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Beyond the binary collision approximation for the large-q response of liquid 4He
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Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
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We discuss corrections to the linear response of a many-body system beyond the binary collision approxi-
mation. We first derive for smooth pair interactions an exact expression of the response}1/q2, considerably
simplifying existing forms and present also the generalization for interactions with a strong, short-range
repulsion. We then apply the latter to the case of liquid4He. We display the numerical influence of the 1/q2

correction around the quasielastic peak and in the low-intensity wings of the response, far from that peak.
Finally we resolve an apparent contradiction in previous discussions around the fourth order cumulant expan-
sion coefficient. Our results prove that the large-q response of liquid4He can be accurately understood on the
basis of a dynamical theory.@S0163-1829~98!01346-0#
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I. INTRODUCTION

High-energy pulsed neutrons from spallation sources h
recently been used for the collection of good-quality cro
sections data for the inclusive scattering of neutrons fr
liquid 4He. Data are for temperatures below and above
transition temperatureTc .1–3 The above cross sections are
direct measure of the dynamic response or structure func
S(q,v), where q,v are the momentum and energy tran
ferred to the system.

It appears convenient to consider the reduced respo
f(q,y)5(q/M )S(q,v) instead ofS(q,v), where the en-
ergy loss parameterv is replaced by an alternative kinemat
variabley. The latter is a linear combination of (q,v). M
is the mass of a constituent atom.

Virtually all dynamic calculations of the high-q response
S(q,v) ~Refs. 4–11! have been based on the Gersc
Rodriguez-Smith~GRS! expansion of the reduced respon
in 1/q ~Ref. 4! or modifications of it.5,6,8–10 The theory in
principle employs only the elementary atom-atom interact
V and is otherwise free of parameters.

The dominant part of the large-q response is the
asymptotic limit. It describes the response of a neutron st
ing an atom with given momentum. The absorption of t
transferred momentum and energy-loss is not affected
other atoms in the medium. Final State Interactions~FSI!
induced byV, produce corrections to the above limit whic
vanish for increasingq. The leading FSI}1/q is caused by
binary collisions~BC! between a struck and an arbitrary se
ond particle in the medium. For liquid4He, predictions for
the reduced responsef(q,y) to order 1/q agree well with the
data over a broad range around the central, quasielastic
at y50. In fact, the quality of the data hardly calls for r
finements beyond the BC. The incentive to nevertheless c
sider the introduction of fine details is mainly of theoretic
nature: A criterion for the expansion of a function of tw
variablesf(q,y) in 1/q must depend ony. In particular the
largeuyu wings where the response is only a small fraction
the peak value, has been suspected before to be sensiti
details beyond the BC.

In this paper we treat 1/q2 corrections. Those are due t
ternary collisions~TC! between a struck and two other pa
PRB 580163-1829/98/58~22!/15011~9!/$15.00
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ticles. Their study is the major purpose of this paper.
A second topic to be discussed is related to the cumu

expansion of the response which has recently resulted
successful, model-independent extraction of the single-a
momentum distribution in liquid4He.12–16,11 Our interest
here is the resolution of an apparent discrepancy between
directly computed fourth cumulant coefficient and the va
extracted in the BC approximation for a dynamically calc
lated response.11

We start in Sec. II recalling some essentials of the G
expansion for the reduced response, valid for smooth in
particle interaction4 and derive a formally simple represent
tion of TC terms}1/q2. Next we mention modifications
which are required if the pair-interaction has a strong, sh
range repulsion. In Sec. III we present numerical values
TC contributions to the response of liquid4He and discuss
its relative importance, in the peak region and the lo
intensity wings. Section IV contains a brief discussion of t
cumulant representation of the response which has rece
been used to parametrize data for liquid4He. We report a
complete calculation of the 4th order FSI cumulant coe
cient, and thereby also resolve a previously existing discr
ancy.

II. DOMINANT FSI PARTS IN THE RESPONSE
FOR SMOOTH AND SINGULAR INTERACTIONS

Consider the responseS(q,v) per particle for an infinite
system of point particles

S~q,v!5A21~2p!21E
2`

`

dt eivt^F0urq
†~ t !rq~0!uF0&.

~1!
rq(t) in Eq. ~1! is the density operator, translated in timet by
the HamiltonianH

rq~ t !5e2 iHtrq~0!eiHt ,

rq~0!5(
j

eiq•r j ~0!. ~2!

F0 is the ground state of the system with energyE0 .
We shall work with the reduced responsef(q,y)

5(q/M )S(q,v), where the energy lossv is replaced by an
alternative kinematic variabley5y(q,v)4,17
15 011 ©1998 The American Physical Society
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y5
M

q S v2
q2

2M D . ~3!

Substitution of Eq.~2! into Eq. ~1! produces incoherent an
coherent components. Considering high-q responses, it suf-
fices to discuss the dominant incoherent part, where
tracks a single particle~for instance ‘‘1’’! in its propagation
through the medium.17

For the description of the large-q response we shall fol
low the formulation of Gersch, Rodriguez and Smith4 ~GRS!
and cite from there a few results. Details can be found in
bibliography.

It is convenient to introduce the Fourier transform~FT! of
the reduced~incoherent! response

f̃~q,s!5E
2`

`

dy e2 isyf~q,y!. ~4!

The variables5(q/M )t above is the distance traveled in th
medium during a timet by a constituent, which moves wit
constant recoil velocityvq5q/M : s is the length, canoni-
cally conjugate to the momentumy.

The density fluctuationsrq in Eq. ~2! shift coordinates in
the direction ofq̂, chosen to be thez direction. It leads to the
following, standard expression, valid for local forces18,4 (r
2s5r2sq̂)

f̃~q,s!5~1/A!^F0~r12s;rk!uTs

3expH ~ i /vq!E
0

s

ds@H~r12s;rk!2E0#J
3uF0~r1 ;rk!&

5(
n

~1/vq!nF̃n~s!. ~5!

The second line in Eq.~5! is the GRS series in 1/vq , which
is generated by the expansion of the above,s-ordered expo-
nential. Here and in the following we shall denote by ‘‘k’’ all
coordinatesÞ1, while ‘‘ l ’’ runs from 1 to A.

For local interactions, the Hamiltonian with shifted coo
dinate ‘‘1’’ can be written as

H~r12s;rk!5(
l

Tl1(
lÞ1
k. l

V~r l ;rk!1 (
k.1

V~r12s;rk!

5F(
l

Tl1 (
l ,k. l

V~r l ;rk!G
1 (

k.1
@V~r12s;rk!2V~r1 ;rk!#

5H~r1 ;rk!1U1~s!, ~6!
with

U1~s!@5U1~s;r1 ,rk!#5 (
kÞ1

dsV~r1 ;rk!,

dsV~r1 ;rk!5@V~r12s;rk!2V~r1 ;rk!#. ~7!

dsV(r1 ;rk) is the difference between the interaction of
selected particlek and ‘‘1’’ with the latter, once at a shifted
positionr12s and then atr1 ; U1(s) is the same due to al
particleskÞ1. Using Eq.~6! one checks4
e

e

@H~r12s;rk!2E0#F0~r1 ;rk!5U1~s!F0~r1 ;rk!. ~8!

It is convenient to introduce the FT of the GRS coefficie
functions in Eq.~5!. For example

F̃0~s!5
1

AE dr1drkrA~r1 ,rk ;r12s,rk!5
r1~0;s!

r

5E dp

~2p!3
e2 ip•sn~p!. ~9!

The dominant correction to the above asymptotic limit isr
5r12r2)

1

vq
F̃1~s!5

i

Avq
E dr1drkrA~r1 ,rk ;r12s,rk!

3E
0

s

ds@H~r12s!2E0#

52
i

Avq
E dr1drkrA~r1 ,rk ;r12s,rk!

3E
0

s

dsU1~s!

5 i E dr
r2~r,r2s;0!

r
x̃q~r,s!, ~10!

where use has been made of Eq.~8!. The functionx̃ in Eq.
~10!

x̃q~r,s!52~1/vq!E
0

s

dsdsV~r!, ~11!

is the off-shell, eikonal phase in the coordinate represe
tion, pertinent to the characteristic difference of interactio
acting on ‘‘1’’ in Eq. ~11!. In order to obtain the appropriat
on-shell phase one needs to replace the integration limit
Eq. ~11! from 0,s to 2`,`.

In all, F̃1(s) describes binary collisions~BC! of the struck
particle ‘‘1’’ with any other particle in the medium. Its FT
F1(y) is odd iny and for largeq mainly shifts the position of
the maximum of the even asymptoticF0(y) at y50.

The computation of the above quantities requires n
diagonal density matrices. We shall use a normalizati
such that

rn~1, . . .n;18, . . .n8!

5
A!

~A2n!! S P j 5n11
A E d@ j # D

3F0~1, . . .n;n11, . . .nA!

3F0~18, . . .n8;n11, . . .nA!

5@~A2n21!#21E d@n11#rn11

3~1, . . .n,n11;18, . . .n8,n11!,

rA~1, . . .A;18, . . .A8!5A!F0* ~1, . . .A!F0~18, . . .A8!,
~12!

where we used a short-hand notation 1,n,18 . . . for
r1 ,rn ,r18 . . . . The densitiesrn(r1 ,rk ;r12srk), required in
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Eqs.~9!, ~10!, are diagonal in all particlesk, except in ‘‘1.’’
For example,r1(0;s)5r1(r;r2s) in Eq. ~9! is the single-
particle density matrix which has the single-particle mom
tum distributionn(p) as its FT. Its diagonal partr1(0,0)
5r is the number density.

The first two terms in the GRS seriesF0 ,F1 satisfactorily
describe the data for the reduced response in a broad
around the quasi-elastic peak aty50. Such a fit cannot be
expected in the wings, whereF1(y) occasionally reache
small negative values. In those wingsFl(y), l>2, competes
for increasinguyu with F0(y)1(1/vq)F1(y) of comparable
size: ultimatelyf(q,y)>0.

Partial expressions for the next-to-leading order ter
F̃2(s),F2(y) have been given before by Gerschet al.4 and
by Besprosvany10 but those forms are not complete and a
not always transparent. We shall derive below express
for the exactF̃2 , based on Eqs.~12!, ~15! in Ref. 4

F̃2~s!5
i 2

A! E dr1drkrA~r1 ,rk ;r12s,rk!

3E
0

s

ds@H~r12s,rk!2E0#E
0

s8
ds8

3@H~r12s8,rk!2E0#. ~13!

Consider the operators in the brackets above, acting on
wave functions which composerA , Eq. ~12!, with shifted,
respectively unshifted coordinater1 . Their combined result
is

F̃2~s!5
i 2

A! E dr1drkrA~r1 ,rk ;r12s,rk!

3E
0

s

ds@U1~s!2U1~s!#E
0

s

ds8U1~s8!

5
i 2

A! E dr1drkrA~r1 ,rk ;r12s,rk!

3H 1

2F E
0

s

dsU1~s!G2

2U1~s!

3E
0

s

ds E
0

s

ds8U1~s8!J . ~14!

SinceF̃2}U2 and the latter}V2 we dubF̃2 the TC contri-
bution to FSI.19

We start with the first term in the braces in Eq.~14!.
Using the definition in Eq.~7! one rewrites

F E
0

s

dsU1~s!G2

5 (
kÞ1

F E
0

s

dsdsV~r12rk!G2

1 (
1Þ lÞkÞ1

F E
0

s

ds dsV~r12rk!G
3F E

0

s

ds dsV~r12r l !G . ~15!

The above components are distinct two- and three-par
operators and the same holds for the parallel decompos
-

nd

s
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of the second term in the braces in Eq.~14!. With r̄15r1

2r2 ; r̄35r32r2) one may reduce Eq.~14! to

F̃2~s!5F̃2
~2!~s!1F̃2

~3!~s! ,

1

vq
2
F̃2

~2!~s!5E dr
r2~r2s,0;r,0!

r

3F1

2
@ i x̃q~r,s!#21

i

vq
dsV~r!E

0

s

ds@ i x̃q~r,s!#G ,
~16a!

1

vq
2
F̃2

~3!~s!5E dr̄1dr̄3

r3~ r̄12s,0,r̄3 ; r̄1,0,r̄3!

r

3F1

2
@ i x̃q~ r̄1 ,s!#@ i x̃q~ r̄12 r̄3 ,s!#

1
i

vq
dsV~ r̄1!E

0

s

ds@ i x̃~ r̄12 r̄3 ,s!#G ,
~16b!

with x̃q(r,s) the off-shell phase as defined in Eq.~11!. ~Note
that x̃}1/vq .)

For smooth, nonsingular local forces, the above comple
the derivation of an exact expression forF̃2(s). However, if
V possesses a strong, short-range repulsion, as is the ca
atom-atom interactions, difficulties emerge. There are
problems if in integrands wave functions or density matric
and V have identical arguments, in which case large valu
of V are generally off-set by small values ofrn at common
small r. This is not the case in general. A prime example
Eq. ~10! with r-dependence throughV(r2s), 0<usu<s,
and r2s generally not coinciding with eitherr2s or r in
r2(r2s,r;0): Large line integrals may result.

In the above case smooth expressions emerge again
summation of a ladder of pair interactionsV(r ), leading to
Ve f f which is the eikonal, off-shellt matrix.6,7,10 Effectively

i x̃→exp@ i x̃ #215 i x̃11/2@ i x̃ #21••• . ~17!

Using Eqs.~10! and ~17! we define

G̃2~s,q@V# ![F̃2~s,V→@ t# !5G̃2
~2!~s,q!1G̃2

~3!~s,q!,
~18!

with the following two- and three-particle components

1

vq
2
G̃2

~2!~s,q!5E dr
r2~r2s,0;r,0!

r F i

vq
dsV~r!

3E
0

s

ds„exp@ i x̃q~r,s!#21…G , ~19a!
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1

vq
2
G̃2

~3!~s,q!5E dr̄1dr̄3

r3~ r̄12s,0,r̄3 ; r̄1,0,r̄3!

r

3F1

2
„exp@ i x̃q~ r̄1 ,s!#21…

3„exp@ i x̃q~ r̄12 r̄3 ,s!#21…1
i

vq
dsV~ r̄1!

3E
0

s

ds„exp@ i x̃q~ r̄12 r̄3 ,s!#21…G . ~19b!

Care should be exercised in the replacementV→Ve f f for an
ill-behavedV as we shall now illustrate by focusing on th
first term in the brackets in Eq.~16a!, 1

2 @ i x̃ #2. It can be
shown thatall higher order termsF̃n(s,@V#) contain a two-
body component of the form

1

vq
n
F̃n

~1!~s,@V# !5E dr
r2~r2s,0;r,0!

r
@~ i x̃ !n/n! #. ~20!

Using Eq.~17! those may be summed up to

(
n.1

F̃n
~1!~s,@V# !5F̃1~s,@ t# !. ~21!

If therefore F̃1(s,@V#) has been regularized byV→Ve f f

5t, the first part ofF̃2
(2)(s) in Eq. ~16a! is already contained

in F̃1(s,@ t#) and in order to avoid double-counting it shou
be removed fromG̃2(s,@V#). We note that by construction
the remaining term in Eq.~19a! which emerges from TC is
nevertheless of two-body character.

Equations~19a! and~19b! above are the exact TC contr
butions to the GRS series~5! for the reduced response. A
this point we mention an alternative to the GRS seri
namely the cumulant representation for the FT of the redu
response20

f̃~q,s!5F̃0~s!R̃~q,s!5F̃0~s!exp@Ṽ~q,s!#, ~22a!
,
d

R̃~q,s!5 (
n>1

S 1

vq
D nF̃n~s!

F̃0~s!
, ~22b!

Ṽ5~R̃21!2~1/2!~R̃21!21•••, ~22c!

with all FSI effects contained in eitherR̃ or Ṽ
Below we report a calculation of TC contributions, usin

choices for the underlying densities.

III. TC CONTRIBUTIONS TO THE RESPONSE
OF LIQUID 4He

Until now, dynamical calculations based on the GRS
ries were limited to FSI in the BC approximation, i.e.

Ṽ→ṼBC5Ṽ25
F̃1

vqF̃0

21 ~23!

with the GRS series, cut atn52, as in Ref. 11. We now
report what apparently are the first results for the next-
leading order TC corrections and which are contained
G̃25G̃2

(2)1G2
(3) , Eqs.~18!, ~19!.

We first recall the standard input described in Ref. 11. F
the bare interaction we use the standardVAziz, Ref. 21, and
for the single-atom momentum distribution the results
Refs. 22,23. As regards semidiagonal two-particle den
matrix r2(r2s,0;r,0), there exist results obtained with st
chastic methods,24,9 but computationally it is unnecessaril
time-consuming to evaluate those for each and every (r,s),
as is required in calculations of the expressions~10! or ~19a!.

In the past relatively simple guesses have been made
r2 . We shall use below the interpolation formula by GRS4,6

r2~r2s,0;r,0!5rr1~0;s!z2~r2s,r!,
~24!

z2~r2s,r!'Ag~ ur2su!g~r !

with g(r ) the pair-distribution function, chosen to be the o
from Ref. 9.

A calculation ofG̃3 requires the 3-particle density matri
r3 which, as before is nondiagonal in coordinate ‘‘1.’’ As a
approximation we suggest
r3~ r̄12s,0,r̄3 ; r̄1,0,r̄3!'
~A22!

~A21!

r2~ r̄12s,0;r̄1,0!r2~ r̄32s,0;r̄12 r̄3,0!

r1~0;s!

5
~A22!

~A21!
r2r1~0;s!z2~ r̄12s, r̄1!z2~ r̄12 r̄32s, r̄12 r̄3!, ~25!
r-
the
where use has been made of Eq.~24!. The choice~25! has
several advantages.

~i! With ‘‘1’’ paying a special role, it is symmetric in the
other coordinates.

~ii ! It exactly satisfies the ‘‘sum rule’’~12!.
~iii ! It factorizes in parts dependent onr̄1 , r̄12 r̄3 .
~iv! It causesr3 to vanish for small values of the 4 coo
dinates which would otherwise produce large values for
factors in the operator in the brackets in Eq.~19b!.

An immediate consequence of~iii ! above is the reduction
of the, effectively 5-dimensional integral in Eq.~19b! to the
product of two, two-dimensional integrals



nd

PRB 58 15 015BEYOND THE BINARY COLLISION APPROXIMATION . . .
FIG. 1. ~a!,~b! The approach to the asymptotic limitF0(y) ~diamonds! for smally of the calculated even part of the response without a
with the ~even! TC contributions.
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1

vq
2

G̃2
~2!~s,q!

F̃0~s!
5rE drz2~r2s,r!

3F i

vq
dsV~r!E

0

s

ds„exp@ i x̃q~r,s!#21…G ,
~26a!

1

vq
2

G̃2
~3!~s,q!

F̃0~s!
5F i

vq
E dr̄1z2~ r̄12s, r̄1!dsV~ r̄1!G

3F E dr̄3z2~ r̄32s, r̄3!

3E
0

s

ds„exp@ i x̃q~ r̄3 ,s!#21…G .
~26b!

Anticipating small TC corrections we approximate the c
mulant representation~22!

ṼTC'R̃TC21,
~27!

R̃TC5
G̃2

vq
2F̃0

.

The thus defined TC contribution to the FSI phase has b
added to the previously calculated BC partṼBC, Eq. ~23!.
-

en

From Eq.~22a! and the inverse of Eq.~4!, we compute the
response forT52.3 K to the corresponding order.

A first observation is the relative insignificance of 3-bo
TC contributions for theq-range investigated. A heuristi
argument runs as follows: If the BC FSI contribution
amounts to a fraction of the the dominant asymptotic lim
one estimates from the factorization~25! of the 3-body den-
sity matrix that TC FSI is approximately the square of th
fraction of F0 .

We now display some results for TC contributions. Fi
ures 1~a! and 1~b! show for small y and q
521,25,29,50,100 Å21 the even part of the calculated re
duced responsefeven(q,y)5@f(q,y)1f(q,2y)#/2 with-
out, and including TC contributions~note thatfTC is even!.
Even for y50 there is an effect which for increasingq
>21 Å21 decreases from 2 to 0%.

Figures 2~a! and 2~b! show the fractional effect of TC
contributions

a~q,y!511
fTC~q,y!

fBC~q,y!
~28!

calculated for 2.5&uyu ~in Å21)&3.3. The difference in sign
of a21 clearly shows the effect of the competition betwe
the dominant even and odd parts in the wings of the
sponse.

Finally, Figs. 3~a!, 3~b!, and 3~c! show for q
521,25,29 Å21, T52.3 K the efffect of TC on the calu-
lated response, including the unresolved effect of the ins
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FIG. 2. ~a!,~b! The fractional effecta(q,y), Eq. ~28! of TC contributions in the wings 2.5&uyu ~in Å 21)&3.3.
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mental resolution. The small TC contributions discernib
improve the agreement of predictions with data3,14,16 in the
abovey regions.

IV. ON THE FOURTH CENTRAL MOMENT
OF THE RESPONSE

The preceding sections deal with the reduced respo
~22! up to, and including TC contributions and its, in pri
ciple exact, calculation. For the FT of those one ne
F̃n(s),n<2 or @cf. Eq. ~22!# Ṽ(q,s) to that order, both for
all relevants.

We now address a second topic which is related to
cumulant representations~22! and which is based on th
small-s expansions

F̃0~s!5expF (
m>2

~2 is!m

m!
āmG , ~29a!

Ṽ~q,s!5 (
m>3

~2 is!m

m!
b̄m~q!. ~29b!

The above coefficientsam are related to even moments
the momentum distributionn(p), while the FSI coefficient
functionsb̄m(q) in the expansion~29b! can be expressed i
terms of central moments of the response~see for instance
Ref. 25!

Mn~q!5E dv~v2q2/2M !nS~q,v!

5~vq!nE dy ynf~q,y![~vq!nM̄n~q!. ~30!

For our purpose it suffices to give the following expressio
for n53,4 and valid for local interactionsV26

b̄35M̄35S 1

6vq
D ^¹2V&, ~31a!

b̄45M̄42ā423ā2
25S 1

3vq
2D ^F1 .F1&. ~31b!
y

se

s

e

s

F1 above

F15 (
kÞ1
F1~1,k!52“1(

k.1
V~r12rk!, ~32!

distinct fromU1(s), Eq.~7!, is the true total force on a give
particle ‘‘1.’’ 27,28The expectation value in Eq.~31b! can thus
be separated in two parts. The first contains the square o
force on ‘‘1’’ due to one particle and in the second p
forces on ‘1’’ by two different particles

^F1•••F1&5K (
j Þ1

@F1~1,j !#2L
1K (

1Þ j ÞkÞ1
F1~1,j !F1~1,k!L . ~33!

The expansions~29! and ~29b! provide a parametrization o
the response, but the technique has been shown to hav
problems.11 One such problem is the convergence for gro
ing s which is indispensable for the calculation of the inve
FT ~4! from f(q,y). Moreover, the cumulant expansio
lacks a systematic ordering in powers of 1/q which is also
remedied in GRS theory. Notwithstanding, there has rece
been a renewed interest in the above smalls-cumulant ex-
pansions as a vehicle to extract the single-atom momen
distributionn(p) from response data for4He and Ne.12–16,11

Around b̄4 an apparent contradiction arises, which we d
cuss below.

One may ‘‘invert’’ Eqs.~29! and ~29b! in order to find
alternative expressions for

b̄m~q!5m! i mlim
s→0

@Ṽ~q,s!/sm#.

In particular

b̄3~q!56 lim
s→0

@ ImṼ~q,s!/s3#, ~34a!
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FIG. 3. ~a! Calculated response and data~Refs. 3,14,16! for q521 Å21, T52.5 K, including the effect of instrumental resolution
Dashed and drawn curves are without, respectively including TC contributions.~b! Same as~a! for q525 Å21. ~c! Same as~a! for q
529 Å21.
d

de-

x-
re-

the
b̄4~q!524lim
s→0

@ReṼ~q,s!/s4#. ~34b!

The above FSI coefficient functions can only be calculate
a theory provides the FSI phase functionṼ(q,s). The GRS
if

theory is one such example. The dynamic calculation

scribed in the previous sections, providesṼ(q,s) for all s.
First we state that without truncations, the cumulant e

pansion and the GRS series ought to lead to the same
sponse, and in particular to the same numerical values for
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cumulant coefficient functionsb̄m . This is not self-evident
since Eqs.~31a!, ~31b! and~34a!, ~34b! look quite dissimilar.
The former are expectation values in terms ofdiagonalden-
sity matrices, whereas theṼ underlying the GRS theory is a
operator, averaged over anon-diagonaldensity matrix. Nev-
ertheless the identity of the derivedb̄3(q) has been formally
verified in the past~see for instance Ref. 9!. In addition a
numerical test has been performed usingṼ→ṼBC, which
suffices sinceb̃3 draws entirely onF̃1 or on ṼBC. The cal-
culated value and the one, extracted over a wideq range,
indeed agree to high accuracy.11

For a similar demonstration regardingb̄4 one uses Eqs
~22b!, ~14!, ~15! in ~34a! and readily verifies that terms}s4,
needed in the threshold behavior~34b!, originate exclusively
from the TC termsG̃2(s) @cf. Eqs.~19a!, ~19b!#. Observing
that dV in Eqs.~13!, ~14! always appears quadratically, on
has

dsV~r!5~1/2!s2
]V~r !

]z
1O~s3!,

~35!
UU}s4~ ẑ•F1!21O~s5!,

and Eqs.~34a! and ~34b! result.
We separately treat BC and TC contributions tob̄4(q)

and start with the above mentioned BC approximation for
regularizedF̃1(y,@ t#). One observes that even the BC F
phase functionṼBC(q,s) contains terms}s4, contributing to
b̄4 . Again, a remarkably stable,negativevalue could be ex-
tracted from calculated BC phases over a wideq-range11

(q* 5q/10 in Å21)

q* 2b̄4
~21!~q!5~22.2760.02! Å24. ~36!

One easily demonstrates that the same,computedfrom the
first term in the brackets of Eq.~16a! is q* 2b̄4

(21)(q)5
2(M /10)2( j Þ1^F1(1,j )2&522.19 Å24, again in close
agreement with theextractedresult ~36!. The negative out-
come clearly contradicts the manifestly positive express
~31b! for the completeb̄4 . The latter, however, draws als
on additional TC contributions fromG̃2

(2) and G̃2
(3) , Eqs.

~19a! and ~19b!, which we now address.
We start with the threshold value of the two-body p

G̃2
(2) of the TC contribution, which is readily shown to b

exactly 4/3 times the first part and for the positive, compl
two-body part one finds@cf. Eq. ~33!#

q* 2b̄4
~2!~q!5q* 2@b̄4

~21!~q!1b̄4
~22!~q!#

5
1

3
~M /10!2(

j Þ1
^F1~1,j !2&50.73 Å24.

~37!

Within '0.5% the same value results when calculating
threshold value~36! and using for the FSI phase functio
Ṽ(q,s) Eq. ~22! with G̃2

(2) as in Eqs.~18!, ~19a!. As empha-
sized before, the close agreement evidences numerical a
racy and not consistency.
e
I

n

t

e

e

cu-

The genuine 3-body TC part, defined by Eqs.~33!, ~19b!

b̄4
~3!~q!524lim

s→0
S 1

vq
D 2

ReF G̃2
~3!~s!

F̃0~s!
G ~38a!

5
1

3S 1

vq
D 2

~M /10!2 (
1ÞkÞ j Þ1

^F1~1,j !•F1~1,k!&

~38b!

involves the forces on ‘‘1’’ by two different medium par
ticles. The expectation value in Eq.~38b! requires a diagona
3-particle density matrix, and consistency requires it to
the non-diagonal~25!, used in the calculation ofṼ in the
limit s50. Here too the 3-body part is negligible.

The remaining 2-body parts may be compared with p
vious results which have been calculated in different wa
Our result~37! lies in between (0.69, 0.86) Å24, commu-
nicated by Polls as the outcome from various approximati
to the pair-distribution functionsg(r ).29 Another stochastic
calculation by Glyde and Boninsegni reported in Ref. 1
leads toq* 2b̄45(98610) Å24 which is about 25% in ex-
cess of our value. Previous experience has taught that a
ages, like the ones in Eqs.~31a! and~31b!, are quite sensitive
to the chosen, pair distribution. A spread of 10–15 % m
certainly be expected.

Finally, we compare the computed totalq* 2b̄4(q)50.73
Å 24 with a few results, extracted from cumulant analyses
the data. For instance in Ref. 15 a value compatible with
given, while an upper limitq* 2b̄4(q),0.50 Å24 is cited in
Ref. 16.

We close this section by comparingF̃2(s), Eq. ~14!, and
other published expressions for the same.4,30,10 Those are
also quadratic inV, but contain in addition tor2 , derivatives
of r2 andV. In contradistinction our result is quadratic inV
and free of derivatives. We have shown above that each o
composing parts is}@F1

2# with different co-factors. The al-
ternative expressions provide directly one factorF1 and it is
not at all evident that the other part can be cast in that fo
The equations of motion for density matrices ultimately p
vide the evidence. The procedure followed in Eqs.~13!–~16!
avoids those steps and leads directly to the desired re
This can be checked for the general response of a partic
a potential, Eq.~8c! of Ref. 30.

V. SUMMARY AND CONCLUSION

We have derived above an exact expression for the c
tribution of ternary collisions to the response of a nonrelat
istic many-body system, where the struck constituent in
acts with two other medium particles. Its numeric
contribution has for the first time been evaluated for the
sponse of liquid4He, T.Tc and momentum transfers i
excess of 21 Å21. For those we know that the asymptot
limit and the dominant binary collision correction, accurate
describe the response in a broad region around the qu
elastic peak, but not necessarily at the peak itself~cf. for
instance Ref. 11!.

Our main interest was therefore focused ony'0 and the
region of the wings, where the intensity is only a fraction
that in the peak. Compromising only on the assumed 3-b
density matrix, we computed the relative size of small T
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FSI effects and found those to discernibly improve the agr
ment with the data.

The above calculation completes a program to calcu
the medium-to-largeq response of liquid4He. A number of
conclusions are in order. Using exclusively the well-know
atom-atom interaction, basic ground-state properties as
the single-atom momentum distribution, the pair-correlat
function and nondiagonal, two-particle density distributi
have been determined with great accuracy.

The above quantities are then basic input for the calc
tion of the linear response of the system. Only weak assu
tions have been used for the required two- and three-par
density matrices, diagonal in all, except one coordinate.
cellent agreement has been obtained with data for a th
with demonstrated convergence.
.
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Indeed, given the non-negligible scatter in the data a
observing that one deals with atomic dynamics and not w
QED, we feel that there is at present no incentive to stu
even finer theoretical details than discussed up to now.

Our final remark regards the response of liquid4He when
compared with the responses of other systems, compose
atoms, molecules, atomic nuclei or sub-hadronic matter.
do not know of a system where the approach to
asymptotic limit has been measured and studied with an
curacy, possible for4He.
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