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The conductancéG) of mirror-symmetric, disordered norméN) metal mesoscopic structures with two
interfaces to superconductofS) has been studied experimentally with applied condensate phase differences
A¢ between théN/S interfaces. A ¢=2n7w(n=0,1,2,3,...) the conductance showed reentrance to the normal
state below the temperature corresponding to the Thouless energy. The current-voltage characteristics were
found to be strongly nonlinear even at distances betweemfiSeinterfaces largely exceeding the normal-
metal coherence length. An influence of superconductors almost completely disappeAkgd @n+1) 7
where the structures showed normal behavior. Calculations based on a quasiclassical theory have been per-
formed offering a quantitative explanation of such a phase-periodic reentrance. The value of the superconduct-
ing gapA¢ at the Ag/Al interface has been obtained. We find thag(T,V—0)=8-Agc(T) with 8=0.2
independent of temperature in the temperature interval of &TK 1.6 K; Agc(T) is the BCS gap v§
function in Al. [S0163-182808)01746-9

The conductance of a normé\W) disordered mesoscopic thermal effect in the phase periodic conductanceNé§
structure with interfaces to superconduct(®y oscillates as  structures withT-shaped normal parts has been reported in
a function of the condensate phase differente, between Ref. 11.
the latter? The amplitude of oscillations exceeds the value Another extraordinary prediction by the theory is a com-
of €2/h by several orders of magnitude at unexpectedly larggplete absence of the influence of superconductors on the
distances between th¢/S interfaces i.e., it is not related to  electron transport at phase difference between the supercon-
the weak localization corrections as it was anticipatedductors ofA¢= in disordered structures of certain sym-
previously? Recently, several theoretical work& have pro- metry. That is the case, for example, MYS mesoscopic
posed an explanation for such “giant” oscillations, taking structures of mirror symmetry when the classical current
into account the characteristic energy dependence of the colires lie in the mirror plane relatingN/S interfaces. The
densate wave function on th¢ side and its contribution to theory predictsnormal behaviorat a phase difference be-
the conductance of the normal structyproximity effec).  tween the superconductors &kp= 7, with the temperature
Remarkably, the contributions, interpreted as the Cooper paitependences of the conductance and current-voltage charac-
penetration and the change in the density of states oMthe teristics of normal parts of such symmetrical structures to be
side? cancel each other at low energies of quasiparticles. Aidentical to those in thebsenceof superconductors.We
a result, the influence of the superconductors disappears amphasize that the phase-coherent effects exist and the con-
low enough temperatures, leading to a “reentrant” behaviordensate contribution to the conductance periodically disap-
of the normal structurd’ The giant oscillations appear as a pears even when the distance between N1& interfaces
result of the dependence of the condensate wave functions atneatly exceeds the coherence lengthof normal quasipar-
the phase difference between tNéS boundaries and their ticles and Josephson currents are negligibl&y
amplitude is predicted to be a nonmonotonic function of tem-= (%D/27kgT)2, D is the diffusion coefficient of conduc-
perature(“thermal effect,” following terminology of Ref. 5  tion electrong The effect is due to the fact that in mesos-
and/or voltage bia%.An experimental observation of the copic structures Cooper pairs which contribute to the con-
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wire had the shape of a rectangular loop. An insulating
G spacer of AJO; was placed between the superconducting
wire and the current and potential leads to prevent electrical
contact. The phase difference between & interfaces at
points C and D was created by applying a magnetic-field
perpendicular to the structure or, alternatively, by passing a
control current through the superconductor. Using the four-
terminal method, we measured the differential resistance,
dV/dl, and the total resistancB,g, of the normal parAB
using measuring leads, I,, U;, U,. We performed dc as
Y v, H well as low-frequency ac measurements using lock-in and
N modulation techniques in the frequency range of 30—300 Hz
ip magnetic fields of less than 100 G obtained using an elec-
(silver) wire AB with interfaces to superconductingluminum) e}roma.gnet. The measurements have been done at t_empera-
loop CFGHID at pointsC andD has been measured with potential tUres in the range from 0.1 to 1.7 K. The Al loop was in the
leadsU,— U, and current leadis,— 1 ,. A spacer of AJO; provides ~ Superconducting state below 1.4 K. The reason for the non-
electrical insulation between the loop and the leads. Dimensions a€ro resistance values at 0.AR<1.3 K seen in Fig. 4 is
given in the text. that the data was taken using two normal-metal leads in a
series with the loop.
ductance penetrate into the normal conductor over a large The normal, insulating, and superconducting layers of the
distance comparable to the dimension of the structure. In thetructures were fabricated using the “lift-off” electron li-
structures with twd\/S interfaces the condensate contribu- thography technique. The first layer was a normal part made
tion to the conductance consists of two parts caused by eaaf a 40 nm thick and 100 nm wide silver film. The second
N/S interface. These parts compensate each other in a syrand the third layers were 20 nm thick insulator {&4) and
metric system af\ ¢= . 40 nm thick aluminum films, respectively. TiandD ends
We report an experimental study of the influence of theof the silver cross were etched by an Ar ion beam before the
phase difference¢, on the current-voltage characteristics deposition of the aluminium strip. The area of &S inter-
in symmetric mesoscopil/S structures with crosslike nor- face was about 100200 nn?. The distance between the
mal regions, sugges.ted in Ref. 1. One n_ormal wire con_nectﬁormm leads,Ly=AB, was equal to 2000 nm WitthE
sgper_condl_Jctors while the current flows in the perpendiculal. e g— | — 1000 nm. The distance between tN&S inter-
direction(Fig. 1). The temperatures were high enough so tha“aces,LS=CD, varied from 500 to 2000 nmiwith CE

the Josephson critical current was negligible and the ress;ED) for different samplegsee Table)L The precision of

tance of the normal wires was finite. The conductance ; .
Ap=0 showed reentrant behavior. The current-voltagztthe alignment of different layers was better than 100 nm. The

characteristics ak ¢=0 were found to be strongly nonlinear substrate was silicon covered by its native oxide.

and highly temperature dependent below the superconduct- Th? vqllue of th? d:ffusclion c.:oefféuent of conéjuctllon efleﬁ-
ing transition. The behavior of the structureshap= was ~ 0nS In silverD calculated using the measured value of the

found to be drastically different: the current-voltage characfesistance was equal to about 8CPtsmand the coherence

teristics were close to linear with temperature-independer€ngthéy=300 nm for the lowest temperature in our experi-
conductance close to that in the absence of superconductii?ent. The phase breaking length of electransin silver
ity. A phase flip of oscillations in the differential conduc- was estimated to be approximately 1500 nm using weak-
tance at high bias voltages has been observed. No excess,l@galization measurements in long coevaporated wires. Spe-
deficit, current at high voltage has been detected. The obsegial attention was paid to the measurements of the resistance
vations are analyzed in the framework of a quasiclassicabf Ag/Al interfaces and of different parts of the structure
theory 8 in which the Usadel equatidhis significant. using different combinations of the leads for potential and
Our structures consisted of a normal conductor in thecurrent. Using such measurements we also found that the
shape of a cross to which a superconducting wire was adeviations from the symmetry of the structure with respect to
tached at two points as shown in Fig. 1. The superconductinthe center of the cross were within 10% measurement error.

FIG. 1. The geometry of the structures. The resistance of norm

TABLE |. Parameters and amplitudes of zero-bias resistance oscillations for three Ag samples with Al mlgprdength of normal
(Ag) arm.Lg is the length of perpendicular Ag arm betwegt) superconductordRy is the normal resistance @B strip. p, resistivity of
Ag. D is the diffusion coefficient of electrons in Agis the electron mean free path in Ag strip.exp. is the measured relative resistance
of N/S interfaces.r, theor. is the relative resistance NfS interfaces used to fit the theory and experime&®R/R is the amplitude of
resistance oscillation.

Sample Ly (um) Lg(um) Ry(Q) puQcm D (cné/s) | (nm) r,exp. r,theory AR/R, exp. AR/R, theor.

1 2.0 0.5 105 211 84 25.4 1.4 14 7.3 7.3
1.0 1.0 6.1 2.46 72 21.8 11 11 5.2 3.8
3 2.0 2.0 10.8 2.16 82 24.8 1.4 14 1.6 1.0
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FIG. 2. Normalized differential resistance of sample 1 versus T (K)

applied dc voltage at different superconducting phase differences. £ 4. zero-bias resistance for theB arm as a function of
1-1": A¢p=0; 2-2": A¢=0.6m; 3-3": Ap=0.8m; 4-4": Ad  (emperature ah =0 (filled circles andA ¢= 1 (open circles for
=m, T=0.58 K. The phase difference was varied by a magneticsample 1. The resistance of the superconducting (éangles is
field and its value determined from thereriodicity. Dotted and /54 given in the inset. Solid lines are theoretical curvesAfgr
o_Iashed lines are theoretical curves fop=0 andA¢=, respec-  _ for different values of the superconducting gap at M¥S
tively. interface, Ag. (1) Agg=0.051meV; (2) A.4=0.045meV; (3)

i . A=0.039 meV; (4) Ag=0.033 meV; (5) A.4=0.027 meV; (6)
We have found the resistance of tNéS barriers to be of the A.s=0.021 meV. ForA¢=r the calculated value oR=const

order of the resistance of the normal wisge Table)l =Ry, AR=0.
The |-V curves appeared to be very sensitive to the cur-

rent through the superconducting wire and/or magnetic fluxyperconductivity in the aluminium wire. The latter can be
through the loop. Figure 2 shows the differential resistancggen from Fig. 4, where the total resistaig; at zero bias
(dV/dl) of the normal part of the structure vs dc bias voltageanga =0 andw is shown as a function of temperature. The
between the pointd andB (see Fig. 1, at different magnetic changes in the resistance A= are by more than an
fluxes in the absence of superconducting current through alys.qer in magnitude less than =0 and are close to that
minium wire. It is seen that the curves are nonlinear with &y, the coevaporated silver wires with no interfaces to super-
drop in the resistance at zero bias when no magnetic field igonguctors within the given temperature interval. Similar ef-
applied. At higher fields the curves flatten and become CloSgy.is were observed when the phase differetat was

to linear at a field at which the phase differend@=m  changed by the control current in the superconducting wire.
between the point€ andD. The changes were periodic with The oscillations as a function of control current through the
a periodAH=®,/S, ®o=h/2e, Sis the area of the 100p  gyperconducting wiréIN had a period of\l =26 xA. Us-

CFGHD‘ i . ) ) ing the following equation for the phase difference in the
Oscillations indV/dl as a function of magnetic flux at gpsence of an external magnetic field:

different bias voltages are shown in Fig. 3. It is seen from
Figs. 2 and 3 _thaﬁ¢>=rr is, indeed, a very special point. Ap=2m(LID)],
The structure is less sensitive to the applied voltage at that
phase difference. Furthermore, the resistaRGg at A¢  we can calculate the effective self-inductance of the super-
=1 is found to be equal to the resistance in the absence afonducting loopZ, which is the sum of the “kinetic” and
“‘geometric” contributions(see, e.g., Ref.)1For ourS-loop
we find £=0.8x10"*° H.
An additional feature of the oscillations is the phase flip,
where a minimum in the resistance is replaced by a maxi-
mum, occurring at voltages corresponding to the states with
dVv/dI>Ry (see Figs. 3 and)2 At the crossover voltage
itself, which in this case was about 0.07 mV, the second
harmonic of oscillations survives, while the regular period is
suppressed. The oscillations show strongly nonsinusoidal
shapes at the lowest temperatures investigated. No hysteresis
was detected.

5 Figure 4 shows the dependence of the zero-bias resistance
01 23 45678 910 for the AB arm as a function (_)f temperature atp=0 and
A ¢= for sample 1. The resistance &th)=0 starts to de-
crease at the onset of superconductivity of the superconduct-

FIG. 3. Normalized diffferential resistance of sample 1 as aing loop showing a minimum as a function of temperature

function of superconducting phase difference at different applied déollowed by a steep increasghe reentrant behaviprThe
voltages. (1) V=0; (2) V=0.045mV; (3) V=0.08 mV; (4) V  resistance for thé&B arm atA ¢= = is temperature indepen-
=0.14mV; (5 V=0.17 mV; T=0.58 K. dent within experimental error.

(1/R\)(avidi)}-1 [%]
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The phase periodic conductance oscillations can be agonstants; 6=6"+i0"=kL, 6,,=kL;,, k=[(2ie
cribed to a condensate contribution to the conductance. The y)/hD]?, y=hD/L(2ZS is the phase-breaking rate in the
amplitude of the induced condensate depends on the phasermal wire,I'; , are depairing rates in the superconductors,
differenceA¢ turning to zero at\ ¢= 7. This effect can be andr, ,= R\/2R; ,, Ry, being the total resistance &S, ,
understood in terms of Andreev reflections at tNéS interfaces, correspondingly.
interfaces=® During Andreev reflection, an electron trans- According to Egs.(3) and (4) the values ofA(e) and
forms into a hole acquiring an extra phageequal to the B(g) bothbecome vanishingly small at low enough energies
phase of the superconducting condensate \acel versaa  and the conductance should approach the normal-state value
hole transforms into an electron gaining an extra phage  (“reentrance”!*') independently of the phase difference.
The conductance of a normal conductor oscillates as a func/arious theoretical approaches, including the scattering-
tion of the phase differenca¢ between two superconduct- matrix method based on the generalized Landauer formula
ing banks due to the fact that a fraction of the electrons isyith Andreev reflections taken into accothaind the nu-
reflected as holes from both/S interfaces, rather than one merical solution of the Bogolubov—de Gennes equatfoms,
particular interface. The quantum interference results ima 2 well as previous calculations based on the equations for the
periodicity of A¢ and goes from constructive ah¢  quasiclassical Green’s function$,show that such behavior
=0,2m,... todestructive atA ¢=m,37,... . The neteffect is general for mesoscopN/S structures.
of the destructive interference of Andreev reflected quasipar- Formulas(2)—(5) reduce to simpler ones in specific cases
ticles is that the resultant amplitude of the Andreev reflectede.g., by puttingA,=0 andL,=0 for a “quantum trom-
hole (electron is decreased, which is equivalent to a de-bone” geometry’). In the case of mirror symmetry, i.d.;
crease in the probability of Andreev reflection and, hence to=,, A;=A,=A, ry;=r,=r, andl';=I",=T", we find that
a decrease in the proximity correction to the conductance. Ta(e)=B(e) and Eq.(2) reduces o8
describe the phenomenon quantitatively deeper analysis is

required. m(e)=(1/16)(1+cos ¢)r{RgF2/ (6 coshd(1+L,/L))?]
According to the microscopic theory, the current across ) )
the normal part may be written 3§ X[(sinh(26) —26)/6]—|Fg|*/|6 cosho

X(1+L,/L)|Ysin(20")/ 6" —sin(20")/ "]},  (6)

whereF3=A2/[A2—(s+iT)?].

It follows from Eq. (6) that m(¢)=0 for any ¢ at the
phase differencél =, and the system responds to the
voltage bias and temperatUiee Eq(1)] as if there were no
superconductors. The situation corresponds to the total com-

ensation of the nonoscillating contributidt(e), which is

elieved to be a result of the contribution of electrons inde-
%endently reflected at different interfaces by the interference
termB(e). The latter describes the interference contribution
of electrons(holeg reflected as holeglectron$ from both
banks. That explains our results for measurementa ét

I(V,T)=(1/eRN)f:F(s,V,T)[l—m(s)]ds, (1)

where 2 is the dc voltage applied to thél part,
F(e,V,T) =1/2{tanH (e +eV)/2kg T]—tanh[ (e —eW)/2kgT]}
is the difference in equilibrium distribution functions in the
normal reservoirs, an®y is the resistance of thd part in
the absence of superconductors. The energy-dependent fu
tion m(e) determines the correction to the conductance du
to the proximity of superconductors. In a diffusive regime
m(e) can be calculated using the Usadel equatfoRor a
general nonsymmetric geometry with=Lcg, Lo=Lgp,
L=Lag/2, in the linear approximatiofweak proximity ef-

fect the result can be written as Considering the value ok as a phenomenological fitting

m(e)=A(e)+B(s)cosA &, 2) parameten o4, in forr_nulas(l)—(G) we were able to explain
our results quantitatively. Figure 5 shows the experimental
where dependence ok +(T,V—0) at zero bias calculated from the

. data presented in Fig. 4 using the fact that the position of the
—(_ 2 2 _ _ 2
Ale)=(~116{Re(C+ C{)[sinh(26)/26— 1] [|C] minimum of the resistance at¢=0 is sensitive to the value

+]Cy|21[sinh(26")/26" —sin(26")/26"]}, (3)  ofthe gap at th\/S interface. The value ol .«(T,V—0) is
normalized to the valud .«(T—0,V—0)=0.051 meV, cal-
B(s)=(1/16){Re(C)2(—Cf,)[sinf(ZB)/Z&—1]—[|CX|2 culated using the experimental value of the critical tempera-

. . ture of the Al loop. The rest of the fitting parameters, includ-
—|C,|2[sinh(26")/26" —sin(26")/26"]}. (4  ing the diffusion coefficient, the phase-breaking length, the
depairing rate, and the resistance of tHéS barriers were

Here . . . .
taken as temperature independent with their values in reason-
Cyy=(1/0)[r,F g /coshf;*r,Fg,/cosh,] able agreement with those from direct measuremésas
] ) Table ). By introducing a scatter in the values of the fitting
X{[sinh 6 sinh(6,+ 6,)]/(cosh 6, coshd,) parameters during calculations we estimated the error in the

5) determination of theabsolute value of A 4(T,V—0) as
+0.015 meV. The solid line in Fig. 5 is the BCS gap
Fs; and Fg, are the equilibrium condensate Green’s func-Ag-4T), as a function of temperature normalized to the
tions in the superconductor terminaldg; ,=A;,/[(e “bulk” zero-temperature value,Agc0). We find that
+il'1 92— A% ,]¥% A, ,are superconducting gaps at S~ Ag(T,V—0)=-Agcg(T) with 3=0.2 independent of tem-
interfaces, which are assumed to be voltage-independeperature in the temperature interval investigated. Computer

+2 coshg} L.
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' ' ' our geometry. According to the direct temperature depen-
. dence measurements at zero kigig. 5 such an increase in
the electron temperature would lead to 10% decreadedn
which is much less than the experimentally observed sup-
pression of the gap. That may suggest that an assumption
that the energy gap in the superconductor is a voltage-
. independent constant is not true. The latter may be due to
high transmittance of th&/N interface. The effective gap
A near theS/N interface must be determined from the
self-consistency equation taking into account the nonequilib-

A(T) 1 A(0)

*4%o GX] 02 rium distribution function on both sides of tiN'S interface.
0.2 : SALLA : Two more questions to be addressed by the theory are the
0.5 10 1.5 nonsinusoidal line shape of oscillations at low temperatures

T, K and the deviation of thalV/dl—V characteristic forA ¢

. =7 from a constant value at high biases.
FIG. 5. The dependence of the SUpercondu.Ct'ng @épat. the In conclusion, we find that the influence of superconduct-
Ag/Al interfaces for sample 1 on temperatufercles obtained . -
ors on the electron transport in hybrid normal/

from the fit of experimental zero-bias curves to the theory. The gap unerconducting disordered cross-shaped structures of mirror
values are normalized to the extrapolated zero-temperature valug, P 9 P

A(0)=0.051 meV. The solid line is the BCS gap as a function of SYmmetry with two superconducting ban.ks leads to consid-
temperature normalized to the “bulk” zero-temperature value’erable changes in the conductance. Nonlinear current-voltage

Apcd(0)=0.24 meV. Inset: the dependence f; on applied dc  dependences are noted even when the distance between the
voltage at temperatur=0.58 K obtained using fit of the theory N/S interfaces greatly exceeds the coherence length of nor-
with experimental curves. mal quasiparticles, which is consistent with existing experi-
mental dat&. The influence of superconductors on the trans-
port in the normal arm of the cross depends drastically on the
hase differencd ¢ between thé\/S interfaces and is prac-
cally absent atA = 7. Theoretical calculations have been
gerformed, explaining the observedrmal behaviorat A ¢
=17, in the case when classical current lines lie in the mirror
lane, relatingN/S interfaces. The temperature dependences
oscillations on the distance between &S interfaces at f the conductance and current-voltage characteristics of the

| it is also in fairl d t with th | normal parts of such symmetrical structures are identical to
ow vollages IS aiso In lairly good agreement wi € CalClise in theabsencef superconductors. The theory explains
lations based on formulad) and (6). Substituting experi-

mental parameters into Eq) and (1) we find zero-bias quantitatively our experimental results on the temperature
. . ) and bias dependences of the differential resistance. It, thus,
resistance amplitudes of 1.0, 3.8, and 7.3% &t0.58 K for P

At Ry allows us to obtain the dependence of the value of the super-
our three Samp'?s Wm@E.—DE_Ll_Z’ 1, and 0.5um, onducting gap at thB/S interfaceA ¢, on the temperature
with corresponding experimental values of 1.6, 5.2, an

7.3% (see Table)l nd voltage bias.

The inset in Fig. 5 shows the dependenceAgf; on the We acknowledge Yu. Nazarov and A. Zaitsev for valu-
bias voltage obtained from the fit of tld//dl —V curves at  able discussions of the results. The Swedish Nanometer
T=580 mK shown in Fig. 2. We emphasize that the ob-Laboratory and the Quantum Electron Kinetics Laboratory of
served strong dependence of the gap on voltage cannot liee Russian Academy of Sciences were used to fabricate the
explained by the heating of the sample. Using experimentatamples. Financial support from the EPSR&ant Ref. No.
datd® for the energy relaxation length,, we have calcu- GRL94611, the Russian HTS Programméroject No.
lated the upper limit for an increageT in the electron tem- 96053, the Swedish TFR and NFR, the Wallenberg Founda-
perature in the middle of the sample using a m8tlahd  tion, and the Nanotechnology Initiative Fund of Royal Hol-
found AT=0.5K atT=0.6 K, V=0.2mV, L,=6 um, for  loway College, University of London is acknowledged.

simulations using formuld2) show that the procedure de-
scribed can be used to determine the value of the effectiv:
gapA«4=5hD/L,2. At larger values of the gap the position of
the resistance minimum is determined by the value of th
Thouless energyst,=hD/L,2.
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