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Shock waves in one-dimensional Heisenberg ferromagnets
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We use a classical approximation to investigate the existence of shock waves in one dimensional ferromag-
nets. As a result we find two types of shock waves, bright and dark, which can be interpreted as classical
analogs of moving magnetic domains.@S0163-1829~98!04745-6#
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I. INTRODUCTION

The Heisenberg model for ferromagnetics and antifer
magnets is certainly one of the most important models
condensed matter physics on which a large amount of w
has been done.1 In spite of this, the study of its propertie
both at the quantum and at the classical level, is still a n
exhausted subject of ever continuing interest. In the o
dimensional case the model is exactly solvable forS51/2
and its excitation spectrum consists of quantum solit
which can be viewed in the classical limit as bound states
a large number of magnons. On the other hand, it is kno
that nonlinear lattices, besides solitons, may support o
kinds of excitation which behave, at the initial stages of th
evolution, as shock waves in liquids or gases. Such wa
have been reported both in integrable2–4 and in nonintegrable
lattices.5–8

The aim of the present paper is to show within a class
approximation, the existence of shock waves in o
dimensional Heisenberg ferromagnets. To this end we
coherent states9 to derive classical equation of motion from
the original quantum model. Within this approximation t
system is shown to be described by a classical discrete
linear Schro¨dinger ~DNLS!-like equation with an Hamil-
tonian structure and a nonstandard Poisson bracket.
classical system preserves the conservation of the clas
analog of thez projection of the total spin~for isotropic case
also the total spin!. We find that for suitable conditions th
excitations of this system naturally display shock waves w
sharp rectangular profiles moving on uniform backgroun
Such waves can exist both above background~bright shock!
and below background~dark shock! and on the contrary to
other excitations, which may decay into soliton trains
background radiation, they are very stable. Similar soluti
were found also in a deformable DNLS system8,10 and in a
chain of two level atoms describing the propagation of Fr
kel excitons.11 We give a numerical and an analytical d
scription of these phenomena both in terms of dispers
relations and in terms of a small amplitude multiscale exp
sion. The shock waves discussed in this paper may be
evant for ferromagnetic chain with large spin or for qua
PRB 580163-1829/98/58~22!/14892~4!/$15.00
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one-dimensional ~1D! excitations in high quality
ferromagnets such as yttrium iron garnet~YIG!.

The paper is organized as follows. In Sec. II we sh
how to derive classical equation of motion from the origin
quantum spin model by using the coherent state represe
tion in the path-integral formulation and the stationary pha
approximation. We then give analytical arguments for sho
wave formation in terms of linear analysis and small amp
tude multiscale expansions around the background. In S
III we compare our analytical results with a direct numeric
integration of the system while in Sec. IV we summarize t
main results of the paper.

II. DERIVATION OF THE MODEL
AND SHOCK WAVES ANALYSIS

We start from the quantum Heisenberg Hamiltonian w
ten as

H52 (
^m,n&

J~n,m!@~Ŝn
xŜm

x 1Ŝn
yŜm

y !1lŜn
zŜm

z #, ~1!

whereŜn5(Ŝn
x ,Ŝn

y ,Ŝn
z) are spin operators of spin magnitud

S, J(n,m) is the exchange interaction constant andl is the
anisotropy of the exchangeXY-like (l,1) and Ising-like
(l.1) interactions. In what follows we consider only th
ferromagnetic case (J.0,l.0) with nearest-neighbor inter
action J(n,m)5J•(dn,m111dn,m21) and we denote, as
usual, withŜn

65Ŝn
x6 iŜn

y the raising and lowering operators
To derive classical equation of motion it is suitable to u
SU~2! coherent states

umn&5
exp~mnŜn

2!

~11umnu2!S
u↑&n ~2!

in terms of which we write the state of the system~1! in the
form

uL&5)
n

umn&. ~3!
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Heremn is a complex variable andu↑&n denotes the spin
up state on siten. The time evolution operator of the Heise
berg Hamiltonian between the initial stateuL& i at timet i and
a final stateuL& f at time t f can then be written in terms o
path integral as

i^LuexpS 2 i
H t

\ D uL& f5E ]~L!expS i

\Et i

t f
LdtD , ~4!

where

L5 i\(
n

S

11umnu2S m̄n

dmn

dt
2mn

dm̄n

dt
D 2^LuHuL&. ~5!

Using the stationary phase approximation12 one readily ob-
tains from Eq.~4! the following equation of motion:

i\
dmn

dt
52JSS mn112mn

2m̄n11

11umn11u2
1

mn212mn
2m̄n21

11umn21u2
D

1lJSS mn~12umn11u2!

11umn11u2
1

mn~12umn21u2!

11umn21u2
D .

~6!

It is worth remarking that this equation has a pure clas
cal character~the occurrence of\ in it is simply related to
the appearance of the gyromagnetic ratio in the class
equation of motion!. Moreover, we note that Eq.~6! and its
complex conjugated follow from Hamilton’s equations

dmn

dt
5$mn ,Hc%,

dm̄n

dt
5$m̄n ,Hc% ~7!

with the noncanonical Poisson bracket

$ f ,g%52
i

2S\(
n

~11umnu2!2F ] f

]mn

]g

]m̄n

2
] f

]m̄n

]g

]mn
G

~8!

and with the classical HamiltonianHc given by ^LuHuL&,
i.e.,

Hc52JS2(
n

S 2~m̄n11mn1m̄nmn11!

~11umnu2!~11umn11u2!

1l
~12umnu2!~12umn11u2!

~11umnu2!~11umn11u2!
D . ~9!

One readily checks that the conservation of thez component
of the quantum total spin is reflected in Eq.~6! in the con-
servation of the quantity

sz[^Lu(
n

Ŝn
zuL&5S(

n

~12umnu2!

~11umnu2!
~10!

which is just the classical analog of thez component of the
total spin~note that in the isotropic casel51 there is also
another conserved quantity which is the analog of the t
spin squareds2[^LuS2uL&). We see, therefore, that th
classical system~6! keeps some important symmetry of th
original quantum model@note also that the dynamical var
i-

al

al

ables (mn ,m̄n) can be related by an inverse stereograp
projection to the motion of vectors on a sphere~classical
spins!#.

In order to investigate shock solutions of Eq.~6! it is
suitable to consider excitations propagating against a n
zero background of the formmn

(0)5r exp(2ivt1ikn) where
r,1 and

v52JS@l2cos~k!#
12r2

11r2
. ~11!

~here and in the following we fix\51). The stability of the
background can be studied with the help of the substitut
mn5(11cn)rexp(2ivt1ikn), whereucnu!umnu, in Eq. ~6!.
By linearization we obtain the dispersion relationV(K) as-
sociated with the linear equations forcn ,c̄n @}exp(iVt
2iKn)#,

V52
12r2

11r2
JSsin~k!sin~K !6

2A2

11r2
JSsinS K

2 D
3$cos2~k!~11r2!22cos2~k!cos~K !~12r2!2

24lr2cos~k!cos~K !%1/2. ~12!

Thus the background is stable~i.e., V is real at allK), if
cosk.l and 0.cosk.2@2r2/(11r4)#l. Naturally, in what
follows the analysis will be restricted to this region of th
parameters. In order to get the equation governing the in
stages of the evolution of a shock wave we use the sm
amplitude expansion mn5(r1an)exp@i(2vt1kn2fn)#,
where the two real quantitiesan andfn are considered de
pending on slow variablesX5gn, T5gt, andt5g3t, ~with
g!1) and are represented in the forman5g2an

(0)1g4an
(1)

1•••, fn5gfn
(0)1g3fn

(1)1•••. Collecting all the terms of
the same order ing we arrive at a series of equations. In th
zero order we recover the dispersion relation~11!. In the
second and third orders we get the following equations:

]f~0!

]T
5

8rJS

~11r2!2
~cosk2l!a~0!22JSsin~k!

12r2

11r2

]f~0!

]X
,

~13!

]a~0!

]T
5rJScos~k!

]2f~0!

]X2
22 sin~k!JS

12r2

11r2

]a~0!

]X
.

~14!

It is suitable to introduce new variables (j6 ,T) instead of
(X,T), wherej65X2c6T and the velocitiesc6 are given
by

c65
2JS

~11r2!
@~12r2!sink6rA2 cosk~cosk2l!#.

~15!

Comparing this result with Eq.~12! one sees thatc6

5dV6 /dK at K50, i.e., c6 are group velocities of two
branches of the spectrum in the center of the BZ. Th
it follows from Eqs. ~13! and ~14! that solutions a(0)

5a(0)(j6)5a6 andf (0)5f (0)(j6) are related by
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a657~11r2!
Acosk

2A2~cosk2l!

]f~0!

]j6
. ~16!

For brevity we drop out the explicit form of the equatio
appearing in the forth and fifth orders ofg and present sim-
ply the condition of their compatibility. This condition ha
the form of a Korteweg–de Vries~KdV! equation

]a6

]t
1a~k!a6

]a6

]j6
1b~k!

]3a6

]j6
3

50 ~17!

with

a~k!5
4JS

~11r2!2
@28r sink12rl tank

63~12r2!A2cosk~cosk2l!# ~18!

and

b~k!5
JS

8r~11r2!Acosk2l
H 8

3
r sinkAcosk2l~12r2!

6A2 coskF2

3
r2~cosk2l!24r2l

2cosk~12r2!2G J . ~19!

From Eqs.~17! and ~19! it follows that if

4A2r~12r2!sinkAcosk2l

cosk

563@~12r2!2cosk14lr2#72r2~cosk2l! ~20!

is satisfied, the coefficientb(k) becomes zero and the KdV
equation reduces to the well-known equation

]a6

]t
1a~k!a6

]a6

]j6
50 ~21!

which supports shock solutions.13 This implies that for pa-
rameter values satisfying Eq.~20! shock wave should de
velop in the classical spin chain.

Note that from expression~21! it follows that at k50
there exists only one background 0,r,1 at which b(k)
equals to zero while this is not true forkÞ0. Moreover, Eq.
~21! is not satisfied for alll values but there exists a max
mal valuelmax51/7 above which Eq.~21! does not have
physical meaning.

III. NUMERICAL EXPERIMENTS

To check the above predictions, we have numerically
tegrated Eq.~6! on a long chain~to neglect boundary condi
tions!, taking as initial condition a bell shaped bright or da
pulse of the type

mn5reiknS 16
A

cosh@~n2n0!#2D ~22!
-

~note that with this initial condition rectangular shock pr
files should develop!. In Fig. 1 we have reported the profil
which develop out from an initial bright pulse of amplitud
uAu53.6, after an evolution time ofT5420. The background
is moving in-phase (k50) with r50.8 and for paramete
values given byJS50.8, andl derived from Eq.~20!. From
this figure we see the appearance of a leading rectang
shock profile followed by solitons and background radiatio
The shock wave connects the uniform background field w
a local plateau with two sharp transitions at the edges. If
define the local magnetization asMn5S(12umnu2)/
(11umnu2) we have that the local magnetization in the re
angular shock waves of Fig. 1 does not change in time an
different from the surroundings. This suggest the interpre
tion of such solutions as propagating magnetic domains.

A similar result can be obtained starting from an initi
dark profile as shown in Fig. 2. In this case the shock plat
develops below the background and therefore it can be
ferred to as a dark shock. Notice that in the above con
dark and bright pulses correspond respectively to doma
with higher and lower magnetization compared with t
magnetization of the background.

Following the time evolution of the shock profiles in Fig
1 and 2 we find that the rectangular waves separate from
other components~solitons and radiation! and stay stable
over long time. We have numerical evidence that Eq.~20! is

FIG. 1. Evolution of a bright shock against nonzero backgrou
with k50, r50.8, and for parameter valuesJS50.8 andl deter-
mined from Eq.~20!.

FIG. 2. Same as in Fig. 1 but for a dark initial condition and f
parameter valuesr50.8,JS51 andl determined from Eq.~20!.
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PRB 58 14 895SHOCK WAVES IN ONE-DIMENSIONAL HEISENBERG . . .
a necessary condition for creation of shock waves. In Fig
we have reported the evolution profile for the same para
eter values of Fig. 1 except forl50.185 not satisfying rela-
tion ~20!. We see that the rectangular shock is destroyed
oscillations develop on the wave front. The same is obser
for other choices of parameters for which Eq.~20! is not
satisfied. We also checked that shocks remain stable u
collision with other excitations~the same was found in Re

FIG. 3. Evolution profile for the same parameter values as
Fig. 1 but withl50.185 not satisfying Eq.~20!.
ir
c

3
m-

nd
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8! suggesting the presence of a strong soliton compone
them. This leads to the interpretation of the above shock
bound states of many solitons. To check this interpretat
however, further investigation is required.

IV. CONCLUSIONS

In conclusion, we have shown within a classical appro
mation the existence of shock waves in 1D Heisenberg
romagnets. These results represent an example of the m
festation of classical fluid dynamics in magnetic system
Previously, classical behaviors in magnetic systems were
ported on multimagnon instabilities and chaos in pure
doped YIG and some antiferromagnets.14 In order to observe
the shock waves obtained here in magnetic systems, ge
tion of macroscopic number of magnons is required. One
the promising candidates to realize this may be hig
pumped YIG.

ACKNOWLEDGMENTS

The work of V.V.K. has been supported by FEDER a
by the Program PRAXIS XXI, Grant No. PRAXIS/2/2.1
FIS/176/94. M.S. wishes to acknowledge financial supp
from INFM ~Istituto Nazionale di Fisica della Materia! and
from the INTAS Grant No. 93-1324.

in
-

,

*Also at Center of Mathematical Sciences, University of Made
Praça do Municı´pio, P-9000 Funchal, Portugal and Center of S
ence and Technology of Madeira~CITMA !, Rua da Alfândega,
75-5o, Funchal, P-9000 Portugal.

†Also at Istituto Nazionale di Fisica della Materia~INFM!, Unita’
di Salerno, I-84100 Salerno, Italy.
1For a review see, for example, D. C. Mattis,Theory of Magne-

tism, Statistics and Dynamics, Vol. 17 of Springer Series in
Solids State Physics~Springer-Verlag, Berlin, 1981!, and refer-
ences therein.

2B. L. Holian and G. K. Straub, Phys. Rev. B18, 1593~1978!.
3S. Kamvissis, Physica D65, 242 ~1993!.
4D. J. Kaup, Physica D25, 361 ~1987!.
5B. L. Holian, H. Flaska, and D. W. McLaughlin, Phys. Rev. A24,

2595 ~1981!.
6J. Hietarinta, T. Kuusela, and B. A. Malomed, J. Phys. A28, 3015

~1995!.
a,
i-

7P. Poggi, S. Ruffo, and H. Kantz, Phys. Rev. E52, 307
~1995!.

8V. V. Konotop and M. Salerno, Phys. Rev. E56, 3611~1997!.
9R. Balakrishnan, J. A. Holyst, and A. R. Bishop, J. Phys.: Con

dens. Matter2, 1869 ~1990!; J. A. Holyst and L. A. Turski,
Phys. Rev. B34, 1937~1986!; Phys. Rev. A45, 6180~1992!.

10M. Salerno, Phys. Rev. A46, 6856~1992!.
11V. V. Konotop, M. Salerno, and S. Takeno, Phys. Rev. E56,

7240 ~1997!.
12J. W. Negele and N. Orland,Quantum Many-Particle Systems

~Addison-Wesley, New York, 1988!, Chap. 7.
13See, for example, G. B. Whitham,Linear and Nonlinear Waves

~Wiley, New York, 1973!.
14K. Nakamura,Quantum Chaos — A New Paradigm of Nonlinear

Dynamics~Cambridge University Press, Cambridge, England
1993!, and references therein.


