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Critical current from surface barriers in type-1l superconducting strips
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Extending a model we previously used to calculate magnetization hysteresis arising from the geometrical
barrier in a flat, bulk-pinning-free type-Il superconducting strip subjected to a perpendicular magnetic field
H,, we here calculate the contribution, arising from screening currents on the top and bottom surfaces, to the
magnetic-field-dependent critical currdpfH,) due to surface barriers, including both the geometrical barrier
and the Bean-Livingston barridiS0163-182@08)04946-1

[. INTRODUCTION when a Bean-Livingston barrier is present. Moreover, the
Bean-Livingston barrier, when present, is expected to be
A barrier of geometrical origin has been shdwhto de-  seen over a wider range of applied magnetic fields, possibly
lay the first penetration of magnetic flux into a flat type-Il up to the bulk thermodynamic critical field.. .
superconducting strip subjected to a perpendicular magnetic In applying the above model, we find here that the physics
field. A consequence of this effect is that such a strip exhibit®f the critical current .(H,) depends upon the value of the
hysteretic behavior even if the vortices in the interior of theapplied fieldH,. For small values oH,, we find that the
strip are completely unpinned, i.e., even if the bulk criticalcritical current is just that for which the net field at the left
current densityl, is zero. The geometrical barrier is due edge of the strigthe sum of the self-field from the current
solely to the nonellipticity of the sample’s cross section; it isand the Meissner response to the applied figddequal to
similar to the barrier observed in type-l superconductors ofH; in the absence of a Bean-Livingston bartiet or Hy,
rectangular cross sectidnbut is different from the Bean- the Bean-Livingston barrier field, in the presence of such a
Livingston surface barrier observed in type-ll super-barrier. As soon as any vortex is nucleated and moves away
conductors ! from the rounded left edge of the strip, it is swept completely
In Ref. 12, we introduced a model of a superconductingacross to the right-hand side of the strip, where it annihilates
strip, one flat in the middle and rounded at the edges, to useith its image. For larger values &f,, there is a domelike
in approximating the magnetic-field and current-density dis-magnetic-field distribution produced by vortices inside the
tributions produced in the range of low perpendicular appliedstrip. The field distribution in the dome is similar to that in
magnetic fieldH, when the geometrical barrier plays a sig- the absence of the current, but the dome is shifted to the right
nificant role. Several results of our analytical approach havéecause of the Lorentz force from the applied current. The
been confirmed independently by numerical calcula<critical currentl (H,) is determined chiefly by two critical
tions2*~15In the present paper, we extend the calculations ofonditions: first, that the net field at the left edge of the strip
Ref. 12 to compute the critical curreht(H,) due to both  (the sum of the self-field from the current, the Meissner re-
geometrical and Bean-Livingston barriers, to which we will sponse to the applied field, and the return field arising from
refer collectively as surface barriers. vortices inside the sampl®de equal taH and, second, that
As shown in Refs. 2, 3, and 12, when the applied field isthe right-hand boundary of the dome just reach the rounded
large enough, there is a range of applied fields for whichedge. HereH, is equal to the lower critical fieltH ., in the
vortices are present in the strip, producing a domelike magabsence of a Bean-Livingston barrier or iy, the Bean-
netic field distribution. In the absence of a Bean-LivingstonLivingston barrier field, in the presence of such a barrier. The
barrier, whenH, is equal to the critical entry fieldH,, first of these two critical conditions is that for entry of new
vortices enter the sample until the net magnetic field at theortices at the left edge of the strip, and the second is that for
edge of the strifthe sum of the Meissner response to theexit (or annihilation) of vortices at the right edge of the strip.
applied field and the return field arising from vortices inside In this paper, we focus on calculating the contribution to
the samplg is equal to the lower critical fielH.,. If the  the critical current arising from screening currents carried on
applied field is now reduced slightly, no vortices leave thethe top and bottom surfaces of the strip in vortex-free re-
sample, but the domelike vortex-generated magnetic fiel@ions. As we shall show in Sec. lll, in the field range of
distribution changes shape. The height of the dome decreasiderest H,<H4/2), this contribution to the current is of
and the outermost boundaries expand, maintaining constantder 2rWH,/R, where 2N is the width of the stripd is the
area(constant magnetic flyxunder the dome. WheH, is  thickness, andR=(2W/d)*? is the square root of the aspect
reduced to the critical exit fielth., at which the outermost ratio. In the presence of a surface barrier, however, there will
boundaries of the dome reach the curved edges of the stripge additional contributions to the current density VX H
vortices exit from the strip. Similar behavior is also expectedocalized at the sample edges. As can be shown using Am-
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2y 3,(%) = Jpy(X) + Iy (X) =0, 3)
Let the domelike flux distribution extend from to b,
/I wherea<b. Then the solution to Eq3) is

B, YA ax<b

o————=— for a<x<b,
B,(x)= VW —x (4)

0 otherwise,
Ha d1< Y X . . .
W W where B, is a constant to be determined below. This flux

distribution generates the current dengig. (2)]
FIG. 1. Sketch of the model superconducting strip considered in
this paper. The strip has width/2, thicknessd, and rounded edges. By, 2x—(a+b)

Joy(X)=— N 5)
pere’s law, these edge currents contribute a total current of Fod
order dHg, which is smaller by a factor of B than the in the regiona<x<b. ForJ, y(x) to cancelly(x) [Eq.(1)]
contribution from the top and bottom surfaces in fields lessn this region and satisfy Eqs) we must have
thanHJ/2. We consider in this paper only the case of large
aspect ratios and values &>1, and thus we ignore the Bo=woHa (6)
edge-current contribution of ordetHs. At fields greater 4.4
thanH/2, however, the edge-current contribution dominates,
and a more careful treatment of this contribution, not in- I=mH,(a+b). (7
cluded in this paper, would be needed to determine the criti-
cal current and how the total current divides between the left The above equations describe a variety of possible meta-
and right edges of the strip. stable distributions of magnetic flux and current density, all

This paper is organized as follows: In Sec. Il we presenwith the same applied magnetic fiet}, and current. Since

the equations for the current distributions in the strip due teonly the sum ofa andb is determined by Eq.7), the above
the applied magnetic field, the applied current, and the fluequations alone are insufficient to determine the positéons
distribution inside the strip and calculate the field and currenind b of the left and right boundaries of the domelike flux
distributions in the case of quasistatic flux penetration in alistribution of Eq.(4). Because the possible distributions are
dome is present. In Sec. Il we establish the critical condi-dependent upon the magnetic history of the sample, it is
tions for the critical currenit,(H,) and its dependence on the necessary to supply some additional information to deter-
applied field. In Sec. IV we summarize our results and sugmine the values o& andb uniquely.

gest experiments to test the theory. We therefore next assume that the sample is attitieal
entry condition That is, ifl =0, the applied field,>0) is
IIl. QUASISTATIC FLUX DISTRIBUTION WHEN such that the local magnetic fields at the left and right edges
A DOME IS PRESENT of the sample le+; andH 4n;) are both equal tbls, so that

vortices either have just entered the sample or are on the
We consider an infinite superconducting strip of widthverge of doing so. >0, the self-field from the current is
2W(—W<x<W), thicknessd<W (see Fig. 1, and pen- positive on the left side of the sample and negative on the
etration deptth<d. A uniform magnetic fieldH, in thez  right, such thaH,es>H,gn>0, and the critical entry con-
direction and a curreritin they direction are applied. In the dition is reached only on the left edge of the sample. Using
Meissner state, where no flux has penetrated the strip, théae procedure for calculating the fields on the rounded edges

current density distribution, averaged over the thickriess  of the sample described in Refs. 10 and 11, we obtain
the strip, is given b{f’

by(x—a)(b—x)
2H,x | Hiest=Ha(R+1)+ J Wx
Juy(X)=— + . 1
wy() dVW2—x?  rd W2 —x? @ (8)
When vortices are present in the strip, generating a flux H CH.(R+1)— by(X— a) (b—x)
distributionB,(x"), the corresponding current density distri- right = Ha( )
bution is given by? (9)
2 (W B/X )\/—2?2 whereR= y2W/d. Performing the required integrals, we ob-
Jy(X)= f 2 tain
y() momd W(X— X )\/i—x @
Hiert=Ha[1+RV(1+a/W)(1+b/W)], (10)

Let us assume thdtandH, are such that there is a static

domelike flux distribution inside the strip. For the vortices to
L . L. iqht = + - - .

be at rest inside the sample, the total current density distri- Hiigm=Hal 1+ RV(1—a/W)(1-b/W)] (1)

bution must be zero inside the region where the vortices araJsing the critical entry condition at the left edgkl,e¢;

Thus the total current density in this region is =H,, we obtain
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Hs=H[1+R\(1+a/W)(1+b/W)], (12) 0.10

which, together with Eq(7), uniquely determinea andb at
the critical entry condition for givei, andl:

—W- ' \/1+ I\? (Hs—Ha2 o 0.06
Ben= W 2WH, 2aWH,) | RH, | | S
(13 & 0.04
b—W- | \/1 I |2 [Hg—Hg\?
en-Woowr, - VIt 2awn,) T\ TRA, | | 0.02 |
14
The total current density, determined by evaluating the 0'00.1.0 .6.5 oio 015 1.0
integral obtained by substituting E¢4) into Eq. (2) and x/W
combining the result with Eq.l), is 10
r — — b)
2H, (b—x)(a—x) (
for —W<x<a,
d  w—x?
Jy(x)=4{ 0 for a<x<b, 5
2H, V(x—b)(x—a) &
- for b<x<W. o
L d WZ_XZ \\;
(15 -
0.5 |
With a, b, andB, determined by Eqs6), (7), and(12),
we now can calculate the flux distributidd,(x) [Eq. (4)]
and the corresponding current distributidy§x) [Eq. (15)] at 1.0 . ,
the critical entry condition for arbitrary values of the applied -10 -05 0.0 0.5 Lo

field H, and current. Figures 2a) and Zb) show examples X

of such results for a fixed value &f, and three values of the FIG. 2. (a) Flux-density profilesB, vs x [Eq. (4)] for initial
currentl. For zero current, the domelike flux distribution is penetration of magnetic fluécritical entry condition at the left side
centered in the middle of the strig€ —b). As the current of the strip in an applied fieldH ,=H/10 for an applied currerit
increases, the self-field at the left edge causes new vortices tatially equal to zero, and then at higher curreh3 andl, the
enter the sample, and the center of gravity of the resultingritical current(critical exit condition at the right side of the stjip
flux distribution shifts to the right. Note that with increasing for R=(2W/d)*?=10.05. (b) Corresponding current-density pro-
current, the right boundary of the flux distributicat x  files Jy vs x [Eq. (15)].

=h) approaches the right edge of the strip. We define the

critical currentl, as the current that causes vortices at theom surfaces of the sampjealthough the Bean-Livingston
right boundary of the flux distribution to first reach the barrier(associated with currents flowing on the right and left

rounded edge of the strip. edges of the samplestill can produce irreversibility. How-
ever, we neglect the latter contribution in this paper for rea-
Il CRITICAL CURRENT sons discussed in Sec. . We also neglect bulk pinning, an-
other common source of irreversibility.
A. With a dome Whenl >0, the metastable dome occurs for applied fields

Because of the surface barrier, a domelike magnetic-flui? the range
distribution occurs in flat strips for a range of applied fields
H, depending upon the curremt In Sec. Il, we derived Hg IR H§
expressions tha_t_determme the ppundanesa _andbgf the R+1 27W(R+1) Ha<2(H FIRY W)
dome at the critical entry condition, for whidH.s;=Hs. s
When | =0, the metastable domgvith a=—b) occurs for
applied fieldsH, in the rang&?

17

where again we neglected terms of ordét/R?. At the
lower limit, a=b=1/27H,, and the field Hy/(R+1)
—IR/[27W(R+1)] is just the value of the applied field at
Hs/(RT1)<H.<HJ2, (16) which the net field at the left edge, including the self-field
whereR=(2W/d)¥? and we have neglected terms of orderfrom the current, is equal téls. The first entering vortex
Hs/R?. At the lower limit, b=a=0, and the fieldHs/(R  comes to rest at=a=b=1/27H,<W. At the upper limit,
+1) is the value ofH, at which the first vortex enters the b=W-—d/4.
strip. At the upper limit,b=—-a=W-d/4. ForH,>H//2, For increasing current, the range of applied fields for
there is no further magnetic irreversibility due to the surfacewhich the metastable dome occufkq. (17)] becomes
barrier (associated with currents flowing on the top and bot-smaller. This range finally vanishes at the current
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FIG. 3. Critical current ., normalized td ;(0)=27WH, /R, as FIG. 4. The coordinates of the left and right boundarnesa,

a function of the applied fieldd,(0<H,<HJ/2) for R=10.05 andb., respectively, of the domelike flux distribution at the critical
[Egs.(20) and(22)]. The cross-hatched region indicates the valuescurrentl. as a function of the applied field,. The width of the
of H, and| that produce a domelike flux distribution in the sample, sample is 2V, andR= (2W/d)¥?=10.05. The vertical dashed line
and the pointcd marks the point Kl.4 andl.4) where the dome denotes the fielth ,=H .4, below which the critical dome is absent.
disappears.
edge of the samplgsee Eq.(17)]. The pointcd marks the
w values ofl andH, where the critical dome shrinks to zero
lea=2mHs5m 77 (18 width. Shown in Fig. 4 are the values afandb, the left and
right boundaries of the dome, at the critical curreat:
At this critical value of the current and at the corresponding=|_/«#H,—b, and b,=W—d/4=W(1—1/2R?). Note that
critical value of the applied field, a.=b, whenH,=H.4 and |=I.4, while a,=—b, when
Y H,=H/2 andl.=0.
(19

S
d=5pL 1
@ 2R+1 B. Without a dome

the dome disappearfin both Egs.(18) and (19) we have For H,<H.q4, there is no metastable dome, and the
neglected terms of higher order inRL] Although this com-  sample remains in the Meissner state. The critical current in
bination of current and field produces the critical entry con-the absence of an applied magnetic field is

dition (H,es1=Hy), any entering vortex is swept all the way

to the right rounded edgex& W—d/4), where it exits from 1c(0)=27WH,/R, (21)

the sample and annihilates with its image.

For currentd <l 4, there is a dome present at the critical
currentl., where two conditions are met: aitical entry
condition at the left side of the sampleH(.;=Hs) and a
critical exit conditionat the right side of the sampld €W l(Hy)=140)—27WH,(R+1)/R. (22)
—d/4) [see Fig. 2a) atl =1.]. For any current slightly larger ) )
thanl ., new vortices will be nucleated at the left edge of theFor these values dfi,, the Meissner-state current density
sample and be driven very rapidly through the otherwise?P€ySJIumy(x)=>0 for the entire flat region of the strip. Any
vortex-free region,—W+d/4<x<a. These vortices will vortex nucleated at the Ief_t edge is thus swept entirely across
join the left side of the domelike flux distribution, which will the sample to the opposite curved edge, where the vortex
respond by pushing an equal number of vortices out of th@nhihilates with its image. This portion of theg(H,) vsH,
dome atx=W-—d/4, where these vortices will annihilate CUrve is shown in Fig. 3 as the solid straight-line segment

the current for which the self-field at the edgeHg [see Eq.
(8)]. For small values of the applied magnetic fiéld (i.e.,
H,<H.q andl>l.gy), the critical current is

with their images at the right edge of the sample. from H,=0 andl =1.(0) toHa=Hcq andlc=lcq.
The critical current , for applied fields in the rangil . The dotted straight-line extension of the(H,) line for
<H,<HJ2is H,>H.4 andl <l4 is given by
AWH H. I.;(H,)=14(0)— 27WH,(R+1)/R, 23
le(Ha) = R2 (ZHa N 1) ' (20 along which the field at the left edge of the sample is equal to

H, and the rest of the sample is in the Meissner state. For
where we have retained terms only through orderthese values dfl,, a current slightly larger than .; causes
mWH,/R?. Note thatl, reduces to zero whehl,=HJ2, a vortex to nucleate at the left edge, but this vortex comes to
and tol .4 whenH, =H.4. Shown in Fig. 3is a plot of, as rest at a pointx=a=1/27H,<W. Even larger currents
a function of the applied fieltH,. The crosshatched region cause the growth of a domelike flux distribution, as dis-
indicates the region of theH , plane where a domelike flux cussed above. The triangular region in the lower left-hand
distribution occurs with the critical entry condition at the left corner of Fig. 3, below thé;,(H,) line, represents the val-
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ues ofH, and| for which the sample remains in the Meiss- makes an important contribution to both the hysteretic mag-

ner state and the local field at the edge is less than netization and the transport properties for superconducting
strips®18-21 over a wide region of the magnetic-field—

temperature I-T) plane. Moreover, in BiS,CaCuyOg, s
single crystals, the current density distribution has been
In this paper we have solved for the critical current due tofound to be concentrated at the edges of the sample when the
surface barriers in a flat type-Il superconducting strip, whersurface barrier is in effe¢f in qualitative agreement with
the dominant contribution to the current arises from screeneur calculations. To provide a more stringent test of the
ing supercurrents in vortex-free regions on the top and botpresent theory, however, experiments should be done to si-
tom surfaces of the strip. By modeling the strip as being flamultaneously measure the critical curreht and the
except at the edges, where it is rounded to elliptical shapenagnetic-field profileB,(x) at the critical current as a func-
with a local radius of curvature equal to half the film thick- tion of the applied fieldH,. In addition, since the critical
ness, we have derived expressions for the critical cudrent current is scaled by the field, measurements df, as a
as a function of the applied field,. For values ofH, less  function of temperaturel also would help to distinguish
thanH.q4 [Eq. (19)], the critical current is given by Eq22),  whetherH, is given by the lower critical field.; or by a
at which the self-field at the left edge of the sample, takingconsiderably larger barrier fieltl,. Under ideal circum-
into account the Meissner response to both the applied fielstancesH,, could approach the bulk thermodynamic critical
and the current, is equal td. field H., with a temperature dependence close to 1
ForHa>H.4, a domelike magnetic-field distribution oc- —(T/T.)2.> On the other hand, it is possible th, is an
curs in the striplFig. 2@], and the vortices in the sample effective barrier field determined by matching the time scale
generate, at the sample’s edge, a magnetic field that opposef the experiment with the time it takes for vortices to be
the local field arising in response té,. For currents just thermally excited over the surface barrier; in such a chge,
below| . in fieldsH,>H_q where a dome is present, there is is expected to be strongly temperature depentfefit.
no net supercurrent flowing where the vortices are, but su-
percurrents do flow with a high current density in the vortex- ACKNOWLEDGMENTS
free regions on either side of the vortex-filled regidFiy.
2(b)]. At the critical current ., the sample is at the critical We thank R. A. Doyle, T. B. Doyle, V. G. Kogan, E.
entry condition on the left side of the dome and at the criticalZeldov, and H. Castro for stimulating comments. Ames
exit condition on the right side. We have taken into account.aboratory is operated for the U.S. Department of Energy by
the return field from vortices in the dome in deriving the lowa State University under Contract No. W-7405-Eng-82.
dependence df.(H,) as a function oH, [Eqg. (20)]. This research was supported by the Director for Energy Re-
It has been shown experimentally that the surface barriesearch, Office of Basic Energy Sciences.

IV. SUMMARY
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