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Toulouse limit for the nonequilibrium Kondo impurity:
Currents, noise spectra, and magnetic properties
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We present an exact solution to the nonequilibrium Kondo problem, based on a special point in the param-
eter space of the model where both the Hamiltonian and the operator describing the nonequilibrium distribution
can be diagonalized simultaneously. Through this solution we are able to compute the differential conductance,
spin current, charge-current noise, and magnetization, for arbitrary voltage bias. The differential conductance
shows the standard zero-bias anomaly and its splitting under an applied magnetic field. A detailed analysis of
the scaling properties at low temperature and voltage is presented. The spin current is independent of the sign
of the voltage. Its direction depends solely on the sign of the magnetic field and the asymmetry in the
transverse coupling to the left and right leads. The charge-current noise can exceed 2eIc for a large magnetic
field, whereI c is the charge current. This is not seen in noninteracting quantum problems, but occurs here
because of the tunneling of pairs of electrons. The finite-frequency noise spectrum has singularities at\V5

62 eV, which cannot be explained in terms of noninteracting electrons. These singularities are traced to a
different type of pair process involving the simultaneous creation or annihilation of two scattering states. The
impurity susceptibility has three characteristic peaks as a function of magnetic field, two of which are due to
interlead processes and one is due to intralead processes. Although the solvable point is only one point in the
parameter space of the nonequilibrium Kondo problem, we expect it to correctly describe the strong-coupling
regime of the model for arbitrary antiferromagnetic coupling constants and to be qualitatively correct as one
leaves the strong-coupling regime.@S0163-1829~98!02442-4#
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I. INTRODUCTION

The interplay between strong correlations and mesosc
systems is an active area of research. Systems being stu
experimentally and theoretically include quasi-on
dimensional wires,1 mesoscopic superconductors,2 quantum
Hall devices,3 quantum dots,4 and other quantum impurities
In some cases, the reduced dimensionality of the sys
leads to new physics, while in other cases it allows one
probe known physical phenomena in new ways. One sys
which falls in the latter category is tunneling through
Kondo impurity. The tunneling spectroscopy allows one
directly probe the Kondo resonance that develops at
temperature due to the screening of the impurity spin by
conduction electrons.

The phenomena of tunneling through a Kondo impur
has a long history. It was first discovered by accident in
early 1960s,5 when magnetic impurities were present in tu
nel junctions between two normal metals.6 A zero-bias
anomaly was seen, which enhanced the conductance a
voltages. Shortly after the original experiments, Appelbau7

and Anderson7 developed a perturbative theory which ca
tured the essential features of the experiment: a zero-
conductance that increased logarithmically with decreas
temperature and a zero-bias anomaly which split in the p
ence of a sufficiently large magnetic field. Although qu
successful in explaining the qualitative and in some cases
quantitative results, the Appelbaum-Anderson theory is p
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turbative and hence cannot describe the strong-coupling
gime of the Kondo effect. Experimentally, it is now possib
to access this regime for a single magnetic impurity both
metallic point contacts8 and in quantum dots.9

Despite the wide range of many-body techniques10 that
have been applied in recent years to get at the stro
coupling regime of the nonequilibrium Kondo model, the
are still no rigorous results for the nonequilibrium state. T
is to be contrasted with the equilibrium case, which is e
actly solvable using the Bethe ansatz.11 In this paper, we
present an exact solution of the nonequilibrium problem a
special point in the parameter space of the nonequilibri
Kondo model, related to the Toulouse limit12 of the ordinary
Kondo problem and the Emery-Kivelson13 solution of the
two-channel Kondo model. We give both the details of t
solution and an extensive discussion of the results, som
which have been reported earlier in a short publication.14

One of the primary advantages of a solvable point is t
many different observables can be computed. In the none
librium Kondo problem, the calculations have focused exc
sively on the charge current and differential conductance
addition to the differential conductance for the charge c
rent, we compute the spin current through the impurity,
charge-current noise as a function of voltage, temperat
and frequency, and the impurity magnetization and susce
bility. As far as we know, the spin current, noise, and ma
netization have not been studied before in the context of
nonequilibrium Kondo problem.
14 978 ©1998 The American Physical Society
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In particular, because one can calculate so many obs
ables at the solvable point, new and surprising physic
revealed. We find that the spin current is independent of
sign of the applied voltage, and its direction is determined
the asymmetry in the transverse coupling to the left and
the right leads. The charge-current shot noise in an app
magnetic field can actually exceed the Poisson value of 2eIc
(I c is the charge current!, which we are able to explain b
virtual processes involving the tunneling of pairs of electro
with opposite spin. As a function of frequency, we find
new set of singularities in the noise spectrum atV5
62eV/\, i.e., twice the conventional frequencies. Such s
gularities have no analog in noninteracting systems, and
associated with particle-particle and hole-hole excitations
the scattering states, which are the elementary excitation
the system. Finally, even in the case of the nonlinear dif
ential conductance, we are able to compute the scaling c
at low temperature and low voltage, and show that it is d
tinct from that of the resonant-level model.

An important aspect of this paper is the unique appro
to nonequilibrium interacting quantum problems. With t
conventional approaches, one starts with a well-defined
tial density matrixr0 describing an unperturbed system
equilibrium. The expectation value of a given operatorÂ at
some later timet is obtained by switching on the interaction
that drive the system out of equilibrium and evolving t
operator in the Heisenberg representation:

r05
e2b~H02Y0!

Tr$e2b~H02Y0!%
, ~1.1!

^Â~ t !&5Tr$r0Â~ t !%. ~1.2!

HereH0 is the unperturbed part of the Hamiltonian, andY0
is an operator describing the nonequilibrium condition~e.g.,
a chemical-potential difference!. Each of the standard non
equilibrium Green-function techniques15,16 represents a dif-
ferent way of implementing the time evolution in Eq.~1.2!.
Specifically, a nonequilibrium steady state is reached by
ting the initial time to be infinitely far in the past and assu
ing that correlation functions decay in time.

Recently, under the same assumption that correla
functions decay in time, an equivalent operator equation
been derived for the steady-state nonequilibrium den
matrix:17

@Y,H#5 ih~Y02Y!, ~1.3!

^Â&5
Tr$e2b~H2Y!Â%

Tr$e2b~H2Y!%
. ~1.4!

Hereh is a positive infinitesimal introduced to ensure app
priate boundary conditions. It does not enter any phys
quantities. In Eqs.~1.3! and ~1.4!, the task of implementing
the time evolution in Eq.~1.2! has been replaced with that o
~i! solving Eq. ~1.3! for the Y operator and~ii ! evaluating
averages with respect toe2b(H2Y). In practice, Eq.~1.3! is
solved by constructing the many-body scattering states
the problem at hand,17 which illustrates the added complex
ity in solving for the nonequilibrium state: In addition t
diagonalizing the Hamiltonian, one must work in a particu
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many-body basis set that simultaneously diagonalizes
~yet-to-be-determined! Y operator.

In this paper, we demonstrate by explicit calculation t
equivalence of the two approaches to nonequilibrium for
nontrivial problem of tunneling through a Kondo impurity
In particular, after transforming bothH andY0 to quadratic
forms, we compute all observables in two distinct ways: o
using conventional nonequilibrium Green-function tec
niques and the other by finding the many-body scatter
states and solving Eqs.~1.3! and ~1.4!. Both approaches are
exact and give identical results; however, each technique
advantages and disadvantages. For example, in the ca
the charge-current noise it is easier to obtain final expr
sions using the Green-function technique, but their phys
interpretation is more transparent in the scattering-state
resentation. Since this is one solution in a potentially lar
class of nonequilibrium problems, we explain in detail ea
of the techniques used.

The organization of the rest of the paper is as follows:
Sec. II we introduce the model. In Sec. III we present t
mapping onto an equivalent noninteracting nonequilibriu
problem, which is solved in turn in Sec. IV. Sections V, V
VII, and VIII contain detailed discussions of the charge cu
rent, spin current, charge-current noise, and impurity mag
tization, respectively, the main results of which are summ
rized in Sec. IX. Technical details and a comprehensive
of analytic expressions for the physical observables are
vided in four appendixes.

II. MODEL AND ITS LIMITS

A. Model

The physical system under consideration is shown sc
matically in Fig. 1. It consists of left (L) and right (R) leads
of noninteracting spin-1/2 electrons, which interact via
exchange coupling with a spin-1/2 impurity moment plac
in between the two leads. In the standard fashion,18 the
conduction-electron channels that couple to the impurity
reduced to one-dimensional fieldscas(x), where a5L,R
ands5↑,↓ are the lead and spin indices, respectively. H
we have linearized the conduction-electron dispers
around the Fermi level:ek5\vFk, whereek andk are mea-

FIG. 1. Schematic description of the physical system. We c
sider a tunnel junction that consists of two leads of noninterac
spin-1/2 electrons and a spin-1/2 impurity moment placed in
tween the two leads. Tunneling across the junction takes plac
way of the impurity moment, via an exchange interaction betwe
the impurity spin and the conduction electrons in both leads. T
effect of an applied voltage bias is to fix a chemical-potential d
ferencemL2mR5eV between the two Fermi seas.
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sured relative to the Fermi level and Fermi wave numb
respectively.x is a fictitious position variable conjugate tok.

In terms of the one-dimensional fields, the exchange
teraction with the impurity spin,tW , takes place via the
conduction-electron spin densities at the origin:

sWab5
1

2 (
s,s8

cas
† ~0!sW s,s8cbs8~0!. ~2.1!

The two diagonal elementssWLL andsWRR are independent spin
densities for the left and right leads, respectively, while
spinlike operatorssWLR and sWRL introduce tunneling betwee
the leads. The system is driven out of equilibrium by app
ing a voltage biasV across the junction. This fixes
chemical-potential differencemL2mR5eV between the two
Fermi seas, causing a steady-state charge current to flo
the direction of the applied bias. We assume that the volt
drops entirely in the region between the two meta
leads—a reasonable assumption given that the resistan
the tunnel junction is much larger than that of the leads.

Thus, the most general form of the HamiltonianH and the
nonequilibrium conditionY0 is

H5 i\vF (
a5L,R

(
s5↑,↓

E
2`

`

cas
† ~x!

]

]x
cas~x!dx

1 (
a,b5L,R

(
l5x,y,z

Jl
absab

l tl2mBgiHtz, ~2.2!

Y05
eV

2 (
s

E
2`

`

@cLs
† cLs2cRs

† cRs#dx, ~2.3!

where we have allowed for different couplingsJl
ab5Jl

ba be-
tween the conduction electrons and the impurity spin, a
also for a local magnetic fieldH. Here mB and gi are the
magneton Bohr and impurity Lande´ g factor, respectively.
Note that in Eq.~2.2! we have omitted for conciseness th
electrostatic potential energy on each lead,Ua52eVa .
This contribution to the Hamiltonian can easily be incorp
rated within our approach, but has no effect on the phys
quantities under consideration as long aseV is much smaller
than the conduction-electron bandwidth. The latter is
sumed throughout the paper to be the largest energy sca
the problem.

For Jl
ab5J.0, Eqs.~2.2! and~2.3! reduce to the standar

nonequilibrium Kondo problem, treated perturbatively
Appelbaum7 and Anderson.7 Here we take a different ap
proach. Rather then setting all coupling constants equa
one another and starting at weak coupling, we identify
special point in the parameter space of the model wher
can be solved exactly. Specifically, we show that the Ham
tonian~2.2! together with the nonequilibrium condition~2.3!
can be solved for arbitrary biasV in that region of theJl

ab

parameter space where

Jx
ab5Jy

ab[J'
ab , ~2.4!

Jz
LR5Jz

RL50, ~2.5!

and
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Jz
LL5Jz

RR[Jz ~2.6!

with Jz52p\vF . This provides the first exact solution of
nonequilibrium Kondo model, from which both univers
and nonuniversal features of Kondo-assisted tunneling
be extracted. Before proceeding with details of our soluti
let us first examine the meaning of Eqs.~2.5! and ~2.6!.

B. Scaling equations

We begin by asking, how restrictive are the above co
straints on the longitudinal Kondo couplings? To answer t
question we focus on theV50 equilibrium case and us
Anderson’s poor man’s scaling19 to derive scaling equation
for the Kondo couplings. Our objective is to determine und
which circumstances is a nonzeroJz

LR coupling generated a
the bandwidth is reduced.

To lowest order in the couplings, the scaling equations

dJz
LL

dl
5

1

2p\vF
@~J'

LL!21~J'
LR!2#,

dJz
RR

dl
5

1

2p\vF
@~J'

RR!21~J'
LR!2#,

dJz
LR

dl
5

1

2p\vF
~J'

RR1J'
LL!J'

LR , ~2.7!

with a similar set of equations for the transverse couplin
J'

ab . Here l 5 ln(E0 /E) is the logarithm of the renormalize
bandwidthE and E0 is the bare bandwidth. Starting wit
Jz

LR50, a nonzeroJz
LR coupling is generated from Eqs.~2.7!

unless the two leads are decoupled to begin with or ifJ'
RR

1J'
LL50. Moreover,Jz

LLÞJz
RR is also generated from Eqs

~2.7! if the bare transverse couplingsJ'
LL and J'

RR differ in
magnitude. Only in two special cases do we find that b
Jz

LR50 andJz
LL5Jz

RR remain stable upon scaling. This oc
curs if the bare Kondo couplings satisfy either

J'
LL5J'

RR and J'
LR50 ~2.8!

or

J'
LL52J'

RR. ~2.9!

As we shall see in the next subsection, these two cases
respond to two distinct two-channel20 limits of the Hamil-
tonian of Eq.~2.2!.

Hence, with the exception of conditions~2.8! and ~2.9!,
scaling trajectories for our model flow to a nonzero longi
dinal couplingJz

LR and also toJz
LLÞJz

RR if the bare trans-
verse couplings satisfyuJ'

LLuÞuJ'
RRu.

C. Limits of the Hamiltonian

Next we recast the Hamiltonian in a form more suitab
for identifying its various limits. Using the spinor notation

Cs~x!5S cRs

cLs
D , ~2.10!

the Kondo interaction in Eq.~2.2! is written as
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HKondo5
1

2
@C↑

†~0!ĴzC↑~0!2C↓
†~0!ĴzC↓~0!#tz

1
1

2
C↑

†~0!Ĵ'C↓~0!t21
1

2
C↓

†~0!Ĵ'C↑~0!t1,

~2.11!

where

Ĵz5S Jz
RR Jz

RL

Jz
LR Jz

LLD , Ĵ'5S J'
RR J'

RL

J'
LR J'

LLD . ~2.12!

Heret65tx6 i ty are the standard raising and lowering o
erators for the impurity spin:tl5 1

2 sl, wheresl is a Pauli
matrix. In general,Ĵz and Ĵ' are two symmetric matrice
which need not commute with one another. Thus, while e
matrix can be diagonalized separately, it might not be p
sible to diagonalize them simultaneously.

This is the point where conditions~2.5! and ~2.6! come
into play. Subject to Eqs.~2.5! and ~2.6!, the longitudinal-
coupling matrixĴz is simply proportional to the unity matrix
leaving onlyĴ' to be diagonalized. This can be achieved
carrying out the linear transformation

S c1s

c2s
D 5T̂S cRs

cLs
D , ~2.13!

where

T̂5
1

A~J'
LR!21l2 S l 2J'

LR

J'
LR l

D ~2.14!

and

l5
1

2
~J'

LL2J'
RR!1

1

2
A~J'

LL2J'
RR!214~J'

LR!2.

~2.15!

In terms of the new conduction-electron channelsc1s and
c2s , the Kondo interaction reduces to

HKondo5Jzs1
ztz1J'1~s1

xtx1s1
yty!

1Jzs2
ztz1J'2~s2

xtx1s2
yty!, ~2.16!

where

J'1,25
1

2
~J'

LL1J'
RR!7

1

2
A~J'

LL2J'
RR!214~J'

LR!2

~2.17!

are the eigenvalues of theĴ' matrix and

sW i5
1

2 (
s,s8

c is
† ~0!sW s,s8c is8~0!, i 51,2, ~2.18!

are the spin-density operators corresponding to conduct
electron channels 1 and 2.

Thus, the Hamiltonian has the form of a generalized tw
channel Kondo model,20 with an additional channel aniso
ropy in the transverse coupling. In particular, the conv
tional isotropic two-channel model~i.e., with twoequivalent
h
s-

n-

-

-

channels! is recovered when eitherJ'15J'2 or J'15
2J'2 . In terms of the bare model parameters, these
limits correspond to conditions~2.8! and ~2.9!, respectively.

What are the two channels in each of these two limi
For J'

LL5J'
RR and J'

LR50, Eq. ~2.8!, the two leads are de
coupled. Hence the channels are just the right and left le
which obviously carry no current. ForJ'

LL52J'
RR, Eq.

~2.9!, one needs first to makeJ'1 equal toJ'2 by attaching a
minus phase to one of the fermion fields, say,c1↑(x). The
physical picture depends then in a continuous manner on
interplay betweenJ'

LR and J'
LL2J'

RR. When uJ'
LRu!uJ'

LL

2J'
RRu, the system approaches a limit where the leads

again decoupled. The channels are basically the right and
leads, with minor mixing of the two leads. Mixing of th
leads gradually increases asJ'

LR becomes comparable t
J'

LL2J'
RR. Eventually, for uJ'

LRu@uJ'
LL2J'

RRu, the channels
are~i! spin-up electrons in the left lead and spin-down ele
trons in the right lead and~ii ! spin-down electrons in the lef
lead and spin-up electrons in the right lead.

As soon asJ'1Þ6J'2 , our model departs from its two
channel limits and becomes that of a two-channel Kon
impurity with channel anisotropy. The extent of anisotro
between the channels can be continuously tuned by var
the different transverse couplings. An opposite limit
reached when one of theJ'1 , J'2 couplings vanishes. This
may be regarded as an effective one-channel limit, as o
one conduction-electron channel undergoes spin-flip sca
ing. In terms of the original parameters of the model, t
case is described by the condition

J'
LLJ'

RR5~J'
LR!2. ~2.19!

In equilibrium, we can actually show that the above lim
is equivalent to the ordinary one-channel Kondo Hamilton
~see Appendix A!. We further note that Eq.~2.19! is always
satisfied when the Hamiltonian of Eq.~2.2! is derived from
an Anderson impurity model via a Schrieffer-Wol
transformation.21 We therefore expect the effective on
channel limit of Eq.~2.19! to best describe the convention
Appelbaum-Anderson model.7 Further support for this inter-
pretation will later emerge in the course of our solution.
should be emphasized, though, that our particular choice
model parameters cannot be the outcome of a Schrie
Wolff transformation, as the latter generates equal transv
and longitudinal couplings. This relation is obviously vio
lated within our model sinceJz

LR is set equal to zero.

D. Magnetic field

Finally, a few words are in order on the magnetic fie
When an external magnetic field acts on the conducti
electron spins, it polarizes their spins. This generates a
bulk magnetization in each lead, which modifies the effect
field seen by the impurity.H in our model should therefore
be viewed as theoverall effective magnetic field seen by th
impurity—applied and induced.

To make the discussion quantitative, consider a weak
ternal magnetic fieldHext acting on all spin degrees of free
dom. When coupled to the spins of the conduction electro
Hext induces in each lead a bulk magnetization equal to
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Mbulk5
1

2
~mBge!

2r0Hext . ~2.20!

Here ge and r05(2p\vF)21 are the conduction-electro
Landég factor and density of states, respectively. The imp
rity spin, being coupled toMbulk through the Kondo interac
tion, thus experiences an induced magnetic field of mag
tude

Hind52gi
21geJzr0Hext , ~2.21!

which acts to reduce the overall field seen by the impur
Hence, inasmuch as impurity-related quantities are c
cerned, the effect of a magnetic field acting on t
conduction-electron spins can be fully absorbed into a ren
malization of the local field that couples to the impurity sp
according to22

H5Hext1Hind5~12gi
21geJzr0!Hext . ~2.22!

@In the case whereJz
LLÞJz

RR, one needs to replaceJz in Eq.
~2.22! with (Jz

LL1Jz
RR)/2.#

As can be seen from Eq.~2.22!, there is really only one
physical parameter which determines the effect of a magn
field on impurity-related quantities, and that isDEmag
[mBgiH. There are two approaches one could take towa
determining this parameter:~i! One could deduce it experi
mentally, e.g., from the measured Zeeman splitting in
differential conductance.~ii ! One could determine the effec
tive field H from the applied magnetic fieldHext and the
model parameters entering the renormalization factor of
~2.22!, i.e.,gi , ge , Jz

LL , Jz
RR, andr0 . At the solvable point,

the renormalization factor actually vanishes ifge5gi . Even
more surprising, it becomes negative ifge.gi . In this paper
we take the first approach and regardmBgiH in Eq. ~2.2! as
an independent parameter to be determined directly from
periment.

III. MAPPING ONTO A NONINTERACTING
NONEQUILIBRIUM PROBLEM

In this section, we present the mapping of Eqs.~2.2! and
~2.3! onto an equivalent noninteracting nonequilibrium pro
lem. Normally, mapping of an interacting quantum
mechanical problem onto a noninteracting one means
one can perform a canonical transformation to reduce
Hamiltonian to a quadratic form. For a nonequilibrium pro
lem, in addition to the Hamiltonian the transformation mu
also preserve the quadratic form ofY0 , or else the task of
finding Y and diagonalizingH2Y remains a true many-bod
problem. This sets an added constraint, which often prev
the extension of successful mappings in equilibrium to
nonequilibrium state. Equations~2.2! and~2.3! provide a rare
example where such an extension is possible.

The reduction ofH and Y0 to quadratic forms relies on
bosonizing the one-dimensional fields.23,24 The derivation
presented below is a generalization of the Emery-Kivels
solution of the two-channel Kondo model,13 designed to ac-
count for the extra channel-symmetry-breaking terms pre
in our model. Here, although the natural degrees of freed
for describing the Kondo interaction were seen in the pre
ous section to bec1s andc2s , we shall work directly with
-

i-

.
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the left- and right-lead electrons as these couple more tr
parently to the applied voltage.

Following Emery and Kivelson13 we introduce four dif-
ferent boson fields

Fas~x!5ApH E
2`

x

Pas~x8!dx81fas~x!J , ~3.1!

to account for the four different left-moving fermion speci
entering Eqs.~2.2! and ~2.3!. Herefas(x) andPas(x) are
real, conjugate boson fields satisfying standard commuta
relations:

@fas~x!,Pa8s8~x8!#5 ida,a8ds,s8d~x2x8!. ~3.2!

The left-moving fermions are expressed as23,24

cas~x!5
eiwas

A2pa
e2 iFas~x!, ~3.3!

wherea21 is an ultraviolet momentum cutoff, correspondin
to a lattice spacing. The additional phaseswas are required
to assure that the different fermion species anticommute w
one another. Our choices for these phases are

wL↑5pE
2`

`

@cL↓
† cL↓1cR↑

† cR↑1cR↓
† cR↓#dx,

wL↓5pE
2`

`

@cR↑
† cR↑1cR↓

† cR↓#dx,

wR↑5pE
2`

`

cR↓
† cR↓dx, ~3.4!

andwR↓50. Alternatively, Eqs.~3.4! can be written directly
in terms of theF fields, by replacing eachcas

† (x)cas(x)
above with¹Fas(x)/(2p).

Using the well-known prescriptions for bosonizing,23,24

both the Hamiltonian andY0 are expressed in terms of th
four boson fieldsFas(x). The Fas(x) are used in turn to
construct four new boson fields, corresponding to collect
charge, spin, flavor~left minus right!, and spin-flavor modes

Fc5
1

2
~FL↑1FL↓1FR↑1FR↓!,

Fs5
1

2
~FL↑2FL↓1FR↑2FR↓!,

F f5
1

2
~FL↑1FL↓2FR↑2FR↓!,

Fs f5
1

2
~FL↑2FL↓2FR↑1FR↓!. ~3.5!

Similar combinations also apply to each offn(x), Pn(x),
and the phaseswn (n5c,s, f ,s f ). The latter can also be
written directly in terms of the new collective fields, fo
example,
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w f5
1

4 E
2`

`

@2¹Fc~x!2¹F f~x!2¹Fs f~x!#dx, ~3.6!

ws f5
1

4 E
2`

`

@¹F f~x!2¹Fs f~x!#dx. ~3.7!

Introducing for convenience the shorthand notationxn

5Fn(0)2wn , we notice thatxs commutes with bothx f and
xs f . Thus, the HamiltonianH and the nonequilibrium opera
tor Y0 are written as

H5
\vF

4p (
n5c,s, f ,s f

E
2`

`

~¹Fn!2dx1
J1

pa
@2tx sin~xs!

1ty cos~xs!#cos~xs f!2
J2

pa
@tx cos~xs!

1ty sin~xs!#sin~xs f!2
J'

LR

pa
@tx cos~xs!

1ty sin~xs!#sin~x f !1
Jz

2p
¹Fs~0!tz2mBgiHtz

~3.8!

and

Y05
eV

2p E
2`

`

¹F f~x!dx, ~3.9!

whereJ6 are the even and odd combinations:

J65
1

2
~J'

LL6J'
RR!. ~3.10!

A crucial feature of the bosonized Hamiltonian is thatxs
enters the spin-flip terms of Eq.~3.8! only as an effective
angle of rotation. Hence it can be conveniently removed13 by
rotating bothH and Y0 about thez axis:H85UHU†, Y08
5UY0U†, with U5exp@ixst

z#. Y0 , being proportional to
¹F f(x), is unaffected by the canonical transformation; ho
ever, the Hamiltonian simplifies to13

H85
\vF

4p (
n5c,s, f ,s f

E
2`

`

~¹Fn!2dx1
J1

pa
ty cos~xs f!

2
J2

pa
tx sin~xs f!2

J'
LR

pa
tx sin~x f !

1F Jz

2p
2\vFG¹Fs~0!tz2mBgiHtz. ~3.11!

At this point we transform to a new fermion represen
tion. To this end, we first express thet spin in terms of a
fermion operator:

d5 i tx2ty5 i t1. ~3.12!

The Bose fields are then ‘‘refermionized’’ according to

c f~x!5
eipd†d

A2pa
e2 i @F f ~x!2w f #, ~3.13!
-

-

cs f~x!5
eipd†d

A2pa
e2 i @Fs f~x!2ws f#, ~3.14!

with similar expressions forcc(x) and cs(x). Here the
ipd†d phase takes care of the anticommutation relations
tween thed fermion and thecn(x) fields, whilew f andws f
@see Eqs.~3.6! and ~3.7!# guarantee that the flavor and spi
flavor fermions anticommute. The remaining anticommu
tion relations involving eithercc(x) or cs(x) are easily
taken care of by slightly modifying the phaseswc andws .

Once these steps are completed, the HamiltonianH8 and
the nonequilibrium operatorY08 acquire the following fer-
mion forms:

H85 i\vF (
n5c,s, f ,s f

E
2`

`

cn
†~x!

]

]x
cn~x!dx

1
J1

2A2pa
@cs f

† ~0!1cs f~0!#~d†2d!

1
J'

LR

2A2pa
@c f

†~0!2c f~0!#~d†1d!

1
J2

2A2pa
@cs f

† ~0!2cs f~0!#~d†1d!

1@mBgiH2~Jz22p\vF!:cs
†~0!cs~0!:#~d†d21/2!

~3.15!

and

Y085eVE
2`

`

c f
†~x!c f~x!dx. ~3.16!

Here :cs
†(0)cs(0): means normal ordering with respect

the unperturbedcs Fermi sea. Strictly speaking,Y08 and the
kinetic-energy terms ofH8 are also normal ordered; how
ever, normal ordering of these terms is left implicit since
merely amounts to shiftingY08 andH8 by constants. By con-
trast, normal ordering ofcs

†(0)cs(0) is essential, as this
combination multiplies the operatord†d21/2.

The solvable line is readily identified from Eqs.~3.15!
and ~3.16!. Upon settingJz52p\vF , both the Hamiltonian
and the nonequilibrium operatorY08 reduce to quadratic
forms. Hence the strongly interacting nonequilibrium Kon
problem maps onto a noninteracting one, which may be
garded as thenonequilibrium analogof the Toulouse limit.12

Although noninteracting, the resulting nonequilibriu
problem is somewhat unconventional in the sense thatH8
does not conserve the overall number of transformed fer
ons ~not to be confused with the original electrons in t
problem!. Moreover, it involves the combinations

â5
d1d†

&
, b̂5

d†2d

i&
, ~3.17!

which are Majorana fermions.13 The Majorana fermions sat
isfy â25b̂251/2 instead of zero as for usual fermions, a fa
that will have important implications later on. IfH50 and
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the J'
ab parameters are such that only one ofâ or b̂ couples

to thec fermions,H8 reduces to the Emery-Kivelson13 limit
of the two-channel Kondo Hamiltonian. Recalling the de
nition of J6, Eq. ~3.10!, this is seen to occur when either E
~2.8! or Eq. ~2.9! is satisfied, i.e., for each of the two two
channel limits identified in the previous section.

IV. SOLUTION OF THE NONINTERACTING
NONEQUILIBRIUM PROBLEM

At this stage bothH8 and Y08 are quadratic, hence th
nonequilibrium problem can be solved exactly. We shall
so using two independent routes:~A! by explicitly construct-
ing theY8 operator in terms of scattering-state operators
~B! by standard diagrammatic techniques. The latter
proach will require a specific decomposition of the Ham
tonian into a perturbationH18 and an unperturbed partH08 .
Since both formulations employed are exact, they must
incide when applied to any physical observable. This w
provide us with a critical check as to the correctness of
results.

A. Explicit construction of the Y8 operator

The first thing to recognize is thatY85UYU† obeys the
operator equation

@Y8,H8#5 ih~Y082Y8!, ~4.1!

which follows from applying the canonical transformationU
to both sides of Eq.~1.3!. Y8 is therefore composed o
scattering-state operators.17

For a standard single-particle scattering problem, sca
ing states are eigenstates of the Schro¨dinger equation obey
ing suitable boundary conditions.25 They are given as solu
tions of the corresponding Lippmann-Schwinger equati
Within second quantization, an analogous equation may
written down for the scattering-state operators, which in t
case simply create electrons in the scattering states. F
noninteracting problem, the two representations are equ
lent, due to the one-to-one correspondence between sin
particle states in first quantization and creation operator
second quantization. However, as soon as interactions
switched on, the scattering-state operators acquire com
cated many-body components that can no longer be
scribed in terms of single-particle states. Even in our ca
whereH8 is quadratic in fermion operators, the scatterin
state operators do not conserve the number of particles
thus have no first-quantization analog.

Equations~3.15! and ~3.16! contain four species of fer
mion fields, yet bothcc and cs are decoupled from thed
fermion and theY08 operator forJz52p\vF . As a result,
only c f and cs f need to be considered when computi
impurity-related quantities such as the current. Restrict
our attention to the latter fields, we introduce their Four
transforms

cn
†~x!5

1

AL
(

k
cn,k

† eikx ~n5 f ,s f!. ~4.2!

Here L is the size of the system, andk takes the discrete
valuesk52pn/L. The Fourier components satisfy
-

o

d
-

o-
l
r

r-

.
e

s
r a
a-
le-
in
re
li-
e-
e,
-
nd

g
r

$cn,k
† ,cn8,k8%5dk,k8dn,n8 . ~4.3!

Rewriting Eqs.~3.15! and~3.16! for Jz52p\vF in terms of
the cn,k operators yields

H85 (
n5 f ,s f

(
k

ekcn,k
† cn,k2 imBgiHâb̂

1 i
J1

2ApaL
(

k
~cs f,k

† 1cs f,k!b̂

1
J'

LR

2ApaL
(

k
~c f ,k

† 2c f ,k!â

1
J2

2ApaL
(

k
~cs f,k

† 2cs f,k!â ~4.4!

and

Y085eV(
k

c f ,k
† c f ,k , ~4.5!

whereek is equal to\vFk.
The scattering-state operators for the flavor and sp

flavor channels,cf ,k
† and cs f,k

† , respectively, are defined b
the operator equation17

@cn,k
† ,H8#52ekcn,k

† 1 ih~cn,k
† 2cn,k

† !, ~4.6!

in which the positive infinitesimalh is introduced to guaran
tee appropriate boundary conditions. Due to the quadr
nature ofH8, one can solve these equations exactly. Leav
the details of the derivation to Appendix B, here we pres
their solutions.

In writing the solutions for the scattering-state operat
of Eq. ~4.6!, we use the notation specified in Table I. Th
two basic energy scales in the problem are

TABLE I. Definition of energy scales and symbols used in t
solution of the nonequilibrium Kondo model. HereJ'

ab are the
transverse Kondo couplings from Eq.~2.2!, J6 are the even and odd
combinations defined in Eq.~3.10!, anda is an ultraviolet momen-
tum cutoff, corresponding to a lattice spacing. Physically, the
ergy scalesGa and Gb play the role of Kondo temperatures at th
solvable point. The remaining energies show up as coefficient
the expansion of physical operators in terms of the scattering-s
operators~see Table II! and as prefactors in the final expressions
physical quantities.

Symbol Definition

Ga @(J'
LR)21(J2)2#/4pa\vF

Gb (J1)2/4pa\vF

G1 (J'
LR)2/4pa\vF

G2 (J2)2/4pa\vF

GL (J'
LL)2/4pa\vF

GR (J'
RR)2/4pa\vF

Gm J'
LRJ2/4pa\vF

Gp J'
LRJ1/4pa\vF
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Ga5
1

4pa\vF
@~J'

LR!21~J2!2# ~4.7!

and

Gb5
1

4pa\vF
~J1!2, ~4.8!

which play the role of Kondo temperatures at the solva
point.13 It is also useful to define the matrix function

G~z![FGaa Gab

Gba Gbb
G5

1

~z6 iGa!~z6 iGb!2~mBgiH !2

3F z6 iGb 2 imBgiH

imBgiH z6 iGa

G , ~4.9!

where upper~lower! signs correspond toz in the upper
~lower! half plane. Although not apparent at this point,G(z)
will turn out to be the Majorana Green function~see next
subsection!. Notice thatG is diagonal in thea-b basis only
for a zero magnetic field, in which caseGa and Gb are the
spectral broadenings of theâ and b̂ spectral functions, re-
spectively. In particular, the effective one-channel limit
Eq. ~2.19! corresponds to the case whereGa5Gb , which
features, in accordance with the ordinary one-channel
nario, only a single Kondo scale. Using the above Majora
Green function, the scattering-state operators are given

cf ,k
† 5c f ,k

† 1
J'

LR

2ApaL
@Gaa~ek1 ih!âk1Gba~ek1 ih!b̂k#,

~4.10!

cs f,k
† 5cs f,k

† 1
J2

2ApaL
@Gaa~ek1 ih!âk1Gba~ek1 ih!b̂k#

2 i
J1

2ApaL
@Gab~ek1 ih!âk1Gbb~ek1 ih!b̂k#.

~4.11!

To keep the notation concise, we have introduced in E
~4.10! and ~4.11! two k-dependent operators

âk5â1
J'

LR

2ApaL
(
k8

S c f ,k8
†

ek2ek81 ih
2

c f ,k8
ek1ek81 ih

D
1

J2

2ApaL
(
k8

S cs f,k8
†

ek2ek81 ih
2

cs f,k8
ek1ek81 ih

D
~4.12!

and

b̂k5b̂1 i
J1

2ApaL
(
k8

S cs f,k8
†

ek2ek81 ih
1

cs f,k8
ek1ek81 ih

D .

~4.13!

One can directly confirm at this point that the scatterin
state operators given above satisfy the commutation relat
of Eq. ~4.6! for a generalhÞ0, not onlyh→01 as is im-
e

e-
a

s.

-
ns

plicitly assumed throughout our treatment. Further,cf ,k
† and

cs f,k
† obey standard anticommutation relations

$cn,k
† ,cn8,k8%5dk,k8dn,n8 , $cn,k ,cn8,k8%50. ~4.14!

Hence, despite being composed of both creation and ann
lation operators of the bare Fermi degrees of freedom,cf ,k

†

andcs f,k
† are fermion creation operators.

As one might expect from Eqs.~4.6! and~4.14!, the trans-
formed Hamiltonian is diagonal in the scattering-state ba
Indeed, one can rigorously show that

H85(
k

ek~cf ,k
† cf ,k1cs f,k

† cs f,k! ~4.15!

by replacing all scattering-state operators in Eq.~4.15! with
their explicit expressions, Eqs.~4.10! and~4.11!. After some
lengthy but straightforward algebra, Eq.~4.15! is found in
this manner to be identical to Eq.~4.4!.

The main strength of the scattering-state formalis
though, lies in theY8 operator, which is solved directly in
diagonal form. Up to an insignificant constant,Y8 is given by

Y85eV(
k

cf ,k
† cf ,k , ~4.16!

which again can be verified rigorously. To see this one ne
to substituteY8 from Eq. ~4.16! into the operator equation
~4.1! and exploit some basic properties of the scattering-s
operators. A complete derivation of this important result
provided in Appendix C. Thus, as previously argued in R
17, Y8 is obtained fromY08 by simply replacing all bare
fermion operators that appear inY08 with their scattering-state
counterparts.

Having obtained and diagonalized the operatorH82Y8,
our nonequilibrium Kondo problem is nearly solved. All th
remains to be done is to express the physical observab
whose steady-state averages we wish to compute, in term
the scattering-state operators. Once this step is comple
averages with respect toe2b(H82Y8) are readily carried out.
In Table II we list a few basic operator identities, whic
serve as building blocks for constructing physical operato
Each of these entries may be verified directly using E
~4.10! and ~4.11!. The physical observables of interest i
clude the charge and spin currentsÎ c and Î s , respectively,
and the impurity magnetizationMz5mBgit

z. To identify the
new representations of these operators, it is necessary t
back to the initial description of the system in terms of le
and right-lead electrons.

Consider first the charge currentÎ c . The charge curren
measures the rate at which electric charge increases on
left lead or, equivalently, the rate at which electric char
decreases on the right lead~for a Kondo impurity, the two
are identical!. Therefore, the charge current from right to le
~which amounts toe times the number current from left t
right! is given by

Î c5
ie

2\
@N̂L↑1N̂L↓2N̂R↑2N̂R↓ ,H#, ~4.17!
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TABLE II. Expansion of useful operator combinations in terms of the scattering-state operators. Herecf ,k
† andcs f,k

† are the scattering-
state operators for the flavor and spin-flavor channels, respectively,J'

LR is the transverse Kondo coupling for flipping the impurity spin wh
tunneling an electron across the junction,J6 are the even and odd combinations of Eq.~3.10!, andGab are the corresponding componen
of the Majorana Green function, Eq.~4.9!. The differentG’s are defined in Table I.

Operator Expansion in terms of scattering-state operators

â (4paL)21/2(k$J'
LRGaa(ek2 ih)cf ,k

† 1@J2Gaa(ek2 ih)1 iJ1Gba(ek2 ih)#cs f,k
† %

1(4paL)21/2(k$J'
LRGaa(ek1 ih)cf ,k1@J2Gaa(ek1 ih)2 iJ1Gab(ek1 ih)#cs f,k%

b̂ (4paL)21/2(k$J'
LRGab(ek2 ih)cf ,k

† 1@J2Gab(ek2 ih)1 iJ1Gbb(ek2 ih)#cs f,k
† %

1(4paL)21/2(k$J'
LRGba(ek1 ih)cf ,k1@J2Gba(ek1 ih)2 iJ1Gbb(ek1 ih)#cs f,k%

L21/2(k(c f ,k
† 1c f ,k) L21/2(k(cf ,k

† 1cf ,k)

L21/2(k(cs f,k
† 1cs f,k) L21/2(k$GpGab(ek2 ih)cf ,k

† 1@11
1
4 (GL2GR)Gab(ek2 ih)1 iGbGbb(ek2 ih)#cs f,k

† %
1L21/2(k$GpGba(ek1 ih)cf ,k1@11

1
4 (GL2GR)Gba(ek1 ih)2 iGbGbb(ek1 ih)#cs f,k%

L21/2(k(cs f,k
† 2cs f,k) L21/2(k$ iGmGaa(ek2 ih)cf ,k

† 1@11
1
4 (GL2GR)Gab(ek2 ih)1 iG2Gaa(ek2 ih)#cs f,k

† %
1L21/2(k$ iGmGaa(ek1 ih)cf ,k1@211

1
4 (GL2GR)Gab(ek1 ih)1 iG2Gaa(ek1 ih)#cs f,k%
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whereN̂as is the number operator for electrons with spins
on leada. Upon carrying out the canonical transformatio
U, this maps onto

Î c8[UÎ cU
†5

ie

\
@N̂f ,H8#, ~4.18!

with N̂f5(kc f ,k
† c f ,k being the flavor-fermion number opera

tor.
The spin-current operator is obtained in a similar fashi

Î s is defined as the difference in number currents for
spin-up and spin-down electrons. Alternatively,Î s measures
the rate at which magnetization flows across the tunnel ju
tion. In steady state, the outgoing spin current from the
lead is equal to the incoming spin current for the right le
and hence the steady-state spin current from left to righ
written in a symmetric manner as

Î s5
i

2\
@N̂L↑2N̂L↓2N̂R↑1N̂R↓ ,H#. ~4.19!

This translates under the canonical transformation to

Î s8[UÎ sU
†5

i

\
@N̂s f ,H8#, ~4.20!

whereN̂s f5(kcs f,k
† cs f,k is the spin-flavor number operato

Finally, the impurity magnetization is unaffected by the c
nonical transformation and remains equal toMz5mBgit

z.
To complete our solution, the explicit expressions forÎ c8 ,

Î s8 , and Mz in terms of the Majorana andc fermions are
gathered in Table III. These may be easily expanded in te
of scattering-state operators using the operator ident
listed in Table II. The resultant expressions, although cu
bersome, are straightforward to work with when evaluat
averages with respect toe2b(H82Y8). Such averages will be
used extensively in the next few sections, where a variet
physical quantities and response functions are computed
.
e

c-
ft
,
is

-

s
s
-

g

of

B. Diagrammatic solution

In this subsection, we solve the quadratic nonequilibriu
problem defined byH8 and Y08 using the nonequilibrium
Green-function technique. Because the problem is quadr
one is able to sum all diagrams exactly, providing an alt
native solution to the noninteracting problem. This approa
is equivalent to the one presented in the previous subsec
and must give the same result for any physical observab

A key step in applying this approach is to choose a pr
tical decomposition of the Hamiltonian into an unperturb
part and a perturbation, where all processes that drive
system out of equilibrium are contained within the latter pa
The initial density matrix is taken accordingly to be

r05
e2b~H02Y0!

Tr$e2b~H02Y0!%
, ~4.21!

whereH0 is the unperturbed part of the Hamiltonian, andY0
is the same nonequilibrium operator that enters
Y-operator formalism.17

To make our choice forH0 physically transparent, we go
back to the initial description of the system in terms of le

TABLE III. Expansion of transformed operators describin
physical observables in terms of the Majorana andc fermions. Here
J'

LR is the transverse Kondo coupling for processes combining fl
ping of the impurity spin with tunneling of an electron across t
junction.J6 are the even and odd combinations of Eq.~3.10!.

Observable Symbol Operator

Charge current Î c85 i
eJ'

LR

2\ApaL
(

k
~c f ,k

† 1c f ,k!â

Spin current Î s85 i
J2

2\ApaL
(k~cs f,k

† 1cs f,k!â

Magnetization Mz5 2
J1

2\ApaL
(k~cs f,k

† 2cs f,k!b̂

imBgi âb̂
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and right-lead electrons. Typically,H1 is chosen such tha
H0 andr0 are diagonal single-particle operators. For a no
equilibrium Kondo problem, this means starting with tw
disconnected leads at different chemical potentials and tr
ing all components of the Hamiltonian involving the ma
netic impurity as a perturbation. Here we use a slightly d
ferent decomposition, for reasons that will become cl
shortly. In addition to the kinetic-energy terms for each le
we also include withinH0 the longitudinal Kondo terms:

H05 i\vF (
a5L,R

(
s5↑,↓

E
2`

`

cas
† ~x!

]

]x
cas~x!dx

1Jz~sLL
z 1sRR

z !tz. ~4.22!

This is a valid choice forH0 since Eq.~4.22! conserves the
number of conduction electrons on both the left and ri
leads, and hence the two leads have well-defined, inde
dent chemical potentials.

To determine howH02Y0 transforms under the canon
cal transformationU, it is sufficient to set the transvers
Kondo couplings and the local magnetic field to zero in E
~4.4! and ~4.5!. This leads to

r08[Ur0U†5
e2b~H082Y08!

Tr$e2b~H082Y08!%
, ~4.23!

with

H082Y085(
k

~ek2eV!c f ,k
† c f ,k1 (

n5c,s,s f
(

k
ekcn,k

† cn,k .

~4.24!

The advantage of choosingH0 of Eq. ~4.22! is now apparent:
r08 rather thanr0 takes the desired form of a diagonal sing
particle density matrix, providing us with a representation
which bothr08 andH8 have simple noninteracting forms.

We are now in position to apply perturbation theory w
respect toJ'

LR , J1, J2, and H.26 The main ingredients o
the theory are the greater, lesser, retarded, and advanced
jorana Green functions, which are defined according to27

Gab
. ~ t,t8!5^â~ t !b̂~ t8!&, ~4.25!

Gab
, ~ t,t8!5^b̂~ t8!â~ t !&, ~4.26!

Gab
r ,a~ t,t8!57 iu~6t7t8!^$â~ t !,b̂~ t8!%&. ~4.27!

Here a,b are eithera or b. For convenience, we represe
hereafter all Majorana Green functions in terms of 232 ma-
trices, with the convention that indices 1 and 2 correspon
a andb, respectively.

Due to time-translational invariance, all four respon
functions listed above depend on the single time argum
Dt5t2t8. It is therefore advantageous to switch over to t
energy domain, by introducing the Fourier transforms w
respect toDt/\. The corresponding unperturbed retard
and advanced Majorana Green functions have the form

G0
r ,a~e!5

1

e6 ih
I , ~4.28!
-

t-

-
r
,

t
n-

.

a-

to

e
nt
e

where I is the 232 unity matrix. The unperturbed flavor
channel Green functions are

gf ,k
, ~e!52pd~e2ek! f ~ek2eV!, ~4.29!

gf ,k
. ~e!52pd~e2ek! f ~eV2ek!, ~4.30!

gf ,k
r ,a~e!5

1

e2ek6 ih
. ~4.31!

Similar expressions apply to the spin-flavor fermions; onlyV
is set equal to zero.

Using standard diagrammatics, all Majorana self-energ
are derived from contractions of the sort^(c†6c)(c†

6c)&. These are most conveniently handled in the wideba
limit, where the simple relation

1

L (
k

1

e2ek6 ih
5

1

2p\vF
E dek

e2ek6 ih
57

i

2\vF

~4.32!

can be used to obtain the retarded and advanced self-ene

S r ,a~e!5F 7 iGa 2 imBgiH

imBgiH 7 iGb
G ~4.33!

and the greater and lesser self-energies

S.,,~e!5F2G1f e f f~7e!12G2f ~7e! 0

0 2Gbf ~7e!
G .

~4.34!

Here Ga and Gb are the two Kondo scales defined in Eq
~4.7! and ~4.8!, respectively, while G1 is equal to
(J'

LR)2/4pa\vF and G2 is equal to (J2)2/4pa\vF . The
function f e f f(e), which enters the greater and lesser se
energies, is an effective distribution function that depen
explicitly on the applied bias:

f e f f~e!5
f ~e1eV!1 f ~e2eV!

2
. ~4.35!

For zero biasf e f f(e) reduces to the ordinary Fermi-Dira
distribution function, while for finite bias it has two separa
steps ate56eV.

With the self-energies listed above, the retarded and
vanced Green functionsGr ,a(e)5@e2S r ,a(e)#21 are equal
to the two analytic pieces of Eq.~4.9!:

Gr ,a~e!5G~e6 ih!. ~4.36!

The greater and lesser Green functions are given by the
trix products28

G.,,~e!5Gr~e!S.,,~e!Ga~e!. ~4.37!

Equations~4.33!–~4.37! are the central result of this sub
section. Together they provide us with exact, closed-fo
expressions for the different Majorana Green functio
which in turn can be used to compute observables such a
charge and spin currents, the charge-current noise spect
the impurity magnetization, and the impurity susceptibili
The latter quantities will be discussed in detail in the follo
ing sections.
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V. CHARGE CURRENT

The first observable we compute is the charge curr
across the junction. Using the results of the previous t
subsections we obtain the exact differential-conducta
curve, which features a zero-bias anomaly that splits in
presence of a magnetic field. We analyze in detail the sca
properties of the differential conductance at low temperat
and low voltage, and compare it to that of the noninteract
resonant-level model.

A. Derivation

The time-averaged charge currentI c(V) may be calcu-
lated using either the scattering-state approach, develope
the previous section, or in the framework of standard d
grammatic techniques. In the former approach, one uses
operator identities listed in Tables II and III to expand t
charge-current operatorÎ c8 in terms of scattering-state oper

tors. The charge current then follows from averagingÎ c8 with

respect toe2b(H82Y8):17

I c~V!5^ Î c8&5
Tr$e2b~H82Y8! Î c8%

Tr$e2b~H82Y8!%
. ~5.1!

From Eqs.~4.15! and ~4.16! we have

H82Y85(
k

~ek2eV!cf ,k
† cf ,k1(

k
ekcs f,k

† cs f,k ,

~5.2!

where cf ,k
† , cs f,k

† are standard Fermi operators. Hence
average in Eq.~5.1! is readily carried out using

^cf ,k
† cf ,k&5 f ~ek2eV!, ^cs f,k

† cs f,k&5 f ~ek!, ~5.3!

wheref (e) is the ordinary Fermi-Dirac distribution function
The diagrammatic calculation ofI c(V) is only slightly

more complicated. Defining

Gf k,a
. ~ t,t8!5^@c f ,k

† ~ t !1c f ,k~ t !#â~ t8!&, ~5.4!

the charge current is expressed as

I c~V!5 i
eJ'

LR

2\ApaL
(

k
Gf k,a

. ~ t,t !. ~5.5!

Switching to energy variables,Gf k,a
. (e) is evaluated along

the same lines as the Majorana Green functions using pe
bation theory with respect toJ'

LR , J1, J2, andH. With the
aid of Eq.~4.32! one obtains

1

AL
(

k
Gf k,a

. ~e!5
J'

LR

2vF\Apa
Gaa

a ~e!

3@ f ~e1eV!2 f ~e2eV!#, ~5.6!

from which the equal-time function follows as an integr
over all e. The resultant expression for the charge curren
nt
o
e
e
g
e
g

in
-
he

e

r-

l
is

identical to that obtained using the scattering-state appro
It takes the familiar form of the integral of a spectral functio
times the difference of two Fermi functions, the spect
function here being that of theâ Majorana fermion:

I c~V!5
eG1

2p\ E
2`

`

Aa~e!@ f ~e2eV!2 f ~e1eV!#de,

~5.7!

Aa~e!52ImH e1 iGb

~e1 iGa!~e1 iGb!2~mBgiH !2J . ~5.8!

Three comments should be made about Eqs.~5.7! and
~5.8!. First, the arguments of the Fermi functions in Eq.~5.7!
are shifted by 2eV, not eV as in conventional expression
@see, e.g., Eq.~5.23! for the resonant-level model#. This is
because we are working with flavor excitations, which hav
chemical potential ofeV instead ofeV/2. Physically, when
an electron is transferred from the right lead to the left o
the number of flavor fermions is increased by 1, but t
potential energy cost is equal toeV. The energy for creating
a flavor fermion is therefore equal toeV rather thaneV/2.

Second, the spectral functionAa(e) in Eq. ~5.7! is not that
of the impurity spin in the original Hamiltonian. Instead, b
inverting the canonical transformationU one sees that the
Majorana fermionâ corresponds to a composite of impuri
and conduction-electron degrees of freedom. Conseque
there is no simple relation betweenAa(e) and the ordinary
impurity-spin spectral function.

The third point to notice is that, at the solvable point, bo
the temperature and voltage enter into the charge cur
only through the Fermi functions, not via the spectral fun
tion which is independent of bothV andT. This stems from
the quadratic nature of the problem at the solvable point.
one goes away from the solvable point, the voltage and t
perature will explicitly enter the spectral function as well.29

Equation~5.7! can further be written in closed form usin
the digamma functionc(z).30 A single expression covering
all parameter regimes of our model is provided in Appen
D, Eq. ~D1!. Here we mention only two important cases:~i!
For a zero magnetic field,Aa(e) is independent ofGb and
has the shape of a Lorentzian with half-widthGa . Hence,
after integration, the charge current becomes

I c~V!5
eG1

p\
ImH cS 1

2
1

Ga1 ieV

2pkBT D J . ~5.9!

~ii ! For Ga5Gb—corresponding to the effective one-chann
limit—a nonzero magnetic field splitsAa(e) into two iden-
tical Lorentzians centered about6mBgiH, each with a half-
width of Ga . The charge current then takes the form

I c~V!5
eG1

2p\
ImH cS 1

2
1

Ga1 ieV1 imBgiH

2pkBT D
1cS 1

2
1

Ga1 ieV2 imBgiH

2pkBT D J . ~5.10!
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B. Differential conductance

Figures 2 and 3 show the differential conductan
G(V,T)5dIc /dV as a function of bias, for different tem

FIG. 2. The differential conductanceG(V,T)5dIc /dV as a
function ofV ~a! for zero magnetic field and different temperature
the effect ofT is to smear and reduce the peak height; and~b! at
T50 andmBgiH52Ga , for different ratios ofGa to Gb . For either
Ga!Gb or Gb!Ga , two-channel limits are approached. This sho
up in G(V,0) as resonant transmission (Ga!Gb) or resonant reflec-
tion (Gb!Ga). HereGdc5e2G1 /p\Ga is theT50, H50 conduc-
tance, andm5mBgi .

FIG. 3. The differential conductance as a function ofV, for
mBgiH52Ga and different temperatures. The ratioGa /Gb is equal
to 0.2 and 5 in~a! and~b!, respectively. As in Fig. 2~a!, the effect of
a finite temperature is to broaden and smear theT50 structure,
resulting in a nonmonotonic temperature dependence of the con
tance in ~b!. Gdc5e2G1 /p\Ga is the T50, H50 conductance,
while m5mBgi .
e

peratures and model parameters. We begin with the case
zero magnetic field, shown in Fig. 2~a!. Differentiation of
Eq. ~5.9! with respect toV yields

G~V,T!5
e2

p\

G1

2pkBT
ReH c~1!S 1

2
1

Ga1 ieV

2pkBT D J ,

~5.11!

wherec (1)(z)5dc/dz is the trigamma function.30 At zero
temperature, Eq.~5.11! reduces to a Lorentzian with half
width Ga and a zero-bias conductance equal toG(0,0)
5e2G1 /p\Ga . For G15Ga , the zero-temperature conduc
tance is thus optimal. It corresponds to onee2/h conductance
quanta per spin channel. ForG1,Ga , this value is sup-
pressed by a factor ofG1 /Ga , reflecting an asymmetry in the
transverse coupling of the impurity to the two leads.

The effect of raising the temperature is mainly to sme
and reduce the peak height. Specifically, using
asymptotic expansion30 of c (1)(z) one finds, in accordance
with Fermi-liquid behavior, that the conductance decrea
quadratically withT at temperatures small compared toGa :

G~0,T!5
e2G1

p\Ga
F12

p2

3 S kBT

Ga
D 2

1O~T4!G . ~5.12!

Next we switch on a nonzero magnetic field, causing
energy scaleGb to enter the charge current. AtT50, the
differential conductance is simply proportional toAa(eV).
The effect of a magnetic field is thus seen along the follo
ing lines: for H50, the differential conductance has th
shape of a Lorentzian with half-widthGa ; a nonzero mag-
netic field gradually broadens the zero-field resonance un
splits at a critical fieldmBgiHc5Gb /A21Ga /Gb; for H
.Hc , the differential conductance is split. There are tw
symmetric resonances at a finite bias, accompanied b
minimum rather than a maximum at zero voltage. For la
fields mBgiH@Ga ,Gb , the two resonances are center
about eV56mBgiH, each with a half-width of (Ga
1Gb)/2.

In Fig. 2~b! we show the differential conductance for
moderately large magnetic fieldmBgiH52Ga at zero tem-
perature and different ratios ofGa to Gb . For Ga5Gb , a
nonzero magnetic field simply splits the zero-field resona
into two symmetric Lorentzians centered about6mBgiH.
Similar magnetic splittings have also been observed
experiments8,9 and will later appear in other physical quan
ties.

For eitherGa!Gb or Gb!Ga , the system approaches on
of the two two-channel limits discussed in Sec. II. ForGa
!Gb the two-channel limit of Eq.~2.8! is approached,
whereas forGb!Ga the limit of Eq. ~2.9! is approached.
Notice that the differential conductance in Fig. 2~b! is quite
different for these two limits. ForGa!Gb , there is a single
resonance at zero bias. Splitting of this resonance occu
mBgiH'Gb /&—i.e., at a Zeeman energy muchlarger than
the zero-field half-widthGa . In the opposite limit,Gb

!Ga , splitting takes place already atmBgiHc'GbAGb /Ga,
corresponding to a Zeeman energy muchsmaller than Ga
~and possibly alsoGb). Hence by the timemBgiH;Ga , as in
Fig. 2~b!, a sharp minimum rather than a maximum has d
veloped at zero bias. Note that in the extreme limitGb50

;

c-
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there is actually perfect reflection:G(0,0) identically van-
ishes for arbitrary nonzero magnetic fields.

This difference between the two two-channel limits ste
from the fact that the charge current samples theâ Majorana
fermion by way of thec f fermions, while a magnetic field
couples theâ and b̂ Majorana fermions. In the case ofGb
!Ga one is thus probing a broad resonance which is coup
to a narrow one, leading to resonant reflection. In the op
site case one is probing directly the narrow resonance, le
ing to resonant transmission.

Finally, the effect of raising the temperature for a nonze
magnetic field is summarized in Fig. 3. As in Fig. 2~a!, a
finite temperature basically broadens and smears theT50
structure. ForH.Hc , this results in a nonmonotonic tem
perature dependence of the zero-voltage conductance, a
emplified in Fig. 3~b!. G(0,T) first increases withT at low
temperature, before decreasing withT at higher temperature

C. Scaling of the differential conductance withV/T

An important aspect of having an exact solution is t
possibility to extract universal behavior. Recently, there
been considerable interest in scaling properties of the dif
ential conductance withV/T for Kondo scatterers, following
experiments on zero-bias anomalies in ballistic metal po
contacts.31 It has been argued31 that the observed anomalie
are due to two-channel Kondo scattering from two-level s
tems, corresponding to the Hamiltonian of Eq.~2.2! with an
additional flavor index. In support of this interpretation,
scaling ansatz for the differential conductance withV/T has
been suggested and compared to the experiment.32 Subse-
quent perturbative calculations on a related model33 showed
nice agreement between theory and experiment, but reve
at the same time also finite-temperature corrections to s
ing. Since one expects scaling to hold equally well for t
Hamiltonian in Eq.~2.2! ~although with different exponent
and different scaling curves—see discussion below!, we can
exploit our exact solution to make a quantitative statem
about scaling.

For the Hamiltonian of Eq.~2.2!, a quadratic temperatur
dependence is expected for the low-temperature zero-
conductance. Indeed, this is what we find at the solva
point, Eq. ~5.12!, including in the two-channel limitGb50
~in the opposite limitGa50, the current is zero!. This sug-
gests a scaling function of the form

F~V,T!5
G~0,T!2G~V,T!

BT2 , ~5.13!

where B is a model-dependent constant, defined from
expansion G(0,T)5G(0,0)2BT21O(T3). Specifically,
within our solution B5e2kB

2pG1 /3\Ga
3 . The basic

assumption32 is thatF(V,T) reduces to a universal functio
of V/T at temperatures and voltages well below the Kon
temperature.

In Eq. ~5.13!, the powerTa entering the denominator i
a52 for a Fermi liquid, whereas in Ref. 32 it isa51/2,
corresponding to the non-Fermi-liquid fixed point of the tw
channel Kondo model.34 Similar power laws must also show
up in the corresponding scaling curves in order for the s
ing ansatz to be true. This follows from the fact th
s
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G(0,T)2G(V,T) has a well-defined zero-temperature lim
which implies that ifV is kept fixed andT goes to zero, then
F(V,T) diverges likeT2a. Coupled to the assumption tha
in the scaling regimeF(V,T) depends solely onV/T, this
demands proportionality to (V/T)a for T!V.

In Figure 4 we show a scaling plot of the differenti
conductance. Clearly, at low enough temperature all cur
collapse onto a single line, confirming thatF(V,T) indeed
reduces to a universal function ofV/T. However, even at
temperatures small compared to the Kondo temperature,Ga ,
there are substantial deviations from scaling. These co
from the fact thatF(V,T) for low V and low T can be
expanded as

F~V,T!5
3

p2 S eV

kBTD 2

26S eV

Ga
D 2

2
3

p2 S eV

Ga
D 2S eV

kBTD 2

1¯ .

~5.14!

Hence scaling is violated already by the second term.
Beyond the deviations from scaling, Eq.~5.14! contains

an explicit prediction for the universal part of the scalin
function, which could be tested experimentally. Specifica
at sufficiently low temperature and voltage,F(V,T) ap-
proaches the model-independent curve 3(eV/pkBT)2. As we
shall argue below, this is an important characteristic
Kondo-assisted tunneling, distinguishing it from ordina
resonant tunneling~see discussion in Sec. V D!. Moreover, it
holds also for samples with several impurities, provided~i!
interactions between different impurities are unimportant a
~ii ! T and V are sufficiently small compared to all Kond
temperatures in the system. To see this we use the b
approach of Ref. 32. For many independent impurities,
conductance signal is additive:

G~V,T!5(
i

Gi~V,T!. ~5.15!

Here i runs over the different impurities. In particular, E
~5.15! implies that

FIG. 4. F(V,T)5@G(0,T)2G(V,T)#/BT2 as a function of
eV/kBT for different temperatures. HereB5e2kB

2pG1/3\Ga
3 is a

model-dependent coefficient, defined by the expansionG(0,T)
5G(0,0)2BT21O(T3). The solid line corresponds to the firs
term in Eq. ~5.14!. Deviations from scaling occur already fo
kBT/Ga50.05. For comparison, the dashed line shows the co
sponding low-T, low-V scaling function for theEf50 noninteract-
ing resonant-level model@Eq. ~5.28! with r 50#, which is a factor of
4 smaller than the first term in Eq.~5.14!.
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G~0,T!5G~0,0!2T2(
i

Bi1O~T3! ~5.16!

and

G~0,T!2G~V,T!5
3

p2 S eV

kB
D 2

(
i

Bi1¯ . ~5.17!

Hence, to leading order inV andT, the scaling function

G~0,T!2G~V,T!

BT2 5
3

p2 S eV

kBTD 2

~5.18!

remains unchanged with respect to the single-impurity res
The effect of a distribution of Kondo temperatures ent
only beyond the leading-order term.

For a nonzero magnetic field, there is no analogous u
versal scaling withH/T. This is because the effect of a ma
netic field depends explicitly on the ratio ofGa to Gb . Here
we choose to focus on the effective one-channel limitGa
5Gb , which is expected to be the most relevant case.
include a nonzero magnetic field, we extend the definition
the scaling functionF according to

F~V,T,H !5
G~0,T,0!2G~V,T,H !

BT2 , ~5.19!

whereB is defined, as before, from the zero-field expansi
G(0,T,0)5G(0,0,0)2BT21O(T3). Upon combining Eqs.
~5.10! and ~5.14! one finds

F~V,T,H !5
3

p2 F S eV

kBTD 2

1S mBgiH

kBT D 2G1¯ ,

~5.20!

assumingkBT, eV, and mBgiH are all much smaller than
Ga . Thus, for Ga5Gb , an identical scaling is found with
eV/kBT andmBgiH/kBT.

D. Comparison with the resonant-level model

It is instructive to compare our results for the charge c
rent in the Kondo model to theI -V curve due to ordinary
resonant tunneling. In the noninteracting resonant-le
model, electrons tunnel between two Fermi seas~leads! via a
localized electronic levelf s

† placed in between the two lead
Resonant tunneling occurs as the energy of the level,Ef ,
crosses the chemical potential of one of the leads, produ
a peak in the differential conductance. The model is
scribed by the Hamiltonian

H5 (
a5L,R

(
k,s

ekckas
† ckas1Ef(

s
f s

† f s

1 (
a5L,R

ta

AL
(
k,s

$ckas
† f s1H.c.%, ~5.21!

in which ckLs
† (ckRs

† ) creates a conduction electron wi
wave numberk and spin projections on the left~right! lead,
ta are the matrix elements for hopping between the locali
level and the leads,L is the size of the system, andEf—the
energy of the level—is measured relative to the aver
chemical potential (mL1mR)/2. The latter is taken to be ou
lt.
s

i-

o
f

:

-

el

ng
-

d

e

reference energy. Note thatEf itself is generally voltage de
pendent, if the level sits physically closer to one lead th
the other. For consistency with the Kondo Hamiltonian
Eq. ~2.2!, the electrostatic potential energy on each le
Ua52eVa , has been omitted from Eq.~5.21!. In both mod-
els this bears no effect on the physical quantities under
vestigation, as the conduction-electron bandwidth is assu
to be much larger than the applied bias.

Solution of the resonant-level model features two ba
energy scales

gL52prLtL
2 , gR52prRtR

2 , ~5.22!

corresponding to the tunneling rates from the localized le
to the left and right leads, respectively. Herera is the
conduction-electron density of states per unit length on l
a. The width of the localized level,g, is related to the tun-
neling rates throughg5gL1gR .

For an applied voltage bias such thatmL2mR5eV, the
steady-state current flowing from right to left is given by

I RLM~V!52
e

p\ S gLgR

gL1gR
D E

2`

`

de
g/2

~e2Ef !
21~g/2!2

3F f S e2
eV

2 D2 f S e1
eV

2 D G . ~5.23!

Here the factor of 2 comes from the two possible spin ori
tations of the electrons. This expression for the curr
closely resembles the charge current in our Kondo mo
Eq. ~5.7!, for a zero magnetic field. The two notable diffe
ences are the explicit dependence ofI RLM(V) on the position
of the level and, as noted earlier, theeV shift between the
arguments of the two Fermi functions~compared to 2eV in
the Kondo model!.

The resonant-level energyEf has no analog in the Kondo
problem, as the Abrikosov-Suhl resonance is always pin
in equilibrium at the Fermi level. In that respect, the Kon
model is best described by the case whereEf is fixed in
equilibrium at zero energy. For a Kondo impurity, thoug
only the chemical potential differencemL2mR is relevant to
transport properties, reflecting the lack of charge fluctuati
on the impurity site. By contrast,mL1mR explicitly enters
the resonant-level current through the definition ofEf .

In general,Ef has the formEf5Ef
(0)1reV, whereEf

(0)

denotes the equilibrium (V50) position of the resonan
level, and21/2,r ,1/2 parametrizes the electrostatic p
tential energy on the level site. For a linear potential dr
across the junction,r basically measures the physical di
tance of the level from the center of the junction. Spec
cally, r 561/2 describes a level adjacent to one of the lea
whereasr 50 corresponds to a level that sits midway b
tween the two leads.

The differential conductance for the resonant-level mo
is obtained by differentiating Eq.~5.23! with respect toV. At
zero temperature this gives a differential-conductance cu
that is generally a superposition of two Lorentzians: one c
tered about 2Ef

(0)/(122r ) with half-width g/(122r ) and
the other centered about22Ef

(0)/(112r ) with half-width
g/(112r ). Only in two cases does one recover a sing
Lorentzian centered aboutV50 which can possibly emulate
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the Kondo-model result:~i! If Ef50 ~i.e., Ef
(0)5r 50) and

~ii ! if Ef56eV/2 ~i.e., Ef
(0)50 and r 561/2). In the fol-

lowing we analyze in detail these two cases, comparing t
respectiveI -V curves with that of the nonequilibrium Kond
model.

To this end, it is useful to introduce the function

C~x,y!52 ImH cS 1

2
1

11 ix

2py D J , ~5.24!

which allows a unified representation of the relevant c
rents:

I c~V!5
eG1

2p\
CS eV

Ga
,

kBT

Ga
D ~5.25!

for the Kondo model with zero magnetic field,

I RLM~V!52
egLgR

p\g
CS eV

g
,
2kBT

g D ~5.26!

for the Ef50 resonant-level model and

I RLM~V!5
egLgR

p\g
CS 2eV

g
,
2kBT

g D ~5.27!

for the resonant-level model withEf56eV/2.
For Ef56eV/2, the currentsI RLM(V) and I c(V) are in-

distinguishable. This is because one can always identifyg/2
and 2gLgR /g for the resonant-level model withGa andG1 ,
respectively, for the Kondo model, to make the twoI -V
curves identical. In particular, the conditionG15Ga for per-
fect zero-temperature conductance in the Kondo model tr
lates togL5gR for the resonant-level model. Also forEf
50 the two currents are indistinguishable, but only at z
temperature. The necessary mapping of model paramete
this case involves identifyingg with Ga and 4gLgR /g with
G1 . This equivalence of the twoI -V curves breaks down a
soon asT is nonzero, as the temperature for theEf50
resonant-level model is effectively twice as large as that
the corresponding Kondo model@compare Eqs.~5.25! and
~5.26! with the above identification of model parameters#. As
explained below, this fundamental difference between
two models is directly probed by the scaling functio
F(V,T).

Going back to general model parametersEf
(0) and r , we

analyze the scaling function of Eq.~5.13! for the resonant-
level model. ForEf

(0)Þ0 andrÞ0, the leading voltage de
pendence of the differential conductance is linear inV.
HenceF(V,T) at low temperature and low voltage does n
reduce to a function ofV/T, in contrast to the Kondo mode
Asymptotic dependence onV/T is recovered when at leas
one ofEf

(0) or r is zero, in which case the low-temperatu
and low-voltage scaling function reads

FRLM~V,T!5
3

p2 S 1

4
13r 2D S eV

kBTD 2

. ~5.28!

Contrary to the Kondo case, Eq.~5.28! is not universal.
Rather, it depends on the parameterr , which is model de-
pendent. Moreover, with the exception of the caser 5
61/2, FRLM(V,T) is smaller by a factor of 1/413r 2,1
ir

-

s-

o
in

r

e

t

than the corresponding Kondo-model result. We note th
for nearly 60% of the parameter range inr , this factor is
smaller than one-half. Forr 50, it is equal to one-quarter
Thus, measurement of the scaling function of Eq.~5.13!
should allow a clear distinction between Kondo-assisted
resonant tunneling, providedEf sufficiently deviates from
6eV/2.

The response to an applied magnetic field completes
distinction between Kondo-assisted and resonant tunne
In the resonant-level model, a nonzero magnetic field sp
the energy of the localized level according toEf→Ef ,s
5Ef2

1
2 smBgiH. Each of the two spin species then carrie

current that is equal to half the expression in Eq.~5.23!, only
with Ef replaced byEf2

1
2 smBgiH. The total electric cur-

rent is equal to the sum of the two spin contributions.
At T50, the generic differential-conductance curve for

nonzero magnetic field is a superposition of four distin
Lorentzians. For eitherEf50 or Ef56eV/2, however, the
zero-field curve is simply split into two symmetric Lorent
ians centered abouteV56mBgiH ~for Ef50) or eV
56 1

2 mBgiH ~for Ef56eV/2). In particular, for Ef5
6eV/2 and a sufficiently large magnetic field, the zero-b
anomaly is split bymBgiH, which is half the magnetic split-
ting for the Kondo impurity. Thus, while the low
temperature scaling function forEf56eV/2 is identical to
that of the Kondo model, the magnetic splitting is smaller
a factor of 2. The situation is reversed forEf50. Here the
magnetic splitting 2mBgiH is the same as for the Kond
model, but the scaling function is smaller by a factor of
Combined, the low-temperature scaling function and
splitting with an applied magnetic field fully distinguish th
differential conductance for our Kondo model from that d
to ordinary resonant tunneling.

VI. SPIN CURRENT

Next we compute the Kondo-assisted spin current. Wh
I c(V) measures the total electric current across the junct
the spin current measures the difference in currents betw
the spin-up and spin-down carriers. In the Kondo mod
spin-up and spin-down electrons are coupled via the spin
processes. As we shall see, this has a striking effect on
spin current, which as a result is a symmetric function
applied bias, and its direction is determined by the asymm
try in the transverse coupling to the left and right leads.

A. Derivation

The derivation of the time-averaged spin currentI s(V) is
similar to that of the charge current in the previous secti
In the scattering-state approach, one implements the s
two basic steps, i.e.,~i! expanding the operatorÎ s8 in terms of
the scattering-state operators and~ii ! averaging the resulting
expression with respect toe2b(H82Y8). The diagrammatic
calculation also resembles that of the charge current an
detailed below.

By analogy with the functionGf k,a
. (t,t8) of Eq. ~5.4!, we

begin by defining the functions

Gs f k,a
. ~ t,t8!5^@cs f,k

† ~ t !1cs f,k~ t !#â~ t8!&, ~6.1!
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Gs f k,b
. ~ t,t8!5^@cs f,k

† ~ t !2cs f,k~ t !#b̂~ t8!&, ~6.2!

which determine the spin current according to

I s~V!5 i
J2

2\ApaL
(

k
Gs f k,a

. ~ t,t !

2
J1

2\ApaL
(

k
Gs f k,b

. ~ t,t !. ~6.3!

Switching to energy variables and applying perturbat
theory with respect toJ'

LR , J1, J2, andH, one obtains

1

AL
(

k
Gs f k,a

. ~e!5
J1

2vF\Apa
@Gba

. ~e!12i f ~2e!Gba
a ~e!#,

~6.4!

1

AL
(

k
Gs f k,b

. ~e!5 i
J2

2vF\Apa
@Gab

. ~e!12i f ~2e!Gab
a ~e!#,

~6.5!

where the wideband-limit relation of Eq.~4.32! has been
used. The spin current follows from combining Eqs.~6.4!
and ~6.5! with Eq. ~6.3!, which gives

I s~V!5
GL2GR

8p\

3E
2`

`

@ iGba
. ~e!2 iGab

. ~e!14 f ~2e!Gab
a ~e!#de.

~6.6!

Here GL and GR are equal to (J'
LL)2/4pa\vF and

(J'
RR)2/4pa\vF , respectively. Finally, upon inserting th

explicit expressions forGba
. , Gab

. , andGaa
a , one arrives at

I s~V!5mBgiH
~GL2GR!G1

2p\ E
2`

`

de@ f e f f~e!2 f ~e!#

3
e

u~e1 iGa!~e1 iGb!2~mBgiH !2u2
, ~6.7!

where f e f f(e) is the effective distribution function of Eq
~4.35!. As for the charge current, an identical result is o
tained using the scattering-state approach.

B. Master equation

Several facts are apparent from Eq.~6.7!. First, no spin
current can flow ifH is equal to zero. This is to be expecte
since the two spin orientations are equivalent forH50, and
hence the spin-up and spin-down currents are identical in
absence of a magnetic field. Second,I s(V) is proportional to
GL2GR , which implies thatuJ'

LLu must differ fromuJ'
RRu in

order for a spin current to flow. Most surprising is the fa
that the direction of the spin current is determined byJ'

LL ,
J'

RR, and the sign ofH, and is independent of the sign ofV.
To understand how these features come about, it is us

to consider the limit where eV.mBgiH and eV
2mBgiH,mBgiH@kBT,Ga ,Gb . In this case we are able t
derive the spin-current result by a master equation, wh
n

-

e

t

ful

h

relies on the fact that the resonance widthsGa and Gb are
much smaller thaneV2mBgiH and mBgiH. To make the
physical picture explicit, we use the following representati
of the transformed Hamiltonian in terms of thed fermion
rather than theâ and b̂ Majorana fermions@see Eq.~3.15!#:

H85H081mBgiH~d†d21/2!

1
J'

LL

2A2pa
@cs f

† ~0!d†1dcs f~0!#

1
J'

RR

2A2pa
@cs f~0!d†1dcs f

† ~0!#

1
J'

LR

2A2pa
@c f

†~0!d†1c f
†~0!d1d†c f~0!1dc f~0!#.

~6.8!

HereH08 is the free kinetic-energy part ofH8.
From the definitions of thed fermion, Eq.~3.12!, and the

canonical transformationU, one recognizes that an emptyd
level corresponds to the spin-up (tz5↑) impurity state,
whereas an occupiedd level represents the spin-down (tz

5↓) state. LetP↑(t) be the probability for having an empt
d level at time t, and let P↓(t) denote the probability for
having an occupied level. Since thed level is either occupied
or unoccupied, the sum of the two probabilities is equal to
P↑(t)1P↓(t)51.

The different rates for transitions between the spin-up a
spin-down impurity configurations can be read off from E
~6.8! using Fermi’s golden rule. Altogether there are eig
different terms in Eq.~6.8! that flip the impurity spin; how-
ever, only some of them contribute in the limit consider
here. For example, since the energy of the spin-up stat
lower by mBgiH than that of the spin-down state~assuming
H.0), there is no thermal energy to flip the impurity sp
from up to down. Only the voltage can provide the necess
energy for such a spin flip, by tunneling an electron from t
left lead to the right one. Thus,c f(0)d†, which describes
this process, is the only allowed transition when the impur
spin is up. In contrast, nearly all spin-flip processes are ac
when the impurity spin is down. The only forbidden proce
in this case isc f

†(0)d, which corresponds to tunneling of a
electron from the right lead to the left one. Such a proces
prohibited by the large voltage barrier for tunneling fro
right to left. Collecting the different transition rates for ea
impurity state, the resulting master equations forP↑(t) and
P↓(t) read

dP↑~ t !

dt
5P↓~ t !

1

2\
@G11GL1GR#2P↑~ t !

G1

2\
, ~6.9!

dP↓~ t !

dt
5P↑~ t !

G1

2\
2P↓~ t !

1

2\
@G11GL1GR#.

~6.10!

Note that the effect ofH in this limit is to block intralead
spin-flip scattering when the impurity spin is up. The lar
bias enables the spin to flip freely in both directions,
tunneling an electron from the left lead to the right on
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Hence the asymmetry between the spin-up and spin-d
impurity states is reflected in the intralead processes. Ind
by inverting the sign ofV one changes the direction of tun
neling, but Eqs.~6.9! and ~6.10! remain intact. On the othe
hand, flipping the sign ofH interchanges the roles ofP↑(t)
andP↓(t).

The steady-state solution of Eqs.~6.9! and ~6.10! is
readily obtained by setting the left-hand sides equal to z
Together with the requirement thatP↑ and P↓ add up to 1,
this leads to

P↑5
Ga1Gb2G1/2

Ga1Gb
, P↓5

1

2

G1

Ga1Gb
. ~6.11!

The apparent difference betweenP↑ and P↓ simply reflects
the different lifetimes for the two impurity configurations
the presence of an applied magnetic field.

To determine the spin current and also the charge cur
from the probabilitiesP↑(t) andP↓(t), we need to compute
the time derivatives ofNs f(t) andNf(t), respectively. Bear-
ing in mind that~i! tunneling of an electron from right to lef
is forbidden for large positive voltage bias@i.e., no c f

†(0)
processes are allowed within Eq.~6.8!# and~ii ! intralead spin
flips are suppressed when the impurity spin is up@i.e., no
cs f

† (0)d† and cs f(0)d† processes are permitted within E
~6.8!# one obtains

dNf~ t !

dt
52

1

2\
G1@P↑~ t !1P↓~ t !#, ~6.12!

dNs f~ t !

dt
5

1

2\
~GR2GL!P↓~ t !. ~6.13!

Substituting the steady-state value forP↓ , Eq. ~6.11!, then
gives

I c52e
dNs f~ t !

dt
5

e

2\
G1 , ~6.14!

I s52
dNs f~ t !

dt
5

1

4\

G1~GL2GR!

Ga1Gb
. ~6.15!

In the limit eV2mBgiH,mBgiH@kBT,Ga ,Gb , Eqs.
~6.14! and ~6.15! coincide with the exact expressions, Eq
~5.7! and~6.7!, respectively. Thus, the mechanism for cre
ing a spin current involves~i! a magnetic field that polarize
the impurity spin,~ii ! a sufficiently large voltage bias tha
provides the energy for flipping the impurity spin in bo
directions, and~iii ! an asymmetry between the intralead sp
flip processes for the left and right leads. Although the s
current is triggered by the application of a voltage bias,
direction is determined by the sign ofH and the asymmetry
in the intralead spin-flip scattering. Indeed, the even dep
dence of the spin current onV can be seen on a formal leve
by noting thatV and 2V are connected withinY08 via the
particle-hole transformationc f↔2c f

† . As the Hamiltonian

H8 and the number operatorN̂s f are both invariant under thi
transformation, the spin current is independent of the s
of V.

Although Eqs.~6.14! and~6.15! apply only to the solvable
point, the even dependence of the spin current onV and the
n
d,

o.

nt

.
-

-
n
s

n-

n

proportionality toGL2GR can be seen already in the origin
Hamiltonian of Eq.~2.2!, using the same arguments as f
the solvable point. We illustrate this point in Fig. 5, whe
the limit of a large magnetic field and an even larger volta
bias is assumed.

In Fig. 5~a! we begin at an instant in time in which th
impurity spin is polarized in the up direction~we assume
H.0). Due to the large Zeeman splitting, the impurity c
be flipped from up to down only by tunneling an electro
across the junction, Fig. 5~b!. The opposite spin flip has no
Zeeman energy barrier to overcome; hence the impurity s
can be flipped back by any of the following four process
~i! scattering a spin-up electron on the left lead to a sp
down electron on the same lead, Fig. 5~c!; ~ii ! scattering a
spin-up electron on the right lead to a spin-down electron
the same lead, Fig. 5~d!; ~iii ! tunneling a second electro
from the left lead to the right one, Fig. 5~e!; and ~iv! the
original electron that tunneled in Fig. 5~b! from left to right
can actually tunnel back, Fig. 5~f!.

Of these four processes, only the former two contribute

FIG. 5. Schematic description of the mechanism for creatin
spin current. Assuming a large magnetic field and an even la
voltage bias, an impurity polarized in the direction of the field~a!
can only be flipped by tunneling an electron across the junction~b!.
As the opposite spin flip has no energy barrier to overcome, sev
spin-flip processes are available. These include~i! flipping a left-
lead electron from spin up to spin down~c!, ~ii ! flipping a right-lead
electron from spin up to spin down~d!, ~iii ! tunneling a second
electron from left to right~e!, and ~iv! the same electron that tun
neled in~b! from left to right can actually tunnel back~f!. Of the
four sequences, only~c! produces a positive spin current, while~d!
produces a negative spin current. Since the respective rates for
cesses~i! and ~ii ! are proportional to (J'

LL)2 and (J'
RR)2, the total

spin current is proportional to (J'
LL)22(J'

RR)2.
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the spin current. Process~iv! produces neither a spin curre
nor a charge current, while process~iii ! results in a net
charge current but no spin current. This is seen from the
that both a spin-up and a spin-down electron have been
fectively transferred from left to right in going from Fig. 5~a!
to Fig. 5~e!. The remaining two processes result in eithe
positive spin current, Fig. 5~c!, or a negative spin curren
Fig. 5~d!, depending on which spin carrier has been eff
tively transferred from left to right in going from Fig. 5~a!.
Given that the rates for~i! and~ii ! are proportional to (J'

LL)2

and (J'
RR)2, respectively, the total spin current is thus pr

portional to (J'
LL)22(J'

RR)2.
Note that the role ofV in this scenario is to enable the fir

spin flip of the sequence, i.e., the one starting from an im
rity spin parallel to the applied magnetic field. The sign
the spin current is determined, however, by the opposite
flip, through the difference in rates for the two intralead p
cesses. As a result,I s(V) has the same sign asH@(J'

LL)2

2(J'
RR)2#, irrespective of the direction of the applied bias

We further emphasize that the above picture is indep
dent of the longitudinal couplingsJz

ab , as the probability for
a longitudinal Kondo scattering is independent of both
spin of the scattered electrons and the orientation of the
purity spin. Thus, the mechanism for creating a spin curr
relies solely on spin-flip scattering.

C. Differential conductance

We now return to the exact expression for the spin c
rent, Eq. ~6.7!. In Fig. 6 we have plotted the differentia
conductance for the spin current,Gs(V,T)5dIs /dV, as a
function of bias, for zero temperature and different values
the magnetic field. For conciseness, we have focused on
effective one-channel limitGa5Gb , which is expected to be
the most relevant case.

Since the spin current is even in the applied bias,
differential conductance is an odd function ofV. This should
provide a distinct experimental signature of the Kondo
fect. In particular, Gs(V,T) has a resonance ateV
5mBgi uHu—either a maximum ifH(GL2GR).0 or a mini-
mum if H(GL2GR),0. One can understand the origin

FIG. 6. The differential conductance for the spin curre
Gs(V,T)5dIs /dV, vs V, for T50, Ga5Gb , and different values
of the magnetic field. As the spin current is even in the applied b
Gs(V,T) is an odd function ofV, with resonances~either a maxi-
mum or a minimum! at eV56mBgiH. Here Gmax5e(GL

2GR)G1/8p\Ga
2 and m5mBgi . The maximal peak height forGa

5Gb is equal touGmaxu and is approached for large magnetic field
ct
f-

a

-

-
f
in
-

n-

e
-
t

-

f
he

e

-

this resonance in terms of the mechanism for creating a
current. FormBgiH2eV,mBgiH@kBT,Ga ,Gb , there is not
enough energy to flip the impurity spin from up to dow
Consequently, the impurity is frozen in the spin-up config
ration, which blocks any spin current from flowing. On th
other hand, foreV2mBgiH,mBgiH@kBT,Ga ,Gb the voltage
is sufficiently large for the impurity spin to flip, allowing a
spin current to flow. Thus, the mechanism for creating a s
current is activated aseV sweeps throughmBgiH, producing
a resonance in the differential conductance ateV5mBgiH.

A natural question to ask is, how large can the spin d
ferential conductance be? It is known that the charge dif
ential conductance for this system is bounded bye2/p\, i.e.,
onee2/h quanta per spin channel. ForGa5Gb , the maximal
peak height is approached formBgiH@Ga ,kBT and is equal
to

e

8p\

uGL2GRuG1

Ga
2 . ~6.16!

As a function of G1 /Ga , it takes the optimal value o
roughly 0.385(e/2p\), which marks the upper bound o
uG(V,T)u for Ga5Gb . Larger values ofuG(V,T)u are pos-
sible if GaÞGb . For example,uG(V,T)u can be as large a
e/2h, for Ga53Gb and mBgiH@Ga ,kBT. This value actu-
ally corresponds to half the maximal differential conductan
one would get if there was only one spin channel in t
problem.

VII. CHARGE-CURRENT NOISE

Thus far our discussion has focused on properties of
time-averaged current. Another quantity of interest is
charge-current noise, which corresponds to fluctuati
about the average current. The noise spectrumS(V) mea-
sures pair excitations of the system and, as such, prov
information about dynamical properties that cannot be
tained from the time-averaged current. A classical exampl
the electric charge of the current carriers. In this section
show that the noise spectra contains perhaps the most d
and unambiguous evidence for the many-body interaction
our Kondo model. Most notably, it features signatures
pair-tunneling processes that cannot be traced in the ti
averaged current.

A. Derivation

The charge-current noise spectrumS(V) is defined by the
correlation function

S~V!5E
2`

`

eiVt@^$ Î c8~ t !, Î c8~0!%&22^ Î c8~ t !&^ Î c8~0!&#dt.

~7.1!

Here the curly brackets in the leftmost average denote
anticommutator of the charge currentÎ c8 at timet and that at
time t50. Similar to the derivation of the average curre
alsoS(V) can be computed in two distinct ways, which a
briefly outlined below.

In the scattering-state approach, afterÎ c8 has been ex-
panded in terms of the scattering-state operators using Ta
II and III, the explicit time dependence ofÎ c8(t) is introduced

,

s,

.



st

m
tin

rd
n

ns

th
e

rtu

th

n

ion

of

ise,
ed
ents

l’’
lec-
ent
e

ion

on-
it,

ur

la-

s-
al
t
r
it

l is
f
s the

es-

14 996 PRB 58AVRAHAM SCHILLER AND SELMAN HERSHFIELD
by replacing allcn,k
† and cn,k operators inÎ c8 with cn,k

† (t)
5ei ekt/\cn,k

† and cn,k(t)5e2 i ekt/\cn,k , respectively. This in

turn allows us to express the anticommutator$ Î c8(t), Î c8(0)%
entirely in terms of scattering-state operators. Once this
has been accomplished, averaging with respect
e2b(H82Y8) is readily carried out using Eqs.~5.3!, as is the
integral overt. The latter step provides us withS(V).

An identical result is obtained for the noise spectru
when diagrammatic techniques are employed. The star
point for this approach is the function

I .~ t,t8!5^ Î c8~ t ! Î c8~ t8!&, ~7.2!

which enters Eq.~7.1! in the following manner:

S~V!5E
2`

`

eiVt@ I .~ t,0!1I .~0,t !22^ Î c8~ t !&^ Î c8~0!&#dt.

~7.3!

Diagrammatically,I .(t,t8) is evaluated in a rather standa
manner from the current-current bubble diagram, the o
exception here being that, becauseH8 contains Majorana
fermions and does not conserve the number ofc fermions,
all possible contractions must be taken into account.I .(t,t8)
therefore breaks into products of single-particle respo
functions, which are comprised ofGaa

. (t,t8) andGf k,a
. (t,t8)

@Eqs.~4.25! and ~5.4!, respectively#, together with

Gf k, f k8
.

~ t,t8!5^@c f ,k
† 1c f ,k#~ t !@c f ,k8

†
1c f ,k8!#~ t8!&

~7.4!

and

Ga, f k
. ~ t,t8!5^â~ t !@c f ,k

† ~ t8!1c f ,k~ t8!#&. ~7.5!

Specifically, using Eq.~4.32! one has

I .~ t,t8!5^ Î c8~ t !&^ Î c8~ t8!&1
e2

\
G1vF

3
1

L (
k,k8

@Gf k, f k8
.

~ t,t8!Gaa
. ~ t,t8!

2Gf k,a
. ~ t,t8!Ga, f k8

.
~ t,t8!#. ~7.6!

Using Eq.~7.6!, the noise can be expressed in terms of
single-particle response functions mentioned above. Thes
turn are evaluated in the Fourier representation using pe
bation theory with respect toJ'

ab andH. Skipping the details
of the algebra, we quote here only the end result for
noise:

S~V!5
e2

\
G1E

2`

` de

p
$G1g~e!g~e2\V!

1Gaa
. ~e!@ f e f f~e1\V!1 f e f f~e2\V!#%,

~7.7!

with

g~e!5Gaa~e2 ih!@ f ~e2eV!2 f ~e1eV!#. ~7.8!
ep
to

g

ly

e

e
in
r-

e

Here f e f f(e) is the effective distribution function defined i
Eq. ~4.35!.

Equations~7.7! and ~7.8! are the central result of this
section. Together they provide us with an exact express
for the noise spectrum, for arbitrary frequencyV. We devote
the remainder of this section to evaluation and analysis
these equations, starting with theV50 component of the
noise spectrum.

B. Zero-frequency noise

Before proceeding to examine the zero-frequency no
we briefly review several standard limits which will be us
as a reference. In the case of uncorrelated tunneling ev
obeying Poisson statistics,35 the noise-to-current ratio is 2e,
which we refer to hereafter as the Poisson limit or the ‘‘ful
shot noise. For a noninteracting quantum-mechanical e
tron gas incident upon a barrier with energy-independ
transmission probabilityT, there is a suppression of th
noise-to-current ratio36–41 from the Poisson result to 2e(1
2T). Inclusion of energy dependence in the transmiss
probability amounts to replacingT in 2e(12T) with an ef-
fective transmission coefficientTe f f :

S~0!/I c52e~12Te f f!, ~7.9!

with

Te f f5
1

*mR

mL T~e!de
E

mR

mL
T 2~e!de. ~7.10!

Thus, the zero-temperature noise-to-current ratio for a n
interacting system is always bounded by the Poisson lim
the latter being valid only in the limitTe f f→0.

A generic feature of the noise-to-current ratio for o
model is that it approaches the Poisson limit of 2e at large
bias. This can be seen from the fact that Eqs.~7.7! and~7.8!
with V50 and T50 can be recast, after some manipu
tions, in the form

S~0!52eIc~V!1
e2G1

2

p\ E
2eV

eV

Re$Gaa
2 ~e1 ih!%de.

~7.11!

For largeV, the second term drops out in Eq.~7.11!, as
Gaa

2 (e1 ih) is analytic in the upper half plane and falls a
ymptotically like 1/e2. Consequently, the unbounded integr
of Re$Gaa

2 (e1ih)% identically vanishes, leaving only the firs
term in Eq.~7.11!, which is the Poisson result. In a simila
fashion,S(0)/I c can be shown to approach the Poisson lim
at large bias for arbitrary temperature.

1. T50, H 50

The zero-temperature, zero-field noise for our mode
summarized in Fig. 7~a!. Initially, there is a suppression o
the shot noise near zero bias, but eventually it approache
‘‘full’’ shot noise S(0)/I c52e for voltages much larger than
Ga . This can be understood quantitatively from the expr
sions for the noise and the noise-to-current ratio:

S~0!52
e2

p\
G1FarctanS eV

Ga
D2

eVG1

~eV!21Ga
2G ~7.12!
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and

S~0!

I c~V!
52eF12

G1eV

arctan~eV/Ga!@~eV!21Ga
2#G . ~7.13!

For voltages small compared toGa , Eq. ~7.13! reduces to
2e(12G1 /Ga). This is consistent with the noninteractin
case, in the sense thatG1 /Ga5G(0,0)p\/e2 can be inter-
preted as the zero-energy transmission probability per
channel. Specifically,S(0)/I c vanishes at small voltages fo
G15Ga , in accordance with the limit of perfect zero
temperature transmission. Upon increasingV, the noise-to-
current ratio monotonically increases until it saturates at
Poisson limit foreV@Ga . The effect of decreasingG1 /Ga is
also to increaseS(0)/I c . In the limit of weak tunneling,
G1 /Ga!1, the ratio S(0)/I c approaches the ‘‘full’’ shot
noise for arbitrary voltage bias, in agreement with the lim
Te f f!1 for the noninteracting case.

The noise curves in Fig. 7~a! are qualitatively similar to
those for theEf50 resonant-level model, shown in Fig. 7~b!.
At zero frequency, the noise for theEf50 resonant level is
obtained from Eqs.~7.9! and~7.10! using a Lorentzian form
for the transmission probability:

T~e!5
gLgR

e21~g/2!2 . ~7.14!

Thus, there is a suppression of the shot noise even foV
→`, due to the factor of 12Te f f in Eq. ~7.9!. For T(e) of
Eq. ~7.14!, Te f f is equal to 2gLgR /g2 at large bias.42

The reason why the resonant-level model has suppre
noise at large bias but the Kondo model does not can
understood from a simple master equation for the cha
current. For the resonant-level model, the spin-s current
from the left lead to the level is given at large bias by

I Ls~ t !5
egL

\
@12ns~ t !#, ~7.15!

FIG. 7. The zero-temperature, zero-field noise-to-current r
~a! for our Kondo model and~b! for the noninteracting resonan
level model withEf50. Corresponding model parameters were a
justed to produce identical zero-temperatureI -V curves for the two
models ~i.e., Ga5g and G154gLgR /g). For the Kondo model,
S(0)/I c(V) is equal to 2e(12G1 /Ga) for V!Ga , and approaches
the Poisson limit 2e for Ga!eV. For the resonant-level model, th
noise-to-current ratio also starts at 2e(12G1 /Ga), but saturates a
e(22G1 /Ga),2e for large voltages.
in

e

t

ed
e
e

wherens(t) is the occupancy of thef s
† state at timet. Hence

the noise measures not only the Poissonian tunneling
tempts from the lead, but also the temporal fluctuations in
occupancy of the level. In particular, if the level is occupi
at a given instance, then tunneling to the level is forbidd
by Pauli’s exclusion principle until it becomes vacant aga
This induces temporal correlations between successive
neling events, causing suppression of the shot noise be
the Poisson limit.

In the Kondo model, the localized fermions are replac
by Majorana fermions, which are not subject to any exc
sion principle. Consequently, the current at large bias
given by Eq.~6.14! and is free of any damping term analo
gous to 12ns(t). Physically, this reflects the lack of an
fundamental restriction on repeated flipping of the impur
spin. The only contribution to the shot noise in this ca
comes from the random Poissonian tunneling attempts f
the lead, which giveS(0)52eIc .

2. T50, HÞ0

Next we switch on a nonzero magnetic field. Figures
and 9 display the noise-to-current ratio for zero temperat
and nonzero magnetic field.@See Appendix D, Eq.~D5!, for

o

-

FIG. 8. The zero-temperature noise-to-current ratio forGa5Gb

5G1 and different values of the magnetic field. Herem5mBgi . For
intermediate to large magnetic fields, there is a minima in the no
to-current ratio aboveeV5mBgiH. For mBgiH/Ga.4.25, a win-
dow opens in whichS(0)/I c(V) exceeds the Poisson limit. Finally
for mBgiH@Ga , the noise-to-current ratio approaches the dot
curve which has a peak value ofS(0)/I c53e and which is given
for eV,mBgiH by the ratio of Eq.~7.19! to Eq. ~7.18!.

FIG. 9. The zero-temperature noise-to-current ratio formBgiH
55Ga , Ga5G1 , and different ratios ofGb to Ga . The excess noise
increases asGb /Ga decreases. Specifically,S(0)/I c(V) approaches
the asymptotic peak value of 2e12eG1 /(Ga1Gb), in the limit of a
large magnetic field.



oi
c
do
in
o

fo
e
if
f

an
fli

m
ua
m
he
le

2

th
m

tio
f
is
en
un

a
ng
rit
th

hi
e

c

r
e
t
e

ro

e

are

tron
and

ron

,

ing

Eqs.

ld.
to-

are
ase

ry
is
to-

for

the
the
the

ect
rder
pu-
at
n-
ro-
nces

ity
t
-

14 998 PRB 58AVRAHAM SCHILLER AND SELMAN HERSHFIELD
an explicit analytic expression.# The most intriguing fea-
ture of these plots is the enhancement ofS(0)/I c for suffi-
ciently large magnetic fields, aseV approachesmBgiH from
below. In particular, the noise can actually exceed the P
son value of 2eIc . From Figs. 8 and 9 we see that this effe
is more pronounced for fields large relative to the Kon
scalesGa and Gb , and that the size of the excess noise
creases withGa /Gb . As noted above, it is impossible t
achieve a noise-to-current ratio larger than 2e from a nonin-
teracting electron model. Thus, this is a clear signature
the many-body phenomena of this problem. Moreover, th
is no analogous indication for many-body physics in the d
ferential conductance, which can actually be reproduced
Ga5Gb from the noninteracting resonant-level model.

The key to understanding the noise curves in Figs. 8
9 is that tunneling processes involving just a single spin-
scattering are energetically disallowed foreV,mBgiH. The
voltage can provide an excess energy ofeV, which is insuf-
ficient to overcome the large Zeeman splitting at zero te
perature. Thus, the only way to get a current is by virt
processes in which the impurity spin is flipped twice, so
of which involve the transfer of two electrons across t
junction, while others involve the usual transfer of a sing
electron. As the effective charge for pair tunneling ise
instead ofe, the maximal possible noise is 2(2e)I c rather
than 2eIc .

This argument can be made quantitative by computing
rates for the one- and two-electron processes, using Fer
golden rule and the Hamiltonian of Eq.~6.8!. Assuming
mBgiH is positive and large compared toGa andGb , the d
fermion is unoccupied~spin up! for mBgiH@kBT. Flipping
the impurity spin back and forth corresponds to the crea
and annihilation of ad fermion, which costs an energy o
mBgiH in the intermediate state. As the impurity energy
the same for the initial and final states, conservation of
ergy implies that the conduction-electron energy is also
changed between the initial and final states.

From Eq.~6.8!, there are four different terms that create
d fermion and four different terms that annihilate one, givi
a total of 16 second-order processes that flip the impu
back and forth. We are interested in those processes
conserve energy and carry current at the same time, of w
there are only five processes. Specifically, the sequenc
termsc f(0)d† followed by c f(0)d annihilates a pair of fla-
vor fermions, which corresponds to tunneling of two ele
trons from left to right@see Eqs.~3.5!#. The other four se-
quences involve onec f(0) operator and one spin-flavo
operator—eithercs f(0) or cs f

† (0)—and therefore decreas
the number of flavor fermions only by 1. This corresponds
tunneling of a single electron. Hence to second order th
are two types of contributions to the current: one-elect
and two-electron tunneling processes.

Using Fermi’s golden rule, the corresponding on
electron (R1) and two-electron (R2) tunneling rates are
found to be

R15
G1

2

4pH F v
12v2 1

1

2
lnS 12v

11v D G , ~7.16!
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R25
G1G2

2pH F v
12v2 1

1

2
lnS 12v

11v D G
1

G1Gb

2pH F v
12v2 2

1

2
lnS 12v

11v D G , ~7.17!

wherev5eV/mBgiH,1 is the ‘‘reduced’’ voltage, andG2
is equal toGa2G1 ~see Table I!. In terms of the tunneling
rates, the charge current and the zero-frequency noise
given by

I c5eR112eR2 , ~7.18!

S~0!52e2R112~2e!2R2 . ~7.19!

In the above we have assumed that the one- and two-elec
tunneling events are uncorrelated, and hence the noise
the current are both additive, with the one- and two-elect
contributions each obeying the relationS(0)52QIc . Here
Q is the net charge transferred across the junction, i.e.Q
5e for one-electron tunneling andQ52e for pair tunneling.

Equations~7.18! and ~7.19! are correct to fourth order in
the transverse couplings, which is the lowest nonvanish
order for the current and noise wheneV,mBgiH. They can
also be obtained from the exact expressions, Eqs.~5.7! and
~7.11!, by taking the limitGa ,Gb!mBgiH. From the exact
expressions one can see that the apparent divergences in
~7.16! and ~7.17! as eV approachesmBgiH from below are
cut off by higher order contributions oncemBgiH2eV be-
comes comparable to the largest ofGa andGb . In terms of
the ‘‘reduced’’ voltage,v, this cutoff can be made arbitrarily
close to 1 by considering a sufficiently large magnetic fie

The dotted curve in Fig. 8 shows the asymptotic noise-
current ratio, for a large magnetic field. ForeV,mBgiH, the
curve is given by the ratio of Eq.~7.19! to Eq. ~7.18!. The
maximal value forS(0)/I c is approached in the limitv
→12 and is equal to 2e12eG1 /(Ga1Gb). The upper
bound forS(0)/I c is therefore 4e instead of 2e, correspond-
ing to the case where only pair-tunneling processes
present. In terms of the original model parameters, this c
corresponds toJ'

LL5J'
RR50.

OnceeV.mBgiH, the voltage can supply the necessa
energy to flip the impurity spin from up to down. This
manifest in Figs. 8 and 9 in a quick drop in the noise-
current ratio, below the Poisson value of 2e. As explained in
the previous subsection, the Poisson limit is recovered
very large voltages, i.e.,mBgiH!eV.

One may ask, how robust is this enhancement of
noise-to-current ratio? Similar to the spin-current case,
mechanism for pair tunneling can already be seen in
original Hamiltonian of Eq.~2.2!, providedJz

LR is zero. For a
large magnetic field, energy conservation prohibits any dir
tunneling across the junction. Consequently, the lowest-o
tunneling processes involve two electrons, where the im
rity spin is flipped twice. Of the 16 different processes th
flip the impurity spin back and forth, only five conserve e
ergy and carry current at the same time. The first three p
cesses in the latter category are described by the seque
~c!, ~d!, and~e! in Fig. 5. In each of these cases the impur
is first flipped by tunneling an electron from left to righ
~assumingV.0) and then flipped back either via an in
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tralead spin flip@Figs. 5~c! and 5~d!# or by tunneling a sec-
ond electron across the junction@Fig. 5~e!#. The remaining
two processes are similar to those in Figs. 5~c! and 5~d!, but
the order of spin flips is reversed: first the impurity spin
flipped via an intralead scattering, and only then is it flipp
back by tunneling an electron from left to right. The e
hancement of the noise-to-current ratio comes from the
quence of Fig. 5~e!, in which a charge of 2e is transferred
across the junction. This phenomena should occur in
system where direct tunneling is forbidden by energy con
vation and there are two-electron virtual processes.

3. Finite temperature

While at zero temperature one is dealing with pure s
noise, at finite temperature there are also thermal fluctuat
that contribute to the noise. For small voltageseV!kBT,
thermal fluctuations dominate the zero-frequency noise. S
cifically, from the fluctuation-dissipation theorem43 it is
known thatS(0)54kBTG(0,T) at zero bias. In the opposit
limit eV@kBT, one expects a crossover from the Nyqui
Johnson noise to the shot-noise result. This is illustrate
Fig. 10, for zero magnetic field andG15Ga . At zero volt-
age, S(0) increases monotonically with temperature fro
S(0)50 at T50 to S(0)5e2G1 /\ at kBT@Ga . As a func-
tion of voltage, S(0) gradually collapses onto the zer
temperature shot noise, leaving only a single curve in Fig
for sufficiently large voltage bias. The crossover to the sh
noise result occurs aseV becomes several times larger th
kBT.

Both the zero-voltage and the large-voltage limits can
seen analytically from Eqs.~7.7! and ~7.8!, after settingV
equal to zero. Specifically, for zero voltage the first term
Eq. ~7.7! drops out andf e f f(e) reduces tof (e). After ma-
nipulating Eqs.~4.34!–~4.37! for Gaa

. (e) one obtains

S~0!54
e2G1

p\ E
2`

`

Aa~e! f ~2e! f ~e!de54kBTG~0,T!,

~7.20!

which is the fluctuation-dissipation theorem.
In the opposite limiteV@kBT,Ga ,Gb ,mBgiH, the first

term in Eq. ~7.7! approaches the unbounded integral

FIG. 10. The zero-frequency charge-current noiseS(0) for H
50, Ga5G1 , and different temperatures. HereI c(V5`)
5eG1/2\ denotes the charge current at large voltage bias. In ac
dance with the fluctuation-dissipation theorem,S(0) is equal to
4kBTG(0,T) at zero bias. For sufficiently large bias, it crosses o
from the Nyquist-Johnson noise to the shot noise.
d

e-
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e-
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in

0
t-

e

f

Gaa
2 (e2 ih), which is identically zero@see discussion fol-

lowing Eq. ~7.11!#. In the second term,f e f f(e) is equal to
one-half in the dominant integration range, and hence

S~0!'
e2G1

p\ E
2`

`

Gaa
. ~e!de5

e2

\
G1 . ~7.21!

Evidently, Eq.~7.21! is independent of temperature, indica
ing that thermal noise is unimportant at sufficiently lar
bias. A complete expression forS(0) for arbitrary tempera-
ture and zero magnetic field is provided in Appendix D, E
~D6!.

C. Finite frequencies

Thus far our discussion has focused on the zero-freque
noise. The most interesting aspect of the finite-freque
noise spectrumS(V) is the appearance of singularities
zero temperature at certain frequencies. For a noninterac
gas incident upon a barrier,S(V) has three characteristi
singularities:44 one singularity at zero frequency and tw
symmetric singularities atV56eV/\. The noise spectrum
is continuous in all three locations, but has discontinuo
derivatives with respect toV.

The origin of the singularities inS(V) is in the sharpness
of the Fermi surfaces at zero temperature. This is best s
by working in the scattering-state basis, where the Ham
tonian is diagonal. For a general noninteracting proble
such as the resonant-level model, the current operator is
linear in scattering-state operators. Hence the noise corr
tion function, Eq.~7.1!, measures particle-hole excitations.
particle-hole excitation involves two Fermi functions: on
function f (e12m1) for the availability of the particle and
another function 12 f (e22m2) for the availability of the
hole. The frequencyV probes the energy of the excitation
At zero temperature, there will be an abrupt change in
product of the two Fermi functions as one sweeps throu
\V5m22m1 , corresponding to the threshold energy f
creating a particle-hole excitation. Thus, ifm1 is equal to
m2 , as in the case of a particle and a hole that originate fr
the same lead, there will be a singularity in the noise sp
trum at V50. In the case of excitations that involve tw
opposite leads, the singularities occur atV56eV/\. In a
general multilead system, the noise will typically have s
gularities at all possible chemical-potential differences.

A similar picture applies to the nonequilibrium Kond
model. Here the elementary excitations of the system are
scattering states for the flavor and spin-flavor chann
which differ from both the physical electrons and the ref
mionizedc fermions. The new ingredient in this case com
from the structure of the charge-current operator, which
still bilinear in the scattering-state operators, but includ
also particle-particle (c†c†) and hole-hole (cc) combina-
tions of scattering states. Accordingly, the current-curr
correlation function of Eq.~7.1! measures three distinct type
of scattering-state pair excitations: particle-hole, partic
particle, and hole-hole excitations, each of which has a
ferent characteristic threshold energy. Consequently,S(V)
for the Kondo model develops singularities when6\V is
equal either to the difference or to thesumof the two chemi-
cal potentials for the relevant scattering-state fermions.

r-

r
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In Figs. 11 and 12 we have plotted the zero-tempera
noise as a function of frequency, for two different sets
model parameters. In both figures the magnetic field is eq
to zero; however,G1 in Fig. 11 is equal toGa . From Tables
II and III one can see thatÎ c8 involves only flavor scattering
state operators whenG15Ga , but contains also spin-flavo
operators if eitherG1ÞGa or HÞ0. As we shall see, this
changes the number of singularities in the noise spectrum
going from Fig. 11 to Fig. 12. A complete analytical expre
sion for the noise spectra at zero temperature and zero m
netic field is detailed in Appendix D, Eq.~D7!.

We begin with the limit of low frequencies. In the prev
ous subsections we have described in detail the z
frequency noise. In both Figs. 11 and 12 one sees that
noise actually has a cusp atV50, whereS(V) varies like
the absolute value ofV. This cusp is the analog of the zero
frequency singularity in the noninteracting case. It ste
from particle-hole excitations for the flavor-channel scatt
ing states, i.e., from the termscf ,k

† cf ,k8 in Î c8 . As the voltage
is increased, it appears as if this singularity is washed
However, careful analysis of Eq.~D7! shows that the noise a
small frequencies always has the singular component

Ssingular~V'0!5
2e2G1

2

p
Aa

2~eV!uVu. ~7.22!

Here Aa(e) is the spectral function for theâ Majorana fer-
mion. ForeV.Ga , Aa

2(eV) diminishes asGa
2/(eV)4, which

FIG. 11. The zero-temperature charge-current noise spec
S(V) for G15Ga , H50, and different voltage biasV ~a! plotted vs
\V/Ga and~b! plotted vs\V/eV. HereS(V5`)5e2G1 /\ is the
noise at large frequencies. ForG15Ga , there are three distinct fre
quencies whereS(V) has singularities:V50, where the slope of
S(V) is discontinuous, andV562eV/\, where the third deriva-
tive of S(V) with respect toV is discontinuous. The effect of a
voltage is to weaken the singularity atV50, making it indiscern-
ible at large bias. For sufficiently large bias, two symmetric mini
develop atV56eV/\.
re
f
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in
-
g-

o-
he
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-
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explains the rapid weakening of the singularity as the volta
is increased.

Although it may not be apparent from Figs. 11 and 1
there are actually additional singularities in the noise sp
trum atV562eV/\. These, however, are higher-order si
gularities, featuring a discontinuity in the third derivative
S(V) with respect toV. To analyze the latter singularities
is necessary to expand Eq.~D7! aboutV562eV/\ to third
order in d65V72eV/\, which reveals the nonanalyti
term

Ssingular~V'62eV/\!5
e2\2

12p

G1
2

@~eV!21Ga
2#2 ud6u3.

~7.23!

As explained above, it is impossible to obtain any kind
singularities at 62eV/\ from a noninteracting electron
model. Moreover, the present singularities originate from
terms cf ,k

† cf ,k8
† and cf ,kcf ,k8 in the charge-current operato

which bear no contribution to the time-averaged curre
Hence the processes underlying these unconventional si
larities cannot be probed through the time-averaged curr

We note that a similar factor of 2 in the location of si
gularities was recently found in the noise spectrum for sta
impurity scattering in ag51/2 Luttinger liquid,45 where it
was interpreted as measuring the charge of the current c
ers (2e* for physical electrons instead ofe* for the original
Laughlin quasiparticles!. A similar interpretation in the
present context would imply the existence of pair-tunnel
processes. We emphasize, however, that while the singu
ties at62eV/\ are naturally understood in terms of particl
particle and hole-hole excitations for the scattering-state
mions, it is difficult to interpret them in terms of the actu

m FIG. 12. The same zero-temperature charge-current noise s
tra as in Fig. 11, but withG150.5Ga . For eitherG1ÞGa or H
Þ0, the noise spectrum has two additional singularities atV5
6eV/\, where the slope ofS(V) is discontinuous.
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conduction electrons in the system. Indeed, sincecf ,k con-
tains bothc f ,k andc f ,k

† components, one cannot simply a
sociatecf ,kcf ,k8 with the tunneling of two conduction elec
trons from left to right, as is the case forc f ,kc f ,k8 . It
remains to be seen what the underlying mechanism is
creating these singularities in terms of the physical cond
tion electrons.

The noise spectra in Fig. 11 have only three singulari
at V50 andV562eV/\. The noise is smooth and non
ingular atV56eV/\, even though two symmetric minim
do develop at these frequencies for sufficiently large b
The situation is quite different when eitherG1ÞGa or if a
nonzero magnetic field is switched on. In each of these ca
Î c contains mixed terms that involve one flavor and one sp
flavor scattering-state operator, each of which can either
ate or annihilate a scattering-state fermion. Since the co
sponding chemical potentials for the flavor and spin-fla
fermions arem f5eV andms f50, respectively, there are ad
ditional singularities in the noise spectrum atV56eV/\.
Indeed, for a zero magnetic field, expansion of Eq.~D7!
aboutV56eV/\ to linear order ind65V7eV/\ reveals
the nonanalytic term

Ssingular~V'6eV/\!5
e2G1G2

pGa
2 ud6u, ~7.24!

whereG2 is equal toGa2G1 . Hence, similar to the nonin
teracting case, the noise has a discontinuous slope aV
56eV/\.

Finally, we comment on the high-frequency limit. At hig
frequencies, S(V) approaches the asymptotic value
e2G1 /\. The noise does not decay asV→` because we
have chosen to work with an infinite bandwidth. For a fin
bandwidthD, there will be a characteristic cutoff frequenc
Vc;D/\, beyond whichS(V) decays to zero. Such a cuto
scale is absent for an infinite bandwidth.

VIII. IMPURITY MAGNETIZATION
AND SUSCEPTIBILITY

While transport properties are the most accessible exp
mentally for a single impurity, theoretically one is equa
interested in magnetic properties, as these provide direc
formation about the onset of Kondo screening. In this s
tion, we discuss in detail the magnetic properties of the
purity spin, focusing mainly on the static susceptibility.

A. Impurity susceptibility

The time-averaged impurity magnetization follows d
rectly from the equal-time Green functionGab

. (t,t):

M ~H,V!5 imBgiE
2`

` de

2p
Gab

. ~e!. ~8.1!

Inserting Eqs.~4.33!–~4.37! for Gab
. (e) yields

M ~H,V!5mBgiF G1

Ga1Gb
m~mBgiH,eV!

1
Ga1Gb2G1

Ga1Gb
m~mBgiH,0!G , ~8.2!
or
c-

s

s.

s,
-
e-
e-
r

ri-

n-
-
-

where

m~x,y!52
x

p E
2`

` ~Ga1Gb!e

u~e1 iGa!~e1 iGb!2x2u2
f ~e2y!de.

~8.3!

At zero temperature,m(x,y) has the simple closed-form ex
pression

m~x,y!5ImH x

pA4x22~Ga2Gb!2

3 lnS 2y1 i ~Ga1Gb!2A4x22~Ga2Gb!2

2y1 i ~Ga1Gb!1A4x22~Ga2Gb!2D J .

~8.4!

At finite temperature,m(x,y) is conveniently expressed i
terms of the digamma function; see Appendix D, Eq.~D8!.

Equation ~8.2! for the magnetization has the followin
physical interpretation. The first term is proportional to t
tunneling rateG1 and, hence, explicitly involves transition
between the two leads. Indeed, this is the only term to s
vive when bothJ'

LL and J'
RR are equal to zero. Conversely

only the second term remains ifJ'
LR is zero, i.e., when the

two leads are decoupled. Thus, there is a clear physical
tinction between interlead processes involvingJ'

LR and in-
tralead processes involvingJ'

LL and J'
RR, which is further

evident from the fact that only the first term in Eq.~8.2!
depends on the voltageV.

Figures 13 and 14 show the impurity susceptibility as
function of field, for different temperatures and model p

FIG. 13. The impurity susceptibilityx(H,V) as a function ofH
~a! for zero temperature and different voltage bias and~b! for
eV/Ga53 and different temperatures. In both graphs,G15Ga

5Gb and m5mBgi . As the voltage is increased, the zer
temperature susceptibility evolves from a single peak atH50 to
three resonances atmBgiH50,6eV. The effect of a temperature i
to smear theT50 structure, leaving only a single broad peak
sufficiently largeT.
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rameters. Each term in Eq.~8.2! is responsible for differen
resonances in the magnetic susceptibility. This is best s
for zero temperature andGa5Gb , when differentiation of
the first term with respect toH gives

x1~H,V!5
~mBgi !

2

4p F G1

~mBgiH2eV!21Ga
2

1
G1

~mBgiH1eV!21Ga
2G ~8.5!

and differentiation of the second term gives

x2~H !5
~mBgi !

2

2p

2Ga2G1

~mBgiH !21Ga
2 . ~8.6!

As a function ofH, x2(H) has a peak at zero field, whil
x1(H,V) is peaked atmBgiH56eV. The total susceptibility
x5x11x2 therefore has three separate peaks for sufficie
large voltage: one central peak atH50 and two symmetric
peaks atmBgiH56eV. The same qualitative picture als
applies toGaÞGb ; see Fig. 14. The main effect ofGaÞGb is
to modify the shapes ofx1(H,V) andx2(H), and to alter the
characteristic voltage at which the three-peak structure is
solved. Similar to the differential conductance, the effect o
temperature is to smear the zero-temperature structure
demonstrated in Fig. 13~b!, only a single broad resonance
left in the susceptibility for sufficiently large temperature.

To understand the origin of the peaks in the magne
susceptibility, we go back to the master-equation approac
Sec. VI B. ForeV2mBgiH,mBgiH@kBT,Ga ,Gb , the prob-
abilities for finding the impurity in the spin-up and spin
down states are specified in Eq.~6.11!. The corresponding
impurity magnetization is equal to

M5
mBgi

2
~P↑2P↓!5mBgi

Ga1Gb2G1

2~Ga1Gb!
, ~8.7!

which can also be obtained from the exact expression,
~8.2!, by taking the appropriate limit.

The above magnetization reflects the different lifetim
for the two spin states: only interlead spin-flip proces
(G1) can flip the impurity spin from up to down, wherea
both interlead (G1) and intralead (G2 andGb) processes can
flip the spin from down to up. Thus, polarization of the im

FIG. 14. The impurity susceptibilityx(H,V) as a function ofH,
for T50, eV/Ga53, and different ratios ofGb to Ga . The same
general structure is found for all values ofGb /Ga ; however, the
peak resolution is improved asGb /Ga is reduced.
en
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e-
a
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purity spin stems from the rapid suppression of intrale
spin-flip processes for the spin-up state, asmBgiH is in-
creased from zero tomBgiH@kBT,Ga ,Gb . This produces a
peak in the susceptibility atH50. If one further increasesH
such thatmBgiH2eV@kBT,Ga ,Gb , then interlead spin flips
are also suppressed, and the impurity is frozen in the spin
configuration (P↑51). This produces a second-step jump
the impurity magnetization, which shows up as an additio
peak in the susceptibility atmBgiH5eV.

B. Relating the spin susceptibility
to the differential conductance

One feature which becomes apparent at the solvable p
is the close relation between the magnetic susceptib
x(H,V) and the differential conductanceG(V,H). Specifi-
cally, for Ga5Gb one has the identity

x~H,V!5
\~mBgi !

2

e2G1
F G1

Ga1Gb
G~V,H !

1
Ga1Gb2G1

Ga1Gb
G~0,H !G , ~8.8!

which gives

x~H,V!2x~H,0!5
\~mBgi !

2

e2~Ga1Gb!
@G~V,H !2G~0,H !#.

~8.9!

Hence, up to rescaling, the impurity susceptibility and t
differential conductance share the same voltage depend
for Ga5Gb . Although Eq.~8.9! is no longer exact forGa
ÞGb , it remains a good approximation for arbitraryGa and
Gb , if uGa2Gbu is small compared tomBgiH. This suggests
that one can actually use the differential conductance a
probe for the voltage dependence of the impurity suscept
ity, thus opening the door to susceptibility-like experimen
on a single impurity.

C. Two-channel limits

Finally, it is worthwhile to consider how a finite bias a
fects the overscreening of the impurity spin in each of
two-channel limits of our model, as measured through
impurity susceptibility. In the Emery-Kivelson solution o
the two-channel Kondo model,13 the impurity response to a
local field is singular asT,H→0. Specifically, forT50 and
H→0 the magnetic susceptibility diverges logarithmica
as13

x~H !'2
~mBgi !

2

pG
lnS G

mBgiH
D , ~8.10!

while for H50 andT→0 it diverges as

x~0!5
~mBgi !

2

pG
lnS 1.13G

kBT D . ~8.11!

HereG is the relevant Kondo scale, i.e.,Ga or Gb , depending
on the two-channel limit under consideration.

Consider now the effect of a finite bias. In the first tw
channel limit Ga50, the two leads are decoupled. Cons
quently, V has no effect on physical quantities, and Eq
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~8.10! and ~8.11! remain intact. In the opposite limitGb
50, the divergences in the susceptibility are reduced b
factor of 12G1 /Ga , which is equal to zero forG15Ga . In
the latter case, a finite voltage entirely cuts off the div
gence inx, which instead saturates at

x~H→0,T→0!5
~mBgi !

2

pGa
lnF11S Ga

eVD 2G . ~8.12!

Hence, forGb50 andG15Ga , the effect of a voltage on the
impurity susceptibility is similar to that of a local magnet
field.

IX. CONCLUSIONS

In this paper, we have presented an exact solution to
nonequilibrium Kondo problem based on a special point
the parameter space of the model where both the Ha
tonianH and the operator describing the nonequilibrium d
tribution, Y, can be diagonalized simultaneously. This e
abled the calculation of a large number of experimenta
observable quantities. In the process of solving the probl
we have also demonstrated by explicit calculation
equivalence of two alternative approaches to nonequilibriu
a many-body scattering-state-operator approach17 and the
more conventional perturbation theory based on nonequ
rium Green functions. Both formulations rely on describi
the nonequilibrium condition by an operatorY0 , which plays
the role ofmN in the equilibrium theory. Below we summa
rize our main results.

The charge current and differential conductance are
most widely studied observables in the nonequilibriu
Kondo problem. Our solution shows the standard zero-b
anomaly and its splitting under an applied magnetic fie
which actually very few other approaches have been abl
describe in the strong-coupling regime. Most important,
cause of the analytic nature of our solution, we are able
analyze in detail the scaling properties of the differen
conductance at low temperature and low voltage. In part
lar, we obtained the universal low-temperature scaling cu
and the finite-temperature corrections to it, both of wh
bear direct relevance to quantitative comparisons with
periments.

Contrary to the charge current, the spin current has
been studied before in the context of the nonequilibri
Kondo problem. In computing the spin current and the as
ciated differential conductance, we find that the spin curr
for this model is actually even in the applied voltage.
direction depends solely on the sign of the magnetic field
the asymmetry in the transverse coupling to the left and r
leads, which provides a distinct experimental signature
tunneling through a Kondo impurity. A simple physical pi
ture is given for this effect in terms of the different possib
tunneling processes. Although the spin current has not b
studied experimentally to date, there is no reason wh
cannot be measured in light of the present interest in s
polarized transport.

Similar to the spin current, the charge-current noise
not been studied before in this problem. The noise spect
measures pair excitations of the system. With the noise
is able to see new physics which is not observable in
differential conductance. In particular, for a large magne
a
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field at zero temperature, the noise-to-current ratioS(0)/I c

exceeds the Poisson value of 2e and can be as large as 4e.
We explain this effect by virtual processes involving tunn
ing of pairs of electrons. This provides a simple mechani
for the enhancement of the noise-to-current ratio in intera
ing mesoscopic systems.

Pair processes of a different kind are observed in
finite-frequency noise spectrum. As a function of frequen
the noise has a new set of singularities at\V562eV,
which are twice as large as the conventional frequencie44

These new singularities are understood in terms of the
rent operator, which contains components describing the
multaneous creation or annihilation of pairs of scatter
states. The scattering states are the elementary excitatio
the Hamiltonian; however, unlike in conventional noninte
acting systems, they do not correspond to any fixed num
of physical electrons. Although the new singularities at\V
562eV are too smooth to be detected experimentally, th
clearly illustrate the complex nature of the tunneling curre

Finally, we have computed the impurity magnetizati
and susceptibility as a function of magnetic field and volta
While it appears unlikely that the magnetization and susc
tibility of a single impurity can be measured experimental
from a theoretical point of view they are perhaps the m
direct measurement of the screening of the impurity by
conduction electrons. By examining the susceptibility as
function of voltage and field, we are able to identify tw
distinct processes—intralead and interlead—which are
sponsible for different peaks in the susceptibility curve. Ea
peak occurs at a field where a certain spin-flip mechanism
suppressed. Intralead spin flips are suppressed formBgiH
.0, whereas interlead spin flips are suppressed formBgiH
.eV.

Although the solvable point is only one point in the p
rameter space of the nonequilibrium Kondo problem, we
pect it to correctly describe the strong-coupling regime of
model for arbitrary antiferromagnetic coupling constants.
particular, our predictions for the scaling curve should
quantitatively correct. As one of the parameterskBT, eV, or
mBgiH becomes of order of the Kondo scale, our results
expected to remain qualitatively correct, but not necessa
quantitative. For example, the differential conductance
served experimentally8,9 shows a splitting in a magnetic fiel
similar to the one obtained in our calculation; however, o
cannot quantitatively fit our solution to the experimen
curves.46 As one leaves the scaling regime—i.e.,kBT, eV, or
mBgiH becomes considerably larger than the Kon
scale—it remains to be seen which of our results continue
apply to a generic Kondo Hamiltonian. We expect the s
current to remain an even function of the applied bias, wit
characteristic peak in the differential conductance ateV
5mBgiH. On the other hand, we do not recover the stand
logarithmic temperature dependence of the conductanc
high temperature. It is particularly interesting to see if o
predictions for the enhancement of the noise carry over to
standard Kondo Hamiltonian and whether they can be
tected experimentally.

It is our hope that the concepts and techniques used in
paper will prove useful in studying other interacting no
equilibrium problems and in obtaining other solvable poin
Especially intriguing is the possibility of combining th
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Y-operator formalism with powerful approaches such as
Bethe ansatz and conformal field theory; however, t
hinges on the ability of the latter approaches to construct
appropriate many-body scattering states. It remains to
seen to what extent existing solutions of the equilibriu
Kondo problem11 can be reformulated in terms of the man
body scattering states.
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APPENDIX A: MAPPING OF THE EFFECTIVE
ONE-CHANNEL LIMIT ONTO THE ORDINARY

ONE-CHANNEL HAMILTONIAN

In this appendix, we show that the effective one-chan
limit of Eq. ~2.19! is equivalent in equilibrium to the ordi
nary one-channel Kondo Hamiltonian. Specifically, using
notation of Eq.~2.16! we present an exact mapping of th
Hamiltonian

H5Hkin1Jz1s1
ztz1J'1~s1

xtx1s1
yty!1Jz2s2

ztz ~A1!

onto the standard single-channel Kondo Hamiltonian. H
Hkin is the kinetic energy for thec1s and c2s fields, and
Jz1 , Jz2 , andJ'1 are arbitrary coupling constants. For co
ciseness, we have omitted the local magnetic field acting
the impurity spin from Eq.~A1!. Such a term, though, can b
trivially incorporated. The mapping is obtained in the fram
work of bosonization.

To bosonize the fermion fieldsc1s andc2s , we employ
the same representation of Sec. III, with the indicesL andR
corresponding to 1 and 2, respectively. This leads to
following representation of Eq.~A1!:

H5
\vF

4p (
n51↑,1↓,2↑,2↓

E
2`

`

@¹Fn~x!#2dx

1 i
J'1

4pa
@ei ~x1↑2x1↓!t22e2 i ~x1↑2x1↓!t1#

1
Jz1

4p
@¹F1↑~0!2¹F1↓~0!#tz

1
Jz2

4p
@¹F2↑~0!2¹F2↓~0!#tz, ~A2!

with xn5Fn(0)2wn .
The Hamiltonian of Eq.~A2! is converted to a standar

one-channel Kondo Hamiltonian through a series of trans
mations. We begin with the canonical transformationH8
5U1HU1

† , in which
e
s
e
e

,

s
t
-

-
-

l

e

e

n

-

e

r-

U15exp@ iu1~x1↑2x1↓!t
z1 iu2~x2↑2x2↓!t

z# ~A3!

is defined by the two angles of rotation

u15
Jz1

4p\vF
and u25

Jz2

4p\vF
. ~A4!

This brings us to

H85
\vF

4p (
n51↑,1↓,2↑,2↓

E
2`

`

@¹Fn~x!#2dx

1 i
J'1

4pa
@ei ~12u1!~x1↑2x1↓!2 iu2~x2↑2 ix2↓!t2

2e2 i ~12u1!~x1↑2x1↓!1 iu2~x2↑2x2↓!t1#. ~A5!

While the longitudinal Kondo terms have been convenien
removed from Eq.~A5!, the exponential terms acquired a
explicit dependence on the anglesu1 andu2 . To overcome
the latter difficulty, we introduce a new set of boson field

F̃1s~x!5AF1s~x!2BF2s~x!, ~A6!

F̃2s~x!5BF1s~x!1AF2s~x!, ~A7!

where

A5
12u1

A~12u1!21u2
2

, ~A8!

B5
u2

A~12u1!21u2
2

. ~A9!

Similar combinations are defined for each ofw̃n andx̃n . The
coefficients A and B are chosen such thatF̃1s(x) and
F̃2s(x) maintain appropriate commutation relations:

@F̃ is~x!,F̃ j s8~y!#52 ipd i , jds,s8 sgn~x2y!. ~A10!

Conventional exponents are restored in Eq.~A5! by per-
forming a second canonical transformation, this time toH9
5U2H8U2

† with

U25exp$ i @A~12u1!21u2
221#~ x̃1↑2x̃2↓!t

z%.
~A11!

This step brings us to the Hamiltonian

H95
\vF

4p (
n51↑,1↓,2↑,2↓

E
2`

`

@¹F̃n~x!#2dx

1 i
J'1

4pa
@ei ~ x̃1↑2x̃1↓!t22e2 i ~ x̃1↑2x̃1↓!t1#

1
J̃z

4p
@¹F̃1↑~0!2¹F̃1↓~0!#tz, ~A12!

where

J̃z54p\vF@12A~12u1!21u2
2#. ~A13!

At this point, we transform to a new fermion represen
tion by introducing the fermion fields



d

il-

o

n

e
-
rr
a

m

on
ap

it

th

fo
am
to

era-

uit-
is

-
-

ry
-
g-
re-

his

PRB 58 15 005TOULOUSE LIMIT FOR THE NONEQUILIBRIUM KONDO . . .
c̃ is~x!5
eiQ is

A2pa
e2 i F̃ is~x!. ~A14!

Here Q is are supplementary phase operators, introduce
assure that the different fermion species of Eq.~A14! anti-
commute with one another. The explicit forms of theQ is are

Q2↑5
1

2 E
2`

`

@¹F̃2↓~x!1¹F̃1↑~x!1¹F̃1↓~x!#dx,

~A15!

Q2↓5
1

2 E
2`

`

@¹F̃1↑~x!1¹F̃1↓~x!#dx, ~A16!

Q1↑5w̃1↑2w̃1↓5
1

2 E
2`

`

¹F̃1↓~x!dx, ~A17!

andQ1↓50. In terms of the new fermion fields, the Ham
tonian takes the form

H95Hkin9 1 J̃zs̃1
ztz1J'1~ s̃1

xtx1 s̃1
yty!, ~A18!

whereHkin9 is the kinetic energy of thec̃1s and c̃2s fields,

and s̃1
l are the spin densities at the origin for thec̃1s fermi-

ons @obtained by replacingc is(0) with c̃1s(0) in Eq.
~2.18!#.

Equation ~A18! is just a standard one-channel Kond
Hamiltonian, in which thec̃1s fermions undergo a Kondo
spin-exchange interaction with the impurity spin. Thec̃2s

fermions are decoupled from the impurity. The effective lo
gitudinal coupling in this new representation isJ̃z , which
generally depends on bothJz1 andJz2 @see Eq.~A13!#. For
Jz1 ,Jz2!1, it reduces toJz1 .

In equilibrium, this establishes the equivalence of the
fective one-channel limit of Eq.~2.19! and the standard one
channel Kondo effect. This result, however, does not ca
over to the nonequilibrium case, where a simultaneous m
ping of theY0 operator is required. When expressed in ter
of the fermion fieldsc1s andc2s , Y0 contains bilinear com-
binations that do not transform simply under the operati
U1 andU2 . Consequently, one can no longer formally m
the effective one-channel limit of Eq.~2.19! onto the stan-
dard one-channel Kondo impurity in the presence of a fin
bias.

APPENDIX B: DERIVATION
OF THE SCATTERING-STATE OPERATORS

In this appendix, we present a detailed solution of
scattering-state operators, as defined by Eq.~4.6!. Our objec-
tive is twofold: to obtain exact, closed-form expressions
the scattering-state operators and to illustrate at the s
time the type of machinery necessary for tackling opera
equations such as Eq.~4.6!.

To this end, we separate the Hamiltonian of Eq.~4.4! into
three parts

H085 (
n5 f ,s f

(
k

ekcn,k
† cn,k , ~B1!
to

-

f-

y
p-
s

s

e

e

r
e

r

H185 i
J1

2ApaL
(

k
~cs f,k

† 1cs f,k!b̂

1
J'

LR

2ApaL
(

k
~c f ,k

† 2c f ,k!â

1
J2

2ApaL
(

k
~cs f,k

† 2cs f,k!â, ~B2!

H2852 imBgiHâb̂. ~B3!

Each of the above components is assigned a Liouville op
tor Ln , which acts on a general operatorÔ according to

LnÔ5@Ô,Hn8#. ~B4!

UsingL5L01L11L2 , Eq. ~4.6! is rewritten as

~L1ek1 ih!cn,k
† 5 ihcn,k

† , ~B5!

which has the formal solution

cn,k
† 5 ih

1

L1ek1 ih
cn,k

† . ~B6!

Because of the explicit way in whichh enters Eq.~B6!, it
is inconvenient to work with this representation of Eq.~4.6!.
Our goal is to recast the same equation in a form more s
able for computing the scattering-state operators. This
achieved by combining the operator identity

1

L1ek1 ih
5F12

1

L1ek1 ih
~L11L2!G 1

L01ek1 ih
~B7!

with

1

L01ek1 ih
cn,k

† 5
1

ih
cn,k

† ~B8!

and

L 2cn,k
† 50, ~B9!

to obtain

cn,k
† 5cn,k

† 2
1

L1ek1 ih
L 1cn,k

† . ~B10!

Equation ~B10! is the direct analog of the Lippmann
Schwinger equation25 for scattering states in first quantiza
tion. Herecn,k

† plays the role of the plain-wave bounda
condition, whileL1 andL2 correspond to the scattering po
tential. A similar equation can be derived for the scatterin
state operators of a general nonequilibrium problem. The
mainder of this appendix is devoted to the solution of t
equation.

When taking the commutatorL 1cn,k
† in Eq. ~B10!, it is

useful to introduce two auxiliary operators

Â5
1

L1ek1 ih
â ~B11!
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and

B̂5
1

L1ek1 ih
b̂. ~B12!

These are related to the scattering-state operators via

cf ,k
† 5c f ,k

† 1
J'

LR

2ApaL
Â, ~B13!

cs f,k
† 5cs f,k

† 1
J2

2ApaL
Â2 i

J1

2ApaL
B̂. ~B14!

By analogy with Green functions,Â and B̂ can be inter-
preted as the ‘‘dressed’’~with respect toL1 andL2) coun-
terparts ofâ andb̂. Indeed, a systematic expansion inL1 and
L2 corresponds to perturbation theory inH18 andH28 , with
(L01ek1 ih)21 playing the role of the bare propagato
Concentrating on the operatorsÂ and B̂, we evaluate them
using a procedure reminiscent of the equations-of-mo
technique for the calculation of ordinary Green functions.
in Dyson’s equation for Green functions, we seek a clo
set of equations relatingÂ andB̂ to themselves. Bearing thi
aim in mind, we substitute once again the operator iden
~B7! into Eqs.~B11! and ~B12!, only this time in combina-
tion with

1

L01ek1 ih H â

b̂
J 5

1

ek1 ih H â

b̂
J ~B15!

and

L2â52 imBgi b̂, L2b̂5 imBgi â, ~B16!

to obtain

~ek1 ih!Â2 imBgiB̂5â2
1

L1ek1 ih
L1â, ~B17!

~ek1 ih!B̂1 imBgiÂ5b̂2
1

L1ek1 ih
L1b̂. ~B18!

While the left-hand sides of Eqs.~B17! and~B18! contain
only Â andB̂, the rightmost term in each equation is a ne
unknown quantity that needs to be simplified. We focus i
tially on the rightmost term in Eq.~B17! and write it as

1

L1ek1 ih
L1â5

1

L01L21ek1 ih
L1â

2
1

L1ek1 ih
L1

1

L01L21ek1 ih
L1â.

~B19!

Equation~B19! is evaluated using the following steps.
~i! Implement the commutatorL 1cn,k

† .
~ii ! Use the identity
n
s
d

y

,
-

1

L01L21ek1 ih H cn,k8
†

cn,k8
J 5

1

ek7ek81 ih H cn,k8
†

cn,k8
J .

~B20!

~iii ! Take the commutatorsL 1cn,k
† andL1cn,k .

~iv! Employ the wideband limit

1

L (
k8

1

e2ek86 ih
5

1

2p\vF
E dek8

e2ek86 ih
57

i

2\vF
.

~B21!

At the end of these steps one arrives at

1

L1ek1 ih
L1â5 iGaÂ2

J'
LR

2ApaL

3(
k8

S c f ,k8
†

ek2ek81 ih
2

c f ,k8
ek1ek81 ih

D
2

J2

2ApaL
(
k8

S cs f,k8
†

ek2ek81 ih

2
cs f,k8

ek1ek81 ih
D , ~B22!

whereGa is defined in Eq.~4.7!.
An almost identical calculation is applied to the rightmo

term in Eq.~B18!. It yields

1

L1ek1 ih
L1b̂5 iGbB̂2 i

J1

2ApaL

3(
k8

S cs f,k8
†

ek2ek81 ih
1

cs f,k8
ek1ek81 ih

D ,

~B23!

whereGb is taken from Eq.~4.8!.
Substituting Eqs.~B22! and ~B23! into Eqs. ~B17! and

~B18!, a closed set of 232 linear equations is obtained forÂ

andB̂. Straightforward solution of the latter equations yiel

Â5Gaa~ek1 ih!âk1Gba~ek1 ih!b̂k , ~B24!

B̂5Gab~ek1 ih!âk1Gbb~ek1 ih!b̂k , ~B25!

whereGi j are the Majorana Green functions specified in E
~4.9!, andâk andb̂k are the operators defined in Eqs.~4.12!
and ~4.13!, respectively. The final expressions for th
scattering-state operators, Eqs.~4.10! and ~4.11!, follow
from combining Eqs.~B24! and ~B25! with Eqs. ~B13! and
~B14!.

APPENDIX C: THE Y8 OPERATOR

In this appendix, we show that the solution to the opera
equation~4.1! is given by

Y85eV(
k

cf ,k
† cf ,k1c, ~C1!
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wherec is an appropriately chosen constant~see below!. To
this end, we implement the commutator of Eq.~C1! with H8:

@Y8,H8#5eV(
k

~@cf ,k
† ,H8#cf ,k1cf ,k

† @cf ,k ,H8# !.

~C2!

Each of the commutators on the right-hand side can be
counted for using Eq.~4.6!. Hence Eq.~C2! becomes

@Y8,H8#5 iheV(
k

@~c f ,k
† 2cf ,k

† !cf ,k1cf ,k
† ~c f ,k2cf ,k!#,

~C3!

which may be rewritten as

@Y8,H8#5 ih~Y082Y8!

1 ihFc2eV(
k

~cf ,k
† 2c f ,k

† !~cf ,k2c f ,k!G .
~C4!

Equation~C4! clearly reduces to Eq.~4.1! if the expres-
sion in the curly brackets is equal to zero, i.e., ifc can be
chosen such that it cancels the rightmost sum. Indeed,
somewhat surprising result follows from the special struct
of the scattering-state operatorscf ,k

† . To see this we note tha

the operatorsâk and b̂k , Eqs.~4.12! and ~4.13!, obey

âk
†5â2k , b̂k

†5b̂2k , ~C5!

while Gi j* (ek1 ih) is equal to 2Gi j (e2k1 ih) @see Eq.
~4.9!#. From the combination of these two properties o
obtains the key relation

cf ,k
† 2c f ,k

† 5c f ,2k2cf ,2k , ~C6!

which allows the following manipulation:

(
k

~cf ,k
† 2c f ,k

† !~cf ,k2c f ,k!

52(
k

~cf ,k
† 2c f ,k

† !~cf ,2k
† 2c f ,2k

† !

52
1

2 (
k

$cf ,k
† 2c f ,k

† ,cf ,2k
† 2c f ,2k

† %. ~C7!

Here we have exploited the equivalence of summing ovek
and 2k in order to arrive at anticommutators. Given th
cf ,k

† 2c f ,k
† is linear in c and c† operators, each of the ant

commutators above is ac number. Consequently, also th
entire sum in Eq.~C7! is nothing but a constant.

Although this is sufficient to prove our point, it is satisfy
ing to know that the sum in Eq.~C7! can be carried ou
explicitly. Skipping the details of the algebra, we quote h
only the end result

(
k

~cf ,k
† 2c f ,k

† !~cf ,k2c f ,k!5
G1

4uhu
. ~C8!

Hence Eq.~C1! with c5eVG1/4uhu is the solution of Eq.
~4.1!.
c-

is
e

e

t

e

Two comments should be made about the above res
First, our derivation relied solely on the special structure
the scattering-state operatorscf ,k

† . Since Eq.~4.10! remains
intact for a generalhÞ0 ~not only h→01), so does our
solution forY8. Namely, Eq.~C1! with c5eVG1/4uhu is the
exact solution of Eq.~4.1! for arbitraryhÞ0. Of course, only
h→01 bears relevance to our discussion.

The second point to notice is thatc actually diverges as
h→0; however, this divergence is harmless. It does not
ter any physical quantities.

APPENDIX D:
ANALYTIC EXPRESSIONS FOR OBSERVABLES

In this appendix, we provide closed-form, analytical e
pressions for a comprehensive set of observables: the ch
current, the differential conductance, the charge-curr
noise, and the impurity magnetization.

1. Charge current

The charge current for arbitrary temperature and mo
parameters is given by

I c~V!5
eG1

2p\
ImH A1cS 1

2
1

j11 ieV

2pkBT D
2A1cS 1

2
1

j12 ieV

2pkBT D1A2cS 1

2
1

j21 ieV

2pkBT D
2A2cS 1

2
1

j22 ieV

2pkBT D J , ~D1!

where

j1,25
Ga1Gb

2
6AS Ga2Gb

2 D 2

2~mBgiH !2 ~D2!

and

A15
j12Gb

j12j2
, A25

j22Gb

j22j1
. ~D3!

Here c(z) is the digamma function.30 For a zero magnetic
field, j1 and j2 coincide withGa and Gb ; hence Eq.~D1!
reduces to Eq.~5.9!. Likewise, forGa5Gb and a nonzeroH,
j1 and j2 are equal toGa6 imBgiH, and Eq.~5.10! is ob-
tained. Otherwise, forGaÞGb and a nonzero magnetic field
A1 andA2 are in general complex, and therefore both the r
and imaginary parts of thec functions contribute to the
charge current.

2. Differential conductance

The differential conductanceG(V,T) follows from differ-
entiating Eq.~D1! with respect toV. This yields
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G~V,T!5
e2G1

4p2\kBT
ReH A1c~1!S 1

2
1

j11 ieV

2pkBT D
1A1c~1!S 1

2
1

j12 ieV

2pkBT D
1A2c~1!S 1

2
1

j21 ieV

2pkBT D
1A2c~1!S 1

2
1

j22 ieV

2pkBT D J , ~D4!

wherec (1)(z)5dc/dz is the trigamma function.30

3. Charge-current noise

It is cumbersome to write down a single expression
the noise spectrum at arbitrary temperature and model
gi
e
y

r
a-

rameters. We therefore restrict ourselves in the following
those particular cases discussed in the main text.

~i! For zero temperature and arbitrary model paramet
the zero-frequency noise is given by

S~V50,T50!52eIc~V!

12
e2G1

2

p\
ReH A1

2

i j1
2

A1
2

eV1 i j1
1

A2
2

i j2
2

A2
2

eV1 i j2

22i
A1A2

j12j2
F lnS eV1 i j2

eV1 i j1
D2 lnS j2

j1
D G J . ~D5!

Here I c(V) is the zero-temperature charge current obtain
from Eq. ~D1!, while j1,2 andA1,2 are defined in Eqs.~D2!
and ~D3!, respectively.

~ii ! For finite temperature and zero magnetic field, t
zero-frequency noise becomes
al
S~V50,T,H50!52e cothS eV

2kBTD I c~V!12kBT
G1

Ga
G~V,T!12e

G1

Ga
FcothS eV

kBTD2cothS eV

2kBTD G I c~V!

1
e2G1

2

p2\kBT
cothS eV

kBTD ImH c~1!S 1

2
1

Ga1 ieV

2pkBT D J 2
e2G1

2

2p3\kBT
ReH c~2!S 1

2
1

Ga1 ieV

2pkBT D J ,

~D6!

wherec (2)(z) is the derivative of the trigamma function,c (2)(z)5dc (1)/dz. Notice that Eq.~D6! correctly reproduces two
important limits. In the limitV→0, one can replace coth(eV/kBT) and coth(eV/2kBT) with kBT/eV and 2kBT/eV, respectively,
to obtain the fluctuation-dissipation theoremS(T)54kBTG(0,T). In the limit T→0, each of the hyperbolic cotangents is equ
to 1 ~assumingeV.0), while c (n) can be replaced with (21)n11@2pkBT/(Ga1 ieV)#n. Consequently, Eq.~D6! correctly
reduces to Eq.~7.12!.

~iii ! Away from zero frequency, the noise spectrum at zero temperature and zero magnetic field is given by

S~V,T50,H50!5
e2G1

2

2p\Ga
Xsgn~V!FarctanS eV1\V

Ga
D2arctanS eV2\V

Ga
D

22
Ga

\V
ReH lnS eV1 iGa

eV1\V1 iGa
D1 lnS eV1 iGa

eV2\V1 iGa
D J G

1sgn~\V22eV!H arctanS \V2eV

Ga
D2arctanS eV

Ga
D22

Ga

\V
Re$ ln~eV2\V1 iGa!2 ln~eV1 iGa!%J

1sgn~\V12eV!H arctanS \V1eV

Ga
D1arctanS eV

Ga
D22

Ga

\V
Re$ ln~\V1eV1 iGa!2 ln~eV1 iGa!%J C

1
e2G1

p\Ga
~Ga2G1!Fsgn~\V2eV!arctanS \V2eV

Ga
D1sgn~\V1eV!arctanS \V1eV

Ga
D G . ~D7!
tly
The different singularities discussed in the main text ori
nate in Eq.~D7! from the sign functions. Specifically, th
term proportional to sgn(V) is responsible for the singularit
at V50 @see Eq.~7.22!#, the terms proportional to sgn(\V
72eV) produce the singularities at\V562eV @see Eq.
~7.23!#, and the terms involving sgn(\V7eV) generate the
singularities at\V56eV @see Eq.~7.24!#. In the limit of
large frequency only the arctangent terms survive, andS(V)
-approaches the asymptotic value ofe2Ga /\. In the opposite
limit V→0, the noise in Eq.~D7! reduces to Eq.~7.12!.

4. Impurity magnetization

Finally, the impurity magnetization has been convenien
expressed in Eq.~8.2! in terms of the auxiliary function
m(x,y). At finite temperature, the latter takes the form
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m~x,y!5ImH x

pD FcS 1

2
1

2y2D1 iGa1 iGb

i4pkBT D
2cS 1

2
1

2y1D1 iGa1 iGb

i4pkBT D G J , ~D8!
-

.

.

c-

lin

h-

,

s

B

in
ro
where

D5A4x22~Ga2Gb!2. ~D9!

For T→0, each of the digamma functions in Eq.~D8! re-
duces to a logarithm, and Eq.~8.4! is properly recovered.
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