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Superfluid transition in a finite geometry: Critical ultrasonics

Saugata Bhattacharyya and J. K. Bhattacharjee
Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India

~Received 19 June 1998!

The suppression of order-parameter fluctuations at the boundaries causes the ultrasonic attenuation near the
superfluid transition to be lowered below the bulk value. For a confining lengthL, there are three characteristic
lengths in the problem at a given reduced temperaturet and given frequencyv. These are the correlation
length j, the confining lengthL, and a dynamic lengthl d5(2G0 /v)1/z, where z is the dynamic scaling
exponent andG0 is a constant. The attenuation is a function of the two scaled variablesj/ l d and l d /L. We
show that forj@ l d , the attenuation per wavelength can be processed in a manner that the data for differentv
andL will collapse on a scaling plot as a function ofl d /L. For finite values ofL/ l d we exhibit how the data
can be plotted as a function ofj/ l d for different values ofj/L. We present detailed calculation for tempera-
tures above the bulk transition temperature. These can be tested in future experiments.
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I. INTRODUCTION

Critical phenomena in confined geometry1 have been at-
tracting a fair amount of attention of late because of
progress on the experimental front2–9 that is making it pos-
sible to check the predictions of finite-size effects~FSE!. A
fair amount of this experimental effort has gone into stud
ing the specific heat near the superfluid transition. With
bulk specific heat quite well understood and the existenc
a sharp phase transition~apart from gravity rounding, which
too can be removed by doing experiments in space! estab-
lished, efforts have been made to study FSE. It is expe
that FSE will round out the transition and hence the div
gence atT5Tl will be removed. The specific heat will b
finite and the finite value will be a function of the confinin
length. We will keep in mind one of the favored experime
tal geometries, where one takes two parallel plates separ
by a distanceL, much smaller than the linear dimensions
the plates. ForL@j, the correlation length at a given tem
perature, the usual thermodynamic result follows. It is wh
L<j, that FSE dominate. Finite-size scaling suggests
existence of a scaling function, the function ofj/L, in terms
of which the theory can be cast. The specific heatC(t,L) in
finite geometry has the formC(t,L);t2ag(t2n/L)1const
where j;t2n and t5(T2Tl)/Tl , Tl being the transition
temperature. The functiong has been calculated by variou
authors10–12 and at least forT.Tl the calculations ofg(x)
and the measuredg(x) agree reasonably well. Consequent
it makes sense to talk about a more complicated situat
one where dynamics is involved. In this paper we will d
cuss the ultrasonic attenuation~UA! in finite geometry. The
attenuation being controlled by the frequency-dependent
cific heat, our primary task will be the calculation of
temperature- and frequency-dependent specific heat in fi
geometry.

The frequency dependence brings in an additional len
scale. The critical fluctuations relax with a frequencyv that
can be written asv5G0kz, wherez is the dynamic scaling
exponent andG0 is the Onsager constant. For the superflu
the order-parameter fluctuations are, to a very good appr
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mation, governed byz52. The dispersion relation yields
new length scalel d given by l d5(2G0 /v)1/z.(2G0 /v)1/2.
Thus, in the finite frequency problem, there are three len
scales:L, j, andl d . Accordingly, we can have the following
limits: ~i! L→`, ~ii ! l d→`, and ~iii ! j→`. The first limit
gives the usual ultrasonic attenuation and dispersion in
bulk. The second gives the static specific heat in the fin
geometry and the third yields the ‘‘lambda-point’’ specifi
heat as a function of frequency and thus gives the frequen
dependent ‘‘lambda-point’’ attenuation in finite geometry.

The basis of our calculation of the attenuation is t
Pippard-Buckingham-Fairbank~PBF! relation13,14 that gives
a successful account15–17 of the critical ultrasonics in the
situation whereL@j. The PBF relation is obtained from
general considerations of entropy clamping and yields,
the sound velocityu(T,v),

u~T,v!5u0~T0!1u1C0 /CP~T,v!, ~1!

whereu0(T0) is the sound speed at the transition point (T0 is
the bulk Tl for the infinite system, but is aL-dependent
temperature for the finite-size system!, u1 and C0 are con-
stants, andCP(T,v) is the specific heat at finite frequency

For the bulk case,CP(T,v50) is almost divergent atT
5Tl andCP(T,v) is a homogeneous function ofv andj. If
the characteristic relaxation rate isG0j2z, then the scaling
form of CP

bulk is

CP
bulk~T,v!5ja/n f S v

G0j2zD
5ja/n f S l d

j D . ~2!

The exponenta is very close to zero for the superfluid tran
sition in 4He and for many practical purposes it is possible
write
15 146 ©1998 The American Physical Society
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CP
bulk~T,v!5CF ln~Lj!1 f S v

G0j2zD G
5CF ln~Lj!1 f S l d

j D G . ~3!

The function f „v/(G0j2z)… reduces to a constant forv50
and tends to2 ln(v/G0)

1/zj for v@G0j2z. A one-loop cal-
culation of the scaling function f (V), where V
5v/2G0j2z, was carried out and led to a successful scal
theory of the attenuation in the bulk4He nearTl .15–17

In the finite-geometry situation, the specific heat will be
function of L, j, and l d and we expect Eq.~3! to become

CP~T,v,L !5CF ln~Lj!1gS j

L
,

j

l d
D G . ~4!

For L→`, g(0,j/ l d) has to be identical tof (j/ l d) of Eq ~3!.
For v→0, we should get back the static scaling functi
g(j/L) in finite geometry and forj21→0, a function ofl d /L
will emerge. Our primary aim will be to calculate the fun
tion g(j/L,j/ l d). The single-loop calculation of the scalin
function in the static limit gives a very reasonable accoun
the recent specific-heat data by Mehta and Gasparini.2 One
of the most important features of the scaling function is
low j/L limit ~experimentally most easily accessible!, the
first departure from the thermodynamic limit, the magnitu
of this departureDC has to be proportional to the surface~A!
to volume ~V! ratio and hence from purely dimensional a
guments, the correction can be written as (DC is called the
surface specific heat!

DC5C~j,L !2C`~j!52aCA
j

V
, ~5!

wherea is a number ofO(1), which can be obtained from
the functiong(j/L), andC is the dimensional constant de
fined in Eq. ~1!. The agreement of this departure with th
measured departure of Mehta and Gasparini is impressiv

In the present case the surface specific heat will b
generalization of Eq.~5! and can be written as

DC~j,L,v!5C~j,L,v!2C~j,v!52a~j,v!C~j!A/V,
~6!

wherea(j,v) is a scaling function18 whose zero-frequency
limit is aj @see Eq.~5!# and whose general form will be
calculated in Sec. II. In Sec. III, we present the full functi
g(j/L,j/ l d), discuss the effect of finite size on the attenu
tion, and present a short summary.

II. THE SURFACE SPECIFIC HEAT

The complex order-parameter fieldc i(x)$ i 51,2% will be
governed by the Langevin equation

ċ i52G0

dF

dc i
1Ni , ~7!
g

f

e

e

.
a

-

where

F5E dDxFm2

2
c21

1

2
~¹c!21

l

4
~c2!2G ~8!

and N is a Gaussian white noise. We have not shown
reversible term in the equation of motion above. The Jose
son equation for the phase of the order parameter would
determining the reversible term and in principle should ha
a strong effect. In practice, however, because of very str
corrections to scaling the full effect of the Josephson term
not felt unless one is in an almost-critical situation. F
finite-size, finite-frequency studies, it is safe to ignore t
effect of this reversible term. The parameterm2 is propor-
tional toT2Tl , whereTl is the bulk transition temperature
The system is confined in one of theD directions. We call
that thez direction. It is convenient to work with the Fourie
transform inD21 directions and the Fourier series~Dirich-
let boundary conditions atz50 and z5L suppressing the
fluctuations! in the z direction. The expansion of the time
dependent order-parameter field is

c i~r,t !5(
n

c i~n,K,t !eiK•RsinS npz

L D . ~9!

The equation of motion forc i(n,K,t) is

ċ i~n,K,t !52G0S m21K21
n2p2

L2 D
3c i~n,K,t !1Ni1O~c3!. ~10!

In what follows, we will assume that all static correlation
have been accounted for andm25j22. The specific heat is
obtained as the response function corresponding to the t
dependent correlation function

D~j,L,t12!5E E E dz1dz2dD21R12

3^c2~R1 ,z1 ,t1!c2~R2 ,z2 ,t2!& ~11!

with D(j,L,v)52@ Im C(j,L,v)/v# according to
fluctuation-dissipation theorem. Straightforward algeb
leads to
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C~j,L,v!5
1

L (
n561,62, . . .

E dD21p

~2p!D21

1

S p21m21
n2p2

L2 D
3

1

S 2
iv

2G0
1p21m21

n2p2

L2 D
5

1

L (
n52`

` E dD21p

~2p!D21

1

S p21m21
n2p2

L2 D
3

1

S 2
iv

2G0
1p21m21

n2p2

L2 D
2

1

LE dD21p

~2p!D21

1

~p21m2!

1

S 2
iv

2G0
1p21m2D .

~12!

The complete evaluation of the integral in Eq.~12! and its
proper exponentiation will be studied in the next sectio
Here, we will restrict ourselves to the surface effect tha
the first correction to the bulkL→` limit. In the large-L
limit, in the first term on the right-hand side of Eq.~12! the
sum becomes an integral and we can write a correction
O(L21):

C~j,L,v!5E dDp

~2p!D

1

~p21m2!

1

S 2
iv

2G0
1p21m2D

2
1

2LE dD21p

~2p!D21

1

~p21m2!

3
1

S 2
iv

2G0
1p21m2D . ~13!

We work to logarithmic accuracy and hence evaluate
integrals atD54 to get the functionsf (V) anda(V) intro-
duced in Eqs.~3! and ~6!, respectively. Note that since w
are taking the logarithmic divergence for the bulk spec
heat, theC(j) in Eqs.~4! and ~5! reduces the constantC of
Eq. ~3!. The functionsf (V) anda(V) are
.
s

to

e

f ~V!5
1

2S 1

2 iV
21D ln~12 iV!, ~14!

a~V!5
p

2

1

2 iV
@A12 iV21#, ~15!

leading to

C~j,L,v!5C0H ln Lj2
1

4
ln~11V2!2

1

2V
tan21V

1 i F1

2
tan21V2

1

4V
ln~11V2!G

2
pj

LV
~11V2!1/4sin~ 1

2 tan21V!

2
ipj

LV F ~11V2!1/4cosS tan21V

2 D21G J
5CR1 iCI , ~16!

where CR and CI are the real and imaginary parts of th
specific heat. The specific heat is a function of the two sc
ing variablesj/L and V5v/2G0m25j2/ l d

2 . For largeL,
consequently, we can have two different situations:j,l d!L
with ~i! j! l d and ~ii ! j@ l d . In case~i!

C~j,L,v!5C0@ ln Lj2pj/2L#,

while in case~ii !

C~j,L,v!5C0/2@ ln L2l d
22A2p l d/L

1 i ~p/2 2A2p l d/L !#.

Physically, case~i! corresponds to the first correction to th
thermodynamic specific heat, while case~ii ! deals with the
first correction to the ‘‘lambda-point’’ attenuation.

We now return to Eq.~1! to find the attenuation and dis
persion. Theattenuation per wavelengthis

al

2p
5

u1C0CI

u0~CR
21CI

2!
, ~17!

which leads to the frequency attenuation (v@2G0m2 or j
@ l d) as
al

2p
5

pu1

u0

122A2S 2G0

vL2D 1/2

F lnS v0

v D2A2pS 2G0

vL2D 1/2G 2

1
p2

4 F122A2S 2G0

vL2D 1/2G 2 . ~18!
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This is the saturation attenuationper wavelength, which
does not change as the temperature is lowered further. F
the known bulk behavior v0/2p530 GHz, G0
51.231024 cm2 sec21, u1 /u058/331022.

For the plate separation of 2110 Å of Mehta and G
parini, the reduction in the attenuation due to the quench
of fluctuations is about 18% at 10 MHz and increases
45% at 2.5 MHz. This is a large effect compared to the 4
surface effects that show up in the static measurements.
the corresponding measurement of thermal conductivity n
the superfluid transition, Kahn and Ahlers9 found that the
deviation from the bulk is about 7% when the correlati
length j equals the confining lengthL ~in their case the ra-

FIG. 1. Saturation attenuation is plotted against frequency.
dashed curve shows the bulk (L→`) result whereas the solid curv
shows the surface effect.
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dius of the pore!. The effect of the finite size on the dispe
sion can be obtained from the real part of Eq.~1!. The effect
of the surface term is shown in Fig. 1.

The other sensitive part of an ultrasonic measuremen
the low-frequency end (v!2G0m2), where for the bulk sub-
stance the attenuation per wavelength is proportional
CR

2V/4. The relative correction for the FSE is 12pj/2L,
once again a larger effect than can be obtained in statics.
an easily realizable situation ofL/j;8, this gives a 20%
reduction in the attenuation. For low values ofl d /L, the full
course of the attenuation function can be seen from Eqs.~17!
and ~16!. To obtain a close approximation to a scaling pl
we proceed by considering the ratioal/(al)j@ l d

~this will

be experimentally measured! and multiply by the factorr
5(CR

21CI
2)/(CR

21CI
2)j@ l d

. The product

e FIG. 2. Scaling plot for the finite-size attenuation per wav
length against scaled frequency in the limitl d!L for l d /L50.25.
r
al

~al!j@ l d

5

CI S j

L
,

j

l d
D

CI~j@ l d!

5
2

p

F tan21V2
1

2V
ln~11V2!22p

l d

L H ~11V2!1/4cos~ 1
2 tan21V!21

V1/2 J G
122A2

l d

L

. ~19!
In Fig. 2, we show the course of this function forl d /L
51/4. Forl d /L.1/2A2, Eq.~19! is inappropriate and so w
turn to the full solution in Sec. III.

III. THE FULL SCALING FUNCTION

In this section we present the scaling function in fin
geometry for allL, l d , andj. To do so at the one-loop leve
we exploit a result from Nicoll19 ~in the context of wave-
number-depenedent specific heat!. This amounts to calculat
ing the one-loop integralPD(L,l d ,j) in arbitrary dimension
D, noting the behavior in theL→`, l d→` limit. If PD(L
→`,l d→`,j);jm, then the specific heat is written asC
;PD

a/nm . In our case, wherea/n is very close to zero and
m51 in D53, we will evaluate the integralP3 in D53 and
write

C~L,l d ,j!5C0ln P3~L,l d ,j!, ~20!

where@see Eq.~12!#
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P3~L,l d ,j!5
1

L (
n561,62, . . .

E pdp

S p21m21
n2p2

L2 D S p21m21
n2p2

L2
2

iv

2G0
D

5
1

L (
n52`

` E pdp

S p21m21
n2p2

L2 D S p21m21
n2p2

L2
2

iv

2G0
D 2

1

LE pdp

~p21m2!S p21m22
iv

2G0
D

5LL
vL

2 ivF2 ln
sinh~mLA12 iV!

sinhmL
2 ln ~12 iV!G , ~21!
h
m

, t

f a
a-

ex-
st-

.
ata

ere

in
i-

ua-
cy.
wherevL52G0 /L2, andL is scale factor.
We first explore the answer given by Eqs.~20! and~21! in

the two limits where experimental data already exist. T
first of these is the ultrasonic attenuation in the bulk geo
etry. This involves taking the limitL→` and we get (L has
the dimension of inverse length!

C~m,v!5C0F ln
L

m
2 ln~11A12 iV!G

5CR1 iCI , ~22!

where

CR5C0F ln
L

m
2 1

2 ln$@11~11V2!1/4cos~ 1
2 tan21V!#2

1~11V2!1/2sin2 ~ 1
2 tan21 V!%G ~23!

and

CI5C0tan21

~11V2!1/4sinS 1

2
tan21V D

11~11V2!1/4cosS 1

2
tan21 V D . ~24!

The attenuation per wavelength is given by Eq.~17! the
right-hand side of which does not show scaling. However
exhibit a scaling plot the measured attenuational needs to
be processed as follows:

al

~al!T5Tc

5
4

p

CI

C0

~CR
21CI

2!T5Tc

CR
21CI

2

or

al

~al!T5Tc

~CR
21CI

2!

~CR
21CI

2!T5Tc

5
4

p
tan21

~11V2!1/4sinS 1

2
tan21 V D

11~11V2!1/4cosS 1

2
tan21 V D ~25!
e
-

o

and the right-hand side can be exhibited as a function o
scaled variableV. Hence, we take the experimentally me
suredal at eachv andj and divide by theal at j5` for
the correspondingv. This ratio is multiplied by the factor
shown in the left-hand side of Eq.~25!. This factor is calcu-
lated from our theory for eachj andv from Eqs.~23! and
~24!. The resulting comparison between our theory and
periment is shown in Fig. 3 and is as good as the lowe
ordere-expansion calculation that had been done before

We now discuss the other limit where experimental d
exist. This is the static situation, i.e.,v50. In this case we
get

C~v50,L,j!5C0lnFLLH cothmL

mL
2

1

~mL!2J G . ~26!

Normalizing to the bulk value to obtainL andC0 , we show
the comparison with available data in Fig. 4.

The success of the comparisons in the two limits wh
the data already exist gives us confidence in Eqs.~20! and
~21!. We now explore the features of the results shown
Eqs. ~20! and ~21! that should be probed in future exper
ments.

First we go to the limitj@ l d with nonzeroL. The result is

FIG. 3. Scaling plot for the frequency-dependent bulk atten
tion along with the experimental data against a scaled frequen
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P3~L,v!5LL
vL

2 ivF ln
vL

v
1 lnH sinh2

X

A2
1sin2

X

A2
J

1 i H p

2
22 tan21S coth

X

A2
tan

X

A2
D J G , ~27!

where X5Av/vL5L/ l d . The corresponding specific he
C(L,l d) can be written as

C~L,l d!

5C̃R1 iC̃ I

5C0ln LL
vL

v
1

1

2
C0lnF H 2tan21S coth

X

A2
tan

X

A2
D 2

p

2 J 2

1H lnS sinh2
X

A2
1sin2

X

A2

X2
D J 2G

1 iC0tan21F lnS sinh2
X

A2
1sin2

X

A2

X2
D

2 tan21 S coth
X

A2
tan

X

A2
D 2

p

2

G . ~28!

In the limit L→`, whenX→`, the above expression co
rectly reduces toC5C0@ ln v0 /v1ip/4#. For finiteL, we can
construct a scaling plot for the attenuation per wavelen
al by considering the ratioal/(al)L→` . This ratio is
given by

al

~al!L→`
5

4

p
C̃I

F ln
v0

v G2

1
p2

16

C̃I
21C̃R

2

5 r̃ 21
4

p
C̃I . ~29!

By forming the quantityr̃al/(al)L→` , we have

FIG. 4. DC5C(j,L)2C0ln LL @Eq. ~26!# plotted against
(ML)1/n. The solid curve refers to our theory and the data are ta
from the recent experiment of Mehta and Gasparini~Ref. 2!.
h

r̃
al

~al!L→`
5

4

p
tan21F lnS sinh2

X

A2
1sin2

X

A2

X2
D

2 tan21S coth
X

A2
tan

X

A2
D 2

p

2

G .

~30!

The right-hand side is a function of the scaled variableX
5L/ l d . Thus for a givenL andv one measures the attenu
ation as a function ofj and forj@ l d the attenuation acquire
a saturation value. For differentv andL, different saturation
values are obtained. Our Eq.~20! expresses the fact that th
saturation attenuation when compared to the bulk value
multiplied by a nonscaling factorr̃ ~it is a cutoff-dependent
factor!, exhibits scaling behavior. The data at differentv and
L collapse on a single curve when plotted againstX
5Av/vL, Fig. 5. This is one of the vital predictions of ou
calculation.

Finally, the full specific heat needs to be written down.
do this we define the two variables

X15mL~11V2!1/4cos~ 1
2 tan21V!,

~31!

X25mL~11V2!1/4sin~ 1
2 tan21V!.

The specific heatC(m,L,v) can be written as

C5 C̃̃R1 i C̃̃ I

5C0
S ln LL

vL

v
1

1

2
lnF $2 tan21~cothX1tanX2!

2tan21V%2

1H lnS sinh2X11sin2X2

A11V2sinh2mL
D J 2G

1 i tan21F lnS sinh2X11sin2X2

A11V2sinh2mL
D

2 tan21 ~cothX1tanX2!2tan21V
G D . ~32!

n

FIG. 5. Scaling plot for finite-size finite-frequency attenuati
against the scaled variableX in the limit j@ l d .
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The attenuation per wavelength is given by a relation of
form shown in Eq.~17! that becomes in this case

al

2p
5

u1C0C̃̃I

u0~ C̃̃R
21 C̃̃I

2!
. ~33!

The best way of exhibiting the measured attenuation~as a
function of t, v, L) would be to form the ratio of the abov
aL with the corresponding value forV@1, i.e.,j@ l d . We
find

al

~al!V@1
5

C̃̃I

C̃I

C̃R
21C̃I

2

C̃̃R
21 C̃̃I

2
5

1

r̃̃

C̃̃I

C̃I

FIG. 6. Scaling plot for the finite-size finite-frequency attenu
tion as a function of the scaled variableV for two different values
of l d /L. The solid curve refers tol d /L50.2 and the dashed curv
refers tol d /L55.0.
t

ys

t

e

leading to

r̃̃
al

~al!V@1
5

C̃̃I

C̃I

. ~34!

In Fig. 6, we exhibit the right-hand side as a function ofV
for two different values ofl d /L, namely, 1/5 and 5. For the
smaller system, the saturation ofal/(al)V@1 occurs more
slowly as expected. In Figs. 5 and 6, we have exhibited
main findings. The experiments, when carried out in the
ture will measureal at various values ofj, v, andL. Ex-
hibiting the data will be facilitated by following the prescrip
tions in Eqs.~30! and ~34!. In each case, it is recommende
that the data be presented as a ratio and multiplied by s

factor (r̃ , r̃̃ ) that has been calculated.
We end our discussion by pointing out that plate sepa

tion of the order of 1000 Å, which is feasible for static me
surements, may not be appropriate for sound attenua
measurements. The limitation could come from how sm
the transducers can be. To accommodate the transducer
plate separation may have to be of the order of 1 to 10mm.
For L51 mm (104 Å) and for a frequencyv51 Mhz,
corresponding tol d.650 Å it should be possible to explor
the whole range ofj and test the veracity of Eq.~19!. Future
generation experiments should be able to verify Eqs.~33!
and ~34!.
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