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Beyond the binary collision approximation for the large-q response of liquid “He
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We discuss corrections to the linear response of a many-body system beyond the binary collision approxi-
mation. We first derive for smooth pair interactions an exact expression of the respbiuge considerably
simplifying existing forms and present also the generalization for interactions with a strong, short-range
repulsion. We then apply the latter to the case of ligtite. We display the numerical influence of theg2/
correction around the quasielastic peak and in the low-intensity wings of the response, far from that peak.
Finally we resolve an apparent contradiction in previous discussions around the fourth order cumulant expan-
sion coefficient. Our results prove that the lamyeesponse of liquidHe can be accurately understood on the
basis of a dynamical theoryS0163-18208)01346-Q

[. INTRODUCTION ticles. Their study is the major purpose of this paper.
A second topic to be discussed is related to the cumulant
High-energy pulsed neutrons from spallation sources havexpansion of the response which has recently resulted in a
recently been used for the collection of good-quality crosssuccessful, model-independent extraction of the single-atom
sections data for the inclusive scattering of neutrons fromfmomentum distribution in liquid*He.**~**** Our interest
liquid “He. Data are for temperatures below and above th&ere is the resolution of an apparent discrepancy between the
transition temperatur&, .13 The above cross sections are adirectly computed fourth cumulant coefficient and the value

direct measure of the dynamic response or structure functiofXtracted in the BC approximation for a dynamically calcu-

S(q,w), whereq,w are the momentum and energy trans—lat(\a/s respoqsél.s " i ials of the GRS
ferred to the system. e start in Sec. |l recalling some essentials of the

1 appesrs convenit to consider th reduced responGPTIAN o S Ledcerisspotee vald o oo Bt
#(a,¥Y)=(9/M)S(q,w) instead ofS(q,w), where the en- b y P P

f tp | laced b it tive ki i tion of TC terms=1/g%>. Next we mention modifications
€rgy 10Ss parametes 1S replaced Dy an alternative Kinematic i, are required if the pair-interaction has a strong, short-
variabley. The latter is a linear combination of{w). M

_ ) range repulsion. In Sec. Ill we present numerical values for

is the mass of a constituent atom. . TC contributions to the response of liquitHe and discuss
Virtually all dynamic calculations of the high-response jis relative importance, in the peak region and the low-

S(d.@) (Refs. 4-1]1 have been based on the Gersch-intensity wings. Section IV contains a brief discussion of the

Rodriguez-Smith(GRS expansion of the reduced responsecumulant representation of the response which has recently

in 1/g (Ref. 4 or modifications of i:*®~°The theory in  been used to parametrize data for liqfide. We report a

principle employs only the elementary atom-atom interactiorcomplete calculation of the 4th order FSI cumulant coeffi-

V and is otherwise free of parameters. cient, and thereby also resolve a previously existing discrep-
The dominant part of the largg- response is the ancy.

asymptotic limit. It describes the response of a neutron strik-

ing an atom with given momentum. The absorption of the II. DOMINANT ESI PARTS IN THE RESPONSE

transferred momentum and energy-loss is not affected by FOR SMOOTH AND SINGULAR INTERACTIONS

other atoms in the medium. Final State InteractidRSI) ) i o

induced byV, produce corrections to the above limit which ~ Consider the respons&q,») per particle for an infinite

vanish for increasing). The leading FSk:1/q is caused by System of point particles

binary collisions(BC) between a struck and an arbitrary sec- 4 (7 ot +

ond particle in the medium. For liquiHe, predictions for S(q,0)=A"(2m) fﬁxdte (Dol pg(t)pq(0)| D).

the reduced respongfq,y) to order 1¢] agree well with the (1)

data over a broad range around the central, quasielastic peglé(t) in Eq. (1) is the density operator, translated in titrigy

aty=0. In fact, the quality of the data hardly calls for re- the HamiltonianH

finements beyond the BC. The incentive to nevertheless con-  int iHt

sider the introduction of fine details is mainly of theoretical Po() =€ "pq(0)e™,

nature: A criterion for the expansion of a function of two iq1:(0)

variables¢(q,y) in 1/q must depend on. In particular the Pq(o):; e 2

large|y| wings where the response is only a small fraction of

the peak value, has been suspected before to be sensitivedy is the ground state of the system with eneEyy.

details beyond the BC. We shall work with the reduced responsg(q,y)
In this paper we treat &f corrections. Those are due to =(q/M)S(q,w), where the energy loss is replaced by an

ternary collisiongTC) between a struck and two other par- alternative kinematic variablg=y(q,w)**’
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_ M( 9’ ) - [H(r1— o51) —Eql®o(r1;nd =Us(0)Do(rsirg).  (8)
Y q “72Mm It is convenient to introduce the FT of the GRS coefficient
Substitution of Eq(2) into Eq. (1) produces incoherent and functions in Eq.(5). For example
coherent components. Considering highesponses, it suf- p1(0;s)
fices to discuss the dominant incoherent part, where one  Fo(S)= fdrldrkpA(rlyrkyrl S,I) =
tracks a single particléor instance “1”) in its propagation
through the medium’ 3 ips g
For the description of the largg+esponse we shall fol- _f (2m )3e n(p). ©
low the formulation of Gersch, Rodriguez and Stfit6RS The dominant correction to the above asymptotic limitris (
and cite from there a few results. Details can be found in the_ 1)
bibliography. 2
It is convenient to introduce the Fourier transfo(fT) of 1. i
the reducedincoherenk response —Fl(s)—A fdrldrkpA(rl Me;T1— STy
¢(q,S)=J_wdye Y(a,y). 4 f do[H(r;— o) —Eq]
The variables=(g/M)t above is the distance traveled in the
medium during a time by a constituent, which moves with =— _f drodrepa(ry,feiri—S,re)
constant recoil velocity ;=qg/M: s is the length, canoni- Av
cally conjugate to the momentuyn % deUU (o)
The density fluctuationg, in Eq. (2) shift coordinates in 0 1
the direction offq, chosen to be thedirection. It leads to the _ po(r,r—s,0)~
following, standard expression, valid for local fort&s(r —IJ dr ——————x,4(r.9), (10
—s=r—s0) B
B(0,8) = (LA Do(r, -S| T, \(/\f:))ere use has been made of E8). The functiony in Eq.

Xexp[(i/vq)fod(r[H(rl—o;rk)—Eo] }q(r,s):—(l/vq)JSdaégV(r), (11)
0

X[ ®o(r1ino) is the off-shell, eikonal phase in the coordinate representa-

- tion, pertinent to the characteristic difference of interactions
:; (L) "Fn(s). (5  acting on “1” in Eq. (11). In order to obtain the appropriate

The second line in Eq(5) is the GRS series in d/, which on-shell phase one needs to replace the integration limits in

is generated by the expansion of the abawr@rdered expo- Eq. (1D f~rom Osto __oo’oc'_ .

nential. Here and in the following we shall denote by all In all, F,(s) describes binary collision®C) of the struck

coordinates 1. while “I” runs from 1 to A. particle “1” with any other particle in the medium. Its FT
For local interactions, the Hamiltonian with shifted coor- F1(Y) is 0dd iny and for largeq mainly shifts the position of

dinate “1” can be written as the maximum of the even asymptofig(y) aty=0.
The computation of the above quantities requires non-

H(ri—or) =2 T+ 2 V(r:n)+ > V(ri—oiry) diagonal density matrices. We shall use a normalization,
[ (#1 k>1 such that
k>1
pn(l,...n;1',...n")

= E| T|+|k2>I V(rin)

J n+1 j d[J])

(A n)'
+ V(ri—o;r)—V(ry;r
kgl[ (= oind =Virind] X®g(1,...n;n+1,...npy)
=H(rqy;r) +Uq(0), (6) XDo(1',...n";n+1,...np)
with
=[(A—n—l)]‘lf din+1]pn+1
Uy(o)[=Ua(oir,n)]l= 2 8,V(re;no),
k#1 X(1,...n,n+1;1',...n",n+1),

O V(rind =[V(r=oind =V(ryng D (L AL, AD=AIDE(L, . A)D(L, ... AT,
5,V(ry;ry) is the difference between the interaction of a (12
selected particlé& and “1” with the latter, once at a shifted
positionr; — o and then at,; U;(o) is the same due to all where we used a short-hand notationn,1,... for

particlesk+ 1. Using Eq.(6) one checkb r1,Mn,f1... . The densitiegp,(ry,rc;r1—sr), required in
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Egs.(9), (10), are diagonal in all particlels, except in “1.” of the second term in the braces in Ha4). With r_1=r1

For example,p1(0;s)=p4(r;r—9) in Eq. (9) is the single- =

particle density matrix which has the single-particle momen-'2’ f3=r3~r) one may reduce Eq14) to

tum distributionn(p) as its FT. Its diagonal panb,(0,0)

=p is the number density. Fo(s)=FP(s)+F(s),
The first two terms in the GRS serieg,F, satisfactorily

describe the data for the reduced response in a broad bang _ po(r—s,0:r,0)

around the quasi-elastic peakyt 0. Such a fit cannot be F<2)( S)= f

expected in the wings, wherg,(y) occasionally reaches Uq

small negative values. In those winggy), | =2, competes 1 i s

for increasing|y| with Fo(y)+(1/v4)F(y) of comparable X —[i}q(r,s)]2+—5SV(r)f da[i;(q(r,(r)] ,

size: ultimately¢(q,y)=0. 2 Ugq 0

Partial expressions for the next-to-leading order terms (169

F,(s),F,(y) have been given before by Gersehal* and
by Besprosvany’ but those forms are not complete and are 1
not always transparent. We shall derive below expressions —2|~I(23)(s)=f drdry

for the exactF,, based on Eqg12), (15) in Ref. 4 Ugq

_ pa(ry—s,0r3;r1,013)
p

1 . - —
X1 5[ixg(r1,8) [lixg(r1=rs,S)]

i2
(5)— JdrldrkpA(rl N T1— ST

S o’ , | . S ~— —
XfodU[H(rl_alrk)_EO]fo do +a55V(r1)fo dofix(ri—rs,0)1],
X[H(r{—o',r) —Eol. (13 (16b)

Consider the operators in the brackets above, acting on theith }q(r,s) the off-shell phase as defined in Ef1). (Note
wave functions which compose,, Eq. (12), with shifted, that}(ocl/vq_)
respectively unshifted coordinate. Their combined result For smooth, nonsingular local forces, the above completes
IS the derivation of an exact expression f(s). However, if
~ _ V possesses a strong, short-range repulsion, as is the case for
Fa(s)= 427 | dradrea(ryrcri—snd atom-atom interactions, difficulties emerge. There are no
problems if in integrands wave functions or density matrices
s a. , andV have identical arguments, in which case large values
X Joda[ul(a)_ Ul(s)]jo do’Uy(a”) of V are generally off-set by small values pf at common
smallr. This is not the case in general. A prime example is

L o Eq. (10) with r-dependence throughi(r— o), 0<|o]|<s,
T Al F1drpa(rs M= STy andr— o generally not coinciding with either—s or r in
5 p2(r—s,r;0): Large line integrals may result.
% } SdO'U (o)| —Uy(s) In the above case smooth expressions emerge again upon
2l Jo ! ! summation of a ladder of pair interactiongr), leading to
V¢t Which is the eikonal, off-shell matrix 519 Effectively
S loa
Xf dO’f do"Ul(o")). (14
0 0 ixy—exdiy]—1=ix+L2ix]2+---. (17)
SinceF,xU? and the latter<V? we dubF, the TC contri- _ .
bution to ESI® Using Eqgs.(10) and (17) we define
We start with the first term in the braces in Ed.4).
Using the definition in Eq(7) one rewrites éz(s,q[V])ETZZ(s,V—{t])=é(22)(s,q)+é(23)(s,q),
(18)

s 2 S 2
f doU,(0) 22 [f d0'5(rV(r1_rk)}
0 1]Jo

s . . i -
n f do 8,V(r,— fk)} with the following two- and three-particle components
1#l#k#1 0
S 1. —s,0;r,0
X fo da&UV(rl—rl)}. (15) e Sq)_fdr )[ e
Uq
The above components are distinct two- and three-particle % Fda(exdi}} (r,o)]— 1)} (199
e q 1 1
operators and the same holds for the parallel decomposition 0
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1. _ __pa(r;—s,073:r,003 - 1\"Fn(s
=8 (s,q)= f diryeiry 2218075 1.01) R(g,5)= >, (—) Fols) (22b)
Uq P n=1 Uq Fo(s)
1 . Q=R-1)—(1/2(R-1)%+- - -, (220
X| 5 @xflixq(r1,8)]—1) - .
with all FSI effects contained in eithét or ()
Below we report a calculation of TC contributions, using
-~ — — i — choices for the underlying densities.
X (exrlixq(r1=rs,8)] =1+ ~—5V(ry)
! I1l. TC CONTRIBUTIONS TO THE RESPONSE
s o OF LIQUID “He
X fodo(exp[lxq(rl—rg,,a)]—l) - (190 Until now, dynamical calculations based on the GRS se-
ries were limited to FSI in the BC approximation, i.e.
Care should be exercised in the replaceméntV¢ for an o - F
ill-behavedV as we shall now illustrate by focusing on the 0—-08=0,=—S--1 (23

first term in the brackets in Eq16a, 3[ix]% It can be vqFo

shown thaiall higher order term& ,(s,[V]) contain a two-  with the GRS series, cut at=2, as in Ref. 11. We now
body component of the form report what apparently are the first results for the next-to-
leading order TC corrections and which are contained in
G,=GP+G®, Egs.(18), (19).

We first recall the standard input described in Ref. 11. For

(VD)= j drw[a})”/m]. (20

n

1%
) g the bare interaction we use the standsfd?, Ref. 21, and
Using Eq.(17) those may be summed up to for the single-atom momentum distribution the results of
Refs. 22,23. As regards semidiagonal two-particle density
E lEgl)(s,[V])=l~:1(s,[t]). (21) matrix p,(r—s,0;r,0), there exist results obtained with sto-
n>1 chastic method&"® but computationally it is unnecessarily

=~ . time-consuming to evaluate those for each and eves) (
I theref(?re Fl(s,[\~/2) hag been reg.ularlzed by_)v?” as is required in calculations of the expressi@r® or (193.
=t, the first part of=3”(s) in Eq. (163 is already contained In the past relatively simple guesses have been made for

in F1(s,[t]) and in order to avoid double-counting it should p,. We shall use below the interpolation formula by G&S,
be removed fronG,(s,[V]). We note that by construction,

the remaining term in Eq199 which emerges from TC is p2(r—=s,0;r,00=pp1(0;5){o(r—sr),
nevertheless of two-body character. (29
Equations(199 and(19b) above are the exact TC contri- Lo(r—s,r)~g(|r—9)g(r)

butions to the GRS serig$) for the reduced response. At S )
this point we mention an alternative to the GRS seriesWith g(r) the pair-distribution function, chosen to be the one

namely the cumulant representation for the FT of the reducefom Ref. 9. ~

respons® A calculation ofG; requires the 3-particle density matrix
_ 5 _ _ 5 p3 Which, as before is nondiagonal in coordinate “1.” As an
#(q,8)=Fy(s)R(q,s)=Fy(s)exd (q,s)], (223 approximation we suggest

(A=2) py(r;—8,0;r1,00pa(r3—5,0;r,— r3,0)

p3(r1—s,073;7,053)~

(A—1) p1(0;s)
(A-2) , — - - = = =
“ A" p1(0;8){a(r1—=S,r1){o(r1—rz—s;ri—rs), (25
|
where use has been made of E24). The choice(25) has (iv) It causesp; to vanish for small values of the 4 coor-
several advantages. dinates which would otherwise produce large values for the
(i) With 1 paying a special role, it is symmetric in the factors in the operator in the brackets in E§9b).
othe_z_r coordinates. o An immediate consequence @ii ) above is the reduction
(ii) It exactly satisfies the “sum rule’(12). of the, effectively 5-dimensional integral in E(L9b) to the

(iii ) It factorizes in parts dependent op,r;—rs. product of two, two-dimensional integrals
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FIG. 1. (8),(b) The approach to the asymptotic linkit(y) (diamonds$ for smally of the calculated even part of the response without and
with the (even TC contributions.

From Eq.(2239 and the inverse of Eq4), we compute the
:pJ dréo(r—s,r) response folf=2.3 K to the corresponding order.
A first observation is the relative insignificance of 3-body
. TC contributions for theg-range investigated. A heuristic
I—(SSV(r)chr(exr[i;( (r,a')]—l)} argument runs as follows: If the BC FSI contributions
Vg 0 a amounts to a fraction of the the dominant asymptotic limit,
one estimates from the factorizati¢®5) of the 3-body den-
sity matrix that TC FSI is approximately the square of that
i fraction of Fy.
_f df_liz(r_l—S,r_l)cssV(r_l)} We now display some results for TC contributions. Fig-
Vg ures 1a and Xb) show for small y and q
- =21,25,29,50,100 Al the even part of the calculated re-
J discas=sro duced responses™1q.y)=[ #(q.y)+ (d.~y) /2 with-
. out, and including TC contributiongote that¢'® is even.
Xf dcr(exm;(q(r_g,,a)]—l) ) Even for y=0 there is an effect which for increasing
0 =21 A ! decreases from 2 to 0%.
(26b) Figures 2a) and 2b) show the fractional effect of TC

Anticipating small TC corrections we approximate the Cu_contrlbunons S7C(aLy)
Y

mulant representatio(22) a(g,y)=1+ ——>= (28)

X

(263

X

BC
QTc~R™°-1, calculated for 2.5]y| (in A—l)%’ség‘?ﬁe difference in sign
~ (270 of a—1 clearly shows the effect of the competition between
BTC_ G, the dominant even and odd parts in the wings of the re-
véf: o sponse.

) o Finally, Figs. 3a), 3(b), and 3c) show for q
The thus defined TC contribution to the FSI phase has beea21 25 29 A1 T=2.3 K the efffect of TC on the calu-
added to the previously calculated BC p&%®C, Eq. (23). lated response, including the unresolved effect of the instru-
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FIG. 2. (a),(b) The fractional effectx(q,y), Eq. (28) of TC contributions in the wings 25|y| (in A 1)=<3.3.
mental resolution. The small TC contributions discernibly 7, above
improve the agreement of predictions with ddta'®in the
abovey regions.
Fi=2, A==V 2 V(r-ry, (32
K#1 K>1

IV. ON THE FOURTH CENTRAL MOMENT
OF THE RESPONSE distinct fromU(s), Eq.(7), is the true total force on a given
The preceding sections deal with the reduced responge@rticle “1.”2"**The expectation value in E¢31b) can thus
(22) up to, and including TC contributions and its, in prin- be separated in two parts. The first contains the square of the
ciple exact, calculation. For the FT of those one needdorce on “1" due to one particle and in the second part

F.(s),n=<2 or[cf. Eq.(22)] 0}(q,s) to that order, both for forces on "1” by two different particles
all relevants.

We now address a second topic which is related to the Foo F)= F(Li)1?
cumulant representation®2) and which is based on the ! v ;1[ (L]
smalls expansions

|

|~:0(s)=exr{2 i)™= , (293

®m
ms2 m
~ (—is)™_ The expansion$29) and(29b) provide a parametrization of
Q(q,s)= E —',Bm(q). (29b) the response, but the technique has been shown to have its
m=3 M problemst! One such problem is the convergence for grow-
The above coefficienta,, are related to even moments of jng swhich is indispensable for the calculation of the inverse
the momentum distributiom(p), while the FSI coefficient FT (4) from ¢(q,y). Moreover, the cumulant expansion
functions B8,(q) in the expansiori29b) can be expressed in lacks a systematic ordering in powers ofj Mhich is also
terms of central moments of the resporgsee for instance remedied in GRS theory. Notwithstanding, there has recently
Ref. 25 been a renewed interest in the above smsalumulant ex-
pansions as a vehicle to extract the single-atom momentum
Mn(q)=J do(w—g%/2M)"S(q, ») distributionn(p) from response data fotHe and Net?-16:11

Around 8, an apparent contradiction arises, which we dis-

> fl<1,j>f1<1,k)>. (33)

1#]#k#1

— cuss below.
:(vq)nf dy y'¢(q,y)=(vg)"Mn(q). (30 One may “invert” Egs.(29) and (29b) in order to find
For our purpose it suffices to give the following expressiongilternative expressions for
for n=3,4 and valid for local interactiong2® _
Bm(a)=mlim™im[(q,s)/s™].

By=Ma=| 5= |(V2V), (314 T
d In particular
- 1 — ~
B4=M4—a4—35§=<§ (F1.F1). (31b) B3(q)=61lim[ImQ(q,s)/s], (349
q s—0
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FIG. 3. (a) Calculated response and ddRefs. 3,14,16for g=21 A%, T=2.5 K, including the effect of instrumental resolution.
Dashed and drawn curves are without, respectively including TC contribution§ame aga) for q=25 A% (c) Same aga) for q
=29 AL

theory is one such example. The dynamic calculation de-

scribed in the previous sections, providegq,s) for all s.

o . _ First we state that without truncations, the cumulant ex-
The above FSI coefficient functions can only be calculated ihansion and the GRS series ought to lead to the same re-
a theory provides the FSI phase functififq,s). The GRS sponse, and in particular to the same numerical values for the

Ba(q)=24lim[Re0(q,s)/s*].

s—0

(34b
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cumulant coefficient functiongm. This is not self-evident
since Eqs(31a, (31b) and(343), (34b) look quite dissimilar.
The former are expectation values in termd@gonalden-

sity matrices, whereas ti¢ underlying the GRS theory is an

operator, averaged ovemn-diagonaldensity matrix. Nev-
ertheless the identity of the derivgi(q) has been formally
verified in the pas(see for instance Ref.)9In addition a
numerical test has been performed usidg- B¢, which

suffices since8; draws entirely orf; or on Q8C. The cal-

culated value and the one, extracted over a widenge,
indeed agree to high accuraty.

For a similar demonstration regardi@ one uses Egs.
(22b), (14), (15) in (343 and readily verifies that termss*,
needed in the threshold behavi@4b), originate exclusively

from the TC termsG,(s) [cf. Egs.(19a), (19b)]. Observing

that 8V in Egs.(13), (14) always appears quadratically, one

has

aVv(r)
0z

S V(r)=(1/2)s? +0(s%),

i (35)
UUoxsH(z- F)2+O(sY),

and Eqgs.(34a9 and (34b) result. B
We separately treat BC and TC contributions 8e(q)
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The genuine 3-body TC part, defined by E33), (19b

_ 12 6(3)(5)]
(=240 _) Rel = 38
Bs(q) S|_r>r; o e{ = (383
1(1)2 , |
25(0_) (M10)® > (Fy(Lj)- Fi(1K)
q 1#kZj#1
(38b)

involves the forces on “1” by two different medium par-
ticles. The expectation value in E@8b) requires a diagonal
3-particle density matrix, and consistency requires it to be

the non-diagonal25), used in the calculation of) in the
limit s=0. Here too the 3-body part is negligible.

The remaining 2-body parts may be compared with pre-
vious results which have been calculated in different ways.
Our result(37) lies in between (0.69, 0.86) &, commu-
nicated by Polls as the outcome from various approximations
to the pair-distribution functiong(r).?® Another stochastic
calculation by Glyde and Boninsegni reported in Ref. 16,
leads toq*2B3,=(98+10) A~ * which is about 25% in ex-
cess of our value. Previous experience has taught that aver-
ages, like the ones in Eg81a and(31b), are quite sensitive
to the chosen, pair distribution. A spread of 10-15% may
certainly be expected.

Finally, we compare the computed totg 2E(q)=0.73

and start with the above mentioned BC approximation for théd ~* with a few results, extracted from cumulant analyses of

regularizedF,(y,[t]). One observes that even the BC FSI

phase functiof)¢(q,s) contains terms:s*, contributing to
B4. Again, a remarkably stableegativevalue could be ex-
tracted from calculated BC phases over a wigeange!

(q*=0q/10 in A"}

q*28%Y(q)=(—2.27+0.02 A~* (36)

One easily demonstrates that the sac@mnputedfrom the
first term in the brackets of Eq(16a is q*28%Y(q)=

—(M/10)%8 4 1(F1(1))?)=—2.19 A% again in close
agreement with thextractedresult(36). The negative out-

the data. For instance in Ref. 15 a value compatible with 0 is

given, while an upper limig*28,(q) <0.50 A~4is cited in
Ref. 16.

We close this section by comparifg(s), Eq.(14), and
other published expressions for the sdm&!® Those are
also quadratic itV, but contain in addition t@,, derivatives
of p, andV. In contradistinction our result is quadratic Vh
and free of derivatives. We have shown above that each of its
composing parts isc[ff] with different co-factors. The al-
ternative expressions provide directly one factgrand it is
not at all evident that the other part can be cast in that form.
The equations of motion for density matrices ultimately pro-

come clearly contradicts the manifestly positive expressioryide the evidence. The procedure followed in EG®)—(16)

(31b) for the completeﬁ. The latter, however, draws also

on additional TC contributions fronG%?) and G$¥), Egs.
(199 and(19b), which we now address.

We start with the threshold value of the two-body part

G of the TC contribution, which is readily shown to be
exactly 4/3 times the first part and for the positive, completetri

two-body part one findgcf. Eq. (33)]
q* 282 (@) =q*2[ B (a) + B (a)]
=1(|v|/10)22 (F1(1,j)?)=0.73 A4
3 iF1

(37

avoids those steps and leads directly to the desired result.
This can be checked for the general response of a particle in
a potential, Eq(8c) of Ref. 30.

V. SUMMARY AND CONCLUSION

We have derived above an exact expression for the con-
bution of ternary collisions to the response of a nonrelativ-
istic many-body system, where the struck constituent inter-
acts with two other medium particles. Its numerical
contribution has for the first time been evaluated for the re-
sponse of liquid*He, T>T, and momentum transfers in
excess of 21 Al For those we know that the asymptotic
limit and the dominant binary collision correction, accurately
describe the response in a broad region around the quasi-
elastic peak, but not necessarily at the peak itgeflf for

Within ~0.5% the same value results when calculating thgnsiance Ref. 11

threshold valug(36) and using for the FSI phase function

Q(q,s) Eq. (22) with G as in Eqs(18), (193. As empha-

Our main interest was therefore focusedyen0 and the
region of the wings, where the intensity is only a fraction of

sized before, the close agreement evidences numerical accirat in the peak. Compromising only on the assumed 3-body

racy and not consistency.

density matrix, we computed the relative size of small TC
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FSI effects and found those to discernibly improve the agree- Indeed, given the non-negligible scatter in the data and

ment with the data. observing that one deals with atomic dynamics and not with
The above calculation completes a program to calculat€®ED, we feel that there is at present no incentive to study

the medium-to-large response of liquidHe. A number of  even finer theoretical details than discussed up to now.

conclusions are in order. Using exclusively the well-known Our final remark regards the response of ligfiide when

atom-atom interaction, basic ground-state properties as ammmpared with the responses of other systems, composed of

the single-atom momentum distribution, the pair-correlationratoms, molecules, atomic nuclei or sub-hadronic matter. We

function and nondiagonal, two-particle density distributiondo not know of a system where the approach to the

have been determined with great accuracy. asymptotic limit has been measured and studied with an ac-
The above quantities are then basic input for the calculaguracy, possible fofHe.

tion of the linear response of the system. Only weak assump-

tlons.have bgaen us_ed for th_e required two- and thrge—partlcle ACKNOWLEDGMENTS
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