PHYSICAL REVIEW B VOLUME 58, NUMBER 22 1 DECEMBER 1998-II

Shock waves in one-dimensional Heisenberg ferromagnets
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We use a classical approximation to investigate the existence of shock waves in one dimensional ferromag-
nets. As a result we find two types of shock waves, bright and dark, which can be interpreted as classical
analogs of moving magnetic domai§0163-18208)04745-9

[. INTRODUCTION one-dimensional (1D) excitations in high quality
ferromagnets such as yttrium iron garggtG).

The Heisenberg model for ferromagnetics and antiferro- The paper is organized as follows. In Sec. Il we show
magnets is certainly one of the most important models ohow to derive classical equation of motion from the original
condensed matter physics on which a large amount of workuantum spin model by using the coherent state representa-
has been donkln spite of this, the study of its properties, tion in the path-integral formulation and the stationary phase
both at the quantum and at the classical level, is still a non2PpProximation. We then give analytical arguments for shock
exhausted subject of ever continuing interest. In the oneWave formation in terms of linear analysis and small ampli-
dimensional case the model is exactly solvable $er1/2 tude multiscale expansions around th_e background. In_Sec.
and its excitation spectrum consists of quantum solitoné” we compare our analytlca_l re;ults with a direct numerlcal
which can be viewed in the classical limit as bound states ofntegration of the system while in Sec. IV we summarize the
a large number of magnons. On the other hand, it is knowfnain results of the paper.
that nonlinear lattices, besides solitons, may support other

kinds of excitation which behave, at the initial stages of their Il. DERIVATION OF THE MODEL
evolution, as shock waves in liquids or gases. Such waves AND SHOCK WAVES ANALYSIS
have been reported both in integrabftand in nonintegrable

We start from the quantum Heisenberg Hamiltonian writ-
en as

lattices® ™8

The aim of the present paper is to show within a classical
approximation, the existence of shock waves in one-
dimensional Heisenberg ferromagnets. To this end we use H=— E J(n m)[(ASﬁAsi‘nnL ) +AFE] (1)
coherent statégo derive classical equation of motion from oy nom nome
the original quantum model. Within this approximation the - A
system is shown to be described by a classical discrete noithereS,=(S;,S),Sy) are spin operators of spin magnitude
linear Schrdinger (DNLS)-like equation with an Hamil- S J(n,m) is the exchange interaction constant anés the
tonian structure and a nonstandard Poisson bracket. Thignisotropy of the exchang¥Y-like (A<1) and Ising-like
classical system preserves the conservation of the classicg}>1) interactions. In what follows we consider only the
analog of thez projection of the total spififor isotropic case ferromagnetic caselJ>0,A>0) with nearest-neighbor inter-
also the total spin We find that for suitable conditions the action J(n,m)=J-(6, m+1+ 5y m-1) and we denote, as
excitations of this system naturally display shock waves withysual, withS;; = $X+iS? the raising and lowering operators.
sharp rectangular profiles moving on uniform backgroundsTo derive classical equation of motion it is suitable to use
Such waves can exist both above backgro(rght shock  SU(2) coherent states
and below backgroun@dark shock and on the contrary to

other excitations, which may decay into soliton trains or expl 11,37 )
background radiation, they are very stable. Similar solutions | pny= —”;Smn 2
were found also in a deformable DNLS sysfefhand in a (1+|pnl®)

chain of two level atoms describing the propagation of Fren- . . .
kel excitons'! We give a numerical and an analytical de- in terms of which we write the state of the systéhnin the
scription of these phenomena both in terms of dispersiof®™

relations and in terms of a small amplitude multiscale expan-

sion. The shock waves discussed in this paper may be rel- |A>=H | ) 3)
evant for ferromagnetic chain with large spin or for quasi- n
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Here u,, is a complex variable and ), denotes the spin  aples (,,1,) can be related by an inverse stereographic

up state on site. The time evolution operator of the Heisen- projection to the motion of vectors on a sphenassical
berg Hamiltonian between the initial stdt€); at timet; and sping].

a final state|A); at timet; can then be written in terms of  |n order to investigate shock solutions of E@) it is
path integral as suitable to consider excitations propagating against a non-
zero background of the form.¥)=p exp(~iwt+ikn) where

i<A|exp(—i%)|A)f=f a(A)exp(f;—f:Ldt), 4 p<land

1— 2
where w=21\—cogk) |- (11)
— 1+p
_ S —dug dun . . . -
= T Migr Mg —(A|H|A). (5)  (here and in the following we fi¥=1). The stability of the
L | background can be studied with the help of the substitution
Using the stationary phase approximatfoone readily ob-  n=(1+ ) pexp(=iat-+ikn), where| | <|wo/, in Eq.(6).
tains from Eq.(4) the following equation of motion: By linearization we obtain the dispersion relati{K) as-
— — sqciated with the linear equations fak,,, [o<exp{Qt
iﬁdMn:_ 5(:"'Jn-%—l_:U’n:"”n+l_|_ Mn—17 MpMn-1 —iKn)],
dt 1+|Mn+1|2 1+|Mn—1|2 2
0=22"" 35sin(K)sin(K) =~ ZJS'(K)
= sin(k)si + sinl =
+)\JS(/Ln(1_|Mn+1|2)+/Ln(1_|l/~n1|2)) 1+p? rSin 1+p? 2
2 2
1+ sl 1+ pn-d] X {co2(K)(1+ p?)2— co2(K)cog K) (1— p2)2
6
©) — 4\ p?cog k)cog K)}12. (12

It is worth remarking that this equation has a pure classi- . . . .
cal charactefthe occurrence ofi in it is simply related to Thuks>t:e bgcolgjrouEil_s ;t?/b(l(f"‘lﬂ}\'sl\lrial a}lt aI_IK),h|ft
the appearance of the gyromagnetic ratio in the classic oS an cos [2p°(1+p7) N Naturally, in wha

equation of motioh Moreover, we note that Eq6) and its ollows the analysis will be restricted to this region of the
complex conjugated follow fr(;m Hamilton's equations parameters. In order.to get the equation governing the initial
stages of the evolution of a shock wave we use the small

- amplitude expansion p,=(p+a,)exdi(—wt+kn—d,)],

d d — n. .
Fon ={un,Hc}, ﬁ:{,un He) (7)  where the two real quantities, and ¢, are considered de-
dt dt pending on slow variableé= yn, T=yt, andr= v, (with
with the noncanonical Poisson bracket y<1) and are represented in the foap=y?a{"+ y*a!

ooy o=y O+ 2+ ... Collecting all the terms of

the same order iy we arrive at a series of equations. In the

zero order we recover the dispersion relatidd). In the
®) second and third orders we get the following equations:

i
{f'g}:—ﬁ > (1+|

and with the classical HamiltoniaH. given by (A[H[A),  94©®  8pJs 1—p2 §¢p©

ie., —————(cosk—\)a®—2JSsin(k —_
- - 0T (1+p2)2( ) n( )1+p2 X
H = —JSZE 2(n+1MnT Mntn1) (13
‘ m (L [l (1 1) ga® 35008K) % ) 'r(k)Jsl_pz 9a'®
=pJSco —2si :
(1= | pal®) (1= | 4 dl 28 1+p? X
2 2" ©) (14)
(l+|/~’“n| )(1+|/~Ln+l| )
One readily checks that the conservation of tesmponent Itis suitable to introduce new variableg.(, T) instead of
of the quantum total spin is reflected in B@) in the con- (X, T), whereé.=X—c..T and the velocities... are given
servation of the quantity by
- (1= pol?) 2JS .
s,=(A|D, SA)=SD, ——— 10 C.= [(1— p?)sink* p+/2 cosk(cosk—\)].
(AL Sl =s2, (14| pal® (10 (1+p?)

which is just the classical analog of taecomponent of the 139
total spin(note that in the isotropic case=1 there is also Comparing this result with Eq(12) one sees that.
another conserved quantity which is the analog of the totaFd{). /dK at K=0, i.e., c. are group velocities of two
spin squareds®’=(A|S?|A)). We see, therefore, that the branches of the spectrum in the center of the BZ. Then
classical systeni6) keeps some important symmetry of the it follows from Egs. (13) and (14) that solutions a©®
original quantum mode]note also that the dynamical vari- =a‘®(£.)=a. and = ¢)(£.) are related by
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Jcosk dp®
\/2(cosk N) 96+

For brevity we drop out the explicit form of the equations
appearing in the forth and fifth orders g@fand present sim-
ply the condition of their compatibility. This condition has
the form of a Korteweg—de VriedV) equation

a.=+(1+

(16)

da. Ja
- - 3F B oo o (17
with
43S i
a(k)zm[_8psmk+2p)\tank
+3(1—p?)J2cosk(cosk—\)] (18
and
_ IS [B i o1 o2
,8(k)—8p(1+p2)\/mkspsmk cosk—\(1—p?)

2
+ /2 cosk §p2

(cosk—\)—4p?\

—COSk(l—pz)ZH. (19

From Egs.(17) and(19) it follows that if

cosk—A\
_ n2\qj I
42p(1—p?)sinky/ cosk

=+3[(1-p?)%cosk+4Np?]F2p?(cosk—\) (20)

is satisfied, the coefficien®(k) becomes zero and the KdV
equation reduces to the well-known equation

8= | alk
ar a(k)a.

da.
TR
which supports shock solutiohd This implies that for pa-
rameter values satisfying Eq20) shock wave should de-
velop in the classical spin chain.

Note that from expressiof21) it follows that atk=0
there exists only one background<@<1 at which B8(k)
equals to zero while this is not true flr= 0. Moreover, Eq.
(21) is not satisfied for al\ values but there exists a maxi-
mal value\ ,,=1/7 above which Eq(21) does not have
physical meaning.

(21)

IIl. NUMERICAL EXPERIMENTS

To check the above predictions, we have numerically in-

tegrated Eq(6) on a long chair(to neglect boundary condi-
tionsg), taking as initial condition a bell shaped bright or dark

pulse of the type
A
2

coshi(n—ng)] 22

Mn:peikn( 1+
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FIG. 1. Evolution of a bright shock against nonzero background
with k=0, p=0.8, and for parameter valud$s=0.8 and\ deter-
mined from Eq.(20).

(note that with this initial condition rectangular shock pro-
files should develop In Fig. 1 we have reported the profile
which develop out from an initial bright pulse of amplitude
|A|=3.6, after an evolution time of=420. The background

is moving in-phase K=0) with p=0.8 and for parameter
values given byl S=0.8, and\ derived from Eq(20). From

this figure we see the appearance of a leading rectangular
shock profile followed by solitons and background radiation.
The shock wave connects the uniform background field with
a local plateau with two sharp transitions at the edges. If we
define the local magnetization a$l,=S(1—|un|?)/
(1+]|un?) we have that the local magnetization in the rect-
angular shock waves of Fig. 1 does not change in time and is
different from the surroundings. This suggest the interpreta-
tion of such solutions as propagating magnetic domains.

A similar result can be obtained starting from an initial
dark profile as shown in Fig. 2. In this case the shock plateau
develops below the background and therefore it can be re-
ferred to as a dark shock. Notice that in the above context
dark and bright pulses correspond respectively to domains
with higher and lower magnetization compared with the
magnetization of the background.

Following the time evolution of the shock profiles in Figs.

1 and 2 we find that the rectangular waves separate from the
other componentgsolitons and radiationand stay stable
over long time. We have numerical evidence that §) is

0 200 400 600 800 1000
n

FIG. 2. Same as in Fig. 1 but for a dark initial condition and for
parameter valueg=0.8,JS=1 and\ determined from Eq(20).
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8) suggesting the presence of a strong soliton component in
them. This leads to the interpretation of the above shocks as
bound states of many solitons. To check this interpretation,
however, further investigation is required.

IV. CONCLUSIONS

In conclusion, we have shown within a classical approxi-
mation the existence of shock waves in 1D Heisenberg fer-
romagnets. These results represent an example of the mani-
festation of classical fluid dynamics in magnetic systems.
Previously, classical behaviors in magnetic systems were re-
ported on multimagnon instabilities and chaos in pure and
doped YIG and some antiferromagn&tdn order to observe
the shock waves obtained here in magnetic systems, genera-

FIG. 3. Evolution profile for the same parameter values as intjion of macroscopic number of magnons is required. One of

Fig. 1 but withA =0.185 not satisfying Eq.20).

the promising candidates to realize this may be highly
pumped YIG.

a necessary condition for creation of shock waves. In Fig. 3
we have reported the evolution profile for the same param-
eter values of Fig. 1 except far=0.185 not satisfying rela-
tion (20). We see that the rectangular shock is destroyed and The work of V.V.K. has been supported by FEDER and
oscillations develop on the wave front. The same is observelly the Program PRAXIS XXI, Grant No. PRAXIS/2/2.1/
for other choices of parameters for which EQO) is not  FIS/176/94. M.S. wishes to acknowledge financial support
satisfied. We also checked that shocks remain stable updrom INFM (Istituto Nazionale di Fisica della Matejiand
collision with other excitationgthe same was found in Ref. from the INTAS Grant No. 93-1324.
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