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We present an exact solution to the nonequilibrium Kondo problem, based on a special point in the param-
eter space of the model where both the Hamiltonian and the operator describing the nonequilibrium distribution
can be diagonalized simultaneously. Through this solution we are able to compute the differential conductance,
spin current, charge-current noise, and magnetization, for arbitrary voltage bias. The differential conductance
shows the standard zero-bias anomaly and its splitting under an applied magnetic field. A detailed analysis of
the scaling properties at low temperature and voltage is presented. The spin current is independent of the sign
of the voltage. Its direction depends solely on the sign of the magnetic field and the asymmetry in the
transverse coupling to the left and right leads. The charge-current noise can erdgéar 2 large magnetic
field, wherel is the charge current. This is not seen in noninteracting quantum problems, but occurs here
because of the tunneling of pairs of electrons. The finite-frequency noise spectrum has singuldrifles at
+2 eV, which cannot be explained in terms of noninteracting electrons. These singularities are traced to a
different type of pair process involving the simultaneous creation or annihilation of two scattering states. The
impurity susceptibility has three characteristic peaks as a function of magnetic field, two of which are due to
interlead processes and one is due to intralead processes. Although the solvable point is only one point in the
parameter space of the nonequilibrium Kondo problem, we expect it to correctly describe the strong-coupling
regime of the model for arbitrary antiferromagnetic coupling constants and to be qualitatively correct as one
leaves the strong-coupling regini&0163-182608)02442-4

I. INTRODUCTION turbative and hence cannot describe the strong-coupling re-
gime of the Kondo effect. Experimentally, it is now possible
The interplay between strong correlations and mesoscopito access this regime for a single magnetic impurity both in
systems is an active area of research. Systems being studigtbtallic point contacfsand in quantum dot$.
experimentally and theoretically include quasi-one- Despite the wide range of many-body technidfiabat
dimensional wires, mesoscopic superconductérguantum have been applied in recent years to get at the strong-
Hall devices® quantum doté,and other quantum impurities. coupling regime of the nonequilibrium Kondo model, there
In some cases, the reduced dimensionality of the systerare still no rigorous results for the nonequilibrium state. This
leads to new physics, while in other cases it allows one tds to be contrasted with the equilibrium case, which is ex-
probe known physical phenomena in new ways. One systemactly solvable using the Bethe ans&tzin this paper, we
which falls in the latter category is tunneling through apresent an exact solution of the nonequilibrium problem at a
Kondo impurity. The tunneling spectroscopy allows one tospecial point in the parameter space of the nonequilibrium
directly probe the Kondo resonance that develops at lovikondo model, related to the Toulouse liffibf the ordinary
temperature due to the screening of the impurity spin by th&ondo problem and the Emery-Kivelsbnsolution of the
conduction electrons. two-channel Kondo model. We give both the details of the
The phenomena of tunneling through a Kondo impuritysolution and an extensive discussion of the results, some of
has a long history. It was first discovered by accident in thevhich have been reported earlier in a short publicatfon.
early 1960S, when magnetic impurities were present in tun-  One of the primary advantages of a solvable point is that
nel junctions between two normal metllsA zero-bias many different observables can be computed. In the nonequi-
anomaly was seen, which enhanced the conductance at Idvirium Kondo problem, the calculations have focused exclu-
voltages. Shortly after the original experiments, Appelbaumsively on the charge current and differential conductance. In
and Andersohdeveloped a perturbative theory which cap- addition to the differential conductance for the charge cur-
tured the essential features of the experiment: a zero-biagnt, we compute the spin current through the impurity, the
conductance that increased logarithmically with decreasingharge-current noise as a function of voltage, temperature,
temperature and a zero-bias anomaly which split in the presand frequency, and the impurity magnetization and suscepti-
ence of a sufficiently large magnetic field. Although quite bility. As far as we know, the spin current, noise, and mag-
successful in explaining the qualitative and in some cases theetization have not been studied before in the context of the
guantitative results, the Appelbaum-Anderson theory is pernonequilibrium Kondo problem.
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In particular, because one can calculate so many observ-
ables at the solvable point, new and surprising physics is
revealed. We find that the spin current is independent of the
sign of the applied voltage, and its direction is determined by
the asymmetry in the transverse coupling to the left and to
the right leads. The charge-current shot noise in an applied
magnetic field can actually exceed the Poisson valuestf 2
(I is the charge curreptwhich we are able to explain by
virtual processes involving the tunneling of pairs of electrons
with opposite spin. As a function of frequency, we find a
rlew set .Of smgularltles n thg noise spec_trum (e . FIG. 1. Schematic description of the physical system. We con-
+2eVIh, i.e., twice the conventional frequencies. Such sin-_. T . . )

e . : . sider a tunnel junction that consists of two leads of noninteracting
gularities have no analog in noninteracting systems, and A1&in-1/2 electrons and a spin-1/2 impurity moment placed in be-
associated with particle-particle and hole-hole excitations fo

. X o &/’yeen the two leads. Tunneling across the junction takes place by
the scattering states, which are the elementary excitations ay of the impurity moment, via an exchange interaction between

the system. Finally, even in the case of the nonlinear differyne impurity spin and the conduction electrons in both leads. The

ential conductance, we are able to compute the scaling cUrgfect of an applied voltage bias is to fix a chemical-potential dif-
at low temperature and low voltage, and show that it is diSferenceu, — ur=eV between the two Fermi seas.

tinct from that of the resonant-level model.

An important aspect of this paper is the unique approachnany-body basis set that simultaneously diagonalizes the
to nonequilibrium interacting quantum problems. With the (yet-to-be-determinady operator.
conventional approaches, one starts with a well-defined ini- |n this paper, we demonstrate by explicit calculation the
tial density matrixp, describing an unperturbed system in equivalence of the two approaches to nonequilibrium for the
equilibrium. The expectation value of a given operadoat  nontrivial problem of tunneling through a Kondo impurity.
some later time is obtained by switching on the interactions In particular, after transforming boti andY, to quadratic
that drive the system out of equilibrium and evolving theforms, we compute all observables in two distinct ways: one

operator in the Heisenberg representation: using conventional nonequilibrium Green-function tech-
niques and the other by finding the many-body scattering
g AMo=Yo) states and solving Eg¢l.3) and(1.4). Both approaches are
(1.9 exact and give identical results; however, each technique has

POZW,
advantages and disadvantages. For example, in the case of
A _ A the charge-current noise it is easier to obtain final expres-
(A)=TripoA(L)}- (12 sions using the Green-function technique, but their physical
HereH, is the unperturbed part of the Hamiltonian, arigl  interpretation is more transparent in the scattering-state rep-
is an operator describing the nonequilibrium conditiery.,  resentation. Since this is one solution in a potentially larger
a chemical-potential differengeEach of the standard non- class of nonequilibrium problems, we explain in detail each
equilibrium Green-function techniqu®d® represents a dif- of the techniques used.
ferent way of implementing the time evolution in Ed..2). The organization of the rest of the paper is as follows: In
Specifically, a nonequilibrium steady state is reached by sefSec. Il we introduce the model. In Sec. Ill we present the
ting the initial time to be infinitely far in the past and assum-mapping onto an equivalent noninteracting nonequilibrium
ing that correlation functions decay in time. problem, which is solved in turn in Sec. IV. Sections V, VI,
Recently, under the same assumption that correlatio¥Il, and VIII contain detailed discussions of the charge cur-
functions decay in time, an equivalent operator equation hatent, spin current, charge-current noise, and impurity magne-
been derived for the steady-state nonequilibrium densityization, respectively, the main results of which are summa-

matrix:t’ rized in Sec. IX. Technical details and a comprehensive set
of analytic expressions for the physical observables are pro-
[Y.H]l=in(Yo—Y), (1.3 vided in four appendixes.
. Tr{e Pt=YIA} » Il. MODEL AND ITS LIMITS
(A= Tr{e P} ' A. Model

Here 5 is a positive infinitesimal introduced to ensure appro- The physical system under consideration is shown sche-
priate boundary conditions. It does not enter any physicamatically in Fig. 1. It consists of leftl() and right R) leads
quantities. In Egs(1.3) and (1.4), the task of implementing of noninteracting spin-1/2 electrons, which interact via an
the time evolution in Eq(1.2) has been replaced with that of exchange coupling with a spin-1/2 impurity moment placed
(i) solving Eq.(1.3) for the Y operator andii) evaluating in between the two leads. In the standard fastfbthe
averages with respect ® #"*~Y)_ In practice, Eq(1.3) is  conduction-electron channels that couple to the impurity are
solved by constructing the many-body scattering states foreduced to one-dimensional fields,(x), where a=L,R
the problem at hantf, which illustrates the added complex- ando=1,| are the lead and spin indices, respectively. Here
ity in solving for the nonequilibrium state: In addition to we have linearized the conduction-electron dispersion
diagonalizing the Hamiltonian, one must work in a particulararound the Fermi levek,=#%v gk, wheree, andk are mea-
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sured relative to the Fermi level and Fermi wave number, Jt=0RR=y, (2.6)
respectivelyx is a fictitious position variable conjugate ko _ _ _ _ _
In terms of the one-dimensional fields, the exchange inWith J,=2#five. This provides the first exact solution of a

teraction with the impurity spin,;-, takes place via the nonequilibr@um Kondo model, from whigh both uni\{ersal
conduction-electron spin densities at the origin: and nonuniversal features of Kondo-assisted tunneling can

be extracted. Before proceeding with details of our solution,
) 1 R let us first examine the meaning of Eq2.5 and(2.6).
Sap=5 2 Yao(0)g,01 gy (0). (2.
7T B. Scaling equations

The two diagonal elements, andsgr are independent spin We begin by asking, how restrictive are the above con-
densities for the left and right leads, respectively, while thestraints on the longitudinal Kondo couplings? To answer this
spinlike operators, g and sg, introduce tunneling between question we focus on th&=0 equilibrium case and use
the leads. The system is driven out of equilibrium by apply-Anderson’s poor man’s scalifiyto derive scaling equations
ing a voltage biasV across the junction. This fixes a for the Kondo couplings. Our objective is to determine under
chemical-potential difference, — ug=eV between the two which circumstances is a nonzelbR coupling generated as
Fermi seas, causing a steady-state charge current to flow the bandwidth is reduced.

the direction of the applied bias. We assume that the voltage To lowest order in the couplings, the scaling equations are
drops entirely in the region between the two metallic

leads—a reasonable assumption given that the resistance of OIJ'z'L _ J-L24 (JLR)2

the tunnel junction is much larger than that of the leads. dl 27rhv,:[( )OO,
Thus, the most general form of the Hamiltonigmand the

nonequilibrium conditionY,, is dJRR 1

_ R LR
] ; = 2o L7+,
H:ihvp E 2 ffocdll(r()() &lﬂmr(X)dX

a=L,R o=1,|

dJsR 1
T TRCAE LU

aBoh N _ . z
+a,,BZL,R A:;,y,z I Sep™ ~ HaGHT @2 with a similar set of equations for the transverse couplings
Jf'g. Herel =In(Ey/E) is the logarithm of the renormalized
eV o t bandwidthE and E, is the bare bandwidth. Starting with
Yo=75 Z, fﬁx[‘/’Lv’/’Lﬂ_ YrotRolX, (2.3 JLR=0, a nonzeralL® coupling is generated from Eq.7)
unless the two leads are decoupled to begin with aI?ff
where we have allowed for different coupling%ﬂsz“ be- +JiL:O_ Moreover,\]'z-'-iJ;{R is also generated from Egs.
tween the conduction electrons and the impurity spin, and2.7) if the bare transverse couplings" and J®R differ in
also for a local magnetic fielti. Here ug andg; are the  magnitude. Only in two special cases do we find that both
magneton Bohr and impurity Landg factor, respectively. jR=g andJit=JRR remain stable upon scaling. This oc-
Note that in Eq.(2.2) we have omitted for conciseness the ¢ s if the bare Kondo couplings satisfy either
electrostatic potential energy on each leddl,=—eV,.
This contribution to the Hamiltonian can easily be incorpo- JEL:JLRR and Jtho (2.9
rated within our approach, but has no effect on the physical
quantities under consideration as longedsis much smaller Of
than the conduction-electron bandwidth. The latter is as- LL RR
sumed throughout the paper to be the largest energy scale in =0 29

the protilgm. As we shall see in the next subsection, these two cases cor-
ForJ,”=J>0, Egs.(2.2) and(2.3) reduce to the standard respond to two distinct two-chanA@llimits of the Hamil-

nonequilibrium Kondo problem, treated perturbatively byignian of Eq.(2.2).

Appelbaunt and Andersori. Here we take a different ap-  Hence, with the exception of conditiori.8) and (2.9),

proach. Rather then setting all coupling constants equal tgcgjing trajectories for our model flow to a nonzero longitu-

one gnothgr and starting at weak coupling, we identify &inal couplinngR and also toJ'Z'L#JE‘R if the bare trans-
special point in the parameter space of the model where lerse couplings Satisﬂ)dLL|¢|JRR|
L N

can be solved exactly. Specifically, we show that the Hamil-
tonian(2.2) together with the nonequilibrium conditig2.3)

can be solved for arbitrary biaé in that region of theJ{“B C. Limits of the Hamiltonian

parameter space where Next we recast the Hamiltonian in a form more suitable
for identifying its various limits. Using the spinor notation
IeP=35P=35F, (2.4 ’
Ro
T (X)= , (2.10
JER= R, 25 0 ( m)

and the Kondo interaction in Eq2.2) is written as
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HKondozi[\PT(O)Jz\PT(O)_WL(O)JZ‘PL(O)]T
1 T _ 1 T3 +
+§\I’T(0)JL‘I’1(O)T +§\Ifl(0)Jl\I’T(O)T ,
(2.11
where

) JRRRL
J2= JLR gLl =
z z

RR RL
‘]L ‘JL

(2.12

LR LL
JL ‘]L
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channels is recovered when eithed, ;=J,, or J ;=
—J,5. In terms of the bare model parameters, these two
limits correspond to condition@.8) and (2.9), respectively.
What are the two channels in each of these two limits?
For J--=JRR and J'R=0, Eq.(2.8), the two leads are de-
coupled. Hence the channels are just the right and left leads,
which obviously carry no current. Fait"=—-J%R  Eq.
(2.9, one needs first to makk ; equal toJ, , by attaching a
minus phase to one of the fermion fields, sdy;(x). The
physical picture depends then in a continuous manner on the
interplay betweend-R and J:-—JRR. when |3-R|<|Jtt
—JfR|, the system approaches a limit where the leads are

Here 7~ = 7*+i ¥ are the standard raising and lowering op- again decoupled. The channels are basically the right and left

erators for the impurity spint* =3¢, whereo™ is a Pauli

matrix. In general,f]Z and f]L are two symmetric matrices
which need not commute with one another. Thus, while eac
matrix can be diagonalized separately, it might not be pos

sible to diagonalize them simultaneously.
This is the point where condition®.5) and (2.6) come

into play. Subject to Eqs2.5 and (2.6), the longitudinal-
coupling matrixJ, is simply proportional to the unity matrix,

leads, with minor mixing of the two leads. Mixing of the
leads gradually increases d§R becomes comparable to
Ji-—JTR. Eventually, for[3R|> 31"~ 7, the channels
are (i) spin-up electrons in the left lead and spin-down elec-
trons in the right lead angi) spin-down electrons in the left
lead and spin-up electrons in the right lead.

As soon as), ;# *=J, », our model departs from its two-
channel limits and becomes that of a two-channel Kondo
impurity with channel anisotropy. The extent of anisotropy

leaving onlyJ, to be diagonalized. This can be achieved bypetween the channels can be continuously tuned by varying

carrying out the linear transformation

1/110') A ( '//RO')
=T , (2.13
( 17[,2(7' IJIL(r
where
1 A R
T —— (2.14
(QLDZ+NZ\ iRy
and
1 1
A= S =30+ 5 VO - I+ 4302

(2.15

In terms of the new conduction-electron channgls. and
-, the Kondo interaction reduces to

HKondo:‘]zsiTZ'l' JJ_l(SéI(.TX+ 5{7-)/)
+3,557°+ 3 H(Sh T+ Y 7Y),

(2.19

where

1 1
311275 (AT + IR 75 VT =312+ 4(1)?
(2.17

are the eigenvalues of thk matrix and

5%2 W00, 0t (0), =12, (218

the different transverse couplings. An opposite limit is
reached when one of th 4, J, , couplings vanishes. This
may be regarded as an effective one-channel limit, as only
one conduction-electron channel undergoes spin-flip scatter-
ing. In terms of the original parameters of the model, this
case is described by the condition

JLEJRR= (gLR)2,

(2.19

In equilibrium, we can actually show that the above limit
is equivalent to the ordinary one-channel Kondo Hamiltonian
(see Appendix A We further note that Eq2.19 is always
satisfied when the Hamiltonian of E(R.2) is derived from
an Anderson impurity model via a Schrieffer-Wolff
transformatiorf' We therefore expect the effective one-
channel limit of Eq.(2.19 to best describe the conventional
Appelbaum-Anderson modélFurther support for this inter-
pretation will later emerge in the course of our solution. It
should be emphasized, though, that our particular choice of
model parameters cannot be the outcome of a Schrieffer-
Wolff transformation, as the latter generates equal transverse
and longitudinal couplings. This relation is obviously vio-
lated within our model sincé.R is set equal to zero.

D. Magnetic field

Finally, a few words are in order on the magnetic field.
When an external magnetic field acts on the conduction-
electron spins, it polarizes their spins. This generates a net
bulk magnetization in each lead, which modifies the effective
field seen by the impurityH in our model should therefore

are the spin-density operators corresponding to conductiorbe viewed as theverall effective magnetic field seen by the

electron channels 1 and 2.

Thus, the Hamiltonian has the form of a generalized two-

impurity—applied and induced.
To make the discussion quantitative, consider a weak ex-

channel Kondo modéf with an additional channel anisot- ternal magnetic fieldH,,; acting on all spin degrees of free-
ropy in the transverse coupling. In particular, the conven-dom. When coupled to the spins of the conduction electrons,

tional isotropic two-channel modéle., with twoequivalent

Hey: induces in each lead a bulk magnetization equal to
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1 ) the left- and right-lead electrons as these couple more trans-

Mpoui=5 (#89e) “PoHext- (220  parently to the applied voltage.

Following Emery and Kivelsolf we introduce four dif-
Here g, and po=(27hvg) ! are the conduction-electron ferent boson fields
Landeg factor and density of states, respectively. The impu-
rity spin, being coupled t,,, through the Kondo interac- _ X o
tion, thus experiences an induced magnetic field of magni- q’ao(x)—\/; _wH“”(X YAX' + de(X) i, (3.1
tude
to account for the four different left-moving fermion species
Hina=—9; 'geJzpoHext, (2.2)  entering Egs(2.2) and(2.3). Here ¢,,(x) andII  (x) are

. . ) .. real, conjugate boson fields satisfying standard commutation
which acts to reduce the overall field seen by the 'mpu”ty'relations! g fying

Hence, inasmuch as impurity-related quantities are con-

cerned, the effect of a magnetic field acting on the [ hao(X),TL g (X' )] =18, 08y o S(X—X'). (3.2
conduction-electron spins can be fully absorbed into a renor- aoee La e

malization of the local field that couples to the impurity spin The left-moving fermions are expressed®#4

according t4°

— ei‘pao' .
H=HextHing=(1-0; 'geJspo)Hext.  (2.22 Pao(X)= me*"bw“), 3.3
o™
[In the case wherd,"+JZR, one needs to replack in Eq. . _ .
(2.22 with (355+IFR) /2] wherea™ ! is an ultraviolet momentum cutoff, corresponding

As can be seen from E@2.22), there is really only one to a lattice spacing_. The additi(_)nal pha_sgeus, are required _
physical parameter which determines the effect of a magneti@ assure that the d|ffe_rent fermion species anticommute with
field on impurity-related quantities, and that SE.,, ©°N€ another. Our choices for these phases are
= ugQg;H. There are two approaches one could take towards .
determining this paramete(i) One could deduce it experi- _ T t t
mentally, eg.g., frcF))m the measured Zeeman splittingpin the L Wﬁxw"llp"ﬁwm%ﬁl’kmwm]dx'
differential conductancdii) One could determine the effec-
tive field H from the applied magnetic fielti.,; and the %
model parameters entering the renormalization factor of Eq. L= Wf [y by + W Wy 1,

(2.22,i.e.,0i, ge, J5-, IRR, andp,. At the solvable point, o

the renormalization factor actually vanishegjf=g;. Even "

more surprising, it becomes negativeyif>g; . In this paper PRi= Wf 'ﬂ;u r, dX, (3.9
we take the first approach and regardg;H in Eq. (2.2) as —o

an independent parameter to be determined directly from ex- . . .
perlim erﬁ P I ! Y "and er, =0. Alternatively, Eqs(3.4) can be written directly

in terms of the® fields, by replacing eackjflg(x) U,e(X)
above withV® ,.(x)/(27).
lll. MAPPING ONTO A NONINTERACTING Using the well-known prescriptions for bosonizifit?*
NONEQUILIBRIUM PROBLEM both the Hamiltonian and, are expressed in terms of the

In this section, we present the mapping of E@s2) and  four boson fieldsd ,,(x). The ® ,,(x) are used in turn to
(2.3) onto an equivalent noninteracting nonequilibrium prob-construct four new boson fields, corresponding to collective
lem. Normally, mapping of an interacting quantum- charge, spin, flavofleft minus righ}, and spin-flavor modes:
mechanical problem onto a noninteracting one means that
one can perform a canonical transformation to reduce the
Hamiltonian to a quadratic form. For a nonequilibrium prob-
lem, in addition to the Hamiltonian the transformation must
also preserve the quadratic form 8§, or else the task of 1
finding Y and diagonalizing<— Y remains a true many-body <I>s=§(‘1>m—‘1>|_l+‘1>m—¢m),
problem. This sets an added constraint, which often prevents
the extension of successful mappings in equilibrium to the 1
nonequilibrium state. Equatlorﬁz._Z) a_nd(2.3)_prowde arare D=2 (P + D — gy —Dpg)),
example where such an extension is possible. 2

The reduction ofH and Y, to quadratic forms relies on
bosonizing the one-dimensional fielf$* The derivation 1
presented below is a generalization of the Emery-Kivelson q)sfzi(q’LT_q’Li_q’RTJr@Ri)- 3.9
solution of the two-channel Kondo modéldesigned to ac-
count for the extra channel-symmetry-breaking terms preser&imilar combinations also apply to each ¢f(x), II,(x),
in our model. Here, although the natural degrees of freedorand the phases, (v=c,s,f,sf). The latter can also be
for describing the Kondo interaction were seen in the previwritten directly in terms of the new collective fields, for
ous section to be);, and ., we shall work directly with  example,

1
CDCZE(q)LT—'_(I)LJ,—’_(DRT—F(DRL)’
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el md’d

e il®si0— el (3.14

1 ©
o= f [29Do(x)— Ty (x)~ V() ], (3.6 ber() =
4 ) 2ma

1 (= with similar expressions fory.(x) and ¢4(x). Here the
Pst=75 f_w[V‘bf(X)—V‘Dsf(X)]dX- (37 imd'd phase takes care of the anticommutation relations be-
tween thed fermion and they,(x) fields, while ¢; and ¢
Introducing for convenience the shorthand notatipn ~ [See EQs(3.6) and(3.7)] guarantee that the flavor and spin-
—®,(0)— g, we notice thal, commutes with botly; and  flavor fermions anticommute. The remaining anticommuta-
XYsi. Thus, the Hamiltoniaf and the nonequilibrium opera- fion relations involving eithery.(x) or y(x) are easily

tor Y, are written as taken care of by slightly modifying the phases and ¢s.
Once these steps are completed, the Hamiltofiarand
hug o J* ) the nonequilibrium operato¥| acquire the following fer-
=g 2 f W(V(Dv)de“L Tal 7 sin(xs) mion forms:

4 v=c,s,f,sf

J- ) » J
+ 77 €08 x5) 1008 xsp) — [ 7 cos xs) weitoe 3 [ ulo0 S poax
- . o, NA )
+ 70 sin(xs)Isin(xs) — ——[ 7" codxs) +2J2_ﬁ[¢sf(0)+¢sf(0)](d —d)
J;
+7 Sin(Xs)]Sin(Xf)_l_ EVCDS(O)TZ_MBgiHTZ + JiR [wT(O)_w (0)](dT+d)
22ma f
(3.8
and U (0)= g 0)](d T d
oy +2\/%[¢Sf( ) wsf( )]( + )
Yo=3, f_mV‘I’“X)dX’ (3.9 +[ uegiH — (3,— 2mhve): gl(0) o 0):](d d— 1/2)
whereJ= are the even and odd combinations: (3.19
1 and
IF =5 (=3, (3.10

Y(g:evf Pl (X) s(x)dx. (3.16
A crucial feature of the bosonized Hamiltonian is that -

enters the spin-flip terms of E¢3.8) only as an effective Here [(0)y(0): means normal ordering with respect to
angle of rotation. Hence it can be conveniently remdvég the unperturbedss Fermi sea. Strictly speakingy,, and the
rotating both and Y, about thez axis: #'=UHU", Y;  Kinetic-energy terms o’ are also normal ordered: how-
=UY,U", with U=exfixs]. Yo, being proportional to ever, normal ordering of these terms is left implicit since it
V@¢(x), is unaffected by the canonical transformation; how-merely amounts to shiftin;, and’H’ by constants. By con-
ever, the Hamiltonian simplifies t trast, normal ordering ofs!(0)y(0) is essential, as this

five " I+ combination multiplies the operatdfd—1/2.
H=—= > J (VD ,)2dx+ — 7 cod xsf) The solvable line is readily identified from Eg€.15
Am v=istst J - ma and(3.16. Upon setting),=2x#ivg, both the Hamiltonian
I JLR and the nonequilibrium operator, reduce to quadratic
- %g Sin( xsf) — %Tx sin( xs) forms. Hence the strongly interacting nonequilibrium Kondo

problem maps onto a noninteracting one, which may be re-
garded as theonequilibrium analogf the Toulouse limit:2
VO (0)7*— uggiH 7. (3.11) Although noninteracting, the resulting nonequilibrium
problem is somewhat unconventional in the sense Hiat
does not conserve the overall number of transformed fermi-
ons (not to be confused with the original electrons in the
problem. Moreover, it involves the combinations

z
———hvg

+2’n’

At this point we transform to a new fermion representa-
tion. To this end, we first express thespin in terms of a
fermion operator:

d=ir—=ir". (3.12 . d+d" . d'-d
a= 7 b_—iﬁ , (3.19

The Bose fields are then “refermionized” according to
which are Majorana fermion's. The Majorana fermions sat-

iwd'd PO
e (X) = e il®i0 (] 3.13  isfy a*=b?=1/2 instead of zero as for usual fermions, a fact
V2ma that will have important implications later on. H=0 and
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the JoB parameters are such that only oneaohr b couples TABLE |. Definition of energy scales and symbols used in the
to théwfermions H' reduces to the Emery-Kivelsbhimit solution of the nonequilibrium Kondo model. Heds” are the

of the two-channel Kondo Hamiltonian. Recalling the defi- ransverse Kondo couplings from E@.2), J* are the even and odd
nition of J* Eq.(3.10, this is seen to occur when either Eq combinations defined in E¢3.10, anda is an ultraviolet momen-

(2.8) or Eq. (2.9) is satisfied, i.e., for each of the two two- tum cutoff, corresponding to a lattice spacing. Physically, the en-
ch.annel Iirﬁits'identified in tk’1e' plr'evious section ergy scaled’, andI',, play the role of Kondo temperatures at the

solvable point. The remaining energies show up as coefficients in
the expansion of physical operators in terms of the scattering-state

IV. SOLUTION OF THE NONINTERACTING operatorgsee Table ) and as prefactors in the final expressions for
NONEQUILIBRIUM PROBLEM physical quantities.
At th.ig stage both' and Y; are quadratic, hence the Symbol Definition
nonequilibrium problem can be solved exactly. We shall do
so using two independent routés) by explicitly construct- | I [(3P)2+(37)2)amatve
ing theY’ operator in terms of scattering-state operators and Ty (3")%4mahv
(B) by standard diagrammatic techniques. The latter ap- r, (3R 2amahve
proach will require a specific decomposition of the Hamil- r, (37)?/4mative
tonian into a perturbatioft{; and an unperturbed pak; . I ("M U4mahve
Since both formulations employed are exact, they must co- Ig (I7R2/4mative
incide when applied to any physical observable. This will T, IRy~ /amative
provide us with a critical check as to the correctness of our r J-RIM Amative
results. P _
A. Explicit construction of the Y’ operator {l//I,k Wy b= S 8yt - 4.3

The first thing to recognize is that’ =UY U' obeys the - )
operator equation Rewriting Eqgs.(3.195 and(3.16 for J,=2##uvg in terms of

the ¢,  operators yields

LY H' ]=in(Yye—Y"), 4.

which follows from applying the canonical transformatidn H'= > > el b, —ipsgiHab
to both sides of Eq(1.3. Y’ is therefore composed of v=fsf k ’
scattering-state operatars. 7+

For a standard single-particle scattering problem, scatter- ; T B
ing states are eigenstates of the Sdimger equation obey- ! 2\ mal 2k (Ustict dstalb
ing suitable boundary conditiod®.They are given as solu-
tions of the corresponding Lippmann-Schwinger equation. JiR N N
Within second quantization, an analogous equation may be + 2 Jmal ; (fi—¥rp)a
written down for the scattering-state operators, which in this
case simply create electrons in the scattering states. For a J- R
noninteracting problem, the two representations are equiva- + E (llf;rfk_ st )@ (4.9

2+ malL "k ' '

lent, due to the one-to-one correspondence between single-
particle states in first quantization and creation operators in d
second quantization. However, as soon as interactions aft!
switched on, the scattering-state operators acquire compli-
cat_ed m_any-body components that can no Ior_lger be de- Y(’,zeVZ l;b;r,kwf,kv (4.5
scribed in terms of single-particle states. Even in our case, K
whereH' is quadratic in fermion operators, the scattering-
state operators do not conserve the number of particles andheree, is equal tofivgk.
thus have no first-quantization analog. The scattering-state operators for the flavor and spin-
Equations(3.15 and (3.16 contain four species of fer- flavor channels¢!, andcl;,, respectively, are defined by
mion fields, yet bothy, and i are decoupled from thd  the operator equatioh
fermion and theY| operator forJ,=2wfive. As a result,
only ¢ and ¢ need to be considered when computing (¢! H1=—ec! +in(y!, —cly, (4.9
impurity-related quantities such as the current. Restricting ' ' ’ '
our attention to the latter fields, we introduce their Fourierin which the positive infinitesimaf is introduced to guaran-
transforms tee appropriate boundary conditions. Due to the quadratic
nature of{’, one can solve these equations exactly. Leaving
o001 f ik _ the details of the derivation to Appendix B, here we present
P, (X)= ﬁ ; g, (v=1.sf). (4.2} their solutions.
In writing the solutions for the scattering-state operators
HereL is the size of the system, aridtakes the discrete of Eq. (4.6), we use the notation specified in Table I. The
valuesk=2wn/L. The Fourier components satisfy two basic energy scales in the problem are
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plicitly assumed throughout our treatment. Furthérk and

_ LRy 2 —\2 . . .
Fa_47TaﬁUF[(JJ- )7+ (37)7] (4.7 clf'k obey standard anticommutation relations
and {Cz,klcv’,k’}zﬁk,k’gv,v’ ’ {Cv,kicv’,k’}zo- (414)
b= (J4)?, 4.9 Hence, despite being composed of both creation and annihi-
4mahve lation operators of the bare Fermi degrees of freedo}’rg,
which play the role of Kondo temperatures at the solvableandcy; are fermion creation operators.
point!® It is also useful to define the matrix function As one might expect from Eq¢4.6) and(4.14), the trans-
formed Hamiltonian is diagonal in the scattering-state basis.
&2 {Gaa Gab 1 Indeed, one can rigorously show that
)= = . -
Gpa Gppl (zxila)(zxilp)—(upgiH)?
zxil'y,  —ipggiH H'=§k: €(C (Ct it Cli st i) (4.19
x| ' , 4.9
lpegiH - zxily by replacing all scattering-state operators in Eg15 with

where upper(lower) signs correspond ta in the upper their explicit expressions, Eq&t.10 and(4.11). After some
(lowen half plane. Although not apparent at this poigtz)  engthy but straightforward algebra, E@.15 is found in
will turn out to be the Majorana Green functideee next thiS manner to be identical to E¢h.4). _
subsection Notice thatG is diagonal in thea-b basis only The main strength of the scattering-state formalism,

for a zero magnetic field, in which cadg, andT, are the though, lies in they’ op.ere}tor', .which is solve.d dﬁrectly in
spectral broadenings of tHe and b spectral functions, re- diagonal form. Up to an insignificant constaxt, is given by

spectively. In particular, the effective one-channel limit of

Eqg. (2.19 corresponds to the case wherg=1I",, which Y'=eVY ¢f (i (4.16

features, in accordance with the ordinary one-channel sce- K

nario, only a single Kondo scale. Using the above Majorana

Green function, the scattering-state operators are given by which again can be verified rigorously. To see this one needs
to substituteY’ from Eg. (4.16) into the operator equation

. : JtR . . (4.1) and exploit some basic properties of the scattering-state
C k= Yr it m[Gaa(fk'H n) ax+ Gpa( € t+i7)Bil, operators. A complete derivation of this important result is

(4.10 provided in Appendix C. Thus, as previously argued in Ref.
' 17, Y’ is obtained fromYg by simply replacing all bare
I fermion operators that appear¥t} with their scattering-state
——[Gaal e +in)ay+Gpa(ec+in)Be]  counterparts.
2Jmal  ° 2 Having obtained and diagonalized the operatrY’,
N our nonequilibrium Kondo problem is nearly solved. All that
. LA . remains to be done is to express the physical observables,
'S /7.“',”_[6“’(6‘0LI 7 it Goplewtin) i whose steady-state averages we wish to compute, in terms of
41 the scattering-state operators. Once this step is completed,
(4.19 averages with respect & 2" ~Y") are readily carried out.
To keep the notation concise, we have introduced in Eqdn Table Il we list a few basic operator identities, which
(4.10 and(4.11) two k-dependent operators serve as building blocks for constructing physical operators.
‘ Each of these entries may be verified directly using Egs.
JR > Wt o Uik (4.10 and (4.11). The physical observables of interest in-
2Jmal & \ €& € ti 7 etentin clude the charge and spin curretitsand i, respectively,
_ t
J S%% Pst
€

and the impurity magnetizatiod = wgg; 7. To identify the
+ — — -
2 Wal_% k_ek/+|77 €k+€k/+|77

to_ ot
Cot k= Psikt

&k: é+

new representations of these operators, it is necessary to go
back to the initial description of the system in terms of left-
and right-lead electrons.

(4.12 Consider first the charge curreht. The charge current
measures the rate at which electric charge increases on the
left lead or, equivalently, the rate at which electric charge
decreases on the right le&fbr a Kondo impurity, the two

. are identical. Therefore, the charge current from right to left
(which amounts tee times the number current from left to

(4.13 right) is given by

and

R N J* ( lzblfk’ st k!
=b+i : + '
P 2 Jmal kE

Ek_€kr+i7] Ek+6kr+i7]

One can directly confirm at this point that the scattering- )
state operators given above satisfy the commutation relations i _'e R R = RNo— R a1
of Eq. (4.6) for a generalyp#0, not only —0" as is im- o= 57, INL1 T NL = Ny =Ny 72, (4.17
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TABLE |l. Expansion of useful operator combinations in terms of the scattering-state operators; Hemad cSf « are the scattering-
state operators for the flavor and spin-flavor channels, respecm}[glys the transverse Kondo coupling for flipping the impurity spin while
tunneling an electron across the junctidr, are the even and odd combinations of E2j10), andG,; are the corresponding components
of the Majorana Green function, E(.9). The differentl”s are defined in Table I.

Operator Expansion in terms of scattering-state operators

a (4mal) 22 {3 RGaa(e—im)C (+[I™ Gaalex—i7) +id ¥ Gpale—im)Ick;
+(4mal) V2 {ITRG (et i m)Cr k+[I7 Gaalextim) — 13" Gaplex+in) ICst it

b (4mal) 28 { I RGp(e—i n)cf  +[I " Gap(ex—in) +id* Gpp(ex—in) ek,
+(4mal) V22 {3 Gpa( et i 7)Cr it [ Gpaletin) =13 Gpp(etin) ICst it
L™ Y28, (0 o+ 1 0) L™28,(cf ytcrp)
L2 (et Y1) L™ Y25 (T oGap(e—im) it [ 1+ 3(I'L—Tr) Gan(ex—i7) +iTuGop(ec—i m) ety
JrL71/221<{Fp(3‘ba(EkJri77)(3f,k+[1+%1(Fl_*FFz)Gba(EkJFi 7) —iT,Gpp( €t i7)ICs it
L2 Y1) LS {iT nGaalec— i m)cf i+ [1+ 2(TL—Tr) Gap( e i 7) +iT :Gaalec—i m) et
+L Y28 {iT 1 Gaal ekt i m)Cr [ — 1+ (T —TR) Gap(ex+i 7) +iT 2G40 €t 1) 1Cs1 i}
whereN,, is the number operator for electrons with spin B. Diagrammatic solution
on leada. Upon carrying out the canonical transformation |n this subsection, we solve the quadratic nonequilibrium
U, this maps onto problem defined byH' and Y| using the nonequilibrium

Green-function technique. Because the problem is quadratic,
one is able to sum all diagrams exactly, providing an alter-
native solution to the noninteracting problem. This approach
is equivalent to the one presented in the previous subsection

with Ne=3, o7 being the flavor-fermion number opera- and must give' the same result for any physical observable.
tor 1= 2 beIng P A key step in applying this approach is to choose a prac-

The spin-current operator is obtained in a similar fashlont'cal decomposition of the Hamiltonian into an unperturbed
art and a perturbation, where all processes that drive the

s is defined as the difference in number currents for thesysiem out of equilibrium are contained within the latter part.

spm up and spin-down electrons. Alternatively,measures  The initial density matrix is taken accordingly to be

the rate at which magnetization flows across the tunnel junc-

tion. In steady state, the outgoing spin current from the left e B(Ho—Yo)

lead is equal to the incoming spin current for the right lead, po:m’ (4.21

and hence the steady-state spin current from left to right is

written in a symmetric manner as

n ie .
EUICUJ':%[Nf,H’], (4.18

whereH, is the unperturbed part of the Hamiltonian, arg
. is the same nonnejzlguilibrium operator that enters the
~ b N o o Y-operator formalism!
=57 INLi = Nuy =Ny + Ney 7. (4.19 To make our choice fot{, physically transparent, we go
back to the initial description of the system in terms of left-
This translates under the canonical transformation to
TABLE Ill. Expansion of transformed operators describing
R R i physical observables in terms of the Majorana gafdrmions. Here
EUISUT=%[NSf JH', (4.20  J-Ris the transverse Kondo coupling for processes combining flip-
ping of the impurity spin with tunneling of an electron across the

R junction.J* are the even and odd combinations of E2}10.
WhereNszEkl//lf,kwsf,k is the spin-flavor number operator.

Finally, the impurity magnetization is unaffected by the ca-Observable Symbol Operator
nonical transformation and remains equaMé= ugg; 7. B
- ici ionshi . el «
To complete our solution, the explicit expressionslfor Charge current = i 2 (W + 02
1., and M? in terms of the Majorana ang fermions are 2ﬁv

gathered in Table Ill. These may be easily expanded in terms )

of scattering-state operators using the operator identitieg§pin current le= Zﬁ\/_ S (Wit Ysri)@

listed in Table Il. The resultant expressions, although cum-

bersome, are straightforward to work with when evaluatin i + r
. —B(H'—Y") . - —Ek(‘ﬁsf,k_‘psf,k)b

averages with respect ® . Such averages will be 2hmal

used extensively in the next few sections, where a variety of i wggiab

physical quantities and response functions are computed.

gMagnetization MZ=
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and right-lead electrons. Typically{; is chosen such that wherel is the 2<2 unity matrix. The unperturbed flavor-
H, andp, are diagonal single-particle operators. For a nonchannel Green functions are

equilibrium Kondo problem, this means starting with two -

disconnected leads at different chemical potentials and treat- 9r(€)=2md(e—e)f(ex—eV), (4.29
ing all components of the Hamiltonian involving the mag-

netic impurity as a perturbation. Here we use a slightly dif- grk(€)=2m(e—e)f(eV—ey), (4.30
ferent decomposition, for reasons that will become clear

shortly. In addition to the kinetic-energy terms for each lead, ghd(e) = _ (4.31)
we also include withir, the longitudinal Kondo terms: hk e—erin '

w0 9 Similar expressions apply to the spin-flavor fermions; dwnly
Ho=itive >, > f Pl (X)) == hae(X)dX is set equal to zero.
a=LRo=T1,] J-e 28 Using standard diagrammatics, all MajoranaTseIf—en$rgies
z z are derived from contractions of the s +
ISt SRR T (4.22 +)). These are most conveniently handleogtilr/: thew\zv(i(lj//eband
This is a valid choice fof{, since Eq.(4.22 conserves the limit, where the simple relation
number of conduction electrons on both the left and right

leads, and hence the two leads have well-defined, indepen- 1 1 _ 1 f de _— i
dent chemical potentials. LX< e—exin 2mhug e—etiy 2hve
To determine howHy— Y, transforms under the canoni- (4.32

cal transformanonu, it is sufficient to set the transverse can be used to obtain the retarded and advanced self-energies
Kondo couplings and the local magnetic field to zero in Egs.

(4.4 and(4.5). This leads to FiT, —ipggH
3M3(e)=|. _. (4.33
) e BHy=Yp) i wggiH Fily
po=UpoU :Tr{e—B(H(’)—Yé)}' (423 and the greater and lesser self-energies
with 5> <(e)= 20 feri(+€) +205f(F €) 0_ .
0 2l f(Fe)
Ho=Yo=2 (e—eV)ifuract 2 2 el ibuk: (4.34

(4.24 HereT', andTI',, are the two Kondo scales defined in Egs.
' (4.7 and (4.8, respectively, while I'; is equal to
The advantage of choosirig, of Eq. (4.22 is now apparent:  (J-R)2/4rafive and T, is equal to (~)%/4mwahve. The
po rather tharp, takes the desired form of a diagonal single- function f.¢(€), which enters the greater and lesser self-
particle density matrix, providing us with a representation inenergies, is an effective distribution function that depends
which bothp| and’H' have simple noninteracting forms.  explicitly on the applied bias:
We are now in position to apply perturbation theory with
respect tadR, J*, J7, andH.?® The main ingredients of foole)= fleteV)+f(e—eV) (4.35
the theory are the greater, lesser, retarded, and advanced Ma- eff 2 ' '
jorana Green functions, which are defined accordirtg to

For zero biasf.¢i(€) reduces to the ordinary Fermi-Dirac
distribution function, while for finite bias it has two separate

Gap(t,t)=(a(t)B(t), (425 gens ate— eV,
_ N With the self-energies listed above, the retarded and ad-
G p(tt)=(B(t")a(l)), (420 vanced Green functionG'?(e)=[e—3"?(e)]"* are equal

o to the two analytic pieces of E¢4.9):
ap(tLt)=Fio(=t=t")({a(t),B(t)}). (427

Here a,3 are eithera or b. For convenience, we represent
hereafter all Majorana Green functions in terms of 2 ma-
trices, with the convention that indices 1 and 2 correspond t
a and b, reSpeCtiVely. G>'<(6):Gr(€)2>’<(E)Ga(E). (437)
Due to time-translational invariance, all four response
functions listed above depend on the single time argument Equations(4.33—(4.37 are the central result of this sub-
At=t—t’. Itis therefore advantageous to switch over to thesection. Together they provide us with exact, closed-form
energy domain, by introducing the Fourier transforms withexpressions for the different Majorana Green functions,
respect toAt/#i. The corresponding unperturbed retardedwnhich in turn can be used to compute observables such as the
and advanced Majorana Green functions have the form  charge and spin currents, the charge-current noise spectrum,
the impurity magnetization, and the impurity susceptibility.
Gl )= 1 The latter quantities will be discussed in detail in the follow-
0 (€) l, 4.2 . .
ing sections.

e*ip

G"¥e)=G(exin). (4.36

The greater and lesser Green functions are given by the ma-
frix product£®




14 988 AVRAHAM SCHILLER AND SELMAN HERSHFIELD PRB 58

V. CHARGE CURRENT identical to that obtained using the scattering-state approach.
The first observable we compute is the charge curre t takes the familiar form of the integral of a spectral function

. ; . ; imes the difference of two Fermi functions, the spectral
across the junction. Using the results of the previous two i ; N : !
subsections we obtain the exact differential-conductanc&/nction here being that of the Majorana fermion:
curve, which features a zero-bias anomaly that splits in the
presence of a magnetic field. We analyze in detail the scaling

properties of the differential conductance at low temperature _ely (=
and low voltage, and compare it to that of the noninteracting (V)= 2mh _mAa(E)[f('E—eV)_f(6+ev)]d€'
resonant-level model. (5.7
_ +ill
A. Derivation A.(e)=—Im _ € - b . (5.8
= M (T ) (e T — (mogir?) - P

The time-averaged charge currdp{V) may be calcu-
lated using either the scattering-state approach, developed in
the previous section, or in the framework of standard dia- Three comments should be made about E§s?) and
grammatic techniques. In the former approach, one uses th8.8). First, the arguments of the Fermi functions in E87)
operator identities listed in Tables Il and Il to expand theare shifted by 2V, not eV as in conventional expressions
charge-current operatdf, in terms of scattering-state opera- [see, e.g., Eq(5.23 for the resonant-level modelThis is
tors. The charge current then follows from averadi@gvith becaqse we are .workmg. with flavor excnatlon;, which have a

~B(H'—Y").17 chemical potential oV instead ofe\V/2. Physically, when
respect tee : an electron is transferred from the right lead to the left one
the number of flavor fermions is increased by 1, but the

PRV otential energy cost is equal &/. The energy for creatin
Tr{e,ﬁm v )Ié} p ay q ay g

IC(V)=<TQ>= N (5.1) a flavor fermion is therefore equal &V rather thareV/2.
Tr{e AT -Y Second, the spectral functigx,(€) in Eq.(5.7) is not that
of the impurity spin in the original Hamiltonian. Instead, by
From Egs.(4.15 and(4.16 we have inverting the canonical transformatidt one sees that the

Majorana fermiora corresponds to a composite of impurity

Dy B + + and conduction-electron degrees of freedom. Consequently,

H=Y _; (& e\/)cf'kcf,kJer €kCsikCstk: there is no simple relation betwedn(e) and the ordinary
(5.2)  impurity-spin spectral function.

t N _ The third point to notice is that, at the solvable point, both
wherecy, Csyy are standard Fermi operators. Hence theihe temperature and voltage enter into the charge current
average in Eq(5.1) is readily carried out using only through the Fermi functions, not via the spectral func-

+ _ _ + _ tion which is independent of bott andT. This stems from

(Cracri=flex—eV), (csiCsiiy=fled, (5.3 4o quadratic nature of the problem at the solvable point. As

wheref(¢€) is the ordinary Fermi-Dirac distribution function. one goes away from the solvable point, the voltage and tem-

The diagrammatic calculation df,(V) is only slightly — perature will explicitly enter the spectral function as wrall.
more complicated. Defining Equation(5.7) can further be written in closed form using

the digamma functiony(z).%° A single expression covering
all parameter regimes of our model is provided in Appendix

Grea(tt ) =([¥f (D) + gy W(D]a(L))), (5.4 D, Eq.(D1). Here we mention only two important casés:

) For a zero magnetic field\,(€) is independent of’y and
the charge current is expressed as has the shape of a Lorentzian with half-widfly. Hence,

4R after integration, the charge current becomes
eJ;
[(V)=i—— D, G .(t,1). (5.5

= mal Ek fla(tD) L 1 Tatiev -
=T M2 2kt )] ®9

Switching to energy variableﬁﬁ('a(e) is evaluated along
the same lines as the Majorana Green functions using pertu
bation theory with respect t8-R, J*, 3=, andH. With the
aid of Eq.(4.32 one obtains

{ii) ForI',=TI",—corresponding to the effective one-channel
limit—a nonzero magnetic field splitd,(€) into two iden-
tical Lorentzians centered abotitugg;H, each with a half-
width of T',. The charge current then takes the form

1EG>()—JtR G2 (e)
N al€)= —— Saal €
R 2oehma el’y 1 T,+ieV+iusgH
le(V) =5 Im | 5+ ST
xX[f(e+eV)—f(e—eV)], (5.6 ™ kg

from which the equal-time function follows as an integral

. . +
over all e. The resultant expression for the charge current is v

(5.10

1 TI',+ieV—iuggiH
2T 2akeT '
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peratures and model parameters. We begin with the case of a
zero magnetic field, shown in Fig(&. Differentiation of
Eq. (5.9 with respect toV yields

(5.1)

e I, (1)(1 [, +ieV

SV =% 2mkeT "V 12T 2akeT
where y)(z)=dy/dz is the trigamma functiod® At zero
temperature, Eq(5.11 reduces to a Lorentzian with half-
width T';, and a zero-bias conductance equal G¢0,0)
=e’l'y/whl',. ForI';=T,, the zero-temperature conduc-
tance is thus optimal. It corresponds to @3¢h conductance
guanta per spin channel. Faér<I',, this value is sup-
pressed by a factor d@f, /T",, reflecting an asymmetry in the
transverse coupling of the impurity to the two leads.

The effect of raising the temperature is mainly to smear
and reduce the peak height. Specifically, using the
0 4 8 asymptotic expansiofi of ¢(*)(z) one finds, in accordance
eV/I—a with Fermi-liquid behavior, that the conductance decreases

guadratically withT at temperatures small comparedItg:

G(V.T)/Gee

FIG. 2. The differential conductanc&(V,T)=dl./dV as a

function of V (a) for zero magnetic field and different temperatures; e2F1 2 kT 2

the effect of T is to smear and reduce the peak height; éndat GO0T)=——+|1- = (_ +O(T4)} (5.12
T=0 andugg;H=2I",, for different ratios ofl", to I',,. For either mhl' 3\ Ty

I',<I'y orI'y<T",, two-channel limits are approached. This shows ) o )

up inG(V,0) as resonant transmissioR (<T',) or resonant reflec- Next we switch on a nonzero magnetic field, causing the
tion ([y<T,). HereGy,=el', /whT , is theT=0,H=0 conduc- €nergy scald’, to enter the charge current. At=0, the
tance, angu= ugg; . differential conductance is simply proportional £g(eV).

The effect of a magnetic field is thus seen along the follow-
ing lines: for H=0, the differential conductance has the
] ] ] shape of a Lorentzian with half-width,; a nonzero mag-
Figures 2 and 3 show the differential conductancenetic field gradually broadens the zero-field resonance until it
G(V,T)=dl./dV as a function of bias, for different tem- splits at a critical ﬁeldMBgiHc:Fb/\/Wa/Fb; for H
>H,, the differential conductance is split. There are two
1.0 I I symmetric resonances at a finite bias, accompanied by a

B. Differential conductance

(a) keT/lo = minimum rather than a maximum at zero voltage. For large
0.8 8 . fields uggiH>TI,,I',, the two resonances are centered
06 _,uH=2ra 05| about eV=* ugg;H, each with a half-width of I,

+Tp)/2.

In Fig. 2(b) we show the differential conductance for a
moderately large magnetic fieldggiH=2T", at zero tem-
perature and different ratios df, to I',. ForI';=T'y, a
nonzero magnetic field simply splits the zero-field resonance
into two symmetric Lorentzians centered abaujzg;H.
Similar magnetic splittings have also been observed in
experiment$® and will later appear in other physical quanti-
ties.

For eitherl" ,<TI",, or I'y<I",, the system approaches one
of the two two-channel limits discussed in Sec. II. Hoy
<I', the two-channel limit of EQ.(2.8) is approached,
whereas forl',<I", the limit of Eq. (2.9 is approached.
Notice that the differential conductance in FigbRis quite
different for these two limits. Fol' ,<I'y,, there is a single
resonance at zero bias. Splitting of this resonance occurs at

FIG. 3. The differential conductance as a function\4f for MBgiH%F‘?/‘/?_I'e" at a Zeeman energy mgtztrg_er_than
negiH=2T", and different temperatures. The rafig/T',, is equal the zero-.flleld half-widthT',. In the opposite limit, I,
t0 0.2 and 5 in(@) and(b), respectively. As in Fig. @), the effectof ~ <I'a, splitting takes place already pfggiHo~I'pVI'p/T 5,

a finite temperature is to broaden and smear The0 structure, corresponding to a Zeeman energy mughaller than I",
resulting in a nonmonotonic temperature dependence of the conduéand possibly alsd’,). Hence by the timgiggiH~1T",, asin
tance in(b). Gy.=eI'y/whl', is the T=0, H=0 conductance, Fig. 2(b), a sharp minimum rather than a maximum has de-
while uw=ugg; . veloped at zero bias. Note that in the extreme lilnjt=0

0.4
0.2

00k

0.8 —

G(V,T)/Cac

0.6

0.4

0.2

0
eV/Tq
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there is actually perfect reflectio3(0,0) identically van- 8 I I I
ishes for arbitrary nonzero magnetic fields. * kgT/Tq = 0.01
This difference between the two two-channel limits stems 6} & kel/la = 0.02
Al + kaT/la = 0.05
from the fact that the charge current samplesahédajorana - x ksT/Ta = 0.1
fermion by way of they; fermions, while a magnetic field >4 *keT/Te = 0.2
couples thea andb Majorana fermions. In the case bf, b et
<I", one is thus probing a broad resonance which is coupled 2 ' 7
to a narrow one, leading to resonant reflection. In the oppo- S
site case one is probing directly the narrow resonance, lead- 0 ; ; é ‘L 5
ing to resonant transmission. 0
eV/keT

Finally, the effect of raising the temperature for a nonzero

magnetic field is summarized in Fig. 3. As in Figag a FIG. 4. F(V.T)=[G(0T)—G(V.T)]/BT? as a function of
finite temperature basically broadens and smearsTth® eVikgT for different temperatures. HeB=e?2xT,/3412 is a
h a

structure. ForH>H,, this results in a nonmonotonic tem- 1,4el-dependent coefficient, defined by the expan<&(®,T)
perature dependence of the zero-voltage conductance, as exg(0,0)-BT?+O(T3). The solid line corresponds to the first

emplified in Fig. 3b). G(0,T) first increases withl at low  term in Eq. (5.14. Deviations from scaling occur already for
temperature, before decreasing witlat higher temperature. k,T/T',=0.05. For comparison, the dashed line shows the corre-
sponding lowT, low-V scaling function for thée;=0 noninteract-

C. Scaling of the differential conductance withV/T ing resonant-level mod¢Eq. (5.28 with r = 0], which is a factor of
. . . ) 4 smaller than the first term in E¢5.14).
An important aspect of having an exact solution is the

possibility to extract universal behavior. Recently, there ha%(OT)—G(V T has a well-defined zero-temperature limit
been considerable interest in scaling properties of the differ- ..’ ' '

i X : which implies that ifV is kept fixed andl' goes to zero, then
ential conductance with//T for Kondo scatterers, following D b 9

. . S i . F(V,T) diverges likeT™¢. Coupled to the assumption that
experiments on zero-bias anomalies in ballistic metal poin

1 X the scaling regimé-(V,T) depends solely oW/T, this
contjlctsi I: has r:Jeen Ialr<guédﬂjthat 'gle_obsferve? anlomallles demands proportionality to)/T)® for T<V.
are due lo two-channel hondo scatlering from two-level sys- Figure 4 we show a scaling plot of the differential

;edmdisti’o%%rlrilsg\)/%?dilr?get; tlrr]]esﬂamg:?rc‘)'f?hg Eq?ezr) \r/\g:gti%?] aconductance. Clearly, at low enough temperature all curves
) PP P ’ “collapse onto a single line, confirming thatV,T) indeed

scaling ansatz for the differential conductance WifT has reduces to a universal function &f/T. However, even at

ot perocive saculatone o a et mbtonsd emperatures small compared o the Kondo temperalle,
nice agreement between theory and experiment, but reveal ttaere are substantial deviations from scaling. These come
. . . rom the fact thatF(V,T) for low V and low T can be
at the same time also finite-temperature corrections to scai—)(p(,:m ded as
ing. Since one expects scaling to hold equally well for the

Hamiltonian in Eq.(2.2) (although with different exponents

2 2 2 2
and different scaling curves—see discussion bglave can F(V,T)= i(e_v) _ (i/) _ i i/) e_V) 4
exploit our exact solution to make a quantitative statement = ' 7\ kgT Iy 7\ Ta) \kgT
about scaling. (5.19

For the Hamiltonian of Eq(2.2), a quadratic temperature L
dependence is expected for the low-temperature zero-bigdence scaling is violated already by the second term.
conductance. Indeed, this is what we find at the solvable Beyond the deviations from scaling, EG.14 contains
point, Eq.(5.12), including in the two-channel limif',=0 an epr|C|t pred|ct|on for the unlversal part of the s_c_allng
(in the opposite limitl,=0, the current is zedo This sug- function, which could be tested experimentally. Specifically,

gests a scaling function of the form at sufficiently low temperature and voltage(V,T) ap-
proaches the model-independent curve &(@rkgT)?. As we

G(0T)—G(V,T) shall argue below, this is an important characteristic of

F(V,T)= (5.13 Kondo-assisted tunneling, distinguishing it from ordinary

2 f

BT resonant tunnelin¢see discussion in Sec. V)DMoreover, it

where B is a model-dependent constant, defined from thd10lds @lso for samples with several impurities, provided

expansion G(0.T)=G(0,0)—BT2+0O(T3). Specifically interactions between different impurities are unimportant and
' ’ " (i) T andV are sufficiently small compared to all Kondo

within our solution B=e’k3#T'y/3#T3. The basic ) ) o tom. T e the basi
assumptioff is thatF(V, T) reduces to a universal function emperatures in the system. 10 see this we use Ihe basic
approach of Ref. 32. For many independent impurities, the

of V/T at temperatures and voltages well below the Kondo . . e
conductance signal is additive:

temperature.
In Eq. (5.13, the powerT“ entering the denominator is
a=2 for a Fermi liquid, whereas in Ref. 32 it 8=1/2, G(V,T)Zzi Gi(V,T). (5.15

corresponding to the non-Fermi-liquid fixed point of the two-

channel Kondo modéf Similar power laws must also show

up in the corresponding scaling curves in order for the scalHerei runs over the different impurities. In particular, Eq.
ing ansatz to be true. This follows from the fact that(5.15 implies that
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5 s reference energy. Note thit itself is generally voltage de-
G(0T)=G(0,0-T EI Bi+O(T%) (5.16  pendent, if the level sits physically closer to one lead than
the other. For consistency with the Kondo Hamiltonian of

and Eq. (2.2), the electrostatic potential energy on each lead,
3 eV|? U,=—eV,, has been omitted from E¢6.27). In both mod-
e els this bears no effect on the physical quantities under in-
T)—-G(V,T)= — Bi+---. A s . S
G0N =G(V.T) ?(ks) Z : (517 vestigation, as the conduction-electron bandwidth is assumed
) . ) ) to be much larger than the applied bias.
Hence, to leading order i andT, the scaling function Solution of the resonant-level model features two basic
G(OT)-G(V,T) 3 ( V)2 518 energy scales
2 =2\ T :
BT 7" \keT yo=2mpty,  yr=2mpriz, (5.22

remains unchanged with respect to the single-impurity resunc:orresponding to the tunneling rates from the localized level

The effect of a distribution of Kondo temperatures enters, e left and right leads, respectively. Hepe is the

only beyond the Ieadmg-qrdgr term. .conduction-electron density of states per unit length on lead
For a nonzero magnetic T'eld’ there is no analogous U1, The width of the localized levely, is related to the tun-

versal scaling witiH/T. This is because the effect of a mag- neling rates throughy= y, + y ’

netic field depends explicitly on the ratio bf, to 'y, . Here : LR o

we choose to focus on the effective one-channel lifjt For an applied voltage bias such that - up=eV, the

L - rrent flowing from righ left is given
=Ty, which is expected to be the most relevant case. _I_Osteady state current flowing from right to left is given by

include a nonzero magnetic field, we extend the definition of e | wy - /2
the scaling functior= according to |RLM(V)=2—( L7R )f € : ,
mh\ytyr) )= (€—Ep)“+(¥/2)
F(V,T,H)= COT.O-GWV.T.H) (5.19 eV eV
e BT? : ' x| f e—7>—f e+ = || (5.23

whereB is defined, as before, from the zero-field expansion:
G(0,T,0)=G(0,0,0)-BT2+0O(T3). Upon combining Eqs. Here the factor of 2 comes from the two possible spin orien-

(5.10 and(5.14) one finds tations of the electrons. This expression for the current
closely resembles the charge current in our Kondo model,
3 [(eV\? [uggH\? Eq. (5.7), for a zero magnetic field. The two notable differ-
F(V.T.H)=— (I(B_T) +< KeT ) }JF , ences are the explicit dependencd Bf"(V) on the position

(5.20  of the level and, as noted earlier, te& shift between the

. arguments of the two Fermi functiorisompared to 2V in
assumingkgT, eV, and ugg;H are all much smaller than o kondo model

I',. Thus, forT';=T,, an identical scaling is found with

The resonant-level enerdy; has no analog in the Kondo

problem, as the Abrikosov-Suhl resonance is always pinned
_ _ in equilibrium at the Fermi level. In that respect, the Kondo
D. Comparison with the resonant-level model model is best described by the case whEjeis fixed in

It is instructive to compare our results for the charge cur-equilibrium at zero energy. For a Kondo impurity, though,
rent in the Kondo model to the-V curve due to ordinary ©nly the chemical potential differenge — ur is relevant to
resonant tunneling. In the noninteracting resonant-levelransport properties, reflecting the lack of charge fluctuations
model, electrons tunnel between two Fermi séeads viaa  On the impurity site. By contras, + ug explicitly enters
localized electronic levell’. placed in between the two leads. the resonant-level current through the definitiorEet
Resonant tunneling occurs as the energy of the Ieg), In general E; has the formE;=E{*+reV, whereE{”
crosses the chemical potential of one of the leads, producingenotes the equilibrium\(=0) position of the resonant

a peak in the differential conductance. The model is delevel, and —1/2<r<1/2 parametrizes the electrostatic po-
scribed by the Hamiltonian tential energy on the level site. For a linear potential drop

across the junction; basically measures the physical dis-
tance of the level from the center of the junction. Specifi-
H=a:2L’R gf €CkaoCicacr+ Ef; fofs cally, r = = 1/2 describes a level adjacent to one of the leads,
whereasr =0 corresponds to a level that sits midway be-
t, . tween the two leads.
+ 2 T kz {CkaofstH.C} (5.2 The differential conductance for the resonant-level model
«bR 7 is obtained by differentiating E45.23 with respect to/. At
in which CL_U (CERU) creates a conduction electron with Zero temperature this gives a differential-conductance curve
wave numbek and spin projectiorr on the left(right) lead, ~ thatis generally a superposition of two Lorentzians: one cen-
t,, are the matrix elements for hopping between the localizedered about E{”/(1—2r) with half-width y/(1—2r) and
level and the leadd, is the size of the system, aftl—the  the other centered about 2E§°)/(1+2r) with half-width
energy of the level—is measured relative to the average/(1+2r). Only in two cases does one recover a single
chemical potential &, + ©g)/2. The latter is taken to be our Lorentzian centered abowt=0 which can possibly emulate
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the Kondo-model resulti) If E;=0 (i.e., E§°>:r:o) and than the corresponding Kondo-model result. We note that,
(i) if E;==*eVI2 (i.e., Ego):o andr=*+1/2). In the fol-  for nearly 60% of the parameter range rin this factor is
lowing we analyze in detail these two cases, comparing theipmaller than one-half. Far=0, it is equal to one-quarter.
respective -V curves with that of the nonequilibrium Kondo Thus, measurement of the scaling function of £§.13

model. should allow a clear distinction between Kondo-assisted and
To this end, it is useful to introduce the function resonant tunneling, providel; sufficiently deviates from
+eV/2.
1 1+ix The response to an applied magnetic field completes the
Cxy)=21m ¢\ 5+ 2my || (524 distinction between Kondo-assisted and resonant tunneling.

. - ) In the resonant-level model, a nonzero magnetic field splits
which allows a unified representatlon of the relevant CUrthe energy of the localized level according E*_)Ef -
rents: =E;— sougg;H. Each of the two spin species then carries a
current that is equal to half the expression in Ex23, only

| (V)= ic i/ kB_T (5.25 with E; replaced byE;— 3o uggiH. The total electric cur-
mh a la rent is equal to the sum of the two spin contributions.
for the Kondo model with zero magnetic field, At T=0, the generic dllfferentlal-conc_iL_Jctance curve fqr a
nonzero magnetic field is a superposition of four distinct
RLM ey yr _[eV 2kgT Lorentzians. For eitheE;=0 or E;= =eV/2, however, the
I"=N(V)=2 Thy S\ 7y (5.26  zero-field curve is simply split into two symmetric Lorentz-
ians centered aboueV=z* uggiH (for E;=0) or eV
for the E;=0 resonant-level model and =+3uggiH (for E;=*+eV/2). In particular, for E=
+eV/2 and a sufficiently large magnetic field, the zero-bias
IRUM(y) = ENIR 2eV 2kgT (5.27 anomaly is split byuggiH, which is half the magnetic split-
why v’ ' ting for the Kondo impurity. Thus, while the low-

temperature scaling function fd&;= +eV/2 is identical to
that of the Kondo model, the magnetic splitting is smaller by
a factor of 2. The situation is reversed faf=0. Here the
magnetic splitting Zgg;H is the same as for the Kondo

. model, but the scaling function is smaller by a factor of 4.
respectively, for the Kondo model, to make the W/ compined, the low-temperature scaling function and the
curves identical. In particular, the conditién =T, for per-  gpjitting with an applied magnetic field fully distinguish the

fect zero-temperature conductance in the Kondo model trangsigtarential conductance for our Kondo model from that due
lates to y, = yr for the resonant-level model. Also fd#; to ordinary resonant tunneling.

=0 the two currents are indistinguishable, but only at zero
temperature. The necessary mapping of model parameters in
this case involves identifying with T', and 4y, yg/y with VI. SPIN CURRENT

I';. This equivalence of the twb-V curves breaks down as eyt we compute the Kondo-assisted spin current. While

soon asT is nonzero, as the temperature for tBe=0 | () measures the total electric current across the junction,

resonant-level model is effectively twice as large as that fohe gpin current measures the difference in currents between
the corresponding Kondo modgtompare Eqs(5.29 and e gpin.up and spin-down carriers. In the Kondo model,

(5.26 with the above identification of model paramelerss iy and spin-down electrons are coupled via the spin-flip
explained below, this fundamental difference between theyncesses. As we shall see, this has a striking effect on the
two models is directly probed by the scaling function gnin cyrrent, which as a result is a symmetric function the

F(V.T). applied bias, and its direction is determined by the asymme-

Going back to general model paramet&fS) andr, we  ry in the transverse coupling to the left and right leads.
analyze the scaling function of E¢5.13 for the resonant-

level model. ForE{®#0 andr #0, the leading voltage de-
pendence of the differential conductance is linear\Vin
HenceF(V,T) at low temperature and low voltage does not  The derivation of the time-averaged spin currkyV) is
reduce to a function 0f/T, in contrast to the Kondo model. similar to that of the charge current in the previous section.
Asymptotic dependence ow/T is recovered when at least In the scattering-state approach, one implements the same

one of E{”) or r is zero, in which case the low-temperature two basic steps, i.e(i) expanding the operatdf in terms of

for the resonant-level model witlh;= +eV/2.

For Es=+eV/2, the currentdR"M(V) andI (V) are in-
distinguishable. This is because one can always idemity
and 2y, yr/ v for the resonant-level model with, andI"y,

A. Derivation

and low-voltage scaling function reads the scattering-state operators diig averaging the resulting
3 (1 V2 expression with respect te”#'~Y") The diagrammatic
FRIM(V T)= = | = +3r2 (e_) ' (5.28 calculation also resembles that of the charge current and is
o \4 kT detailed below.

By analogy with the functioiGy, (t,t’) of Eq. (5.4), we

Contrary to the Kondo case, E(p.28 is not universal. begin by defining the functions

Rather, it depends on the parameterwhich is model de-
pendent. Moreover, with the exception of the case - , " A
+1/2, FREM(V T) is smaller by a factor of 143r2<1 stka(tt) =[O+ dsr(D)]alt’)),  (6.2)
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1s(V)= J_ > Gialtit)
> Glrep(Lib). (6.9
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relies on the fact that the resonance widthsandI', are
much smaller thareV— ugg;H and ugg;H. To make the
physical picture explicit, we use the following representation
of the transformed Hamiltonian in terms of tldefermion

rather than the@ andb Majorana fermiongsee Eq(3.15]:
H'=H{+ uggiH(dTd—1/2)

LL

y [41(0)d"+dye(0)]
22ma o s

Switching to energy variables and applying perturbation

theory with respect td-R, J*, 3=, andH, one obtains

J* N _ X
fE Giikale m[eba<e>+2|f<—e>eba<e>],
(6.4)

! > G2 i G2(€)+2if(—€)G?
\/_E 4 stb(e)_lm[ ap(€)+2if(—€e)Gip(e)],
(6.5

where the wideband-limit relation of Eq4.32 has been
used. The spin current follows from combining E@6.4)
and (6.5 with Eq. (6.3), which gives

—iG(e)+4f(—e)G3(e)]de.

(6.6

Here ' and T'y are equal to I-“)%4mahve and
(I’™2amahve, respectively. Finally, upon inserting the
explicit expressions fo6,,, G,,, andG2,, one arrives at

(' —

g’y (=
V)= segH 522 [ delfe- ()

€
X . - ,
[(e+iTa)(e+ilp)—(uggiH)?*
where fqs1(€) is the effective distribution function of Eq.

(6.7

RR

1 t T
+ 2\/2—7m[l!/sf(o)d +d'/’sf(o)]

LR

2J_

[7(0)d"+ yf(0)d+d"y(0) +dy(0)].

(6.8

Here H; is the free kinetic-energy part 6’.

From the definitions of thd fermion, Eq.(3.12, and the
canonical transformatiod, one recognizes that an emputy
level corresponds to the spin-up”E&1) impurity state,
whereas an occupied level represents the spin-down*(
=) state. LetP(t) be the probability for having an empty
d level at timet, and letP (t) denote the probability for
having an occupied level. Since tbdevel is either occupied
or unoccupied, the sum of the two probabilities is equal to 1:
Pi()+P (1)=1.

The different rates for transitions between the spin-up and
spin-down impurity configurations can be read off from Eq.
(6.8 using Fermi's golden rule. Altogether there are eight
different terms in Eq(6.8) that flip the impurity spin; how-
ever, only some of them contribute in the limit considered
here. For example, since the energy of the spin-up state is
lower by ugg;H than that of the spin-down stafassuming
H>0), there is no thermal energy to flip the impurity spin
from up to down. Only the voltage can provide the necessary
energy for such a spin flip, by tunneling an electron from the
left lead to the right one. Thusj;(0)d", which describes
this process, is the only allowed transition when the impurity
spin is up. In contrast, nearly all spin-flip processes are active
when the |mpur|ty spin is down. The only forbidden process

(4.39. As for the charge current, an identical result is ob-in this case isy{(0)d, which corresponds to tunneling of an

tained using the scattering-state approach.

B. Master equation

Several facts are apparent from E.7). First, no spin

current can flow ifH is equal to zero. This is to be expected

electron from the right lead to the left one. Such a process is
prohibited by the large voltage barrier for tunneling from
right to left. Collecting the different transition rates for each
impurity state, the resulting master equations Ro(t) and

P (t) read

since the two spin orientations are equivalentkbr 0, and dPy(t)

hence the spin-up and spin-down currents are identical inthe ~ —g;— ~P1(U 55 [F1+ I +Tr]— PT(t) (6.9
absence of a magnetic field. Secohd)y) is proportional to

I'. —T'r, which implies thajJ-"| must differ from|J%R| in dP(1) 1

order for a spin current to flow. Most surprising is the fact —ai P15 —P(O o [T+ I +TR].

that the direction of the spin current is determinedJyy, 6.10

JRRand the sign oH, and is independent of the sign \¢f

To understand how these features come about, it is useful Note that the effect o in this limit is to block intralead

to consider the limit where eV>uggH and eV
—wp0iH, wggdiH>kgT,I';,I'y. In this case we are able to

spin-flip scattering when the impurity spin is up. The large
bias enables the spin to flip freely in both directions, by

derive the spin-current result by a master equation, whictiunneling an electron from the left lead to the right one.
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d

Hence the asymmetry between the spin-up and spin-down
impurity states is reflected in the intralead processes. Indeed,
by inverting the sign ol one changes the direction of tun-
neling, but Eqs(6.9) and(6.10 remain intact. On the other
hand, flipping the sign oH interchanges the roles &f,(t)
andP (t).

The steady-state solution of Eq#6.9) and (6.10 is
readily obtained by setting the left-hand sides equal to zero.
Together with the requirement th&, andP, add up to 1,
this leads to

T,+T,-T,/2 1T,

[ s P N

The apparent difference betwe®q and P| simply reflects
the different lifetimes for the two impurity configurations in
the presence of an applied magnetic field.

To determine the spin current and also the charge current
from the probabilities?, (t) andP (t), we need to compute
the time derivatives oNg(t) andN¢(t), respectively. Bear-
ing in mind that(i) tunneling of an electron from right to left
is forbidden for large positive voltage bidse., no z,b;“(O)
processes are allowed within E.8)] and(ii) intralead spin
flips are suppressed when the impurity spin is[up., no
#$(0)d" and y54(0)d" processes are permitted within Eq.
(6.8)] one obtains

(e) ®

_d Ni(t) =— irl[PT(t)‘F Pl(t)]v (6.12 .FIG. 5. SchematiF: description of the. mephanism for creating a
dt 2% spin current. Assuming a large magnetic field and an even larger
voltage bias, an impurity polarized in the direction of the fi&dd
dNg4(t) can only be flipped by tunneling an electron across the jungbinn

1
dt = ﬁ(FR_ Iy Pi(t)' (6.13 As the opposite spin flip has no energy barrier to overcome, several
spin-flip processes are available. These incllddlipping a left-
Substituting the steady-state value @y, Eq. (6.11), then lead electron from spin up to spin dowe), (ii) flipping a right-lead
gives electron from spin up to spin dow(d), (iii) tunneling a second
electron from left to righte), and(iv) the same electron that tun-

_ dNs¢(t) _ € neled in(b) from left to right can actually tunnel badk). Of the
=€ dt 2 U (6.14 four sequences, onlfc) produces a positive spin current, whil#
produces a negative spin current. Since the respective rates for pro-
dNg((t) 1 Ty(T,—Tp) cessedi) and (i) are proportional to J-")? and (%72, the total
l=— =— . (6.15  spin current is proportional talt")?— (J%R)2,
dt 4 T 4+T,

proportionality tol', —I'g can be seen already in the original
Hamiltonian of Eq.(2.2), using the same arguments as for
the solvable point. We illustrate this point in Fig. 5, where
the limit of a large magnetic field and an even larger voltage
bias is assumed.

In the limit eV—uggiH,uggiH>ksT,I';,I'y, EQs.
(6.14 and (6.15 coincide with the exact expressions, Egs.
(5.7 and(6.7), respectively. Thus, the mechanism for creat-
ing a spin current involved) a magnetic field that polarizes
the impurity spin,(ii) a sufficiently large voltage bias that : - : — ; .
provides the energy for flipping the impurity spin in both In Fig. 5@ we begin at an instant in time in which the

U . . impurity spin is polarized in the up directiofwe assume
d_lrectlons, andiii) an asymmetry between the intralead spm.-H>0). Due to the large Zeeman splitting, the impurity can

current is triggered by the application of a voltage bias, it;be flipped from up to down only by tunneling an electron

S . . across the junction, Fig.(B). The opposite spin flip has no
Q|recthn IS determ'lnec'j by the sign bf and the asymmetry Zeeman energy barrier to overcome; hence the impurity spin
in the intralead spin-flip scattering. Indeed, the even depenéan be flipped back by any of the following four processes:
dence of the spin current dh can be seen on a formal level,

: T (i) scattering a spin-up electron on the left lead to a spin-
by noting thatV and —V are connected withiY, via the 4y electron on the same lead, Fidc)s (ii) scattering a

particle-hole transformatiog; — — ¢{ . As the Hamiltonian spin-up electron on the right lead to a spin-down electron on

‘H' and the number operatbl; are both invariant under this the same lead, Fig.(8); (iii) tunneling a second electron

transformation, the spin current is independent of the sigrirom the left lead to the right one, Fig(é§; and (iv) the

of V. original electron that tunneled in Fig(l§ from left to right
Although Eqs(6.14 and(6.15 apply only to the solvable can actually tunnel back, Fig(f5.

point, the even dependence of the spin currenVand the Of these four processes, only the former two contribute to
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o

this resonance in terms of the mechanism for creating a spin
current. ForuggiH—eV,uggiH>kgT,I',,I'y, there is not
enough energy to flip the impurity spin from up to down.
Consequently, the impurity is frozen in the spin-up configu-
ration, which blocks any spin current from flowing. On the
other hand, foeV— ugg;H, uggiH>kgT,I",,I', the voltage
is sufficiently large for the impurity spin to flip, allowing a
spin current to flow. Thus, the mechanism for creating a spin
current is activated asV sweeps througl.gg;H, producing
a resonance in the differential conductance ¥t wggH.
A natural question to ask is, how large can the spin dif-
ferential conductance be? It is known that the charge differ-
FIG. 6. The differential conductance for the spin current, ential conductance for this system is boundeds’ijrﬁ, ie.,
Gy(V,T)=dls/dV, vsV, for T=0, I';=T},, and different values onee?/h quanta per spin channel. FBg=T,, the maximal

of the magnetic field. As the spin current is even in the applied biaspeak height is approached fargH>T', ,kgT and is equal
G4(V,T) is an odd function o¥, with resonancegeither a maxi- g

mum or a minimum at eV=z*puggH. Here G.=¢e(l',

—TR)T1/87AT2 and u=ugg; . The maximal peak height fd?, e | —-Tgl;

=Ty is equal td G, and is approached for large magnetic fields. 8% T2 : (6.19
a

Gs(V,0)/Gmax
o o
(@] w\

|
o
3

the spin current. Procesiv) produces neither a spin current As a function of I';/T",, it takes the optimal value of
nor a charge current, while procesii) results in a net roughly 0.385¢/2w7), which marks the upper bound on
charge current but no spin current. This is seen from the fadG(V,T)| for I';=T'y,. Larger values of G(V,T)| are pos-
that both a spin-up and a spin-down electron have been esible if I';#I'y,. For example|G(V,T)| can be as large as
fectively transferred from left to right in going from Fig(@  €/2h, for I';=3I'y, and uggiH>TI'4 ,kgT. This value actu-

to Fig. 5e). The remaining two processes result in either aally corresponds to half the maximal differential conductance
positive spin current, Fig.(6), or a negative spin current, one would get if there was only one spin channel in the
Fig. 5(d), depending on which spin carrier has been effecfroblem.

tively transferred from left to right in going from Fig.(&.

Given that the rates fdi) and (i) are proportional toJ:")? VIl. CHARGE-CURRENT NOISE

and (JER)Z, respectively, the total spin current is thus pro-

. Thus far our discussion has focused on properties of the
portional to @;%)2—(JRF?2, prop

s . _ time-averaged current. Another quantity of interest is the
Note that the role oY in this scenario is to enable the first charge-current noise, which corresponds to fluctuations

spin flip of the sequence, i.e., the one starting from an impUzpq, it the average current. The noise spectB(fl) mea-
rity spin parallel to the applied magnetic field. The sign of g\, o5 nair excitations of the system and, as such, provides

the spin current is determined, however, by the opposite Spiformation about dynamical properties that cannot be at-

flip, through the difference in rates for the two intraIeLale PrO-tained from the time-averaged current. A classical example is

cesses. As a results(V) has the same sign @s$[(J.)"  the electric charge of the current carriers. In this section we

—(JIFF)?1, irrespective of the direction of the applied bias. show that the noise spectra contains perhaps the most direct
We further emphasize that the above picture is indepenand unambiguous evidence for the many-body interactions in

dent of the longitudinal couplingd;”, as the probability for  our Kondo model. Most notably, it features signatures of

a longitudinal Kondo scattering is independent of both thepair-tunneling processes that cannot be traced in the time-

spin of the scattered electrons and the orientation of the imaveraged current.

purity spin. Thus, the mechanism for creating a spin current

relies solely on spin-flip scattering. A. Derivation

The charge-current noise spectr@f()) is defined by the
C. Differential conductance correlation function

We now return to the exact expression for the spin cur- .
rent, Eq.(6.7). In Fig. 6 we have plotted the differential S(Q):f e M), 1.0 —2¢ (1)) 2(0))]dt.
conductance for the spin currer@g(V,T)=dl/dV, as a |8 IR =20 e0)(1e(0)
function of bias, for zero temperature and different values of (7.7

the magnetic field. For conciseness, we have focused on tgqre the curly brackets in the leftmost average denote the

effective one-channel limit,=T', , which is expected to be anticommutator of the charge currditat timet and that at
the most relevant case. ) L o
dime t=0. Similar to the derivation of the average current,

Since the spin current is even in the applied bias, th Is0S(€) b ted in two distinct hich
differential conductance is an odd function\af This should ~ 21S9S({2) can be computed in two distinct ways, which are
efly outlined below.

provide a distinct experimental signature of the Kondo ef—brI ) N
fect. In particular, Gy(V,T) has a resonance aeV In the scattering-state approach, afi¢rhas been ex-
= ug;|H|—either a maximum iH(I' —'g)>0 or a mini-  Panded in terms of the scattering-state operators using Tables

mum if H(I', —T'g)<0. One can understand the origin of 1l and lll, the explicit time dependence f)j(t) is introduced
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by replacing a”CI,k and C,k operators mié with CI,k(t) Herefeff(e) is the effective distribution function defined in

=eaict andc, (t)=e "¢, , respectively. This in EQ.(4.39. .
turm aIIovx;s US 10 express the anticommuta{tf)g(t) T’(O)} Equations(7.7) and (7.8) are the central result of this
P e section. Together they provide us with an exact expression

entirely in terms of scattering-state operators. Once this SteR\ the noise spectrum, for arbitrary frequeryWe devote
has Dbeen —accomplished, averaging with respect %he remainder of this section to evaluation and analysis of

— H’,y’ . . . . . . X i
e/ ) is readily carried out using Eq$5.3), as is the  these equations, starting with t2=0 component of the
integral overt. The latter step provides us wi({2). noise spectrum.

An identical result is obtained for the noise spectrum
when diagrammatic techniques are employed. The starting

. . . . B. Zero-frequency noise
point for this approach is the function . y

Before proceeding to examine the zero-frequency noise,

1> (t,t) = (T L)L), (7.2 Wwe briefly review several standard limits which will be used
ee as a reference. In the case of uncorrelated tunneling events
which enters Eq(7.1) in the following manner: obeying Poisson statistié3 the noise-to-current ratio ise2
which we refer to hereafter as the Poisson limit or the “full”
I T - e -, shot noise. For a noninteracting quantum-mechanical elec-
S(Q)—f_me' (1760 +17(0) = 2(Ic(1) )(1¢(0)) Jdt. tron gas incident upon a barrier with energy-independent

(7.3 transmission probabilityZ, there is a suppression of the

noise-to-current rati—*! from the Poisson result toe?1
Diagrammatically| ~(t,t") is evaluated in a rather standard — 7). Inclusion of energy dependence in the transmission
manner from the current-current bubble diagram, the onlyprobability amounts to replacing in 2e(1—7) with an ef-
exception here being that, becaukg contains Majorana fective transmission coefficierf;:
fermions and does not conserve the numbersdérmions,
all possible contractions must be taken into accout,t’) S(0)/1.=2e(1—-Teyy), (7.9
therefore breaks into products of single-particle responsg ..,
functions, which are comprised @&,(t,t") andGy, ,(t.,t")
Egs. (4. . i i
[Egs.(4.25 and(5.4), respectively, together with T 1 MLTZ(G)de. 7.10

fﬁ;lf(e)df MR

(7.4 Thus, the zero-temperature noise-to-current ratio for a non-
interacting system is always bounded by the Poisson limit,
the latter being valid only in the limifg¢— 0.
> "N /A T orer / A generic feature of the noise-to-current ratio for our
Gand LU =(@MOIP1 (1) + thr (1) ]). 79 odel is that it approaches the Poisson limit & & large
Specifically, using Eq(4.32) one has bias. This can be seen from the fact that E@s7) and (7.8
with =0 andT=0 can be recast, after some manipula-

s, . e? tions, in the form
[~(t,t ):<Ic(t)><|c(t )>+?F10F

Gy rie (L) = ([ o+ e, JOL] o+ P ) (1))

and

e’T'? (ev
S(0)=2el(V)+ f Re(G2 (e+in)}de.
= S G ()G mh ) -ev
L o fk,fk’\ - aa\“ (7_11)
For largeV, the second term drops out in E(/.11), as
Gga(e+i 7) is analytic in the upper half plane and falls as-

Using Eq.(7.6), the noise can be expressed in terms of the/Mptotically like 1k2. Consequently, the unbounded integral

2 . . . . . "
single-particle response functions mentioned above. These Re[GZ(e+i7)} identically vanishes, leaving only the first

turn are evaluated in the Fourier representation using pertu]E-e";_ in gqo'(il'lj)’ WEiChr:s the Poisson rﬁswt' IIDn a sim:!ar_
bation theory with respect tibfﬁ andH. Skipping the details ashion,S(0)/l; can be shown to approach the Poisson limit

of the algebra, we quote here only the end result for theat large bias for arbitrary temperature.
noise:

~Gha(t )G, o (L)1, (7.6

1. T=0,H=0

2 © de The zero-temperature, zero-field noise for our model is
S(Q)= grlf —iT9(e)g(e—£Q) summarized in Fig. (8). Initially, there is a suppression of
o the shot noise near zero bias, but eventually it approaches the
+Gaa(e) ferf(ethQ)+for(e—12Q)]}, “full” shot noise S(0)/I .= 2e for voltages much larger than
I',. This can be understood quantitatively from the expres-
(7.7) sions for the noise and the noise-to-current ratio:

with 2

e eV eVl
S(0)=2ﬁ1“1

(7.12

9(e)=Gaale—in[f(e—eV)—f(eteV)]. (7.9
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-

S(0)/ele(V)
-
|
N
|
S(0)/ele(V)

eV/Tq eV/y

FIG. 7. The zero-temperature, zero-field noise-to-current ratio F'C- 8. The zero-temperature noise-to-current ratiolfge-I',
(@) for our Kondo model andb) for the noninteracting resonant- — 1 1 and different values of the magnetic field. Here: ugg; . For
level model withE; =0. Corresponding model parameters were ad-intermediate to large magnetic fields, there is a minima in the noise-

justed to produce identical zero-temperatli¥ curves for the two  [0-current ratio aboveV=puggiH. For uggiH/T';>4.25, a win-
models (i.e., ;= and ['y=4y,vx/7). For the Kondo model, dow opens in whict§(0)/I (V) exceeds the Poisson limit. Finally,

S(0)/1,(V) is equal to 2(1—T; /T,) for V<T,, and approaches for ,uBgiI-_l>1“a, the noise-to-current ratio approaches_the_ dotted
the Poisson limit 2 for I,<eV. For the resonant-level model, the Curve which has a peak value 6{0)/1.=3e and which is given
noise-to-current ratio also starts a(@—T', /T',), but saturates at 107 €V<uggiH by the ratio of Eq(7.19 to Eq.(7.18.

e(2—-T',/T'y)<2e for large voltages. . + )
wheren,(t) is the occupancy of thg state at tim¢. Hence

and the noise measures not only the Poissonian tunneling at-
tempts from the lead, but also the temporal fluctuations in the

S(0) eV occupfancy_of the level. In particglar, if the level i.s occupied

— = — . (7.13 at a given instance, then tunneling to the level is forbidden

le(V) arctareV/I'y)[(eV)“+1'] by Pauli’s exclusion principle until it becomes vacant again.

This induces temporal correlations between successive tun-

For voltages small compared I, Eq.(7.13 reduces to  neling events, causing suppression of the shot noise below
2e(1-T'y/T',). This is consistent with the noninteracting the Poisson limit.
case, in the sense thhy /T ,=G(0,0)7A/e? can be inter- In the Kondo model, the localized fermions are replaced
preted as the zero-energy transmission probability per spiby Majorana fermions, which are not subject to any exclu-
channel. SpecificallyS(0)/1. vanishes at small voltages for sion principle. Consequently, the current at large bias is
I'y'=T,, in accordance with the limit of perfect zero- given by Eq.(6.14) and is free of any damping term analo-
temperature transmission. Upon increasihgthe noise-to- gous to 1-n,(t). Physically, this reflects the lack of any
current ratio monotonically increases until it saturates at théundamental restriction on repeated flipping of the impurity
Poisson limit foreV>TI",. The effect of decreasing,/I',is  spin. The only contribution to the shot noise in this case
also to increases(0)/I.. In the limit of weak tunneling, comes from the random Poissonian tunneling attempts from
I'1 /T ;<1, the ratio S(0)/I. approaches the “full” shot the lead, which gives(0)=2el..
noise for arbitrary voltage bias, in agreement with the limit
7T.++<1 for the noninteracting case. 2.T=0,H#0

The noise curves in Fig.(&) are qualitatively similar to
those for theE; = 0 resonant-level model, shown in Figby.
At zero frequency, the noise for th&=0 resonant level is
obtained from Eqgs(7.9) and(7.10 using a Lorentzian form
for the transmission probability:

Next we switch on a nonzero magnetic field. Figures 8
and 9 display the noise-to-current ratio for zero temperature
and nonzero magnetic fielfSee Appendix D, EqD5), for

YLYR
T(E)Zm. (7.14)

Thus, there is a suppression of the shot noise everVfor
—oo, due to the factor of + 7. in Eq. (7.9). For 7(¢€) of
Eq. (7.14), o is equal to 2 yr/y? at large biad?

The reason why the resonant-level model has suppressed
noise at large bias but the Kondo model does not can be
understood from a simple master equation for the charge
current. For the resonant-level model, the spircurrent
from the left lead to the level is given at large bias by

S(0)/ele(V)

FIG. 9. The zero-temperature noise-to-current ratiodgg;H
=5I",, I';=TI";, and different ratios of , to I',. The excess noise
e increases a¥, /1", decreases. Specificall$g(0)/1.(V) approaches

L the asymptotic peak value ok22el’, /(I';+1T'y), in the limit of a
I o()=—[1—n4i1)], 7.1 oM 1A at b/
Lo(t) h [ o] (7.19 large magnetic field.
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an explicit analytic expression. The most intriguing fea- I, v 1 (1-v

ture of these plots is the enhancementSe0)/1 . for suffi- Rzzzw—H szf 5'” 1+o

ciently large magnetic fields, @&V approacheg.gg;H from

below. In particular, the noise can actually exceed the Pois- Iyl v 1 (1-v

son value of 21.. From Figs. 8 and 9 we see that this effect 27H [1—02 Eln 1+v) ]| (7.17

is more pronounced for fields large relative to the Kondo
scalesI', and Ty, and that the size of the excess noise in-Wherev=eV/uggiH<1 is the “reduced” voltage, and’,
creases withl",/T',. As noted above, it is impossible to 1S equal tol',—T'; (see Table )l In terms of the tunneling
achieve a noise-to-current ratio larger thanfeom a nonin- rates, the charge current and the zero-frequency noise are
teracting electron model. Thus, this is a clear signature fopiven by
the many-body phenomena of this problem. Moreover, there

is no analogous indication for many-body physics in the dif-
ferential conductance, which can actually be reproduced for
I',=T', from the noninteracting resonant-level model.

The key to understanding the noise curves in Figs. 8 angh, the above we have assumed that the one- and two-electron
9 is that tunneling processes involving just a single spin-fliprunneling events are uncorrelated, and hence the noise and
scattering are energetically disallowed ®Y<uggiH. The  the current are both additive, with the one- and two-electron
voltage can provide an excess energyed which is insuf-  contributions each obeying the relati®f0)=2QI.. Here
ficient to overcome the large Zeeman splitting at zero temg is the net charge transferred across the junction, Qe.,
perature. Thus, the only way to get a current is by virtual= e for one-electron tunneling ar@= 2e for pair tunneling.
processes in which the impurity spin is flipped twice, some Equations(7.18 and(7.19 are correct to fourth order in
of which involve the transfer of two electrons across thethe transverse couplings, which is the lowest nonvanishing
junction, while others involve the usual transfer of a singleorder for the current and noise wheW< ugg;H. They can
electron. As the effective charge for pair tunneling is 2 also be obtained from the exact expressions, E83) and
instead ofe, the maximal possible noise is 2¢f . rather  (7.11), by taking the limitl'; ,I',<uggiH. From the exact
than I.. expressions one can see that the apparent divergences in Egs.

This argument can be made quantitative by computing thé7-16 and(7.17 aseV approacheg.gg;H from below are
rates for the one- and two-electron processes, using Fermi@t off by higher order contributions ongesg;H—eV be-
golden rule and the Hamiltonian of E¢6.8). Assuming COmes comparable to the largestlof and Iy In terms of
uegiH is positive and large compared Fo, andT',,, thed the “reduced” volta_lgel_;, this cut_off can be made arblt_rar_lly
fermion is unoccupiedspin up for uggH>ksT. Flipping close to 1 by considering a sufficiently large magnetic field.

the impurity spin back and forth corresponds to the creation The dot.ted curve in Fig. 8 shpw_s the asymptotic noise-to-
and annihilation of a fermion, which costs an energy of current ratio, for a large magnetic field. FeV<pggiH, the

. . . ) . ._curve is given by the ratio of Eq7.19 to Eq. (7.18. The
uggiH in the intermediate state. As the impurity energy IS aximal gvalue lé’ors(o)“ is apc)(proached ?n the limit
the same for the initial and final states, conservation of en- 1- and is equal to é+ 2el', /(T +Ty). The upper
ergy implies that the cpr_wauction-e_lectron energy is also U"hound forS(0)/1, is therefore 4 insteaad of 2, correspond-
changed between the initial and final states. ing to the case where only pair-tunneling processes are

From Eq.(6.8), there are four different terms that create apresent. In terms of the original model parameters, this case
d fermion and four different terms that annihilate one, giving corresponds ta--=JRR=0.

a total of 16 second-orde_r processes that flip the impurity OnceeV> ugg;H, the voltage can supply the necessary
back and forth. We are interested in those processes th%ﬁergy to flip the impurity spin from up to down. This is

l.=eR,+2eR,, (7.18

S(0)=2€’R;+2(2e)°R,. (7.19

conserve energy and carry current at the same time, of whic anifest in Figs. 8 and 9 in a quick drop in the noise-to-
there are anly five processes. Specifically, the sequence @, rent ratio, below the Poisson value a. 2As explained in
termsy(0)d" followed by ¢(0)d annihilates a pair of fla- o yrevious subsection, the Poisson limit is recovered for
vor fermions, which corresponds to tunneling of two elec-very large voltages, i.epsgH<eV.
trons from left to right{see Eqs(3.5)]. The other fqur se- One may ask, r'mw rot;ust is this enhancement of the
quences involve one/(0) Toperator and one spin-flavor ,ise to_current ratio? Similar to the spin-current case, the
operator—eitherjs((0) or ¢5¢(0)—and therefore decrease mechanism for pair tunneling can already be seen in the
the nu_mber of flz_avor fermions only by 1. This corresponds tooriginal Hamiltonian of Eq(2.2), providedJ'Z'R is zero. For a
tunneling of a single electron. Hence to second order therg, e magnetic field, energy conservation prohibits any direct
are two types of contributions to the current: one-electrorynneling across the junction. Consequently, the lowest-order
and t\(vo-electro? tunneling processes. i tunneling processes involve two electrons, where the impu-
Using Fermi’s golden rule, the corresponding one-j nin'is flipped twice. Of the 16 different processes that
electron R;) and two-electron Ry) tunneling rates are 5 the impurity spin back and forth, only five conserve en-
found to be ergy and carry current at the same time. The first three pro-
cesses in the latter category are described by the sequences
(c), (d), and(e) in Fig. 5. In each of these cases the impurity
is first flipped by tunneling an electron from left to right
(assumingV>0) and then flipped back either via an in-

: (7.16
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G2,(e—in), which is identically zerdsee discussion fol-
lowing Eq. (7.1D]. In the second termf(€) is equal to
one-half in the dominant integration range, and hence

wh fi

ery (= e?
S(0)~ J GZ(e)de=—T,. (7.2

Evidently, Eq.(7.2]) is independent of temperature, indicat-
ing that thermal noise is unimportant at sufficiently large
bias. A complete expression f&0) for arbitrary tempera-

ture and zero magnetic field is provided in Appendix D, Eq.

FIG. 10. The zero-frequency charge-current nd#$6) for H (D).
=0, I'y,=I';, and different temperatures. Heré (V=1x)
=el',/2% denotes the charge current at large voltage bias. In accor- C. Finite frequencies
dance with the fluctuation-dissipation theore8{(0) is equal to Thus far our discussion has focused on the zero-frequency

4kgTG(0,T) at zero bias. For sufficiently large bias, it crosses over

noise. The most interesting aspect of the finite-frequenc
from the Nyquist-Johnson noise to the shot noise. 9 P d Y

noise spectruntS({1) is the appearance of singularities at
zero temperature at certain frequencies. For a noninteracting
gas incident upon a barrie§(Q)) has three characteristic
singularities** one singularity at zero frequency and two
symmetric singularities af) = +eV/4. The noise spectrum

is continuous in all three locations, but has discontinuous

tralead spin flip[Figs. 5c¢) and 5d)] or by tunneling a sec-
ond electron across the juncti¢fRig. 5(€)]. The remaining
two processes are similar to those in Fig&) &nd 5d), but
the order of spin flips is reversed: first the impurity spin is
flipped via an intralead scattering, and only then is it ﬂippedderivatives with respect t6.
back by tunneling an electron from left to right. The en-

h t of th ise-t t rati f th The origin of the singularities i8(}) is in the sharpness
ancement ot the noise-to-current ratio Comes rom e S o Form surfaces at zero temperature. This is best seen

quence of F_ig. E‘.E)' in WhiCh a charge of @ is transferr_ed by working in the scattering-state basis, where the Hamil-
across the junction. This phenomena should occur in any

" here direct t linais forbidden b onian is diagonal. For a general noninteracting problem,
system where direct tunneling 1S forbidden by energy Conselg,, .y 55 the resonant-level model, the current operator is bi-
vation and there are two-electron virtual processes.

linear in scattering-state operators. Hence the noise correla-
tion function, Eq.(7.1), measures particle-hole excitations. A
particle-hole excitation involves two Fermi functions: one
While at zero temperature one is dealing with pure shofunction f(e;— u,) for the availability of the particle and
noise, at finite temperature there are also thermal fluctuatiorenother function * f(e,—u,) for the availability of the
that contribute to the noise. For small voltage8<kgT, hole. The frequency) probes the energy of the excitation.
thermal fluctuations dominate the zero-frequency noise. Speit zero temperature, there will be an abrupt change in the
cifically, from the fluctuation-dissipation theor&it is product of the two Fermi functions as one sweeps through
known thatS(0)=4kgTG(0,T) at zero bias. In the opposite AQ=u,—uq, corresponding to the threshold energy for
limit eV>kgT, one expects a crossover from the Nyquist-creating a particle-hole excitation. Thus, f, is equal to
Johnson noise to the shot-noise result. This is illustrated in,, as in the case of a particle and a hole that originate from
Fig. 10, for zero magnetic field anld,=I",. At zero volt- the same lead, there will be a singularity in the noise spec-
age, S(0) increases monotonically with temperature fromtrum at Q=0. In the case of excitations that involve two
S(0)=0 atT=0 to S(0)=e’T'; /: atkgT>T,. As a func- opposite leads, the singularities occur(at +eV/%. In a
tion of voltage, S(0) gradually collapses onto the zero- general multilead system, the noise will typically have sin-
temperature shot noise, leaving only a single curve in Fig. 1@ularities at all possible chemical-potential differences.
for sufficiently large voltage bias. The crossover to the shot- A similar picture applies to the nonequilibrium Kondo
noise result occurs asV becomes several times larger than model. Here the elementary excitations of the system are the
kgT. scattering states for the flavor and spin-flavor channels,
Both the zero-voltage and the large-voltage limits can bavhich differ from both the physical electrons and the refer-
seen analytically from Eqg7.7) and (7.8), after setting(l  mionizedy fermions. The new ingredient in this case comes
equal to zero. Specifically, for zero voltage the first term infrom the structure of the charge-current operator, which is
Eq. (7.7) drops out andf.¢(€) reduces tof(e). After ma-  still bilinear in the scattering-state operators, but includes

3. Finite temperature

nipulating Eqs.(4.34—(4.37) for G_,(€) one obtains also particle-particle ¢'c’) and hole-hole ¢c) combina-
tions of scattering states. Accordingly, the current-current
er, (= correlation function of Eq(7.1) measures three distinct types
S(0)=4— j Ad(ef(—e)f(e)de=4kgTG(O.T), of scattering-state pair excitations: particle-hole, particle-

(7.20 particle, and hole-hole excitations, each of which has a dif-
ferent characteristic threshold energy. Consequeis({))
which is the fluctuation-dissipation theorem. for the Kondo model develops singularities wherk Q) is
In the opposite limiteV>kgT,I",,T',,uggiH, the first  equal either to the difference or to tkamof the two chemi-
term in Eq. (7.7) approaches the unbounded integral ofcal potentials for the relevant scattering-state fermions.
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FIG. 11. The zero-temperature charge-current noise spectrum FIG. 12. The same zero-temperature charge-current noise spec-
S(Q) forI'y=T",, H=0, and different voltage biaé (a) plotted vs  tra as in Fig. 11, but with’;=0.9",. For eitherI';#I'; or H
#QIT, and(b) plotted vsiiQ/eV. HereS(Q==)=eT'; /h isthe  #0, the noise spectrum has two additional singularitiedat
noise at large frequencies. FB;=T",, there are three distinct fre- *eV/A, where the slope 08(() is discontinuous.
quencies wher&()) has singularities( =0, where the slope of
S(Q) is discontinuous, anfl=*2eV/#, where the third deriva-  explains the rapid weakening of the singularity as the voltage
tive of S(Q)) with respect toQ) is discontinuous. The effect of a |s increased.
voltage is to weaken the singularity &8t=0, making it indiscern- Although it may not be apparent from Figs. 11 and 12,
ible at large bias. For sufficiently large bias, two symmetric minimathere are actually additional singularities in the noise spec-
develop at)=+eV/h. trum atQ = +2eV/%. These, however, are higher-order sin-

In Figs. 11 and 12 we have plotted the zero-temperaturQUIaritiefS' featuring a discontinuity in the third. derivgti_ve _of
noise as a function of frequency, for two different sets of_S(Q) with respect td). To analyze the latter smgularlt.les it
model parameters. In both figures the magnetic field is equaf Necessary to expand E@7) about()=+2eV/# to third
to zero; howeverT ', in Fig. 11 is equal td',. From Tables order in 6.=Q%2eVI#, which reveals the nonanalytic

2 . erm
Il and Ill one can see thdf, involves only flavor scattering-

state operators whehi;=1",, but contains also spin-flavor 2,2 2

operators if eithed’;#I';, or H#0. As we shall see, this Seinqulal @~ *2eV/#) = L 5| 8+ |2.
changes the number of singularities in the noise spectrumin 12m [(eV)?+T31%"

going from Fig. 11 to Fig. 12. A complete analytical expres- (7.23
sion for the noise spectra at zero temperature and zero mag- . o . . .
netic field is detailed in Appendix D, EGD7). As explained above, it is impossible to obtain any kind of

We begin with the limit of low frequencies. In the previ- Singularities at=2eV/4 from a noninteracting electron
ous subsections we have described in detail the zerdnodel. Moreover, the present singularities originate from the
frequency noise. In both Figs. 11 and 12 one sees that tﬁgrmsc{kc;k, and ¢ Cs ¢+ in the charge-current operator,
noise actually has a cusp 8=0, whereS(Q)) varies like  which bear no contribution to the time-averaged current.
the absolute value df. This cusp is the analog of the zero- Hence the processes underlying these unconventional singu-
frequency singularity in the noninteracting case. It stemdarities cannot be probed through the time-averaged current.
from particle-hole excitations for the flavor-channel scatter- We note that a similar factor of 2 in the location of sin-
ing states, i.e., from the ternes c; ,» in T, As the voltage gularities was recently found in the noise spectrum for static

! ? ) , . . . . _ . . - 145 .
is increased, it appears as if this singularity is washed oufMmPUrity scattering in gg=1/2 Luttinger liquid,> where it
However, careful analysis of E¢D7) shows that the noise at Was interpreted as measuring the charge of the current carri-

small frequencies always has the singular component ers (2" for physical electrons instead ef for the original
Laughlin quasiparticles A similar interpretation in the

) present context would imply the existence of pair-tunneling
As(eV)|Q]. (7.22  processes. We emphasize, however, that while the singulari-
R ties at+ 2eV/# are naturally understood in terms of particle-
Here A,(€) is the spectral function for tha Majorana fer-  particle and hole-hole excitations for the scattering-state fer-
mion. ForeV>T",, A2(eV) diminishes ad"%/(eV)*, which  mions, it is difficult to interpret them in terms of the actual

212
1

2e
Ssingular(QNO) =

ko
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conduction electrons in the system. Indeed, siogcg con- 0.4 I T
tains bothy , and w;k components, one cannot simply as-
sociatecs yCy » With the tunneling of two conduction elec- 0.3
trons from left to right, as is the case faf; i . It
remains to be seen what the underlying mechanism is for 0.2
creating these singularities in terms of the physical conduc-
tion electrons. X o1
The noise spectra in Fig. 11 have only three singularities >
at Q=0 andQ==*2eV/%. The noise is smooth and nons- > 00
ingular atQ)=*+eV/%, even though two symmetric minima L
do develop at these frequencies for sufficiently large bias. s 0.3
The situation is quite different when eith€n#1I", or if a =
nonzero magnetic field is switched on. In each of these cases, 0.2
1. contains mixed terms that involve one flavor and one spin- '
flavor scattering-state operator, each of which can either cre- 0.1
ate or annihilate a scattering-state fermion. Since the corre- ‘
sponding chemical potentials for the flavor and spin-flavor
fermions areus=eV and u¢ =0, respectively, there are ad- 0.0
ditional singularities in the noise spectrum @Qt= =eV/%.
Indeed, for a zero magnetic field, expansion of EQ7)
about()=*eV/A to linear order ind.=QFeV/h reveals FIG. 13. The impurity susceptibility(H,V) as a function oH
the nonanalytic term (a) for zero temperature and different voltage bias dhyl for

eVIT' ;=3 and different temperatures. In both grapti§,=I",
=I'y, and u=pupg;. As the voltage is increased, the zero-
temperature susceptibility evolves from a single peakiatO to
three resonances aizg;H =0,*eV. The effect of a temperature is
wherel’; is equal tol',—I';. Hence, similar to the nonin- to smear theT=0 structure, leaving only a single broad peak at
teracting case, the noise has a discontinuous slop® at sufficiently largeT.
==*eV/h.

Finally, we comment on the high-frequency limit. At high where
frequencies, S({2) approaches the asymptotic value of

eI,
L), (7.2
a

Ssingular(Q% *eVih)=

e’T";/%. The noise does not decay &s—x because we X [« (I'y+Ty)e

have chosen to work with an infinite bandwidth. For a finite M(X:Y) =~ - f_w [(e+iT ) (e+ilp) —x22 fle—y)de.

bandwidthD, there will be a characteristic cutoff frequency 8.3

Q.~D/#, beyond which5(€)) decays to zero. Such a cutoff

scale is absent for an infinite bandwidth. At zero temperaturen(x,y) has the simple closed-form ex-
pression

VIII. IMPURITY MAGNETIZATION
AND SUSCEPTIBILITY

m(x,y)=lm{
While transport properties are the most accessible experi- 7\AXZ— (T~ Tp)?
mentally for a single impurity, theoretically one is equally 2y+i(T+Ty)— 4x2—(l"a—l“b)2>]

interested in magnetic properties, as these provide direct in- xIn
formation about the onset of Kondo screening. In this sec- 2y+i(La+Tp)+ Vax2—(I,—Tp)?

tion, we discuss in detail the magnetic properties of the im-

X

purity spin, focusing mainly on the static susceptibility. 84
At finite temperaturem(x,y) is conveniently expressed in
A. Impurity susceptibility terms of the digamma function; see Appendix D, H38).

Equation (8.2 for the magnetization has the following
physical interpretation. The first term is proportional to the
tunneling ratel’; and, hence, explicitly involves transitions

The time-averaged impurity magnetization follows di-
rectly from the equal-time Green functi&y,(t,t):

© de between the two leads. Indeed, this is the only term to sur-
M(H,V)=iﬂsgif EG;’('E)' (8.1)  vive when bothd:" and J*R are equal to zero. Conversely,
o only the second term remains JtR is zero, i.e., when the
Inserting Eqs(4.33—(4.37) for G_,(€) yields two leads are decoupled. Thus, there is a clear physical dis-
r tinction between interlead processes involvifig® and in-
o 1 _ tralead processes involving~ and JRR, which is further
MH.V)= 1 Fa+rbm(,uBg|H,eV) evident from the fact that only the first term in E(.2)
I +To—T depends on the voltagé.
_a’’b 71 . Figures 13 and 14 show the impurity susceptibility as a
Fa+T function of field, for different temperatures and model pa-
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0.3 I T T : purity spin stems from the rapid suppression of intralead
My/To=— 1 spin-flip processes for the spin-up state, @s3;H is in-
.......... 2 creased from zero tpgg;H>kgT,I',,I'y. This produces a
peak in the susceptibility & = 0. If one further increased
such thatugg;H—eV>kgT,I',,T'y, then interlead spin flips
are also suppressed, and the impurity is frozen in the spin-up
configuration P,;=1). This produces a second-step jump in
the impurity magnetization, which shows up as an additional
peak in the susceptibility gtgg;H=eV.

©
N

Fax(H.V)/u?
o

B. Relating the spin susceptibility

. . e . to the differential conductance
FIG. 14. The impurity susceptibility(H,V) as a function oH,

for T=0, eV/T,=3, and different ratios of', to I',. The same ~ One feature which becomes apparent at the solvable point
general structure is found for all values Bf,/T',; however, the is the close relation between the magnetic susceptibility
peak resolution is improved d%,/T , is reduced. x(H,V) and the differential conductancg(V,H). Specifi-

cally, for I';=T"y, one has the identity
rameters. Each term in E¢B.2) is responsible for different

resonances in the magnetic susceptibility. This is best seen Y(H,V)= fi(usg)?[ Ti G(V,H)
for zero temperature anb,=T",,, when differentiation of ' eT, |I,+T, '
the first term with respect tbl gives X Fa+rb_rlG(o H)} o5
(V)= (g9i)? Iy I+ T '
v 47 | (nsGiH—eV)?+TI7} which gives
Fl ﬁ( ‘)2
+ . _ MBJ;
(kagiH +eV)ZH T2 B9 xHV)=x(H0)= 5 LG(VH) = GOH)].
and differentiation of the second term gives (8.9
Hence, up to rescaling, the impurity susceptibility and the
(upg))? 2I',—T; differential conductance share the same voltage dependence

Xa(H)= 27 (uggiH)2+T2" (8.6 for I',=T,. Although Eq.(8.9 is no longer exact fol,
#I'y, it remains a good approximation for arbitrdry and

As a function ofH, x,(H) has a peak at zero field, while T, if |[',—T',| is small compared tagg;H. This suggests

x1(H,V) is peaked ajgg;H = * eV. The total susceptibility that one can actually use the differential conductance as a

X = x1+ x2 therefore has three separate peaks for sufficientlyrobe for the voltage dependence of the impurity susceptibil-

large voltage: one central peakldt=0 and two symmetric ity, thus opening the door to susceptibility-like experiments

peaks atuggiH=*eV. The same qualitative picture also on a single impurity.

applies tol',# 1T’y ; see Fig. 14. The main effect bf,# 1T is

to modify the shapes of;(H,V) andx,(H), and to alter the C. Two-channel limits

characteristic voltage at which the three-peak structure is re-

solved. Similar to the differential conductance, the effect ofi

temperature is to smear the zero-temperature structure. &

demonstrated in Fig. 1B), only a single broad resonance is . . tibilitv. In the E Kivel luti ;
left in the susceptibility for sufficiently large temperature. Impurity susceptibility. In the Emery-Kivelson solution o

To understand the origin of the peaks in the magnetijhe two-channel Kondo mode&t,the impurity response to a

susceptibility, we go back to the master-equation approach pcal field is singulgr a§',H—>_0.. Specjfically, forT:.O and
Sec. VI B. ForeV— uggiH, usgH>ksT,T5, Ty, the prob- H—3>0 the magnetic susceptibility diverges logarithmically
: " | 1 | L g [}

abilities for finding the impurity in the spin-up and spin-

Finally, it is worthwhile to consider how a finite bias af-
cts the overscreening of the impurity spin in each of the
two-channel limits of our model, as measured through the

down states are specified in E@.11). The corresponding (usdi)? T
impurity magnetization is equal to y(H)y~2-"22 ( ) (8.10
wl’ #egiH
v = Hedi (P.—P)= s0; Fa+l“b—l“1, 8.7  While for H=0 andT—0 it diverges as
2 2(T,+ 1) ,
. _ _ (g, (1.1
which can also be obtained from the exact expression, Eq. x(0)= T In kaT | (8.1

(8.2), by taking the appropriate limit.
The above magnetization reflects the different lifetimesHerel is the relevant Kondo scale, i.¢., or I'y,, depending

for the two spin states: only interlead spin-flip processe®n the two-channel limit under consideration.

(I'y) can flip the impurity spin from up to down, whereas Consider now the effect of a finite bias. In the first two-

both interlead (1) and intralead [, andI',) processes can channel limitl';=0, the two leads are decoupled. Conse-

flip the spin from down to up. Thus, polarization of the im- quently, V has no effect on physical quantities, and Egs.
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(8.10 and (8.11) remain intact. In the opposite limif', field at zero temperature, the noise-to-current r&(o)/I .
=0, the divergences in the susceptibility are reduced by @&xceeds the Poisson value of and can be as large ag4
factor of 1-1", /T",, which is equal to zero fof';=I",. In  We explain this effect by virtual processes involving tunnel-
the latter case, a finite voltage entirely cuts off the diver-ing of pairs of electrons. This provides a simple mechanism

gence iny, which instead saturates at for the enhancement of the noise-to-current ratio in interact-
2 o2 ing mesoscopic systems.

Y(H—=0T—0)= (1e9i) Inl 1+ _a) . (812 ~ Pair processes of a different kind are observed in the

'y eV finite-frequency noise spectrum. As a function of frequency,

Hence, forl,=0 andl',=T ,, the effect of a voltage on the M€ NOisé has a new set of singularitie_sfﬂt),:iZer\f(é_
impurity susceptibility is similar to that of a local magnetic which are twice as _Ie_lrge as the convent.|onal frequerities.
field. These new singularities are understood in terms of the cur-

rent operator, which contains components describing the si-
multaneous creation or annihilation of pairs of scattering
states. The scattering states are the elementary excitations of
In this paper, we have presented an exact solution to ththe Hamiltonian; however, unlike in conventional noninter-
nonequilibrium Kondo problem based on a special point inacting systems, they do not correspond to any fixed number
the parameter space of the model where both the Hamilof physical electrons. Although the new singularitiesh &t
tonian and the operator describing the nonequilibrium dis-= = 2eV are too smooth to be detected experimentally, they
tribution, Y, can be diagonalized simultaneously. This en-clearly illustrate the complex nature of the tunneling current.
abled the calculation of a large number of experimentally Finally, we have computed the impurity magnetization
observable quantities. In the process of solving the problenrind susceptibility as a function of magnetic field and voltage.
we have also demonstrated by explicit calculation theéWhile it appears unlikely that the magnetization and suscep-
equivalence of two alternative approaches to nonequilibriumtibility of a single impurity can be measured experimentally,
a many-body scattering-state-operator apprbaemd the from a theoretical point of view they are perhaps the most
more conventional perturbation theory based on nonequilibdirect measurement of the screening of the impurity by the
rium Green functions. Both formulations rely on describingconduction electrons. By examining the susceptibility as a
the nonequilibrium condition by an operatég, which plays ~ function of voltage and field, we are able to identify two
the role ofuN in the equilibrium theory. Below we summa- distinct processes—intralead and interlead—which are re-
rize our main results. sponsible for different peaks in the susceptibility curve. Each
The charge current and differential conductance are th@eak occurs at a field where a certain spin-flip mechanism is
most widely studied observables in the nonequilibriumsuppressed. Intralead spin flips are suppressedufm;H
Kondo problem. Our solution shows the standard zero-bias>0, whereas interlead spin flips are suppressedufgy;H
anomaly and its splitting under an applied magnetic field>eV.
which actually very few other approaches have been able to Although the solvable point is only one point in the pa-
describe in the strong-coupling regime. Most important, berameter space of the nonequilibrium Kondo problem, we ex-
cause of the analytic nature of our solution, we are able t®ect it to correctly describe the strong-coupling regime of the
analyze in detail the scaling properties of the differentiaimodel for arbitrary antiferromagnetic coupling constants. In
conductance at low temperature and low voltage. In particuparticular, our predictions for the scaling curve should be
lar, we obtained the universal low-temperature scaling curvgluantitatively correct. As one of the parametieg3, eV, or
and the finite-temperature corrections to it, both of whichuggiH becomes of order of the Kondo scale, our results are
bear direct relevance to quantitative comparisons with exexpected to remain qualitatively correct, but not necessarily
periments. quantitative. For example, the differential conductance ob-
Contrary to the charge current, the spin current has nogerved experimentaﬁ;? shows a splitting in a magnetic field
been studied before in the context of the nonequilibriumsimilar to the one obtained in our calculation; however, one
Kondo problem. In computing the spin current and the assocannot quantitatively fit our solution to the experimental
ciated differential conductance, we find that the spin currencurves®® As one leaves the scaling regime—ilgT, eV, or
for this model is actually even in the applied voltage. ItsugQiH becomes considerably larger than the Kondo
direction depends solely on the sign of the magnetic field angcale—it remains to be seen which of our results continue to
the asymmetry in the transverse coupling to the left and righapply to a generic Kondo Hamiltonian. We expect the spin
leads, which provides a distinct experimental signature focurrent to remain an even function of the applied bias, with a
tunneling through a Kondo impurity. A simple physical pic- characteristic peak in the differential conductanceeast
ture is given for this effect in terms of the different possible = ugg;H. On the other hand, we do not recover the standard
tunneling processes. Although the spin current has not bedngarithmic temperature dependence of the conductance at
studied experimentally to date, there is no reason why ihigh temperature. It is particularly interesting to see if our
cannot be measured in light of the present interest in spinpredictions for the enhancement of the noise carry over to the
polarized transport. standard Kondo Hamiltonian and whether they can be de-
Similar to the spin current, the charge-current noise hasected experimentally.
not been studied before in this problem. The noise spectrum It is our hope that the concepts and techniques used in this
measures pair excitations of the system. With the noise onpaper will prove useful in studying other interacting non-
is able to see new physics which is not observable in thequilibrium problems and in obtaining other solvable points.
differential conductance. In particular, for a large magneticEspecially intriguing is the possibility of combining the

IX. CONCLUSIONS
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Y-operator formalism with power_ful approaches such as the Up=exdifi(x1;— x1) 7 +i02(x21—x2)) 7] (A3)
Bethe ansatz and conformal field theory; however, this ! )
hinges on the ability of the latter approaches to construct th& defined by the two angles of rotation

appropriate many-body scattering states. It remains to be J J
seen to what extent existing solutions of the equilibrium 1= 2 and 0,= 2 (A4)
Kondo problem! can be reformulated in terms of the many- 4mhue 4mhv
body scattering states. This brings us to
huv %
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D1, (X)=AdD 1, (X) — BD,,(X), (AB)
APPENDIX A: MAPPING OF THE EFFECTIVE

ONE-CHANNEL LIMIT ONTO THE ORDINARY @ZU(X): B, (X)+Ad,,(X), (A7)
ONE-CHANNEL HAMILTONIAN

In this appendix, we show that the effective one—channe\INhere
limit of Eq. (2.19 is equivalent in equilibrium to the ordi- 1-6,
nary one-channel Kondo Hamiltonian. Specifically, using the A= —, (A8)
notation of Eq.(2.16 we present an exact mapping of the V(1=61)7+6;
Hamiltonian
0>
H=Hygy+ IS+, 4 (SiP+ S + d857 (A1) SN (A9)

onto the standard single-channel Kondo Hamiltonian. Heresimijar combinations are defined for eachggfandy,. The

Hyin is the Kinetic energy for thel,, and i, fields, and . tieients A and B are chosen such thab,,(x) and
J,1, I, andJ, ; are arbitrary coupling constants. For con- ..

ciseness, we have omitted the local magnetic field acting off2-(X) maintain appropriate commutation relations:
the impurity spin from Eq(Al). Such a term, though, can be

trivially incorporated. The mapping is obtained in the frame- [®i6(X), @i (Y)]=—176i,85,0r SGNX—Y). (AL0)
work of bosonization. Conventional exponents are restored in E&p) by per-
To bosonize the fermion fields;, and ¢, we employ  forming a second canonical transformation, this timeHtb
the same representation of Sec. lll, with the indicesndR =U,H' U} with
corresponding to 1 and 2, respectively. This leads to the 2
following representation of EqAl): U,=expli[ (1- 0—21)2+ 02_1](}11_;{2071}_
(A11)
five * 2 . . .
H=—— > f [VD,(x)]“dx This step brings us to the Hamiltonian
4 =171 2120 J -
J WAL F [(Vd (x)]2dx
+i;l[ei()(lT*Xll)T*—e*i(XleXll)TJr] T A 11 T2l J e v
47a el
J o~ -
J i L reiap—xa) ;- — e ia—xa) 7
+ﬁ[v©ﬁ(0)—v¢1i(0)]72 +|47Ta[e T —e Tl
Iz . + j—Z[VcT> (0)—=Vd, (0)]7 (A12)
with x,=®,(0) ¢, where
The Hamiltonian of Eq(A2) is converted to a standard Vo= amholl— m A13
one-channel Kondo Hamiltonian through a series of transfor- = Amhuel ( ) 2 (AL3)
mations. We begin with the canonical transformatiff At this point, we transform to a new fermion representa-

=U,HUI, in which tion by introducing the fermion fields
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~ e J* .
io(X) = ——=e 1Pic), Al4 Hy=i Tt b
‘M ( ) 2ma ( ) 1 Zmzk (‘/’sf,k ‘/’sf,k)
Here ©;, are supplementary phase operators, introduced to JiR R
assure that the different fermion species of E&l4) anti- + Z ((//Ivk— /AL
commute with one another. The explicit forms of g, are 2ymal k
R 3 3 S (Pl derd (82)
2T:§ f_m[thzl(x)+V<D1T(x)+V<I>1l(x)]dx, o Jmal & stk TSt
(A15) .n
H,=—ipuggiHab. (B3)

@Zl:% fx [VEI’Dﬁ(x)JerI')lL(x)]dx, (Al6)  Each of the above components is assigAned a Liouville opera-
o tor £,,, which acts on a general operatoraccording to

£,0=[0,H,]. (B4)

Using L= Lo+ L1+ L5, EQ. (4.6) is rewritten as

and®,,=0. In terms of the new fermion fields, the Hamil- . ot
tonian takes the form (L+etinc, =iny, ., (BS)

~ ~ 1 (= .
O =e1—¢1=5 J_qu’ll(x)dX, (A17)

—— ~ - which has the formal solution
H'=Hyin+ IS 77+ 3 1(S] P+ 7Y), (A18)

. 1
whereH,,, is the kinetic energy of the,,, and i, fields, Ch =i T etin Ul (B6)
ands) are the spin densities at the origin for thg, fermi- . _ _ _
ons [obtained by replacingy;,(0) with ¥;,(0) in Eq. .Because_of the exphcn_way_m which enters Eq(B6), it
(2.19]. is inconvenient to work with this representation of £4.6).

Equation (A18) is just a standard one-channel Kondo Our goal is to recast the same equation in a form more suit-

Hamiltonian, in which thejs,,, fermions undergo a Kondo able for computing the scattering-state operators. This is

) ) ) ’ ] ) i ~ achieved by combining the operator identity
spin-exchange interaction with the impurity spin. Tle,
fermions are decoupled from the impurity. The effective lon- 1
gitudinal coupling in this new representationds, which E+ek+i7]: 1- £+Ek+i77(£1+£2) Lot ectin
generally depends on both,; andJ,, [see Eq.(A13)]. For (B7)
J,1,d,0<<1, it reduces tal,; . !

In equilibrium, this establishes the equivalence of the efWith
fective one-channel limit of Eq2.19 and the standard one-

: 1 1
channel Kondo effect. This result, however, does not carry — =y (B8)
. . . £ + € +| V,k | V,k

over to the nonequilibrium case, where a simultaneous map- 0T &7 n
ping of theY, operator is required. When expressed in terms, 4
of the fermion fieldsy,, and ., , Y, contains bilinear com-
binations that do not transform simply under the operations Lo} =0, (B9)
U, andU,. Consequently, one can no longer formally map . ’
the effective one-channel limit of Eq2.19 onto the stan- to obtain
dard one-channel Kondo impurity in the presence of a finite
bias.

to_ gt T
Cok=Wux Lretin L,k (B10)

APPENDIX B: DERIVATION

OF THE SCATTERING-STATE OPERATORS Equation (B10) is the direct analog of the Lippmann-

Schwinger equatidhi for scattering states in first quantiza-
In this appendix, we present a detailed solution of thetion. Here w;k plays the role of the plain-wave boundary
scattering-state operators, as defined by(Ed). Our objec- condition, while£; and £, correspond to the scattering po-
tive is twofold: to obtain exact, closed-form expressions fortential. A similar equation can be derived for the scattering-
the scattering-state operators and to illustrate at the sanstate operators of a general nonequilibrium problem. The re-
time the type of machinery necessary for tackling operatomainder of this appendix is devoted to the solution of this

equations such as E#.6). equation.
To this end, we separate the Hamiltonian of Eg4) into When taking the commutatof 111/1',( in Eq. (B10), it is
three parts useful to introduce two auxiliary operators
Ho= 2 2 &k (B1) A=;.é (B12)
v=T,sf K mET L+e+in
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t t
and 1 Ifljv,k’ _ 1 lfljv,k’
R 1 R £0+£2+ Ek+i n lﬂv,k’ EkI Ek/"'i n lﬁv,k’ (BZO)
B= ,C"‘E—k+|77 (812)
) ) (iii) Take the commutatorg 1¢I xand Ly, .
These are related to the scattering-state operators via (iv) Employ the wideband limit
JLR 1 1 1 dfk/ |
Tt L 3 - = =7
Cka_ l’bfrk+2 mral A’ (813) L % E_Ekriiﬂ 27TfLU|: f E_Ekriiﬂ +2hU|:.
(B2
N At the end of these steps one arrives at
Clo= vloct A-i B. (B14) P
2+ mal 2+ mal 1 JLR
. R . ————— L1a=iT A- ——=
By analogy with Green functiongy andB can be inter- Ltectin 2\malL
preted as the “dressed{with respect to£; and L,) coun- +
terparts ofa andb. Indeed, a systematic expansiondpand x> Ui _ AR :
L, corresponds to perturbation theory #y and #,, with K \Ek— €ty  etertin
(Lo+ ec+in)~ ! playing the role of the bare propagator. B +
Concentrating on the operatofsand B, we evaluate them _ J ( Psti :
using a procedure reminiscent of the equations-of-motion 2Jmaly \& € Ttin
technique for the calculation of ordinary Green functions. As
in Dyson’s equation for Green functions, we seek a closed _ st (B22)
set of equations relating andB to themselves. Bearing this et e t+in)’

aim in mind, we substitute once again the operator identit)(NhereF

(B7) into Egs.(B11) and (B12), only this time in combina- a is defined in Eq(4.7).

An almost identical calculation is applied to the rightmost

tion with term in Eq.(B18). It yields
1 [a] 1 é] .
= - (B15) 1 T
+ e+ + — Lb=iT,B—i
Lo+ €ctin | b etin | b L+ectin L b oJmal
and +
S bt o N st
La=—iuggib, Lb=iugga,  (B16) e eartin acteaotin)
(B23)

to obtain
wherel’,, is taken from Eq(4.8).
Substituting Egs{(B22) and (B23) into Egs.(B17) and

(etimA—inegB=a— 7 Lid, (B17  (B18), a closed set of 2 2 linear equations is obtained far
andB. Straightforward solution of the latter equations yields
A - 1 - A A )
(ectimBrineQiA=b= oo Lib. - (B18) A=Gaalex+imactGoaletimpe,  (B24)
While the left-hand sides of Eq&B17) and(B18) contain B=Gap(€x+i7) e+ Gopl e+in) By, (B25)

on:zlA andB, t?;e riﬁh:mostdte:mtl)n eaChﬁ-qléat\l/(\)/n :CS a New,whereG;; are the Majorana Green functions specified in Eq.
unknown quantity that needs 1o be Simpiiled. We ToCus I~ o anq 5, and B, are the operators defined in Egé.12)
tially on the rightmost term in Eq(B17) and write it as and (4.13, respectively. The final expressions for the

scattering-state operators, Eq&.10 and (4.11), follow
S S PN from combining Eqs(B24) and (B25) with Egs. (B13) and
Ltectin 15 Lot Lotet+in ™t (B14).

1 1 A
- — L — Lqa. APPENDIX C: THE Y’ OPERATOR
‘C+Ek+|7’ l£0+£2+6k+|7] 1

In this appendix, we show that the solution to the operator
(B19) . T
equation(4.1) is given by

Equation(B19) is evaluated using the following steps.

(|) Implemer_lt the_ commutatof 1¢//I’k. Yy =eV2 CI Ct G, (C1)
(ii) Use the identity koo
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wherec is an appropriately chosen constés¢e below. To Two comments should be made about the above result.
this end, we implement the commutator of EG1) with +’: First, our derivation relied solely on the special structure of
the scattering-state operat(nijk. Since Eq.(4.10 remains
; +
Y' H'l=eV ch H e erel e H'T). mtac_t for a generaly#0 (not only n—07), so do_es our
[ 1 2|<: (Lot IeritCrud Cri D) solution forY’. Namely, Eq(C1) with c=eVI';/4| 5| is the

(C2)  exact solution of Eq(4.2) for arbitrary »+ 0. Of course, only
— 0" bears relevance to our discussion.

The second point to notice is thatactually diverges as
17— 0; however, this divergence is harmless. It does not en-
ter any physical quantities.

Each of the commutators on the right-hand side can be ac?
counted for using Eq4.6). Hence Eq(C2) becomes

[Y’,H’]=ineVEk L] =l et ol (dr—cril,

(€3 APPENDIX D:
which may be rewritten as ANALYTIC EXPRESSIONS FOR OBSERVABLES
Y H =i n(Y5—=Y") In this appendix, we provide closed-form, analytical ex-

pressions for a comprehensive set of observables: the charge
) N + current, the differential conductance, the charge-current
iy C_eV; (o= i1 (Cr— Prd) |- noise, and the impurity magnetization.

(CH
1. Charge current
Equation(C4) clearly reduces to Eq4.1) if the expres-
sion in the curly brackets is equal to zero, i.e.citan be
chosen such that it cancels the rightmost sum. Indeed, th
somewhat surprising result follows from the special structure

The charge current for arbitrary temperature and model
garameters is given by

of the scattering-state operatmrh. To see this we note that el', 1 & +ieV
the operatorsy, and 3., Egs.(4.12 and(4.13, obey ll(V)=5—7 Im[A1¢<§+ 27kgT
Lo B b
while Gf(ectin) is equal to—Gj(e+in) [see Eq. T8 s
(4.9)]. From the combination of these two properties one 1 &—ieV
obtains the key relation —A| 5+ 2akaT || (D1)
C;r,k_ lﬂ;,k: i, k= Ct, ks (Co)
which allows the following manipulation: where
Tt _ F+T I,—Tp\°
; (Ct k= ¥4 (Cr = ¥t k) £10= 32 b \/( 62 b) ~(uegH)? (D2
:—EK (Cf k=i (ct =i W) and
:—EE{Cka_wIk i« (CD -1 &-T
22 ’ A=t 2 a,=22h (D3)

_ _ _ b—&' TP 6§
Here we have exploited the equivalence of summing &ver
and —k in order to arrive at anticommutators. Given that
cf «— ! is linear iny and y' operators, each of the anti-
commutators above is @ number. Consequently, also the
entire sum in Eq(C7) is nothing but a constant.

Although this is sufficient to prove our point, it is satisfy-
ing to know that the sum in EqC7) can be carried out
explicitly. Skipping the details of the algebra, we quote her
only the end result

Here (2) is the digamma functiof’ For a zero magnetic

field, &, and & coincide withI', andT'y; hence Eq(D1)

reduces to Eq5.9). Likewise, forl';=1"}, and a nonzersi,

&, and ¢, are equal td',*=iwggiH, and Eq.(5.10 is ob-

tained. Otherwise, fofF ;#1T', and a nonzero magnetic field,

eAl andA, are in general complex, and therefore both the real

and imaginary parts of thes functions contribute to the

charge current.
T t _ Iy

Ek: (Chi Y1 (Cra ¥ 4| 7| 8 2. Differential conductance

Hence Eq.(C1) with c=eVI';/4| 5| is the solution of Eq. The differential conductand8(V,T) follows from differ-

4.7). entiating Eq.(D1) with respect toV. This yields
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rameters. We therefore restrict ourselves in the following to
those particular cases discussed in the main text.
(i) For zero temperature and arbitrary model parameters,

e, w1 g1+|ev
GV D= gzt RO A 3 ST

1 §1 ieV the zero-frequency noise is given by
+A1¢(1) 2 kgT
T8 S(Q=0T=0)=2el (V)
+A2¢<1><1 é:22+kle'|\'/ +2e2F§ AL A A_%_ A3
(i wh iZ, eviig i& eviig
1 é&—ieV ;
+ A, AA eV+i
a4 ( 2rkeT ] e g 212 .gz)—m(é) } (D5)
§1—&| \eV+igy &1

wherey/®(z) =dyi/dz s the trigamma functiort Herel (V) is the zero-temperature charge current obtained

from Eq. (D1), while &; , andA, , are defined in Eqs.D2)
and (D3), respectively.

It is cumbersome to write down a single expression for (ii) For finite temperature and zero magnetic field, the
the noise spectrum at arbitrary temperature and model paero-frequency noise becomes

eV eV LV
cot kBT —cot m (V)
e’l'? rd 4@ 1 T,+ieVv
T2 ket ROV 2T 2mkaT
(D6)

where ?)(z) is the derivative of the trigamma functiog{?)(z) =d¢}/dz. Notice that Eq(D6) correctly reproduces two
important limits. In the limitV— 0, one can replace coN/ksT) and coth€\Vi2kgT) with kgT/eV and XgT/eV, respectively,
to obtain the fluctuation-dissipation theor&f) = 4kgTG(0,T). In the limit T— 0, each of the hyperbolic cotangents is equal
to 1 (assumingeV>0), while 4 can be replaced with-1)""[27kgT/(I',+ieV)]". Consequently, EqD6) correctly
reduces to Eq(7.12.

(i) Away from zero frequency, the noise spectrum at zero temperature and zero magnetic field is given by

3. Charge-current noise

I,
G(V,T)+2e—

Iy
Iy

Iy

O=0T,H=0)=2 eV
S( )=2e cot 2kT

e’I? eV| [ (L, LatieV
+W°°t keT) ™Y 2 2kt

0 T—0H-0 ezrz( o eV+7iQ evV-7Q
S( )= SAT sgn(})| arctal F—a —arcta F—a
r, eV+il', eV+il',
—-2-—Reln : n :
nQ eV+hrQ+il, eV-rQ+il,
hQ—eV eV ', ) .
+sgrnAQ)—2eV)j arctal —arctan = | —2+— Re{In(eV-7#Q+iT" ) —In(eV+iT',)}
I, I, hQ
hQ+eV eV F )
+sgn A+ 2eV)j arctal +arcta Re(In(AQ+eV+il',) —In(eV+il,)}
r, T, ﬁQ
T, rQ—eV hQ+eV
(T'3=T'1)|sgn A —eV)arctan —=——| +sgn A () +eV)arcta (D7)
nr, T, T,

The different singularities discussed in the main text origi-approaches the asymptotic valueesl,/#. In the opposite
nate in Eq.(D7) from the sign functions. Specifically, the limit (1—0, the noise in Eq(D7) reduces to Eq(7.12.
term proportional to sgitl) is responsible for the singularity
at Q=0 [see Eq.7.22], the terms proportional to sgi)
+2eV) produce the singularities atQ)==*2eV [see Eq.
(7.23], and the terms involving sgh()+eV) generate the Finally, the impurity magnetization has been conveniently
singularities ati ()= *+eV [see Eq.(7.24)]. In the limit of  expressed in Eq(8.2) in terms of the auxiliary function
large frequency only the arctangent terms survive, &(d) m(x,y). At finite temperature, the latter takes the form

4. Impurity magnetization
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1, 2y A+ila+ily
2 i4mkgT

I}

X
m(x,y)=Im A w(

|

1+2y+A+iFa+in
2 i4mkgT

(D8)
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where

A=ax?—(I';—Tp)2 (D9)

For T—0, each of the digamma functions in E@8) re-
duces to a logarithm, and E(B.4) is properly recovered.
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