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Superfluid transition in a finite geometry: Critical ultrasonics
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The suppression of order-parameter fluctuations at the boundaries causes the ultrasonic attenuation near the
superfluid transition to be lowered below the bulk value. For a confining ldngtiere are three characteristic
lengths in the problem at a given reduced temperatuaed given frequencys. These are the correlation
length &, the confining length_, and a dynamic lengthy=(2T',/w)*?, wherez is the dynamic scaling
exponent and’ is a constant. The attenuation is a function of the two scaled varighlgandl /L. We
show that foré>1,, the attenuation per wavelength can be processed in a manner that the data for different
andL will collapse on a scaling plot as a function Igf/L. For finite values oL/l we exhibit how the data
can be plotted as a function gfl for different values of¢/L. We present detailed calculation for tempera-
tures above the bulk transition temperature. These can be tested in future experiments.
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[. INTRODUCTION mation, governed by=2. The dispersion relation yields a
new length scaléy given byly= (2T o/ w)Y?=(2T o/ w)*2
Critical phenomena in confined geométhyave been at- Thus, in the finite frequency problem, there are three length
tracting a fair amount of attention of late because of thescalesl, &, andly. Accordingly, we can have the following
progress on the experimental fréftthat is making it pos- limits: (i) L—o, (ii) [g—o0, and(iii) &—oo. The first limit
sible to check the predictions of finite-size effed&SE. A  gives the usual ultrasonic attenuation and dispersion in the
fair amount of this experimental effort has gone into study-bulk. The second gives the static specific heat in the finite
ing the specific heat near the superfluid transition. With thegeometry and the third yields the “lambda-point” specific
bulk specific heat quite well understood and the existence dfieat as a function of frequency and thus gives the frequency-
a sharp phase transitigapart from gravity rounding, which dependent “lambda-point” attenuation in finite geometry.
too can be removed by doing experiments in spastab- The basis of our calculation of the attenuation is the
lished, efforts have been made to study FSE. It is expecteRippard-Buckingham-FairbarleBF relation®!* that gives
that FSE will round out the transition and hence the diver-a successful accouit’ of the critical ultrasonics in the
gence afl =T, will be removed. The specific heat will be situation whereL>¢. The PBF relation is obtained from
finite and the finite value will be a function of the confining general considerations of entropy clamping and yields, for
length. We will keep in mind one of the favored experimen-the sound velocity(T, »),
tal geometries, where one takes two parallel plates separated
by a distancd., much smaller than the linear dimensions of
the plates. Fot.> ¢, the correlation length at a given tem- U(T, ) =Uo(To) +UsCo/Cp(T,w), @)
perature, the usual thermodynamic result follows. It is when
L<¢, that FSE dominate. Finite-size scaling suggests thevhereuy(T,) is the sound speed at the transition poifig (s
existence of a scaling function, the function&@t, interms  the bulk T, for the infinite system, but is &-dependent
of which the theory can be cast. The specific e@LL) in  temperature for the finite-size system,; and C, are con-
finite geometry has the fornC(t,L)~t~“g(t™"/L)+const  stants, andCp(T,w) is the specific heat at finite frequency.
where {~t™" andt=(T—T,)/T,, T, being the transition For the bulk caseCp(T,w=0) is almost divergent af
temperature. The functiog has been calculated by various =T, andCp(T,w) is a homogeneous function efandé. If

authors®*?and at least folf>T, the calculations ofj(X)  the characteristic relaxation rate Fg¢ 2, then the scaling
and the measuregl(x) agree reasonably well. Consequently, form of CBU/% is

it makes sense to talk about a more complicated situation,

one where dynamics is involved. In this paper we will dis-

cuss the ultrasonic attenuatigdA) in finite geometry. The ®

attenuation being controlled by the frequency-dependent spe- CR'M(T,w)= éalvf(—z)

cific heat, our primary task will be the calculation of a I'oé

temperature- and frequency-dependent specific heat in finite I

geometry. = golv ( —) : 2
The frequency dependence brings in an additional length §

scale. The critical fluctuations relax with a frequengeyhat

can be written aso=1"gk? wherez is the dynamic scaling The exponent: is very close to zero for the superfluid tran-

exponent and’, is the Onsager constant. For the superfluid,sition in “He and for many practical purposes it is possible to

the order-parameter fluctuations are, to a very good approxiarite
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where

CoUKT,w)=C|In(A&)+f

=
[oé™?

=C

g
In(A§)+f( £ } (3 F:f dx
The functionf(w/(I"y&€ %)) reduces to a constant fas=0
and tends to— In(w/T)Y?¢ for w>T & % A one-loop cal-
culation of the scaling functionf(Q), where Q
=wl2l'y¢ %, was carried out and led to a successful scalingand N is a Gaussian white noise. We have not shown the
theory of the attenuation in the bufiHe nearT, .*>~%7 reversible term in the equation of motion above. The Joseph-
In the finite-geometry situation, the specific heat will be ason equation for the phase of the order parameter would be
function ofL, ¢, andly and we expect Eq.3) to become determining the reversible term and in principle should have
a strong effect. In practice, however, because of very strong
corrections to scaling the full effect of the Josephson term is
é” (4  hot felt unless one is in an almost-critical situation. For
lg finite-size, finite-frequency studies, it is safe to ignore the
effect of this reversible term. The parametaf is propor-

ForL—, g(0£/14) has to be identical t(¢/l ) of Eq (3). tional toT—TIA, whe_reﬂ _is the bulktraqsitiop temperature.
For w—0, we should get back the static scaling function T"€ System is confined in one of tfie directions. We call
g(£/L) in finite geometry and fog~1—0, a function ofl 4/L that thez d!rectlon. I_t is convenient to work_ with t_he_F_ourler
will emerge. Our primary aim will be to calculate the func- transform inD — 1 directions and the Fourier seri€éirich-
tion g(£/L, &/l ). The single-loop calculation of the scaling let boundary conditions a=0 andz=L suppressing the
function in the static limit gives a very reasonable account ofluctuationg in the z direction. The expansion of the time-
the recent specific-heat data by Mehta and Gaspafme dependent order-parameter field is

of the most important features of the scaling function is the

low &/L limit (experimentally most easily accessibléhe

first departure from the thermodynamic limit, the magnitude

of this departuré C has to be proportional to the surfa@® R NTZ

to volume (V) ratio and hence from purely dimensional ar- ‘ﬂi(r’t):; ¢i(n,K,1)e™ sin| ——|. ©)
guments, the correction can be written a3 is called the

surface specific hegt

z 1 N
TS0 ®

In(Aé)+g

| vn

Cp(T,w,L)=C

¢ The equation of motion fog;(n,K,t) is
AC=C(§,L)—Cw(§)=—aCA\—/, (5

wherea is a number ofO(1), which can be obtained from
the functiong(¢/L), andC is the dimensional constant de-
fined in Eq.(1). The agreement of this departure with the
measured departure of Mehta and Gasparini is impressive. 3

In the present case the surface specific heat will be a X (n, K, ) +Nj+O(47). (10)
generalization of Eq(5) and can be written as

: n?m?
Pi(n,K,t)= —ro< m?+ K2+ E

AC(¢,L,w)=C(§,L,0)~C(§,w)=—a(§w)C(EAIV, , , .
(6) In what follows, we will assume that all static correlations

have been accounted for amf=£¢~2. The specific heat is
obtained as the response function corresponding to the time-
dependent correlation function

wherea(é,w) is a scaling functiolf whose zero-frequency
limit is a¢ [see Eq.(5)] and whose general form will be
calculated in Sec. Il. In Sec. lll, we present the full function
a(&/L,¢&lly), discuss the effect of finite size on the attenua-
tion, and present a short summary.

D(g,L,tlz):f f szldzde‘lRlz

X(YPA(Ry,z1, 1) ¥A(Ry, 25, 12)) (1D

Il. THE SURFACE SPECIFIC HEAT

The complex order-parameter fiedd(x){i=1,2} will be
governed by the Langevin equation
SF with D(¢,L,0)=2[ImC({L,w)/ w] according to
i=—To—=—+N, (7)  fluctuation-dissipation theorem. Straightforward algebra
' Sy leads to
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1 d®~1p 1 _1( 1 ) .
Ceto=p X f(zw)D—l pep f(Q) 5 —1/In(1-iQ), (14)
(p2+m2+ % )
L a(Q)— IQ[V 1-iQ-1], (19
% lw 2 2 n2772
Tor, Pt leading to
B R )
Ln=== ) (2mP~t( n?a® Cl&L,w)= co(lnAg——m(HQZ)— —tan 1Q
pZ+m?+ %
1 1 2
" 1 Etan Q——In(1+Q)
2_2
@ o2 ™
( T, TP ) §(1+02)1’ sin Ltan 1))
1 d°'p 1 1 tan Q)
__f D-1,2, 2 : —§(1+Qz)ll4003 )—1“
(2m) (p+m?) lw 2 Q 2
ZF ——*tp +m?
0 =Cgr+iC,, (16)

(12

The complete evaluation of the integral in EG2) and its
proper exponentiation will be studied in the next section.
Here, we will restrict ourselves to the surface effect that is
the first correction to the bulk — limit. In the largeb
limit, in the first term on the right-hand side of E{.2) the
sum becomes an integral and we can write a correction to

where Cr and C, are the real and imaginary parts of the
'specific heat. The specific heat is a function of the two scal-
mg variables¢/L and Q= w/2I'ym?= lel2 For largelL,
consequently, we can have two different situatiofisy<<L

with (i) £é<ly4 and(ii) £&>14. In case(i)

1
O C(&,L,w)=Cq[InAé—méE/2L],
D
C(g,L,w):f dp 1 1 while in case(ii)
(2m)P° (p?+m?) ( fo oo )
2r, ' P C(£,L,0)=Col2[IN A22— 2l 4/L
1 J d®~1p 1 +i(aml2 —\2ml4/L)].
oL D-1 (2, m2
2L) (2m) (p+m°) Physically, casei) corresponds to the first correction to the
1 thermodynamic specific heat, while ca@ig deals with the
(13) first correction to the “lambda-point” attenuation.
o 29 i2em? We now return to Eq(1) to find the attenuation and dis-
2F0 P persion. Theattenuation per wavelengiis
We work to logarithmic accuracy and hence evaluate the
integrals atD =4 to get the function$(2) anda(() intro- 0‘_)‘: u;CoCy 17)
duced in Eqgs(3) and (6), respectively. Note that since we 2w y(CE+ C|2)'

are taking the logarithmic divergence for the bulk specific
heat, theC(¢) in Egs.(4) and (5) reduces the consta@tof  which leads to the frequency attenuations{ 2I'ym? or &
Eq. (3). The functionsf(Q) anda({2) are >|,) as

2T,
1—2[(—
akN  muq L? 18
20 UO T 1/272 2 I, 17272 -
m(ﬂ)—m Ze) e T2 2
w wl? 4




PRB 58 SUPERFLUID TRANSITION IN A FINITE ... 15 149

0.01 T 14

0.001

Scaled Frequency

Saturation Attenuation per Wavelength

0.0001 . 0 L L
1 10 100 0.1 1
Frequency (MHz)

L
10 100 1000
Finite Size Attenuation

FIG. 1. Saturation attenuation is plotted against frequency. The FIG. 2. Scaling plot for the finite-size attenuation per wave-
dashed curve shows the bulk- =) result whereas the solid curve length against scaled frequency in the limjtL for |4/L=0.25.

h th f ffect. . o .
Shows the suriace etiec dius of the porg The effect of the finite size on the disper-

sion can be obtained from the real part of Eh. The effect
This is the saturation attenuatiorper wavelength, which of the surface term is shown in Fig. 1.

does not change as the temperature is lowered further. From The other sensitive part of an ultrasonic measurement is
the known bulk behavior wy/2mr=30 GHz, I, the low-frequency end<2I"ym?), where for the bulk sub-
=1.2x10"% cnPsec !, u;/uy=8/3x10 2. stance the attenuation per wavelength is proportional to
For the plate separation of 2110 A of Mehta and Gas-Ca{/4. The relative correction for the FSE is-lré/2L,
parini, the reduction in the attenuation due to the quenchingnce again a larger effect than can be obtained in statics. For
of fluctuations is about 18% at 10 MHz and increases t@n easily realizable situation df/¢~8, this gives a 20%
45% at 2.5 MHz. This is a large effect compared to the 4%reduction in the attenuation. For low valueslgfL, the full
surface effects that show up in the static measurements. F§purse of the attenuation function can be seen from Eqs.
the corresponding measurement of thermal conductivity nez&nd (16). To obtain a close approximation to a scaling plot,
the superfluid transition, Kahn and Ahlériound that the ~We proceed by considering the raio\/(a\) g (this will
deviation from the bulk is about 7% when the correlationbe experimentally measurednd multiply by the factor
length ¢ equals the confining length (in their case the ra- =(C2R+ C|2)/(C§+ C,2)§>,d. The product

& &
ax C'(E’m)

"(aN)er, Ci(e1y)

lq| (14+02%)Ycog 3tan 10)—1
L QL2

1
tan 1Q— m“’](l‘FQz)—ZW

|

hl (19
v

I
1—2ﬁtd

In Fig. 2, we show the course of this function fby/L ing the one-loop integrdll(L,l4,£) in arbitrary dimension

=1/4. Forl 4/L>1/2\2, Eq.(19) is inappropriate and so we D, noting the behavior in the —o, |g—oo limit. If TI5(L

turn to the full solution in Sec. lll. —o,|g—w, &)~ EX, then the specific heat is written &
~IY" In our case, where/v is very close to zero and
pu=1in D=3, we will evaluate the integrdl; in D=3 and

Ill. THE FULL SCALING FUNCTION Wwrite
In this section we present the scaling function in finite

geometry for allL, | 4, and&. To do so at the one-loop level, C(L,lg4,6)=CqInTI5(L,l4,¢), (20

we exploit a result from Nicolf (in the context of wave-

number-depenedent specific Hedthis amounts to calculat- where[see Eq.(12)]
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1 pdp
Oy(Llg. )=~ > f P T
Ln=il,i2,... 2 2 n 2 2 n=m lw
pc+me+ pc+me+ > 2—1_‘0
1 < pdp 1 pdp
24 m2 24 m2 _ +m Imie —
pc+m-+ E p+m-+ E 2I‘0> (p )\ p 2o,
o [ sinkmLy1-iQ) ,
_AL_iwlzm SThmL In(1-iQ)|, (21
|
wherew, =2T"3/L?, andA is scale factor. and the right-hand side can be exhibited as a function of a

We first explore the answer given by E¢80) and(21) in scaled variablg). Hence, we take the experimentally mea-
the two limits where experimental data already exist. Thesureda\ at eachw and¢ and divide by thex\ at £=o for
first of these is the ultrasonic attenuation in the bulk geom+the correspondings. This ratio is multiplied by the factor
etry. This involves taking the limit —~ and we get A has  shown in the left-hand side of ER5). This factor is calcu-

the dimension of inverse length lated from our theory for each and w from Eqgs.(23) and
(24). The resulting comparison between our theory and ex-
A : periment is shown in Fig. 3 and is as good as the lowest-
C(m,w)=Co| In——In(1+y1-iQ) order e-expansion calculation that had been done before.
We now discuss the other limit where experimental data
=Cr+iCy, (22)  exist. This is the static situation, i.es=0. In this case we
get
where
_ | A 1 02)l4 Lia 1012 cothmL 1
Cr=C n-—z {1+ (1+ Q%) cos(stan ~Q)] Clo=0,L,£)=Coln| AL } . (26

mL (mL)2

+(1+ Q%) Y2sir? (3tan 1 Q)} (23

Normalizing to the bulk value to obtaih andC,, we show
and the comparison with available data in Fig. 4.
The success of the comparisons in the two limits where

the data already exist gives us confidence in EB6) and
1
(1+Q?)Y4sin Etan‘lﬂ) (21). We now explore the features of the results shown in
C,=Cotan ! (24) Egs. (20) and (21) that should be probed in future experi-
1 ments.
2\1/4 Tiaml
1+(1+0% ™ cos 2tan Q) First we go to the limi€>14 with nonzeroL. The result is

The attenuation per wavelength is given by Eg7) the
right-hand side of which does not show scaling. However, to

1 T

exhibit a scaling plot the measured attenuation needs to 09 -
be processed as follows: o8 L % g
2 2 07 N
alk 4 C, (CR+CI)T:TC .
= - 4 06 o

(a’)\)T:TC_;C_O C3+C?

0.5 -

Attenuation

or

04 ]
L o® theory — 1
an _(CR+CD . it
(aN)7-1, (CE+C)r . N b
AR 4
2\1/4 i 1 1 . .
(1+ Q%) sin| ztan - %o 3 10 100
2 Scaled Frequency
—tan ™! I (25)
l+(1+02)1’4cos ZtanlQ FIG. 3. Scaling plot for the frequency-dependent bulk attenua-
2 tion along with the experimental data against a scaled frequency.
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FIG. 5. Scaling plot for finite-size finite-frequency attenuation
against the scaled variab¥in the limit &>1.

(ML)Y". The solid curve refers to our theory and the data are taken

from the recent experiment of Mehta and Gaspa(fitef. 2.

X
+Slnzﬁ]

w w X
L {In—LJr In[ sinlf—
—io| V2

+il T _otant thit X
1\ =— an CcO an— s
2 V22

(27)

sinhz%Jrsinz%

In NG

~ al 4t _
(M) mh

1

2tan ! cothitani)—z
2" 2.

(30

where X=Jw/w =L/l4. The corresponding specific heat The right-hand side is a function of the scaled variakle

C(L,ly) can be written as

=L/l4. Thus for a giverL and o one measures the attenu-
ation as a function of and for&>1 4 the attenuation acquires

C(L.lq) a saturation value. For differeat andL, different saturation
B B values are obtained. Our E@O) expresses the fact that this
=Cgr+iC, saturation attenuation when compared to the bulk value and
multiplied by a nonscaling factar (it is a cutoff-dependent
2 facton, exhibits scaling behavior. The data at differenand
1 ot | T L coll ingl hen plotted agaibit
—COInAL Lz Coln otar ! coth—tan— | — — collapse on a single curve when plotted agai
\/5 \/5 2 =Jwl/w|, Fig. 5. This is one of the vital predictions of our
2 calculation.
smh2 +sm2— Finally, the full specific heat needs to be written down. To
+in V2 V2 do this we define the two variables
X2
r X X\ X;=mL(1+0?)Ycos(itan 1Q),
sinkf — + sirf —
\/E \/E | (31
In 2 Xo,=mL(1+Q2)Ysin(3tan Q).
i -1
H1Cotan . X X - (28) The specific hea€(m,L,w) can be written as
2tan *| coth—=tan—=| — =
L V2 2] 2] = =
C=Crt+iC,
In the limit L—o, whenX—o, the above expression cor-
rectly reduces t&€ = Cg[ In wy/w+in/4]. For finiteL, we can
construct a scaling plot for the attenuation per wavelength o, 1
a\ by considering the ratiaxA/(a\) .. This ratio is =Cq| In AL—+§In {2 tan Y(cothX tanX,)
given by @
_ —1 2
wol?2 w2 tan ~Q}
In—| +— . . 2
a\ 46 w 16 ey sinkPX, + sirfX,
= - nN—————
(M) ™ ' T2+CR2 J1+Q2%sinkPmL
~ 4. i i
_71l%,. 29 i S|nr12X12+ SL:ZXZ
V1+QsinlkmL
+itan? (32

By forming the quantityr aX/(a\), .., we have 2 tan ! (cothX,tanX,) — tan Q)
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! ' ' ' leading to

=~ al

[—————= .
01| E (a)\)Q>l C|

Il_(“)ll

(34)

In Fig. 6, we exhibit the right-hand side as a function(bf

for two different values of 4/L, namely, 1/5 and 5. For the

oort Xe5 — ] smaller system, the saturation @h/(a\)qs 1 OCCUrS More
slowly as expected. In Figs. 5 and 6, we have exhibited our

main findings. The experiments, when carried out in the fu-

ture will measurex\ at various values of, w, andL. Ex-

, hibiting the data will be facilitated by following the prescrip-

10 1% tions in Egs.(30) and(34). In each case, it is recommended

that the data be presented as a ratio and multiplied by scale

Finite Size Finite Frequency Attenuation

0.001 . L
0.01 0.1 1

Scaled Frequency
FIG. 6. Scaling plot for the finite-size finite-frequency attenua-

tion as a function of the scaled varialflefor two different values

of I4/L. The solid curve refers th;/L=0.2 and the dashed curve

refers tol4/L=5.0.

factor (r,r) that has been calculated.

We end our discussion by pointing out that plate separa-
tion of the order of 1000 A, which is feasible for static mea-
surements, may not be appropriate for sound attenuation

The attenuation per wavelength is given by a relation of thén€asurements. The limitation could come from how small

form shown in Eq(17) that becomes in this case the transducers can be. To accommodate the transducers, the
plate separation may have to be of the order of 1 tq.ifd
al U,Col For L=1 um (10" A) and for a frequencyw=1 Mhz,
— = (33 corresponding td4=650 A it should be possible to explore
27 Uo(Cr2+C,2) the whole range of and test the veracity of Eq19). Future

o ] generation experiments should be able to verify HGS)
The best way of exhibiting the measured attenuatam a gng (34).

function oft, w, L) would be to form the ratio of the above
aA with the corresponding value fd2>1, i.e.,&>1y3. We
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