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Critical current from surface barriers in type-II superconducting strips
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Extending a model we previously used to calculate magnetization hysteresis arising from the geometrical
barrier in a flat, bulk-pinning-free type-II superconducting strip subjected to a perpendicular magnetic field
Ha , we here calculate the contribution, arising from screening currents on the top and bottom surfaces, to the
magnetic-field-dependent critical currentI c(Ha) due to surface barriers, including both the geometrical barrier
and the Bean-Livingston barrier.@S0163-1829~98!04946-7#
-II
e

bi
he
a
e
is
o

-
r

in
u
is
ie
g-
av
la
o

il

i
ic
a
on

th
he
de

h
e
a
ta

t
tr

te

the
be

ibly

ics
e

ft
t

h a
way
ely
tes

he
in
ight
he

l
rip
re-
om
t
ded

he
w
t for
.
to
on
re-
of
f

ct
will

m-
I. INTRODUCTION

A barrier of geometrical origin has been shown1–3 to de-
lay the first penetration of magnetic flux into a flat type
superconducting strip subjected to a perpendicular magn
field. A consequence of this effect is that such a strip exhi
hysteretic behavior even if the vortices in the interior of t
strip are completely unpinned, i.e., even if the bulk critic
current densityJc is zero. The geometrical barrier is du
solely to the nonellipticity of the sample’s cross section; it
similar to the barrier observed in type-I superconductors
rectangular cross section,4 but is different from the Bean
Livingston surface barrier observed in type-II supe
conductors.5–11

In Ref. 12, we introduced a model of a superconduct
strip, one flat in the middle and rounded at the edges, to
in approximating the magnetic-field and current-density d
tributions produced in the range of low perpendicular appl
magnetic fieldsHa when the geometrical barrier plays a si
nificant role. Several results of our analytical approach h
been confirmed independently by numerical calcu
tions.13–15In the present paper, we extend the calculations
Ref. 12 to compute the critical currentI c(Ha) due to both
geometrical and Bean-Livingston barriers, to which we w
refer collectively as surface barriers.

As shown in Refs. 2, 3, and 12, when the applied field
large enough, there is a range of applied fields for wh
vortices are present in the strip, producing a domelike m
netic field distribution. In the absence of a Bean-Livingst
barrier, whenHa is equal to the critical entry fieldHen ,
vortices enter the sample until the net magnetic field at
edge of the strip~the sum of the Meissner response to t
applied field and the return field arising from vortices insi
the sample! is equal to the lower critical fieldHc1 . If the
applied field is now reduced slightly, no vortices leave t
sample, but the domelike vortex-generated magnetic fi
distribution changes shape. The height of the dome decre
and the outermost boundaries expand, maintaining cons
area~constant magnetic flux! under the dome. WhenHa is
reduced to the critical exit fieldHex at which the outermos
boundaries of the dome reach the curved edges of the s
vortices exit from the strip. Similar behavior is also expec
PRB 580163-1829/98/58~22!/15103~5!/$15.00
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when a Bean-Livingston barrier is present. Moreover,
Bean-Livingston barrier, when present, is expected to
seen over a wider range of applied magnetic fields, poss
up to the bulk thermodynamic critical fieldHc .

In applying the above model, we find here that the phys
of the critical currentI c(Ha) depends upon the value of th
applied fieldHa . For small values ofHa , we find that the
critical current is just that for which the net field at the le
edge of the strip~the sum of the self-field from the curren
and the Meissner response to the applied field! is equal to
Hc1 in the absence of a Bean-Livingston barrier5–11 or Hb ,
the Bean-Livingston barrier field, in the presence of suc
barrier. As soon as any vortex is nucleated and moves a
from the rounded left edge of the strip, it is swept complet
across to the right-hand side of the strip, where it annihila
with its image. For larger values ofHa , there is a domelike
magnetic-field distribution produced by vortices inside t
strip. The field distribution in the dome is similar to that
the absence of the current, but the dome is shifted to the r
because of the Lorentz force from the applied current. T
critical currentI c(Ha) is determined chiefly by two critica
conditions: first, that the net field at the left edge of the st
~the sum of the self-field from the current, the Meissner
sponse to the applied field, and the return field arising fr
vortices inside the sample! be equal toHs and, second, tha
the right-hand boundary of the dome just reach the roun
edge. Here,Hs is equal to the lower critical fieldHc1 in the
absence of a Bean-Livingston barrier or toHb , the Bean-
Livingston barrier field, in the presence of such a barrier. T
first of these two critical conditions is that for entry of ne
vortices at the left edge of the strip, and the second is tha
exit ~or annihilation! of vortices at the right edge of the strip

In this paper, we focus on calculating the contribution
the critical current arising from screening currents carried
the top and bottom surfaces of the strip in vortex-free
gions. As we shall show in Sec. III, in the field range
interest (Ha,Hs/2), this contribution to the current is o
order 2pWHs /R, where 2W is the width of the strip,d is the
thickness, andR5(2W/d)1/2 is the square root of the aspe
ratio. In the presence of a surface barrier, however, there
be additional contributions to the current densityJ5¹3H
localized at the sample edges. As can be shown using A
15 103 ©1998 The American Physical Society
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15 104 PRB 58MAAMAR BENKRAOUDA AND JOHN R. CLEM
père’s law, these edge currents contribute a total curren
order dHs , which is smaller by a factor of 1/R than the
contribution from the top and bottom surfaces in fields le
thanHs/2. We consider in this paper only the case of lar
aspect ratios and values ofR@1, and thus we ignore the
edge-current contribution of orderdHs . At fields greater
thanHs/2, however, the edge-current contribution dominat
and a more careful treatment of this contribution, not
cluded in this paper, would be needed to determine the c
cal current and how the total current divides between the
and right edges of the strip.

This paper is organized as follows: In Sec. II we pres
the equations for the current distributions in the strip due
the applied magnetic field, the applied current, and the
distribution inside the strip and calculate the field and curr
distributions in the case of quasistatic flux penetration i
dome is present. In Sec. III we establish the critical con
tions for the critical currentI c(Ha) and its dependence on th
applied field. In Sec. IV we summarize our results and s
gest experiments to test the theory.

II. QUASISTATIC FLUX DISTRIBUTION WHEN
A DOME IS PRESENT

We consider an infinite superconducting strip of wid
2W(2W,x,W), thicknessd!W ~see Fig. 1!, and pen-
etration depthl<d. A uniform magnetic fieldHa in the z
direction and a currentI in they direction are applied. In the
Meissner state, where no flux has penetrated the strip,
current density distribution, averaged over the thicknessd of
the strip, is given by16,17

JMy~x!52
2Hax

dAW22x2
1

I

pdAW22x2
. ~1!

When vortices are present in the strip, generating a
distributionBz(x8), the corresponding current density dist
bution is given by12

Jvy~x!5
2

m0pdE2W

W Bz~x8!AW22x82

~x2x8!AW22x2
dx8. ~2!

Let us assume thatI and Ha are such that there is a stat
domelike flux distribution inside the strip. For the vortices
be at rest inside the sample, the total current density di
bution must be zero inside the region where the vortices
Thus the total current density in this region is

FIG. 1. Sketch of the model superconducting strip considere
this paper. The strip has width 2W, thicknessd, and rounded edges
of
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Jy~x!5JMy~x!1Jvy~x!50. ~3!

Let the domelike flux distribution extend froma to b,
wherea,b. Then the solution to Eq.~3! is

Bz~x!5H B0

A~x2a!~b2x!

AW22x2
for a,x,b,

0 otherwise,

~4!

where B0 is a constant to be determined below. This fl
distribution generates the current density@Eq. ~2!#

Jvy~x!5
B0

m0d

2x2~a1b!

AW22x2
~5!

in the regiona,x,b. ForJvy(x) to cancelJMy(x) @Eq. ~1!#
in this region and satisfy Eq.~3!, we must have

B05m0Ha ~6!

and

I 5pHa~a1b!. ~7!

The above equations describe a variety of possible m
stable distributions of magnetic flux and current density,
with the same applied magnetic fieldHa and currentI. Since
only the sum ofa andb is determined by Eq.~7!, the above
equations alone are insufficient to determine the positiona
and b of the left and right boundaries of the domelike flu
distribution of Eq.~4!. Because the possible distributions a
dependent upon the magnetic history of the sample, i
necessary to supply some additional information to de
mine the values ofa andb uniquely.

We therefore next assume that the sample is at thecritical
entry condition. That is, if I 50, the applied field (Ha.0) is
such that the local magnetic fields at the left and right ed
of the sample (Hle f t andHright) are both equal toHs , so that
vortices either have just entered the sample or are on
verge of doing so. IfI .0, the self-field from the current is
positive on the left side of the sample and negative on
right, such thatHle f t.Hright.0, and the critical entry con-
dition is reached only on the left edge of the sample. Us
the procedure for calculating the fields on the rounded ed
of the sample described in Refs. 10 and 11, we obtain

Hle f t5Ha~R11!1
IR

2pW
2

HaR

pWE
a

bA~x2a!~b2x!

W1x
dx,

~8!

Hright5Ha~R11!2
IR

2pW
2

HaR

pWE
a

bA~x2a!~b2x!

W2x
dx,

~9!

whereR5A2W/d. Performing the required integrals, we o
tain

Hle f t5Ha@11RA~11a/W!~11b/W!#, ~10!

Hright5Ha@11RA~12a/W!~12b/W!#. ~11!

Using the critical entry condition at the left edge,Hle f t
5Hs , we obtain

in
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Hs5Ha@11RA~11a/W!~11b/W!#, ~12!

which, together with Eq.~7!, uniquely determinesa andb at
the critical entry condition for givenHa and I:

aen5WF I

2pWHa
2AS 11

I

2pWHa
D 2

2S Hs2Ha

RHa
D 2G ,

~13!

ben5WF I

2pWHa
1AS 11

I

2pWHa
D 2

2S Hs2Ha

RHa
D 2G .

~14!

The total current density, determined by evaluating
integral obtained by substituting Eq.~4! into Eq. ~2! and
combining the result with Eq.~1!, is

Jy~x!55
2Ha

d

A~b2x!~a2x!

AW22x2
for 2W,x,a,

0 for a,x,b,

2
2Ha

d

A~x2b!~x2a!

AW22x2
for b,x,W.

~15!

With a, b, andB0 determined by Eqs.~6!, ~7!, and ~12!,
we now can calculate the flux distributionBz(x) @Eq. ~4!#
and the corresponding current distributionJy(x) @Eq. ~15!# at
the critical entry condition for arbitrary values of the appli
field Ha and currentI. Figures 2~a! and 2~b! show examples
of such results for a fixed value ofHa and three values of the
currentI. For zero current, the domelike flux distribution
centered in the middle of the strip (a52b). As the current
increases, the self-field at the left edge causes new vortic
enter the sample, and the center of gravity of the resul
flux distribution shifts to the right. Note that with increasin
current, the right boundary of the flux distribution~at x
5b) approaches the right edge of the strip. We define
critical currentI c as the current that causes vortices at
right boundary of the flux distribution to first reach th
rounded edge of the strip.

III. CRITICAL CURRENT

A. With a dome

Because of the surface barrier, a domelike magnetic-
distribution occurs in flat strips for a range of applied fiel
Ha depending upon the currentI. In Sec. II, we derived
expressions that determine the boundariesx5a andb of the
dome at the critical entry condition, for whichHle f t5Hs .
When I 50, the metastable dome~with a52b) occurs for
applied fieldsHa in the range12

Hs /~R11!,Ha,Hs/2, ~16!

whereR5(2W/d)1/2 and we have neglected terms of ord
Hs /R2. At the lower limit, b5a50, and the fieldHs /(R
11) is the value ofHa at which the first vortex enters th
strip. At the upper limit,b52a5W2d/4. For Ha.Hs/2,
there is no further magnetic irreversibility due to the surfa
barrier~associated with currents flowing on the top and b
e

to
g

e
e

x

e
-

tom surfaces of the sample!, although the Bean-Livingston
barrier~associated with currents flowing on the right and l
edges of the sample! still can produce irreversibility. How-
ever, we neglect the latter contribution in this paper for re
sons discussed in Sec. I. We also neglect bulk pinning,
other common source of irreversibility.

WhenI .0, the metastable dome occurs for applied fie
in the range

Hs

R11
2

IR

2pW~R11!
,Ha,

Hs
2

2~Hs1IR2/pW!
, ~17!

where again we neglected terms of orderHs /R2. At the
lower limit, a5b5I /2pHa , and the field Hs /(R11)
2IR/@2pW(R11)# is just the value of the applied field a
which the net field at the left edge, including the self-fie
from the current, is equal toHs . The first entering vortex
comes to rest atx5a5b5I /2pHa,W. At the upper limit,
b5W2d/4.

For increasing current, the range of applied fields
which the metastable dome occurs@Eq. ~17!# becomes
smaller. This range finally vanishes at the current

FIG. 2. ~a! Flux-density profilesBz vs x @Eq. ~4!# for initial
penetration of magnetic flux~critical entry condition at the left side
of the strip! in an applied fieldHa5Hs/10 for an applied currentI
initially equal to zero, and then at higher currentsI c/3 andI c , the
critical current~critical exit condition at the right side of the strip!,
for R5(2W/d)1/2510.05. ~b! Corresponding current-density pro
files Jy vs x @Eq. ~15!#.
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I cd52pHs

W

2R11
. ~18!

At this critical value of the current and at the correspond
critical value of the applied field,

Hcd5
Hs

2R11
, ~19!

the dome disappears.@In both Eqs.~18! and ~19! we have
neglected terms of higher order in 1/R.# Although this com-
bination of current and field produces the critical entry co
dition (Hle f t5Hs), any entering vortex is swept all the wa
to the right rounded edge (x5W2d/4), where it exits from
the sample and annihilates with its image.

For currentsI ,I cd , there is a dome present at the critic
current I c , where two conditions are met: acritical entry
condition at the left side of the sample (Hle f t5Hs) and a
critical exit conditionat the right side of the sample (b5W
2d/4) @see Fig. 2~a! at I 5I c#. For any current slightly large
thanI c , new vortices will be nucleated at the left edge of t
sample and be driven very rapidly through the otherw
vortex-free region,2W1d/4,x,a. These vortices will
join the left side of the domelike flux distribution, which wi
respond by pushing an equal number of vortices out of
dome atx5W2d/4, where these vortices will annihilat
with their images at the right edge of the sample.

The critical currentI c for applied fields in the rangeHcd
<Ha<Hs/2 is

I c~Ha!5
pWHs

R2 S Hs

2Ha
21D , ~20!

where we have retained terms only through ord
pWHs /R2. Note that I c reduces to zero whenHa5Hs/2,
and toI cd whenHa5Hcd . Shown in Fig. 3 is a plot ofI c as
a function of the applied fieldHa . The crosshatched regio
indicates the region of theI -Ha plane where a domelike flux
distribution occurs with the critical entry condition at the le

FIG. 3. Critical currentI c , normalized toI c(0)52pWHs /R, as
a function of the applied fieldHa(0,Ha,Hs/2) for R510.05
@Eqs.~20! and ~22!#. The cross-hatched region indicates the valu
of Ha andI that produce a domelike flux distribution in the samp
and the pointcd marks the point (Hcd and I cd) where the dome
disappears.
g

-

l

e

e

r

edge of the sample@see Eq.~17!#. The pointcd marks the
values ofI and Ha where the critical dome shrinks to zer
width. Shown in Fig. 4 are the values ofa andb, the left and
right boundaries of the dome, at the critical current:ac
5I c /pHa2bc and bc5W2d/45W(121/2R2). Note that
ac5bc when Ha5Hcd and I 5I cd , while ac52bc when
Ha5Hs/2 andI c50.

B. Without a dome

For Ha,Hcd , there is no metastable dome, and t
sample remains in the Meissner state. The critical curren
the absence of an applied magnetic field is

I c~0!52pWHs /R, ~21!

the current for which the self-field at the edge isHs @see Eq.
~8!#. For small values of the applied magnetic fieldHa ~i.e.,
Ha,Hcd and I .I cd), the critical current is

I c~Ha!5I c~0!22pWHa~R11!/R. ~22!

For these values ofHa , the Meissner-state current densi
obeysJMy(x).0 for the entire flat region of the strip. Any
vortex nucleated at the left edge is thus swept entirely ac
the sample to the opposite curved edge, where the vo
annihilates with its image. This portion of theI c(Ha) vs Ha
curve is shown in Fig. 3 as the solid straight-line segm
from Ha50 andI c5I c(0) to Ha5Hcd and I c5I cd .

The dotted straight-line extension of theI c(Ha) line for
Ha.Hcd and I ,I cd is given by

I c1~Ha!5I c~0!22pWHa~R11!/R, ~23!

along which the field at the left edge of the sample is equa
Hs and the rest of the sample is in the Meissner state.
these values ofHa , a currentI slightly larger thanI c1 causes
a vortex to nucleate at the left edge, but this vortex come
rest at a pointx5a5I /2pHa,W. Even larger currents
cause the growth of a domelike flux distribution, as d
cussed above. The triangular region in the lower left-ha
corner of Fig. 3, below theI c1(Ha) line, represents the val

s
,

FIG. 4. The coordinates of the left and right boundaries,x5ac

andbc , respectively, of the domelike flux distribution at the critic
current I c as a function of the applied fieldHa . The width of the
sample is 2W, andR5(2W/d)1/2510.05. The vertical dashed lin
denotes the fieldHa5Hcd , below which the critical dome is absen
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ues ofHa and I for which the sample remains in the Meis
ner state and the local field at the edge is less thanHs .

IV. SUMMARY

In this paper we have solved for the critical current due
surface barriers in a flat type-II superconducting strip, wh
the dominant contribution to the current arises from scre
ing supercurrents in vortex-free regions on the top and b
tom surfaces of the strip. By modeling the strip as being
except at the edges, where it is rounded to elliptical sh
with a local radius of curvature equal to half the film thic
ness, we have derived expressions for the critical currenI c
as a function of the applied fieldHa . For values ofHa less
thanHcd @Eq. ~19!#, the critical current is given by Eq.~22!,
at which the self-field at the left edge of the sample, tak
into account the Meissner response to both the applied
and the current, is equal toHs .

For Ha.Hcd , a domelike magnetic-field distribution oc
curs in the strip@Fig. 2~a!#, and the vortices in the sampl
generate, at the sample’s edge, a magnetic field that opp
the local field arising in response toHa . For currents just
below I c in fieldsHa.Hcd where a dome is present, there
no net supercurrent flowing where the vortices are, but
percurrents do flow with a high current density in the vorte
free regions on either side of the vortex-filled regions@Fig.
2~b!#. At the critical currentI c , the sample is at the critica
entry condition on the left side of the dome and at the criti
exit condition on the right side. We have taken into acco
the return field from vortices in the dome in deriving th
dependence ofI c(Ha) as a function ofHa @Eq. ~20!#.

It has been shown experimentally that the surface bar
M.

i,
,

m
.

n

T.
es
o
n
-

t-
t
e

g
ld

ses

u-
-

l
t

er

makes an important contribution to both the hysteretic m
netization and the transport properties for superconduc
strips10,18–21 over a wide region of the magnetic-field
temperature (H-T) plane. Moreover, in Bi2Sr2CaCu2O81d
single crystals, the current density distribution has be
found to be concentrated at the edges of the sample when
surface barrier is in effect,10 in qualitative agreement with
our calculations. To provide a more stringent test of t
present theory, however, experiments should be done to
multaneously measure the critical currentI c and the
magnetic-field profileBz(x) at the critical current as a func
tion of the applied fieldHa . In addition, since the critica
current is scaled by the fieldHs , measurements ofI c as a
function of temperatureT also would help to distinguish
whetherHs is given by the lower critical fieldHc1 or by a
considerably larger barrier fieldHb . Under ideal circum-
stances,Hb could approach the bulk thermodynamic critic
field Hc , with a temperature dependence close to
2(T/Tc)

2.5 On the other hand, it is possible thatHb is an
effective barrier field determined by matching the time sc
of the experiment with the time it takes for vortices to
thermally excited over the surface barrier; in such a case,Hb
is expected to be strongly temperature dependent.22,21
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