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Diffusion in generalized lattice-gas models
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A technique has been developed to calculate the exact diffusion tensor for the lattice-gas model in the
low-concentration limit for any complex elementary cell. The analysis takes into account the detailed structure
of the elementary cell and the structure of the diffusion barrier. The technique is also applicable to non-
Markoff diffusion and, consequently, can include polaronic and inertia effects. The calculation reduces to
simple matrix-algebraic operations which may be carried out analytically in many cases. Applications to some
one- and two-dimensional models are described, including disordered systems and non-Markoff diffusion, in
structures with complex elementary cells.@S0163-1829~98!04346-X#
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I. INTRODUCTION

Diffusion is a fundamental physical process which is
significant practical importance in applications such as cr
tal growth, heterogeneous catalytic reactions, emission e
tronics, microelectronics, etc.~see, for example, Refs. 1,2
and references therein!. One widely used approach to diffu
sion is based on the lattice-gas model. This model assu
that atoms occupy fixed lattice sites and can undergo ju
to other vacant sites with some probability. When the sys
consists of only a single atom which undergoes a rand
walk on the lattice a key variable of the model is the con
tional ~joint! probability g( l ;tu l 0 ;t0), which is the probabil-
ity that an atom that was at the sitel 0 at time t0, is at the
lattice sitel at a later timet. The standard approach to th
diffusional problem assumes that the random walk of
atom corresponds to a Poisson-Markoff process, so tha
distributiong( l ;tu l 0 ;t0) obeys the master equation~e.g., see
Refs. 3,4!

]

]t
g~ l ;tu l 0 ;t0!5(

l 8
@g l ; l 8g~ l 8;tu l 0 ;t0!2g l 8; lg~ l ;tu l 0 ;t0!#

52(
l 8

D l ; l 8g~ l 8;tu l 0 ;t0!, ~1!

whereg l ; l 8 is the probability of the transitionl 8→ l per unit
time, andD l ; l 85d l l 8( l 9g l 9; l 82g l ; l 8 is the transfer matrix.
The matrix D l ; l 8 should satisfy the constraint( lD l ; l 850,
which follows from the conservation of atoms. The jum
ratesg l ; l 8 are usually related to the corresponding ene
barriers through the Arrhenius law.

Because the dynamics of the lattice-gas model is pu
relaxational, it is useful to take the Laplace transform w
respect to time,

ḡ~z!5E
0

`

dt e2zt g~ t !, Re~z!.0, ~2!

so that Eq.~1! reduces to
PRB 580163-1829/98/58~22!/14870~10!/$15.00
f
-
c-

es
ps
m
m
-

n
he

y

ly

(
l 8

~z d l l 81D l ; l 8!ḡ~ l 8; l 0uz!5g~ l ;t0u l 0 ;t0!, ~3!

where the right-hand side of Eq.~3! incorporates the initial
condition.

For a periodic array of sites, it is convenient also to p
form the spatial Fourier transform,g̃(k)5( lexp@ik( l
2 l0)# g( l; l0), where the wave vectork is in the first Bril-
louin zone. Assuming the initial conditiong( l ;t0u l 0 ;t0)
5d l l 0

, Eq. ~3! becomes

@z1D̃~k!# g̃̄~k;z!51. ~4!

Equation~4! has a trivial solution which exhibits diffu-
sional motion, i.e., in the limitt→` the mean-square atomi
displacement is proportional to time. In particular, in t
simplest model where the atom can jump only to the near
neighboring sites with a rateg, and all jump directions are
equivalent~i.e., the model is isotropic!, the result is^r 2&
[^x21y2&.2nDt for t→`, wheren is the dimensionality
of the system. The diffusion coefficientD in this case is
equal toD5qa2g, whereq5k/2n is the ‘‘geometrical’’ fac-
tor, andk is the coordination number~the number of neigh-
bor sites allowed for a jump!. Throughout this paper we wil
only consider diffusion in one and two dimensions explicit
often with surface diffusion in mind, but the techniques d
cussed are equally applicable to three-dimensional syste

The above approach has been studied in detail by Ku
and Sosnowska5 and Kehret al.;6 see also the review article
of Dieterichet al.7 and Haus and Kehr.8 It may be extended
straightforwardly to describe anisotropic lattices and to
clude jumps to more distant neighbors. In addition t
method has been generalized to describe non-Mar
processes,9,8 where the probability of a jump depends on t
history of previous jumps.

This theory has assumed that the elementary cell of
lattice is primitive. Often, however, the lattice is characte
ized by a unit cell with several inequivalent sites. Althou
there are some particular studies of models with comp
14 870 ©1998 The American Physical Society
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unit cells,5,6,8 there is no general solution to this problem
The aim of the present work is to develop a systematic
practical method for evaluating the diffusion tensor for t
low-concentration limit of the lattice gas model for any com
plex unit cell. The approach of Bookout and Parris,11 which
uses the mapping of a random-walk problem onto
imaginary-time Schro¨dinger equation, is a possible approa
but it seems to be more complicated than the method
scribed below, and it does not allow a direct generalization
incorporate non-Markoff effects.

A quite direct method of obtaining the diffusion tensor f
Bravais lattices is to take the continuum limit of Eq.~1! ~see,
for example, Ref. 10!. This leads to the diffusion equatio
with the diffusion tensor given by

Di j 5
1

2 (
a51

k

l a,i l a, jga , ~5!

where the summation is over thek allowed jumps andl a,i is
the i Cartesian component of the jump of lengthl a which
occurs with frequencyga . However, for complex unit cells
the continuum limit of Eq.~1! gives a set of coupled partia
differential equations, rather than a single diffusion equati
because of the inequivalence of sites in a cell. It is not the
fore possible simply to deduce the diffusion tensor in
same way as for the Bravais lattice case.

Another useful approach to diffusion is to rewrite th
long-time equation̂x2&52Dt in the form

2D5
^x2&

t
5

^x2&
N

N

t
5a0

2f corr̂ g&, ~6!

where a0 is the mean distance between the sites,N is the
total number of jumps of the atom in the timet, ^g& is the
average jump rate, andf corr is the correlation factor define
as f corr5^x2&/(Na0

2). For a system with a complex unit ce
f corr<1, and the equalityf corr51 only holds for a Bravais
lattice. The average jump rate^g& is straightforward to cal-
culate for a complex structure, but the correlation factorf corr
is not. A calculation of the diffusion tensor, as describ
below, combined with a calculation of the average jump r
provides a means of obtaining the correlation factor throu
Eq. ~6!.

The method developed here to find the diffusional ten
for a complex unit cell is based on the properties of
solution of an equation of the form of Eq.~4! in the smallk
limit. The problem is reduced to a set of algebraic equatio
which in many cases can be solved analytically, and in
case may simply be solved with a computer. In addition,
approach may easily be extended to study non-Markoff p
cesses as well as Langmuir-type lattice-gas models.

The paper is organized as follows. The technique is
scribed in Sec. II. Then in Sec. III it is applied to the on
dimensional lattice, where we obtain the exact result for a
lattice structure, including disorder. In Sec. IV we consid
some applications to non-Markov processes, including
triangular lattice and the ‘‘split’’~110! surface of the body
centered cubic crystal. Finally, Sec. V concludes the pa
with a short discussion of the results.
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II. TECHNIQUE

A. Non-Bravais lattice

The sites in a periodic structure withs sites per unit cell
may be labeled by two indicesl and a, where l labels the
elementary cell anda labels the different sites within the
cell, a51, . . . ,s. In this case Eq.~1! will have the indexl
replaced by two indicesl anda, so that the master equatio
for the joint probability takes the form

]

]t
g~ l,a;tu l0 ,a0 ;t0!

5(
l8,a

@g l,a; l8,a8 g~ l8,a8;tu l0 ,a0 ;t0!

2g l8,a8; l,a g~ l,a;tu l0 ,a0 ;t0!#. ~7!

The limit t→` of the solution of Eq.~7! must be the
equilibrium distribution,

lim
t→`

g~ l,a;tu••• !5Nlat
21 ra , ~8!

wherera is the average thermal population of the sitea ,
and the factorNlat

21 (Nlat is the total number of unit cells in
the system! is introduced for convenience.

In order to define the parametersg l,a; l8,a8 in Eq. ~7!, we
associate with each site within the unit cell an energy«a .
The equilibrium occupation numbers should satisfy the Bo
zmann distribution

ra5Z21exp~2b«a!, Z5 (
a51

s

exp~2b«a!, ~9!

where b51/kBT, T is the temperature,kB is Boltzmann’s
constant, and the normalization factorZ correspondsto one
particle per elementary cell

(
a51

s

ra51. ~10!

The simplest~but not unique! way to satisfy the condition
~8! is to explore the detailed balance condition~e.g., see Ref.
12! g l,a; l8,a8 ra85g l8,a8; l,a ra , which leads to the following
constraint for possible values of the rate parameters:

g l,a; l8,a85g l8,a8; l,a~ra /ra8!

5g l8,a8; l,aexp@b~«a82«a!#. ~11!

Otherwise the parametersg l,a; l8,a8 are arbitrary; their values
are determined by the activation energies of the transitio

The transfer matrix becomes

D l,a; l8,a85d ll8daa8 (
l9,a9

g l9,a9; l8,a82g l,a; l8,a8 . ~12!

From the periodicity of the lattice it follows thatD l,a; l8,a8
5D l2 l8,a;0,a8 , and we may perform the Fourier transfor
with respect to the cell index to obtain

D̃a;a0
~k!5(

l
exp@ ik~ l2 l0!#D l,a; l0 ,a0

, ~13!



at

t

m

of

nd

e

on

14 872 PRB 58O. M. BRAUN AND C. A. SHOLL
g̃a;a0
~k,t !5(

l
exp@ ik~ l2 l0!# g~ l,a;tu l0 ,a0 ;0!. ~14!

Taking the Laplace transform, with the initial condition th
the atom was at the sitea0 within the cell l0 at t50

g~ l,a;0u l0 ,a0 ;0!5d ll0
daa0

, ~15!

we obtain the transformed rate equation

(
a8

@z daa81D̃a;a8~k!# g̃̄a8;a0
~k,z!5daa0

. ~16!

B. Eigenvalue problem

To solve Eq.~16! it is convenient to introduce a new
matrix L(k) with elements

La;a8~k!5ra
21/2D̃a;a8~k! ra8

1/2 , ~17!

so that Eq.~16! takes the form

(
a8

@z daa81La;a8~k!# @ra8
21/2g̃̄a8;a0

~k,z! ra0

1/2#5daa0
.

~18!

The matrix L(k) for eachk is the Hermitian squares3s
matrix, La;a8(k)5La8;a

* (k).
The eigenvalues and eigenvectors ofL(k) are the solu-

tions of

L~k! u~k!5l~k! u~k!, ~19!

whereu(k)[$ua(k)% is a vector withs components. Label-
ing the s eigenvalues by the indexs, Eq. ~19! may be re-
written as

(
a8

La;a8~k!ua8
~s!

~k!5ls~k! ua
~s!~k!, s51, . . . ,s.

~20!

Because the matrixL is Hermitian, the eigenvectorsu(s)

form a complete orthonormal basis

(
a

@ua
~s!~k!#* ua

~s8!~k!5dss8 , ~21!

(
s

@ua
~s!~k!#* ua8

~s!
~k!5daa8 . ~22!

Using the eigenvectorsus(k) and the eigenvaluesls(k), the
solution of Eq.~18! can be expressed as

g̃̄a;a0
~k,z!5(

s
ra

1/2
ua

~s!~k!@ua0

~s!~k!#*

z1ls~k!
ra0

21/2, ~23!

which may be verified by direct substitution of Eq.~23! into
Eq. ~18!.

It has been proved5,12 that the eigenvaluesls(k) satisfy
the following conditions.

~a! All ls(k)>0, andls(k) is an even function ofk.
~b! One, and only one, eigenvaluels(k) is equal to zero

when the vectork is equal to zero~assuming that the lattice
cannot be separated into independent sublattices, so tha
 the

transfer matrix cannot be transformed to the Jordan for!.
The lowest eigenvalue will be denotedl1(k).

~c! The eigenvectoru(1)(k) is a continuous function ofk
around the pointk50, and for small values ofk the eigen-
valuel1(k) has the expansion

l1~k!.Dxxkx
212Dxykxky1Dyyky

2 , k→0. ~24!

As shown below, the coefficientsD••• in Eq. ~24! are the
corresponding diffusion coefficients. Thus, the calculation
diffusion coefficients reduces to evaluating thek→0 expan-
sion of the lowest eigenvaluel1(k).

The above theory has followed the work of Kutner a
Sosnowska5 and Kehr et al.6 The following analysis de-
scribes a method which allows the coefficientsD••• to be
found in general.

C. General solution

To solve Eq.~19! for the lowest eigenvalue, let us rewrit
it in the form

L~k! v~k!5l1~k! v~k!, ~25!

wherev is an unnormalized eigenvector. Consider diffusi
along thex axis, i.e. putky50, and evaluate Eq.~25! in the
limit kx→0. The Taylor expansions ofL(k) andv(k) are

L~k!.L01L1kx1 1
2 L2kx

2 , kx→0,ky50, ~26!

v~k!.v01v1kx1 1
2 v2kx

2 , kx→0,ky50, ~27!

where

L05 lim
k→0

L~k!, L15 lim
k→0

]

]kx
L~k!,

~28!

L25 lim
k→0

]2

]kx
2

L~k!.

Substitution of Eqs.~26!, ~27!, and~24! into Eq. ~25! yields

~L01L1kx1 1
2 L2kx

2!~v01v1kx1 1
2 v2kx

2!

5Dxxkx
2~v01v1kx1 1

2 v2kx
2! ~29!

which is satisfied if

L0v050, ~30!

L0v11L1v050, ~31!

L0v212L1v11L2v052Dxxv0 . ~32!

Multiplying both sides of Eq.~32! on the left byv0
† , and

taking into account thatv0
† L050 according to Eq.~30! and

that the matrixL0 is Hermitian, we get

Dxx5v0* ~L1v11 1
2 L2v0!/~v0* v0!. ~33!

The normalized vectorv0 is

~v0!a5ra
1/2, ~34!
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since it satisfies the normalization condition and Eq.~30!:

L0v05(
a8

La;a8~0! ra8
1/2

5ra
21/2(

a9
(
l9

g l92 l8,a9;0,a ra

2ra
21/2(

a8
(

l
g l82 l,a8;0,a ra50,

where we have used Eqs.~17!, ~13!, ~11!, and~12!.
The vectorv1 can be found by solving Eq.~31!

L0 v152L1 v0 , ~35!

which is a set ofs linear equations for the components ofv1.
If v1 is a solution of Eq.~35! then v11cv0, wherec is an
arbitrary constant, will also be a solution due to Eq.~30!.
Consequently, one component of the vectorv1, for example
(v1)1, may be chosen arbitrarily. This choice does not eff
Dxx because in Eq.~33!

v0
†L1v05 lim

k→0

]

]kx
(
a,a8

ra
1/2La;a8~k! ra8

1/2

52 i (
l y

(
l x.0

l x S (
a,a8

g l x ,l y ,a;0,a8ra8

2 (
a,a8

g0,a8;2 l x ,l y ,araD 50,

where we have also used Eqs.~17!, ~13!, ~12!, and~11!.
Thus, the problem reduces to the calculation of the ma

cesL0, L1, andL2 defined by Eqs.~28!, the solution of the
system of (s21) linearly independent equations~35!, and
finally the calculation ofDxx as

Dxx5v0* L1v11 1
2 v0* L2v0 . ~36!

D. Diffusion coefficient

It remains to prove thatDxx in Eq. ~36! is indeed the
diffusion coefficient along thex axis. To prove this, recal
that according to the initial condition~15!, the expression
(a,a0

g( l,a;tu l0 ,a0 ;0) ra0
is equal to the probability tha

the atom at the origin in the celll0 at t50, where it occupies
the sites a51, . . . ,s with probabilities ra so that
(a,a0

g( l,a;0u l0 ,a0 ;0)5d ll0
, will be found in any of the

sites in the celll at a later timet. Consequently, the mean
square displacement along thex axis is equal to

^x2~ t !&5(
l

(
a,a8

~ l2 l0!x
2 g~ l,a;tu l0 ,a8;0! ra8 . ~37!

Using Eq.~14!, this may be rewritten as

^x2~ t !&52 lim
k→0

]2

]kx
2 (

a,a8
g̃a;a8~k;t ! ra8 . ~38!

On the other hand, according to the definition of the dif
sion coefficient,
t

i-

-

^x2~ t !&.2Dt as t→`. ~39!

Equating the right-hand sides of Eqs.~38! and~39! and tak-
ing the Laplace transforms, we get

2D

z2
52 lim

k→0

]2

]kx
2 (

a,a8
g̃̄a;a8~k;z! ra8 ,

z→0. ~40!

Substituting the expression~23! for g̃̄ into the right-hand side
of Eq. ~40! and taking into account Eq.~24!, the normaliza-
tion ~10!, and also the equation

lim
k→0

u~1!~k!5v05$ra
1/2%, ~41!

we finally obtainD5Dxx .
To find the diffusion coefficient in an arbitrary direction

we need to use the complete expansions instead of the
pansions~26! and ~27!:

L~k!.L01L1
x kx1L1

y ky1 1
2 L2

xx kx
21L2

xy kxky1 1
2 L2

yy ky
2 ,

k→0, ~42!

v~k!.v01v1
x kx1v1

y ky1 1
2 v2

xx kx
21v2

xy kx ky1 1
2 v2

yy ky
2 ,

k→0, ~43!

whereL2
xy5 limk→0]2L(k)/]kx]ky , etc.

Instead of Eqs.~30! to ~32! we now get the equations

L0 v050, ~44!

L0 v1
x52L1

x v0 ,
~45!

L0 v1
y52L1

y v0 ,

and

1

2
L2

xxv01L1
x v1

x1
1

2
L0 v2

xx5Dxx v0 ,

L2
xy v01L1

y v1
x1L1

x v1
y1L0 v2

xy52Dxy v0 , ~46!

1

2
L2

yy v01L1
y v1

y1
1

2
L0 v2

yy5Dyy v0 .

Multiplying Eqs. ~46! by v0
† from the left, using the fact tha

L0 is Hermitian so thatv0
† L050, and taking into accoun

the normalization, we obtain

Dxx5
1

2
v0* L2

xx v01v0* L1
x v1

x ,

Dyy5
1

2
v0* L2

yy v01v0* L1
y v1

y , ~47!

Dxy5
1

2
v0* L2

xy v01
1

2
~v0* L1

y v1
x1v0* L1

x v1
y!.
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Consider the atomic displacement along thex8 direction,
which is at an angleu to thex axis. From Fig. 1 it follows
thatx85r cos(a2u)5xcosu1y sinu, so that the mean-squar
displacement along thex8 direction is equal to

^r u
2&5^~x8!2&

5^x2& cos2u1^y2& sin2u12^xy& sin u cosu

52 lim
k→0

H F cos2u
]2

]kx
2

1sin2u
]2

]ky
2

12 sin u cosu
]

]kx

]

]ky
G (

a,a8
g̃a,a8~k;t ! ra8J

~48!

.2D~u! t as t→`. ~49!

Repeating the procedure described above, we obtain the
isotropic diffusion coefficient in the form

D~u!5Dxxcos2u1Dyysin2u1Dxy sin 2u

5 1
2 v0* @L2

xxcos2u1L2
yysin2u1L2

xysin 2u#v0

1v0* @L1
xv1

xcos2u1L1
yv1

y sin2u

1~L1
yv1

x1L1
xv1

y!sin u cosu#. ~50!

E. Jumps with a memory

We now consider the generalization of the technique
non-Markoff processes~e.g., see Ref. 9 and the survey
Haus and Kehr,8 and references therein!; namely, to random
walks for which the memory is not lost after each step,
only after a finite number of steps.

There are at least two reasons for such a generalizati
~a! Inertia effect. After a jump, the inertia of an atom

results in persistent motion in the same direction. Theref
the probability of a jump in the same direction,g f , may
exceed the probabilities of backward and sideways jump

~b! Polaronic effect. Just after an atomic jump, the su
rounding substrate atoms do not immediately adjust to
new position of the atom. As a result, the energy of the at
in the new site will exceed the energy which it had in the o
site before the jump. This may result in the probability of t
backward jump,gb , exceeding the probabilities of the fo
ward and sideways jumps.

To generalize the above technique to include memory
fects, we introduce a ‘‘memory’’ indexmj for each sitej .
For example, in the case of the one-dimensional lattice,

FIG. 1. Calculation of the anisotropic diffusion coefficient.
n-

o

t

.

e,

e

f-

e

memory index could take two valuesmj561, where the
valuemj521 corresponds to the atom arriving at sitej from
the left-hand side, andmj511 corresponds to arrival from
the right-hand side. Thus, in the non-Markoff case the tr
sition rates depend on three indicesl, a andm. Contrary to
the Markoff case, a proper choice of the valuesg l8,a8,m8; l,a,m
cannot now be guaranteed by the detailed balance cond
because this condition is not necessarily satisfied for a n
Markoff process. In the non-Markoff case it is necessary
find the stationary solutiongeq(a,m) of the master equation

(
l8,a8,m8

g l,a,m; l8,a8,m8geq~a8,m8!

5geq~a,m! (
l8,a8,m8

g l8,a8,m8; l,a,m , ~51!

and to test whether this solution satisfies the Boltzmann
tribution

(
m

geq~a,m!5Nlat
21ra . ~52!

Another problem in the non-Markoff case is that the m
trix L(k) is not Hermitian. This situation is analogous to th
for the Fokker-Planck equation, where the Smoluchows
equation corresponds to the Markoff case, while a more g
eral Fokker-Planck-Kramers equation, which takes into
count inertia effects, corresponds to the non-Markoff case3,4

However, the technique described above was based on
requirements: first, on the completeness of the base of ei
vectors of the matrixL0 which is satisfied providedL0 is
Hermitian at least in the limitk→0, and second, on the
second order expansion~24! which follows from the law of
conservation of atoms. If both these factors are satisfied f
non-Markoff process, the technique can still be applied
find the diffusion tensor.

III. ONE-DIMENSIONAL LATTICE

As examples of applications, we begin with a on
dimensional Markoff model with nearest neighbor jump
The sites may be enumerated in increasing order by an in
i , and the atom can jump to the left-hand and right-hand s
with the ratesg i 71;i . The elementary cell of the lattice ha
lattice constanta and consists ofs sites enumerated by th
indexa (a51, . . . ,s) with site energies«a . The site index
i may be written asi 5 ls1a, where l enumerates the el
ementary cells. It is convenient to define the ratesg̃a,a8 as

g̃a61;a5g l ,a61;l ,a if a52,3, . . . ,s21,

g̃1;s5g l 11,1;l ,s , ~53!

g̃s;15g l 21,s; l ,1

and it is assumed that they satisfy the detailed balance
dition ~11!. It is also convenient to assume that the indexa is
cyclic, so that the valuea5s11 is equivalent toa51, and
a50 to a5s.

Applying the theory of Sec. II gives
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1

2
v0* L2v05a2g̃1;srs , ~54!

~L1v1!15~L1!1;sws52a2g̃1;srsAZ exp~b«1/2!,

~L1v1!a50, a52, . . . ,s21, ~55!

~L1v1!s5~L1!s;1w151a2GAZ exp~b«s/2!,

v0* L1v15a2@2g̃1;srs1G#. ~56!

where 1/G is the residence time averaged over all sites

1

G
5 (

a51

s
1

rag̃a11;a

. ~57!

The diffusion coefficient~36! is therefore

D5a2G. ~58!

The result ~58!, ~57! has been obtained previously b
Kehr et al.6 ~see also Refs. 13 and 8! for a simpler valley
model for which all barriers have the same height. The sa
result has also been obtained for the general case rec
using a different technique~see Ref. 18, and reference
therein! but the present method is simpler and more gene

The result~57! enables the calculation of the correlatio
factor f corr for this one-dimensional model. Using the defin
tion of f corr, the general expression for the diffusion coef
cient given above, and calculating the average jump rate

^g&5 (
a51

s

ra~ga11;a1ga21;a!, ~59!

it follows that

f corr
215S 1

s (
a51

s
1

raga11;a
D F 1

2s(a51

s

ra~ga11;a1ga21;a!G ,

~60!

taking into account thata05a/s.
The expressions~58! and ~57! for the one-dimensiona

model may be rewritten in the form

D5D f F, ~61!

whereD f5a0
2g0, a0 is the mean distance between sites,g0

is some average transition rate, and the dimensionless c
lation factorF is defined by the expression

F215^e2b«a& ^eb«ag0 /ga11;a&, ~62!

where the operation̂•••& is defined ass21(a51
s

•••. Taking
the limit s→`, we can apply the expressions~61!, ~62! to a
disordered lattice. The result~61!, ~62! has been obtained
previously by Lyo and Richards15 using another technique.

According to Kramers’ theory,16 the transition ratega11,a
is mainly determined by the activation energy«a11,a which
is to be overcome by the atom, and depends on the la
exponentially,ga11,a5G0exp(2b«a11,a) where the prefac-
tor G0 will be assumed independent ofa. The activation
e
tly

l.

s

re-

er

barrier is equal to the difference between the saddle ene
«a11,a* and the well energy«a . Writing the activation en-
ergy as

«a11;a5^«a11;a&1d«a11;a* 2d«a , ~63!

whered«a11,a* is the saddle energy relative to its mean a
d«a is the well energy relative to its mean, the correlati
factor ~62! may be rewritten as

F215^exp~2b d«a!& ^exp~b d«a11;a* !&. ~64!

In this formulation the frequency g0 in D f is
G0exp(2b^«a11,a&), which is the jump rate for the mea
activation energy barrier.

If the fluctuations of the well energies are Gaussian
that

Prob~d«a!5
1

d« A2p
expF2

~d«a!2

2~d«!2G , ~65!

whered« is the dispersion, and the saddle energies fluctu
in the same manner but with the dispersiond«* , then

^e2b d«a&5E
2`

`

d~d«a!,

~66!

Prob~d«a! e2bd«a5expF1

2
~b d«!2G ,

and, consequently,

F5expH 2
1

2
b2@~d«!21~d«* !2#J ,1. ~67!

In particular, if we putd«'d«* 'kBT, we obtainF'e21,
so that thermal fluctuations in the shape of the poten
lower the diffusion coefficient by a factor ofe in the case of
the one-dimensional model. Maket al.17 have shown that
Eqs. ~61! to ~62! are also true for a two-dimensional valle
model for which all the barriers have the same energy but
well energies are random.

IV. NON-MARKOFF JUMPS

A. Bravais one-dimensional lattice

In order to include a memory of one previous step into
theory, we associate with each site an indexm561 such
thatm521 for an atom arriving at a site from the left-han
neighboring site, andm51 for arrival from the right-hand
site. Denoting the transition rate of an atomic jump in t
same direction as the previous jump byg f , and the rate of
the backward jump bygb , the transition rates take the fo
lowing form:

g l ,21;l 21,215g f ,

g l ,21;l 21,115gb ,
~68!

g l ,11;l 11,115g f ,

g l ,11;l 11,215gb .

The Fourier transform of the transfer matrix is
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L~k!5S L22 L21

L12 L11
D

5S ~g f1gb!2g fe
2 ika 2gbe2 ika

2gbe1 ika ~g f1gb!2g fe
1 ikaD , ~69!

and the matricesL0, L1 andL2 are equal to

L05S gb 2gb

2gb gb
D ,

L15 iaS g f gb

2gb 2g f
D , ~70!

L25a2S g f gb

gb g f
D .

It can be seen that while the matrixL(k) is non-Hermitian,
the matricesL0 andL2 are Hermitian, and the technique o
Sec. II may be applied. It is easy to show that

v05
1

A2
S 1

1D ,

~71!

v15
ia

A2

g f1gb

gb
S 0

1D ,

and the diffusion coefficient is now equal to9

D5
1

2
a2

~g f1gb!g f

gb
. ~72!

If we introduce a parameterh using the relationsg f
5g exph and gb5g exp(2h), so that h determines the
strength of the memory of the previous step, thenD may be
represented as the product ofD f5a2g ~the diffusion coeffi-
cient for uncorrelated random walks! times the correlation
factor F5cosh(h)exp(2h).

B. Triangular lattice

A second example of non-Markoff diffusion is the trian
gular lattice, for which the memory indexm can take six
different values,m51, . . . ,6,corresponding to jumps from
the six nearest-neighboring sites. Taking into account
symmetry of the lattice, we introduce four transition rat
gb , gb8 , g f8 and g f as shown in Fig. 2. Depending on th
model under investigation, the following variants may occ

~a! The forward jump model, wheregb5gb85g f8,g f , so
that the atom has a larger-than-average probability of mak
a transition in the same direction as the previous transit
while the probability for a transition in any other direction
reduced compared to the average value.

~b! The reduced reversal model, where gb,gb85g f8
5g f , so that the atom has a less-than-average probabilit
returning to the site visited at the previous step.

~c! The backward jump model, where gb.gb85g f8
5g f , so that the atom has a larger-than-average probab
of returning to the previous site.

Using the notation shown in Fig. 2, after a long b
straightforward calculation we get for the transfer mat
L(k) the expression

FIG. 2. Non-Markoff diffusion on the triangular lattice.
L~k!51
6g2g fe1

1 2g f8e1
1 2gb8e1

1 2gbe1
1 2gb8e1

1 2g f8e1
1

2g f8e2
12 6g2g fe2

12 2g f8e2
12 2gb8e2

12 2gbe2
12 2gb8e2

12

2gb8e2
22 2g f8e2

22 6g2g fe2
22 2g f8e2

22 2gb8e2
22 2gbe2

22

2gbe1
2 2gb8e1

2 2g f8e1
2 6g2g fe1

2 2g f8e1
2 2gb8e1

2

2gb8e2
21 2gbe2

21 2gb8e2
21 2g f8e2

21 6g2g fe2
21 2g f8e2

21

2g f8e2
11 2gb8e2

11 2gbe2
11 2gb8e2

11 2g f8e2
11 6g2g fe2

11

2 , ~73!
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where e1
65exp(6ikxa), e2

665exp(6ikxa/26 ikyay) and g
5 1

6 (g f12g f812gb81gb).
The vectorsv0 andv1 are now equal to

v05
1

A6S 1

1

1

1

1

1

D ,

~74!

v15
iagA6

3gb812gb1g f8S 1

1/2

21/2

21

21/2

1/2

D ,

and the isotropic diffusion coefficient is given by the expre
sion

D5D f ~11F !, ~75!

whereD f5
3
2 a2g is the diffusion coefficient for the Markof

model, andF describes the non-Markoff correlation

F5
2~g f2gb1g f82gb8!

3gb812gb1g f8
. ~76!

C. The ‘‘split’’ „110… bcc surface

As a final example, we consider the~110! face of the bcc
structure which gives a rhomboidal lattice for an adatom, a
suppose that owing to local substrate distortion around
adatom, the original single adsorption site is split into tw
symmetric sites separated by a small energy barrier. Su
distorted honeycomb lattice was introduced and studied
Ala-Nissila et al.14 to described theH-W(110) adsystem in
the framework of the Markoff random process. However
seems reasonable to include also the memory effects into
-

d
e

a
y

t
is

model, since polaronic and inertia effects could play a s
nificant role, especially for jumps between the adsites wit
a cell.

To include the memory of a previous jump, we associ
with each adsite a memory indexm in addition to the index
a51,2 enumerating the sites within the cell. Letm51 for an
atom arriving at a given site from an upper site,m521 for
arrival from a lower site, andm50 for arrival from the left-
or right-hand sites. It is now necessary to introduce five tr
sition ratesg f , g f8 , g f9 , gb, andgb8 as shown in Fig. 3.

It is useful to introduce a single indexj5a21m11,
which varies from 1 to 6, instead of the two indicesa andm.
Using the symmetry of the model, the stationary soluti
rj[geq(a,m) of the master equation~51! is r15r35r4

5r65g f9/2(g f812g f9) andr25r55g f8/2(g f812g f9), so that
the vectorv0 is equal to

v05
1

A2~g f812g f9!S Ag f9

Ag f8

Ag f9

Ag f9

Ag f8

Ag f9

D . ~77!

Omitting a lengthy calculation, the matrixL(k) is

FIG. 3. Non-Markoff model for the ‘‘split’’~110! bcc surface.
L~k!51
3g 0 0 2g fe

11
2g̃ fe

11 2gbe11

0 3g8 0 2g̃ f 2gb8 2g̃ f

0 0 3g 2gbe12
2g̃ fe

12 2g fe
12

2g fe
21

2g̃ fe
21 2gbe21 3g 0 0

2g̃ f 2gb8 2g̃ f 0 3g8 0

2gbe22
2g̃ fe

22 2g fe
22 0 0 3g

2 , ~78!
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where g5(g f1g f81gb)/3, g85(2g f91gb8)/3, g̃ f5Ag f8g f9
ande665exp(6ikxax6ikyay).

The solution of the key equation~35! leads to the follow-
ing expression for the vectorv1:

v1
x5S w1

x

w2
x

w1
x

2w1
x

2w2
x

2w1
x

D , v1
y5S w1

y

0

2w1
y

w1
y

0

2w1
y

D , ~79!

where

w1
x52axA~g f91gb8!/@~2g f1g f812gb!

3~g f91gb8!2g f8g f9#, ~80!

w2
x5axAg̃ f /@~2g f1g f812gb!~g f91gb8!2g f8g f9#, ~81!

w1
y52ayA/~g f812gb!, ~82!

and

A52 i
~g f1g f81gb!Ag f9

A2~g f812g f9!
. ~83!

As a result, we obtain the diffusion coefficients

Dxx5ax
2

g f8g f9~g f1g f81gb!~2g f91gb8!

~g f812g f9!@~2g f1g f812gb!~g f91gb8!2g f8g f9#
,

~84!

Dyy5ay
2

g f9~g f1g f81gb!2

~g f812g f9!~g f812gb!
, ~85!

and their ratio is

d5
Dxx

Dyy
5S ax

ay
D 2

3
g f8~g f812gb!~2g f91gb8!

~g f1g f81gb!@~2g f1g f812gb!~g f91gb8!2g f8g f9#
.

~86!
For Markoff jumps this ratio reduces to

d5
Dxx

Dyy
5

2g8

g812g
. ~87!

V. CONCLUSION

A technique has been developed to calculate the diffus
tensor for the lattice-gas model at low particle concentrat
for any complex elementary cell and which can also inclu
memory effects. The calculation reduces to simple mat
algebraic operations, with the only step that could hinde
complete analytic solution being the solution of the mat
equation~35!. For many cases analytic expressions for t
diffusion tensor may be obtained. Some one- and tw
dimensional models were analyzed as examples, som
which have been studied previously by other techniqu
while others such as the one-dimensional model with an
bitrary elementary cell and the two-dimensional no
Markoff models, have not been treated previously. Althou
we have concentrated on one- and two-dimensional
amples, having in mind applications to surface diffusion,
technique described is equally applicable three-dimensio
models, so that it will also be useful in applications to bu
diffusion problems.5–9

The technique developed in the present work may be p
gramed for a computer calculation in cases where an ana
solution is not possible, so that the exact diffusion tensor
walks of a single atom may be found in practice for a wi
class of lattice-gas models. Moreover, the technique allo
the study of diffusion of a pair of interacting atoms, or a tr
of atoms, etc., so that it may be used for the calculation
the exactdiffusion tensor for stochastic motion of adsorb
islands.
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