2 B1 B2 E

(0,0) 23.72 (23.74) 23.55 (23.48) 24.00 (23.90) 23.42 (23.56) 23.76 (23.93)

(p,p) 23.31 (23.74) 23.66 (23.48) 23.81 (23.90) 23.52 (23.56) 23.81 (23.93)

(p,0) 23.66 (23.60) 23.80 (23.73) 24.00 (23.90) 23.81 (23.90)

(p/2,p/2) 23.79 (23.60) 23.81 (23.93)

(p/2,0) 23.73 (23.85) 23.77 (23.85)

(p,p/2) 23.77 (23.85) 23.73 (23.85)
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have then repeated that task by means of the variationa
proach based on the string picture. In the latter case we h
applied the trial wave functions that have been gathere
Tables I and II. Binding of holes appears for sufficien
largeJ/t (>0.27).20–22We have therefore performed calc
lations for two values ofJ/t just near the critical ratio for
J/t50.25 and deep in the binding region forJ/t50.5. The
region between those values seems to be very interesting
from the experimental viewpoint and most numerical stud
indicate that those values are low enough to prevent ph
separation.23,24 The variational approach is based on a si
plifying assumption, but in general not necessary, that
spin background is an ideal antiferromagnet. The spin
scenario is also true for finite range antiferromagnetic co
lations provided that they extend for a sufficiently long d
tance. In such a case a tendency towards localization of h
and towards formation of spin polarons determines the
namics of holes. Correlations in a finite cluster are by d
nition not of infinite range. Two holes in a 16-site clust
mean a substantial amount of doping that reduces antife
magnetic correlations.

The binding energy for the lowest state has been alre
calculated by means of the variational approach and
sented in a paper by Wro´bel and Eder16 ~see Figs. 18 and
21!. In the present paper we concentrate on the issue of c
p-
ve
in

lso
s
se
-
e
g
-

-
les
-
-

o-

y
e-

m-

petition between states of different symmetry or importan
of different precess and therefore use the energy of the N´el
state as a point of reference. In Tables III and IV we pres
a comparison between structures of eigenenergies obta
by means of the variational approach based on the st
picture and by means of an exact diagonalization. The es
tial difference between results of both calculations is that
energies for momenta that differ by (p,p) are not equal in
the case of the exact diagonalization. All such states are
definition equivalent in the case of the variational approa
because the assumption that spins in the background ar
ranged according to the Ne´el pattern induces a reduction i
the size of the Brilloin zone. Two antiparallel Ne´el states on
a cluster with an even number ofN sites are coupled be
finite power of the HamiltonianHN/2 and their effective hy-
bridization, which is neglected in the variational calculatio
comes into play. But, on the other hand, the variational
proach gives correctly the scale of the difference in energ
of the two-hole state and the equivalent undoped system
also selects the same group of states with small energy a
exact diagonalization. Those states areA2 for k
5(p/2,p/2), B1 for k50,(p,p),(p,0) and E for k
5(p,p). The system chooses the ground state from that
of states. The value of the energy of the representationE is
too low in the variational calculation, probably because co
or
s of the
TABLE IV. The energy difference between two and no hole statesE22E0; k is the total momentum,
Rep. denotes the appropriate representation,t51, J51/2, spin bag wave functions were calculated f
maximal string length of 5 lattice spacings. Figures in parentheses denote values obtained by mean
variational approach.

A1 A2 B1 B2 E

(0,0) 21.49 (21.33) 21.61 (21.09) 22.37 (21.96) 21.33 (21.07) 21.92 (21.95)

(p,p) 21.33 (21.33) 21.58 (21.09) 22.02 (21.96) 21.22 (21.07) 22.13 (21.95)

(p,0) 21.52 (21.32) 22.01 (21.50) 22.37 (21.96) 22.02 (21.96)

(p/2,p/2) 22.01 (21.32) 22.13 (21.95)

(p/2,0) 22.02 (21.81) 21.98 (21.81)

(p,p/2) 21.98 (21.81) 22.02 (21.81)



e-
th

e
v
b

s

e

ly

e
in

hil
ba

a
th
u
he
p
ue
te
o

y
o

xa

pr
te

e

in

is
a

T

io
o

rgy
one
be
hat
o-

ter-
lues
at

mo-
tes
e

y a
pin

s
her

ich
ich

They
nic
in

-
r

of

bor
nt
f
a

of
rgy

a-

rt of

ipo-

o-
that

15 170 PRB 58PIOTR WRÓBEL AND ROBERT EDER
pling between antiparallel Ne´el arrangements has been n
glected. How important that coupling is may be seen in
case of the difference between energies for statesA1 or B1
andk50 or k5(p,p).

The variational approach reproduces with some exc
tions the structure of states for all momenta. As we ha
mentioned above, the main exception is the difference
tween energies corresponding to different representation
k50 and (p,p). The hierarchy of states fork50 is repro-
duced by the analytical approach with the exception of thE
representation forJ/t51/4 and theA2 representation for
J/t51/2. A state that transforms according to theE repre-
sentation fork50 is the overall ground state forJ/t51/4 in
the analytical calculation, but its energy is only slight
lower than the energy of theB1 state, which is the true
ground state of the cluster. In the case ofk5(p,p), which is
equivalent to the casek50 for the variational approach, w
see that true energies forB1 andE states are indeed near
value for J/t51/4 and the energy of theE state for J/t
51/2 is lower than the energy of theB1 state.

It is rather surprising why the true energy of theA2 state
is lower than energy of theA1 state forJ/t51/2. TheA1
representation involves fully symmetric spin bag states w
the A2 representation consists of less symmetric spin
states. It has been shown by Belinicher and co-workers25 that
inclusion of longer-range spin wave exchange can lower
A2 ~or g-wave! state sufficiently, so that it can compete wi
theB1 state as the ground state. This state, however, is q
different from the present one, which is indeed a rat
highly excited state. In the next section we present a sim
explanation for the structure of states for intermediate val
of J/t, which is based on the symmetry of the spin bag sta
and a few simple processes. That explanation sheds s
light on the puzzle of theA2 state.

The structure of states fork5(p,0) is preserved in the
variational approach forJ/t51/4,1/2. The only inconsistenc
is that the two lowest statesB1 andB2 are degenerate due t
equivalence of states with momenta that differ by (p,p).
The order of the states withk5(p/2,p/2) is the same in the
case of the variational method as in the case of the e
diagonalization. All four states fork5(p/2,0),(p,p/2) are
degenerate in the variational approach. The different re
sentationsA1 and A2 for different momenta are degenera
due to the equivalence of the 434 cluster and the 24 super-
cube, while the same representationsA1 (A2) also for dif-
ferent momenta are degenerate due to the equivalenc
momenta (p/2,0) and (p,p/2). The true energies fork
5(p/2,0),(p,p/2), while not being equal, are close
value.

VI. MECHANISM OF BINDING
IN DOPED ANTIFERROMAGNETS

The hierarchy of states withk50 that correspond to dif-
ferent irreducible representations ofC4v may be interpreted
in terms of a much more reduced Hilbert space that cons
only of states that correspond to pairs of holes created in
antiferromagnetic background at nearest-neighbor sites.
role of such states grows with the ratioJ/t. Although the rise
in the magnetic contribution to energy related with creat
of a pair of static holes is minimal if they occupy tw
e
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nearest-neighbor sites, the kinetic contribution to ene
grows in such a case because hopping of each hole in
direction is blocked by its companion. That loss may
compensated if holes follow each other in such a way t
they jump on upturned spins left by the other hole. The m
tion of a pair of holes connected by a string seems to de
mine the properties of a bound state also for moderate va
of J/t. We try to understand binding in terms of states th
are coupled by processes corresponding to that type of
tion. The reduced Hilbert space consists then of sta
uF i ,6 x̂(6 ŷ)

s
&, where i belongs to the spin-up sublattice. Th

rich structure of the spin bag stateuF i ,6 x̂(6 ŷ)
s

&, which is a
combination of many string states, may be represented b
single operator that corresponds to the creation of a s
bipolaron at sitesRi and Rj , where Rj2Ri56 x̂(6 ŷ).
Some coherent sums of bipolaronic statesuF i ,6 x̂(6 ŷ)

s
& realize

representationsA1 , B1 , andE for k50. Figure 16 depicts
schematically structure of those coherent combinations.

It is not possible to construct the representationsA2 and
B2 for k50 in terms of fully symmetric bipolaronic state
uF i ,6 x̂(6 ŷ)

s
& and states which realize them must have hig

energy than states which realize the representationsA1 , B1
and E. Bipolaronic states are combinations of states wh
may be obtained by consecutive hopping from a state wh
represents two holes created at nearest neighbor sites.
also may possess nontrivial internal symmetry. Bipolaro
states with a minimal loss of symmetry and a minimal rise
energy are combinations of statesuF l ,6 x̂(6 ŷ)

(1)
&. The states

uF l ;6 x̂6 ŷ,2x̂6 ŷ(2ŷ6 x̂)
(2)

& represent a combination of a fully sym
metric polaron at a sitei, and a polaron which has lowe
symmetry at a sitej, where Rj2Ri52x̂6 ŷ(2ŷ6 x̂). The
static contribution to the energy from a component
uF i ,6 x̂(6 ŷ)

(1)
&, which is a string state of shortest length~an

upturned spin and two holes created at nearest-neigh
sites!, is lower than the static contribution from a compone
of uF l ;6 x̂6 ŷ,2x̂6 ŷ(2ŷ6 x̂)

(2)
& corresponding to a string state o

shortest length, which is a combination of a hole and
single-hole string of length 1. The eigenenergy
uF l ,6 x̂(6 ŷ)

(1)
& should be therefore lower than the eigenene

of uF l ;6 x̂6 ŷ,2x̂6 ŷ(2ŷ6 x̂)
(2)

&. A state that realizes the represent

tion A2 is a combination of statesuF l ,6 x̂(6 ŷ)
(1)

& and

uF l ;6 x̂6 ŷ,2x̂6 ŷ(2ŷ6 x̂)
(2)

&, while the representationB2 is a com-

bination only of statesuF l ;6 x̂6 ŷ,2x̂6 ŷ(2ŷ6 x̂)
(2)

&. It is therefore
clear that theA2 state should have lower energy than theB2
state. The dominant processes that involve the kinetic pa

FIG. 16. Schematic representation of coherent sums of b
laronic statesuF i ,6 x̂(6 ŷ)

s
& that realize the representationsA1 , B1

and E for k50. A sign in the center of a bond represents a bip
laron that corresponds to two holes created at both ends of
bond.
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TABLE V. Strength of different process which contribute to the overlap and the energy for representationsA1 , B1 , andE. Figures in
parentheses denote bare matrix elements.

Rep. Wbp Wpp Ebb Edi f Ecat Eexbb Eexpp Eexbp

A1 0.27(0.57) 0.73(4.0) 20.05(20.11) 0.00(0.00) 0.32(0.68) 0.16(0.33) 0.47(2.6) 20.97(23.3)

B1 0.78(5.9) 0.22(4.0) 20.16(21.2) 0.00(0.01) 20.15(21.1) 20.14(21.0) 20.05(20.86) 20.09(21.1)

E 0.52(3.1) 0.48(2.0) 20.10(20.60) 0.00(0.01) 20.11(20.66) 20.01(20.06) 20.10(20.43) 20.22(1.1)
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the Hamiltonian and string states of shortest length are
resented by Fig. 3~c!. By counting states that are coupled b
those processes with a certain bipolaronic state we conc
the the contribution to energy per bond occupied by a bi
laron is 6t1 for the representationA1 and 22t1 for the
representationsB1 andE, wheret15tã0,0ã0,1.0 and there-
fore theA1 state will have higher energy than theB1 andE
states. The positive sign of the contribution to energy for
representationA1 which originates from that processes e
plains why the energy of theA2 state is lower than the en
ergy of theA1 state forJ/t50.5. It turns out that the gain
related to a higher symmetry of spin bag states that con
ute to theA1 state is compensated by contributions fro
processes represented by elements of the Hamiltonian m
and related to the hopping term. Processes that invo
longer strings should decide what symmetry,B1 or E, pos-
sess the ground state for the two-hole problem in thet-J
model. Processes that are represented by Fig. 3~d! are not
conclusive because their contribution is 2t2 for both states
B1 andE, wheret252t(m50(z21)mãm,1ãm12,0. We pro-
ceed then to analysis of processes that involve the exch
part of the Hamiltonian. A contribution from processes d
picted in Fig. 4~a! is 28u1 , where u15(J/2)(m50,n52(z
21)m1n22ãm,nãm,n22 , in the case of theB1 representation
and vanishes for theE representation. That favors theB1
representation for the infinite lattice. In the case of the
34 cluster with periodic boundary conditions the proce
depicted by Fig. 5~a! neutralizes the contribution from th
process represented by Fig. 4~a! ~it gives rise to the contri-
bution 4u1 to energy of theB1 state and24u1 to energy of
the E state!. The contribution from the process depicted
Fig. 4~b! is 4u2 for both representationsB1 and E, where
u252(J/2)(m51,n51(z21)m1n22ãm,nãm21,n21 . The pro-
cess depicted by Fig. 5~b! favors theB1 representation. Its
contribution to energy per bond occupied by a bipolaron
2u2 for the B1 state and22u2 for the E state. That proces
plays therefore the decisive role in the case of the 434
cluster with periodic boundary conditions.

In order to confront the heuristic way of reasoning w
results obtained by means of the full version of the var
tional approach we have additionally calculated contrib
tions to the energy from different processes for the repres
tations A1 , B1 , E, (k50, J/t50.4) and wave functions
gathered in Table I. Table V contains results of that calcu
tion. Wbp denotes the weight in the variational wave functi
of functionsuC i ,6 x̂(6 ŷ)

s
& representing bipolarons.Wpp is the

weight of functionsuC i ,2x̂6 ŷ(2ŷ6 x̂)
s

& representing pairs of spin
polarons.Ebb denotes the gain in energy due to the fact t
the diagonal contribution to energy @the term
p-

de
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e

b-

rix
e

ge
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4
s

s
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-
n-

-

t

J(^ i , j &(Si ,zSj ,z2ninj /4)] from statesuC i ,6 x̂(6 ŷ)
s

& is lower
because a pair of holes is created on nearest-neighbor
~and one ‘‘broken’’ bond is saved!. Edi f is a gain or a loss
due to the difference between the eigenenergy of a bipola
Ẽ2 and eigenenergy of two polarons 2Ẽ1 . It is defined as a
product of a factorẼ222Ẽ121/3J and the weight of the
spin bipolaron in the variational wave function. The ter
21/3J in the first factor is related to a contribution from
quantum fluctuations in the spin background.Ecat denotes
the contribution to energy from processes shown in Fi
3~c! and 3~d!. They represent motion of two holes connect
by a string of upturned spins that resembles motion o
caterpillar.Eexbb is the contribution to the energy from th
exchange term (J/2)(^ i , j &(Si

1Sj
21Si

2Sj
1) that is restricted

to the wave functionsuC i ,6 x̂(6 ŷ)
s

& representing spin bipo
larons. Eexpp denotes an analogous contribution related
pairs of bipolarons and statesuC i ,2x̂6 ŷ(2ŷ6 x̂)

s
&. Eexbp is that

part of energy that originates from the exchange term
coupling between states representing spin bipolarons
pairs of spin polarons. Table V contains values of all qua
tities defined above. Figures in parentheses represent th
solute strength of each type of contribution and are explic
related to elements of overlap and Hamiltonian matrices c
pling components of variational wave functions represent
spin bipolarons or pairs of polarons. Provided that the va
tional wave functions are normalized the numbers outs
the parentheses may be obtained by multiplying those in
rentheses by the productsaa, bb or ab ~defined in Table I!.
It is obvious that the additional variational analysis, the
sults of which are presented in Table V, confirms the heu
tic line of reasoning that we discussed above. The bi
laronic state has largest weight in the bound state ofB1
symmetry. TheB1 andE states take advantage of the cate
pillarlike motion of holes in the most efficient way. Pro
cesses related to the magnetic exchange that couple b
laronic states favor theB1 symmetry. The ‘‘unbinding’’ of a
bipolaron into a pair of polarons is in favor of the statesE
andA1 , because such a pair takes advantage of the exch
interaction in a more efficient way. The latter observati
may explain why theE state has lower energy than theB1
state forp5(p,p), but we think that the role of processes
that type is overestimated by the variational approach. W
comparing matrix elements related to different contributio
to the energy one has to keep in mind that their releva
also depends on the overlap between states that they co
Elements of the overlap matrix for theB1 states are approxi
mately two times bigger than those for theE1 state. The
effectiveness of matrix elements related toEbb , Ecat , and
Eexpp is then similar for both representations. Processes
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contribute toEexbb definitely favor theB1 representation,
while those which contribute toEexbp are in favor of theE
representation, despite the fact that in the later case
moduli of matrix elements~in parentheses! are approxi-
mately the same. An interesting observation is that the g
in energy due to smaller contribution from the diagonal p
of the Hamiltonian to the eigenenergy of spin bipolaro
(Ebb) is compensated by a loss of kinetic energy, which
due to the fact that holes cannot jump onto each other
manifestation of that compensation is that the difference
tween the eigenenergy of the bipolaron and the eigenen
of a pair of polarons vanishes almost exactly forJ/t
50.4 (Edi f;0.0). The decisive role in formation of th
bound stateB1 which predominantly consists of the bipo
laronic states is hopping of bipolarons, that is related to
caterpillarlike motion of hole pairs, and contributions to t
energy related to the magnetic exchange.

The mechanism of hole binding thus is a relatively co
plex one, and the simple broken-bond argument, namely,
holes bind because a hole pair on nearest neighbors le
intact one more exchange bond, is by no means adeq
Instead, for physical parameters, the broken-bond contr
tion is completely compensated by a loss of kinetic ene
occurring at the same time, because two holes on nea
neighbors have only 2(z21) nearest neighbors available fo
charge fluctuations~whereas it is 2z for separate holes!. The
actual binding mechanism is provided by the caterpillar-ty
motion of the two holes. Pair symmetries that get the m
out of the caterpillar motion, i.e.,B1 and E, are lowest in
energy, both at (0,0) and (p,p).

VII. PAIR STRUCTURE

Some recent density matrix renormalization group26 and

exact diagonalization27 studies of the two hole problem i
small ladders and two-dimensional clusters concern the
tial distribution of holes and spin correlations in their vici
ity. Holes in planes are mainly located at distances 1,A2,
andA5 lattice spacings from each other, while the probab
ity that the distance between them is 2 turns out to be m
smaller. Those studies also show that a strong spin sin
forms along the diagonal of a lattice cell if the holes occu
the sites belonging to the other diagonal. We are th
tempted to check whether those findings can be explaine
the spin bag scenario.

We restrict the calculation of the hole density-density c
relation function to contributions from statesu$( i ,P),%,$B%&
related to shortest strings. Figures 17~a!–17~g! depict differ-
ent categories of diagrams which contribute to the proba
ity of finding two holes at two nearest-neighbor sites. T
rest of relevant diagrams may be obtained by applying so
symmetry transformations of the lattice. Two different stri
states that belong to the category represented by Fig. 1~b!
and a string state depicted by Fig. 17~c! give rise to the same
configuration of holes and spins. The absolute value of
amplitude for that state is the sum of the absolute value
amplitudes for all three string states. Two string states
lated to Fig. 17~b! contribute with a negative sign, becau
spin bag statesuF i ,ŷ

s
& and uF i ,2 ŷ

s
& also contribute with a
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negative sign to the wave function that transforms accord
to theB1 representation fork50. The contribution from the
string state represented by Fig. 17~c! is also negative becaus
of the Fermi statistics and the fact that holes change
sublattices. The final state consists of two holes that occ
the sitesi 1 and j 1 and two upturned spins at the sitesi 2 and
j 2 . A negative sign and amplification of its amplitude, whic
reads 2a(ã1,112ã0,2), actually stems from thed-wave
symmetry of the ground state. The amplitude of a state r
resented by Fig. 17~a! is aã0,0. That state simultaneousl
contributes to the spin singlet or triplet at the sitesi 2 , j 2 .
Due to the different signs of amplitudes for states rep
sented by Fig. 17~a! and by Figs. 17~b! and 17~c!, the weight
of the singlet is amplified. The diagrams represented by F
17~d!–17~g! give rise to different hole and spin configura
tions and therefore they contribute individually to to th
probability of finding holes at two different sites. Some
them may favor the spin triplet like Fig. 17~d!, which repre-
sents a configuration with parallel spins at the sitesi 2 and j 2 .
The rest of the diagrams contribute to the same extent to
singlet and the triplet. Provided that theB1 state in Table I is
normalized, the probability of finding holes at the distance
one lattice spacing from each other reads

P~1!54$a2@ã0,0
2 12~2ã0,21ã1,1!

2#1b2~6ã1
4112ã0

2ã2
2!%,

~13!

while the weight of the spin singlet at the second pair
corners of the lattice cell is given by

FIG. 17. Simplest string states contributing to the hole dens
density correlation function for short distances.
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Ps~1!5

a2F ~ ã0,012ã0,21ã1,1!
2

2
1

~2ã0,21ã1,1!
2

2
G1b2~ ã1

414ã0
2ã2

2!

a2@ã0,0
2 12~2ã0,21ã1,1!

2#1b2~6ã1
4112ã0

2ã2
2!

. ~14!
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We have calculated both quantities forJ/t50.4 and obtained
P(1).0.16 andPs(1)50.7. A calculation for contributions
from the shortest strings to the hole density-density corr
tion function for sites at ends of an elementary cell diago
is much simpler. Figures 17~h! and 17~i! depict two relevant
sets of diagrams that represent strings of length 1. Contr
tions from four diagrams obtained from Fig. 17~h! by trans-
formations that keep the pair of the sitesi 1 andi 2 unchanged
constitute a perfect spin singlet at the sitesj 1 and j 2 . That
reason for the preference for the spin singlet along a
diagonal has been noticed by Riera and Dagotto.27 It follows
from thed-wave symmetry of the ground state and the ex
tence of antiferromagnetic correlations. But, on the ot
hand, for similar reasons, contributions from all four d
grams analogous to Fig. 17~i! amplify the weigh of the spin
triplet. It is therefore an issue of numerical assessment wh
tendency prevails. The contribution from diagrams rep
sented by Figs. 17~h! and 17~i! to the probability that the
distance between holes isA2 reads

P~A2!54~a28ã0,1
2 1b24ã0

2ã1
2!, ~15!

while the weight of the spin singlet at the ends of a c
diagonal in the case of holes occupying the ends of the
ond diagonal is

Ps~A2!5
a22ã0,1

2

a22ã0,1
2 1b2ã0

2ã1
2

. ~16!

Numerical calculation forJ/t50.4 givesP(A2)50.18 and
Ps(A2)50.8. Exact diagonalization studies also indicate t
the probability of finding holes at the distance 2 lattice sp
ings between each other,P(2) is much lower than probabili
ties for the distances 1,A2, andA5. There is, as we are
going to demonstrate, a very close relation between
dx22y2 symmetry of the bound state, antiferromagnetic c
relations, and that phenomenon. Figures 17~j! and 17~k! de-
pict categories of diagrams that might contribute toP(2) and
represent strings of length 1. A contribution from Fig. 17~j!
~a string state that is a component ofuF i 1 ,x̂

s
&) cancels a con-

tribution from an analogous diagram that may be obtained
exchanging the sitesi 1 and i 2 ~a string, that is a componen
of uF i 2 ,2 x̂

s
&). That cancellation is exact due to the structu

of theB1 state and the fact that a hole that starts at the sj
moves to the different sublattice either to the sitei 1 or to the
site i 2 . A contribution to P(2) from statesuF i ,6 x̂(6 ŷ)

s
& is

then related to longer strings and may be smaller than in
case of distances 1,A2, andA5. Figures 17~l! and 17~m!
represent contributions toP(2) related to strings of tota
length 3. A straightforward calculation gives rise to a co
clusion that
-
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P~2!5a264~ ã1,21ã0,3!
21b216ã0

2ã2
2 . ~17!

For J/t50.4 we getP(2).0.09. Figures 17~n!–17~s! repre-
sent contributions toP(A5) related to the shortest string
They give

P~A5!5a2@16ã1,1
2 18~ ã1,112ã0,2!

2#1b24ã0
4 ~18!

and P(A5)50.16 for J/450.4 The distribution of probabil-
ity for finding holes at different distances obtained by mea
of the variational approach qualitatively agrees with resu
of the exact diagonalization reported by Riera and Dago
for J/t50.4 and slightly larger clusters.27 The probability of
finding holes at ends of a cell diagonal is highest, but d
tances 1 andA5 are also privileged. Holes do not predom
nantly occupy nearest-neighbor sites because owing to
the optimal balance between kinetic and magnetic contri
tions to the energy may be reached. We also observe
effect in numerical solutions of the Schro¨dinger equation for
ãm,n . The probability of finding holes at the distance of
lattice spacings from each other is lower because contr
tions from some diagrams cancel due to thed-wave symme-
try of the ground state. The numerical values of probabilit
obtained in our calculation are lower than those obtained
means of exact diagonalization because we have negle
contributions from longer strings. It seems, on the oth
hand, that the role of short strings is underestimated in
approach.

VIII. DISCUSSION

In considering two hole ground states for all represen
tions of small groups for the square lattice, in the case of
434 cluster, we have found qualitative agreement betw
the exact diagonalization and the variational approach ba
on the string picture. We have constructed polaronic sta
representing a hole or a pair of holes trapped in a region
which the antiferromagnetic spin structure is strongly p
turbed. Spin polarons~bipolarons! may propagate withou
disrupting the spin background more than necessary.
have taken into account in our calculation a list of more th
100 processes that induce a perturbation in the spin struc
on no more than two sites. Such processes give rise to o
lap and coupling between polaronic states. An important c
egory of processes that contribute to coupling may be v
alized as motion of a string of defects~upturned spins!,
spanning a sequence of nearest-neighbor sites between
holes. The ends of a string hop between nearest-neigh
sites in such a way that its length does not exceed a
lattice spacings. The next important class of processes is
lated to the exchange term, which may flip two antipara
spins in nearest-neighbor sites and in that way may rem
defects from the spin arrangement. Spin polaron or equ
lently spin bag states may have nontrivial symmetry. Low
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ing the symmetry of spin bag states raises their eigenene
The majority of representations may be realized in terms
fully symmetric spin polaron states, but the rest involv
nontrivial states. The variational approach reproduces the
sic features of the structure of states. It selects the cor
group of low-energy states and fork50,(p,p) points to
competition between the representationsB1 and E for the
position of the ground state. A qualitative explanation fork
50 based on the symmetry of spin polaron states and a
important processes demonstrates why the system selec
representationB1 as a ground state. The agreement betw
the spin bag approach and the exact diagonalization is
satisfactory for momenta (p,0), (p/2,p/2), (p/2,0), and
(p,p/2). The variational calculation reproduces with sem
quantitative precision the change in scale of the energy
two-hole states. The exact diagonalization performed i
20-site cluster with periodic boundary conditions by Rie
and Dagotto27 indicates that a strong singlet is present acr
two sites that are diagonally situated in a plaquette, provi
that two holes occupy the other two sites. These auth
pointed out that such finding is consistent with thed-wave
symmetry of the pair and antiferromagnetic correlations. O
calculation which also takes into account states prefer
the triplet agrees with results of their exact diagonalizati
The same conclusion concerns the spin singlet on a pa
nearest-neighbor sites, when the other two corners of
plaquette are occupied by holes. The diagonalization by
era and Dagotto indicates that the density of a hole is sp
over the neighborhood of the second hole. It is remarka
that the probability of finding holes at the distance of tw
lattice spacings between each other is much smaller than
1, A2, and A5 lattice spacings. Our calculation demo
strates that this preference is consistent with the spin
scenario. It seems that an important drawback of our va
tional approach is that for two holes it underestimates
role of states related to short strings. In order to deal w
that problem we have restricted their length to five latt
spacings.

Some attempts have been made to describe thet-J model
in terms of an effective Hamiltonian that contains only o
interaction term representing attraction between quasip
cles on nearest-neighbor sites.12 The origin of that attraction
was attributed to reduction of the static diagonal contribut
to the energy in the case of two holes occupying near
neighbor sites. The quasiparticles then should have muc
common with bare holes. The two particles may not be
cated across the diagonals of a plaquette for thedx22y2 sym-
metry to be realized. Numerical studies have shown that s
configuration of holes has a substantial weight in the gro
state21 and therefore a description of a weakly dopedt-J
model in terms of an oversimplified effective model in n
possible. Spin excitations of bosonic character related to
turned spins are apparently important if antiferromagne
correlations at short distances are robust. They have a fi
lifetime and therefore induce retardation effects in the ite
tions between holes.27 There can be no question that an e
fective Hamiltonian for weakly doped antiferromagne
should either deal explicitly with bosonic degrees of freed
or change the nature of quasiparticles and put the polar
complexion on them. We have chosen the second way b
on the spin bag scenario in order to get rid of bosonic
y.
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grees of freedom and incorporate complicate processes
involve spin excitations and contribute to interaction b
tween polarons. The variational approach turned out to b
very powerful for implementation of that program, becaus
incorporates the relevant part of the interaction and is va
even in the case of short-range antiferromagnetic corr
tions. In agreement with results of Belinicher an
co-workers25 our calculations show that the broken-bon
mechanism is not the driving force for hole pairing.

Our results for the one-dimensionalt-J model in a stag-
gered magnetic field17 suggest, like some previou
analyses23, that phase separation in not very likely at low
intermediateJ/t and low doping. Some experiments ha
demonstrated the existence of an ordered stripe phase in
cuprates.28 Such a phase in the shape of domain walls
holes separating antiferromagnetically ordered doma
might exist in thet-J model for certain values of doping
concentration. One can imagine ‘‘tunneling’’ of hole
through antiferromagnetic domains, which should be g
erned by the same processes as hole propagation in the
ferromagnetic medium. Provided the the structure of
stripe phase is known, the string picture might then contr
ute to a better understanding of fermionlike excitations
that phase.
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APPENDIX A

The Schro¨dinger equation for spin polaron state
uC$ i k%,$ j l %

& that represent holes trapped in the Ne´el state with
some upturned spins takes the following form:

J

2
L„$~ i k ,Pk!%,$ j l%…a$~ i k ,Pk!%,$ j l %

2t (
~ i k ,P k8!PT„$~ i k ,Pk!%,$ j l %…

a$~ i k ,P
k8!%,$ j l %

5E$ i k%,$ j l %
a$~ i k ,Pk!%,$ j l %

, ~A1!

whereL„$( i k ,Pk)%,$ j l%… is the number of broken bonds be
tween nearest-neighbor sites in a stateu$( i k ,Pk)%,$ j l%& and
T($( i k ,Pk)%,$ j l%) is a set of statesu$( i k ,P k8)%,$ j l%& that are
coupled with the stateu$( i k ,Pk)%,$ j l%& by the hopping term
of the Hamiltonian. We define a bond as ‘‘broken’’ if spin
at sites joined by it are parallel or if at least at one of tho
sites a hole has been created. First term in the left side of
~A1! originates from the termJ(^ i , j &(Si

zSj
z2ninj /4) in the

Hamiltonian.
We may write, according to Eq.~A1! a Schro¨dinger equa-

tion for coefficientsãm , which represent trapping of a singl
hole in an antiferromagnetic environment,

2ztã112Jã05Ẽ1ã0 ,

2tãm212~z21!tãm111J~ 5
2 1m!ãm5Ẽ1ãm , ~A2!
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wherem>1. A Schrödinger equation for a hole trapped ne
a site with an upturned spin takes a similar form,

2tâm212~z21!tâm211J~ 7
2 1m!âm5Ê1âm , ~A3!

and âm50 for m,0.
Motion of two holes created at a pair of nearest neigh

sites is described by the following Schro¨dinger equation the
form of which is again determined by the shape of a poten
well of a spin bag,

2t@ãm21,n1~z21!tãm11,n1ãm,n211~z21!tãm,n11#

1J~41m1n2 1
2 dm1n,0!ãm,n5Ẽ2ãm,n , ~A4!

whereãm,n50 for m,0 or n,0.
A Schrödinger equation for two holes created at two d

ferent sites that are nearest neighbors of a site with an
turned spin is defined as

2t@âm21,n1~z21!tâm11,n1âm,n211~z21!tâm,n11#

1J~51m1n!âm,n5Ê2âm,n , ~A5!

whereâm,n50 for m,0 or n,0.
States uF i ,6 x̂(6 ŷ)

s
&, uF i ,62x̂6 ŷ(62ŷ6 x̂)

s
&, uF l ;6 x̂,6 ŷ

(1)
&, and

uF l ;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)
(2)

& are normalized provided that coeffi

cientsã and â are subject to some additional conditions,

ã0
21 (

m51

`

z~z21!m21ãm
2 51, ~A6!

(
m50

`

~z21!mâm
2 51, ~A7!

(
m50,n50

`

~z21!m1nãm,n
2 51, ~A8!

(
m50,n50

`

~z21!m1nâm,n
2 51. ~A9!

By choosing the Ne´el state to play the role of the antife
romagnetic environment for holes we have neglected s
fluctuations that exist in the ground state of the Heisenb
model. Quantum fluctuations produced by the transverse
of the Hamiltonian are responsible for lowering of th
ground-state energy of the Heisenberg model in compar
with the ground-state energy of the Ising model. One c
easily understand origin of that lowering by means of
second-order perturbation theory that attributes the reduc
of energy byJ/12 to presence of a quantum fluctuation in t
form of two upturned spins on a pair of nearest-neigh
sites. Existence of a hole at a site prohibits creation of s
fluctuations at four bonds attached to that site and ra
energy by 43J/12 in comparison with the ground state
the Heisenberg model. A quantum fluctuation in the s
background for spin bag states might give rise to additio
overlap between them. Let us suppose, for example, that
slanted crosses in the central part of Fig. 4~a! represent a
quantum fluctuation in the spin background for the st
r

l

p-

in
rg
art

n
n
e
n

r
h

es

n
l
o

e

uF i ,ŷ
s

&. A configuration of holes and spins that correspond
the central part of Fig. 4~a! is identical to a string state that i
a component of the stateuF i ,x̂

s
& @the left part of Fig. 4~a!#. It

turns out that such a type of overlap may wreck linear in
pendence of spin bag states. We make therefore an ass
tion that quantum fluctuations are prohibited at sites that
nearest neighbors of sites where holes have been origin
created. Any part of the Hilbert space is not neglected in
consideration because the same configuration of holes
spins is realized as a different string state, as in the cas
the left and central parts of Fig. 4~a!. Some fluctuations in
the spin background are nevertheless prohibited and en
is raised in comparison with the ground state of the Heis
berg model. In all calculations we have therefore to ma
following substitutions in order to take into account the co
tribution from quantum fluctuations in the spin backgroun

uF i ,6 x̂~6 ŷ!

s
&: Ẽ2→Ẽ21

22

12
J, ~A10!

uF l ,2x̂6 ŷ~2ŷ6 x̂!

s
&: 2Ẽ1→2Ẽ11

26

12
J, ~A11!

uF l ;6 x̂,6 ŷ
~1!

&: Ê2→Ê21
24

12
J, ~A12!

uF l ;6 x̂6 ŷ,62x̂6 ŷ~6 x̂62ŷ!

~2!
&: Ẽ11Ê1→Ẽ11Ê11

24

12
J.

~A13!

APPENDIX B

We list here rules that connect diagrams with matrix e
ments. Diagrams correspond in a self-evident way to
types of contributions described in the main body of the te
An important rule that has not been mentioned before
lows from the definition of spin bag states. It states that e
nontrivial contribution to an element of the overlap matr
~and to the Hermitian conjugate to it! that couples two spin
bag states induces contributions to the equivalent elemen
the Hamiltonian matrix related to the action of the hoppi
term on one of coupled spin bag states, which may be cho
in an arbitrary way.

Rules for matrix elements N$ i , j %,$B%;$ i 8, j 8%,$B% ,

H $ i , j %,$B%;$ i 8, j 8%,$B% and Figs. 3–15.~The sitesi , i 8 belong to
the even sublattice, whilej , j 8 to the odd!:

~i! Open circles represent the sitesi , j ; solid circles rep-
resent the sitesi 8, j 8.

~ii ! The contribution to a matrix element is a product
amplitudes a$( i ,Pi ),( j ,Pj )%,$B% and a$( i 8,P i 8),( j 8,P j 8)%,$B%

for ‘‘string’’ states u$( i ,Pi),( j ,Pj )%,$B%& and
u$( i 8,P i 8),( j 8,P j 8)%,$B%& represented by the left an
middle parts of a diagram.

~iii ! If the final position of a hole which started from th
site i is the same as the final position of a hole which star
from the sitej 8, the contribution is multiplied by21.

~iv! A contribution to an element of the overlap matrix
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accompanied by a contribution to an element of the Ham
tonian matrix that couples the same spin bag states. Its v
is given by the contribution to the overlap matrix multiplie
by the eigenenergy of that spin bag state that is the objec
action of the hopping term in diagrams related to contrib
tions to the kinetic energy.

~v! A bent arrow denotes action of the hopping term
the string state and contributes an additional factor2t to the
matrix element.

~vi! A pair of slanted crosses at two nearest-neighbor s
denotes action of the exchange term in the Hamiltonian
contributes a factorJ/2 to the matrix element.

~vii ! The direct contribution from each diagram should
expanded by contributions from string states that may
obtained by applying repeatedly the operatorsT^ i , j & to the
common configuration of holes and spins that simultaneou
corresponds to the left and middle parts of each diagr
That construction of new string states must not disturb
mechanism of the underlying process, and therefore p
tions of holes and spins that are objects of the Hamilton
action must not be changed.

~viii ! Contributions related to fictitious overlap and fic
tious processes are additionally multiplied by21.

~ix! Amendments related to the diagonal term in t
Hamiltonian@like Fig. 9~a!# are given by a contribution from
the overlap multiplied by2J/2 times number of broken
e

l-
ue

of
-

s
d

e

ly
.

e
i-
n

bonds which contribution is ‘‘saved’’ due to special shape
strings.

Modifications of some rules for the matrix elemen
N$m,n%,$ l %;$m8,n8%,$ l 8% , H $m,n%,$ l %;$m8,n8%,$ l 8% and Figs. 6–15 are
as follows:

~i! Open circles represent the sitesm, n; solid circles
represent the sitesm8, n8. An open diamond corresponds t
the sitel, while a solid diamond to the sitel 8. ~ii ! The con-
tribution to a matrix element is a product of amplitud
a$(m,Pm),(n,Pn)%,$ l % anda$(m8,P m8),(n8,P n8)%,$ l 8% for string states
represented by the left and middle parts of a diagram.~iii !
An initial position m is called by definition ‘‘left-sided’’
if m obeys the relationRm2Rl56 x̂ for a spin bag
state u$m,n%,$ l %&5uF l ;6 x̂6,ŷ

(1)
& or if u$m,n%,$ l %&

5uFm;6 x̂6 ŷ,62x̂6 ŷ(6 x̂62ŷ)
(2)

&. The other initial position is
called by definition right-sided. If the final position of a ho
that started from a left-sided site is the same as the fi
position of a hole that started from a right-sided site, t
contribution is multiplied by21.

Diagrams we use in the paper may be very easily tra
formed into standard interaction vertices. In such a case o
and solid circles may be interpreted as creation and ann
lation operators, respectively. Information about the confi
ration of involved sites should be put into the indices
fermionic operators.
s-
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