PHYSICAL REVIEW B VOLUME 58, NUMBER 3 15 JULY 1998-I

1/N expansion for two-dimensional quantum ferromagnets
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The magnetization of a two-dimensional ferromagnetic Heisenberg model, which represents a quantum Hall
system at filling factorr=1, is calculated employing a largeé Schwinger boson approach. Corrections of
order 1N to the mean-field = =) results for both the SU{) and the ON) generalization of the bosonized
model are presented. The calculations are discussed in detail and the results are compared with quantum Monte
Carlo simulations as well as with recent experiments. TheN§Ufiodel describes both Monte Carlo and
experimental data well at low temperatures, whereas thé) @fodel is much better at moderate and high
temperatured.S0163-182608)00727-9

. INTRODUCTION and ON) Schwinger boson formulations of mean-fi¢MF)
theory, i.e.,N—o, for the Heisenberg model. In a recent
Progress in materials synthesis has allowed study of @ommunicatio®” we have presented analytic results for the
variety of two-dimensiona(2D) systems such as thin films, |eading 1N corrections to the magnetization and results of
surfaces, and semiconductor quantum wells. These systeragtensive quantum Monte Carlo simulations. In the present
as well as the nearly 2D cuprates have led to much interest iﬂaper we present details of theNLtheory. Details of the
2D quantum magnetism. It has been found that 2D electrojonte Carlo simulations are given elsewh&tén alterna-
gases in quantum wells in the quantum Hall regime are itingye microscopic approach that includes spin-wave correc-

-3 . .
erant ferromagn_efs._ The strong e>_<ternal magnetic field tjons to the electronic self-energy has also recently been
guenches the kinetic energy, leading to widely separate 4

| eveloped:

Landau levels, but because of band-structure effects . 1516 -

. Schwinger boson theori€s'® have proved useful in find-
couples only weakly to the electron spins. Thus Iow—energyfn ME theories that respect the svmmetrv of the Hamil-
spin fluctuations play an important role. Y P y y

These 2D continuum ferromagnets exhibit topological ex-tonian. F?Q‘g‘a' results to any order mNL/qave aI;o been
citations called skyrmiori€ in analogy to the Skyrme model obtained'"*® However, numerically evaluating the first-order

of nuclear physic&® In the quantum Hall system these ex- (1/N) corrections is not an easy task..Trumpzeral.lg have
citations carry electrical chardé At filling factor v=1, i.e., €valuated various ground-state quantities of a frustrated an-
if the spin-up states in the lowest Landau level are just filledtiferromagnet in the absence of external fields. Although they
skyrmions only appear as thermal excitations of the form oftreé not using the larghl formalism, their method is equiva-
skyrmion-antiskyrmion pairs. At filling factors away from lent to a 1N expansion to first order.
unity, however, skyrmions appear even in the ground $tate. There are a number of subtle pitfalls in thé\1¢alcula-
At all filling factors, low-energy spin fluctuations are also tions, e.g., regarding normal ordering of operators. It seems
present. The combination of spin fluctuations and skyrmionsvorthwhile to present the calculations in some detail for the
dramatically alters the magnetizatfi? and the specific benefit of readers interested in usindyl¥Expansion methods.
heat!? We also hope to make the physical interpretation of these
For a quantitative understanding it is useful to first studytheories clearer and shed some light on the level of accuracy
the case ofv=1 to isolate the effect of low-energy spin of 1/N expansions.
fluctuations, which are expected to be well described by a In the following we give an overview of this work. First,
Heisenberg model, at least at low enough temperatures. Ahe Heisenberg Hamiltonian is mapped onto an equivalent
higher temperatures higher-order gradient terms neglected ifoson system. There are several ways of doing this. One is
the Heisenberg model could become importantthe Holstein-Primakoff representatihwhich has a number
Renormalization-group argumehtsshow that inD=2—¢  of disadvantages, e.g., the square root of operators it intro-
dimensions the magnetizatidvt of the quantum Hall ferro- duces, and we do not employ it here. Instead we introduce
magnet at »=1 is a universal function, M/S  Schwinger bosors in two different ways. The first, pre-
=f(JS%/T,B/T), whereS s the spinJ is the exchange cou- sented in Sec. Il A, makes use of the @Usymmetry in spin
pling, andB is the external magnetic field. F@=2 this  space of the Heisenberg modeiich is explicitly broken by
universality is violated by logarithmic correctiohsin the  an external fielil The second utilizes the local equivalence
Heisenberg model the magnetization only depends on theetween the groups ) and 0G3) to write down an equiva-
three dimensionless quantitieS, J/T, andB/T. Read and lent O(3) boson modelSec. Ill A). Subsequently, the two
Sachdel! have evaluated the magnetization using SY( models are generalized to SN) and O(N), respectively,
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which containN bosons at each site. At this point a remark B o o

may be in order on what we doot mean by the QOY) -3 > [a'(ha(i)—b'(i)b(i)], (€
model. It is not anN component vector model, e.g., &h '

component quantum nonlinearmodel. Rather, the spin op- neglecting a constant. For this Hamiltonian to be equivalent
erators are generators of the Lie groupNp( Only for N to the Heisenberg model, the spin operators expressed in
=3 are the generators antisymmetrix 3 matrices, which terms of bosons have to have the correct commutation rela-
are dual to(axial) vectors. Thus our results are not easily tions. This is easily shown to be the case.

compared to expansions in the number of components of the Utilizing the SU2) symmetry group of the spins we write
spin vectors, as developed by Garahifor a classical sys- the Hamiltonian in a more compact form by first defining a

tem. SU(2) spin matrix
It is now possible to expand in/as a small parameter.
MF theory becomes exact for both 8t) and Q). The _(a'a a'b
1/N expansion is a saddle-point expansion around this MF “\bfa b/’ 4

solution, not a perturbative expansion in the interaction. For ) o

this reason it is, in principle, equally valid at all tempera- With the constraint T8=2S. The Hamiltonian is

tures. Also, it does respect the symmetry of the Heisenberg 3 B

model. This property makes even the MF results qualita- H=—— E Sui)SE()— 5 > (oD)eshi), (9
tively correct. In particular, the absence of long-range order 2.0 25

if no external field is present is correctly predicted. After

- . . .
rederiving the MF magnetization in Sec. Il B for the SU)( where ¢ is a Pauli matrix and summation over repeated

. indices is implied. Here, the spin matric&i) should be
gggglngngsliagszc' dlig;;gﬂgé V;Spiiggégt:c;hﬁ Il\(’:cg; d infinitesimal ge_nerators of the _$2) group, i.e., ele_ments of

. . ’ the corresponding algebra. This is not the case since the gen-
Il C). These corrections take fluctuations around the MF re'erators are traceless. However. if we had defiSeds an
sult into account. We will make use of gauge invariance to lement of the algebr.a the Harﬁiltonian would only change
simplify our task. Here we also have to discuss the effect oﬁy a constant and we u’se the more convenient definigin
normal ordering. In principle, terms to any order iltN1¢an The group S(@) is generalized to SU) for any everN.

be obtained in the same way. T S :
The system without exchange interaction can be soIvec]—he generalization of the Hamiltonidb) is

exactly for any value of the spii and for anyN in both the J B

SU(N) and the ON) model. It can be used to check théN1/ H=-3 2 SHOEAINS > > hgsi(i), (6)

expansion. However, the interaction introduces a number of (5 '

additional complications. whereS andh areNx N Hermitian matrices an8 is subject

to the constraint T8=NS. We choosé=6,,(—1)*** so

Il. SU(N) MODEL that we regain the S@@) model for N=2. The Schwinger

boson representation now requirtisboson specie®,, ,%2

Sg=blbg, and the constraint is

We start from a Heisenberg model with nearest-neighbor "
interaction on a square lattice in a constant magnetic field, b.b,=NS (7)

A. General considerations

We now go over to the continuum for mathematical conve-
nience. The continuum model may actually give a better de-
scription of itinerant magnets but is harder to compare to
Monte Carlo simulations on a lattice. Up to a constant we
where the sum ovefij) is over all nearest-neighbor bonds. obtain

A factor of gug has been absorbed into the fi@d The total

spin at each site iS; S(i)- S(i)=S(S+1). We express the :f d2r
spins in terms of Bose operators using a Schwinger boson

representation, where two Bose fiemsndb are introduced
according t0°%2

H=—J<i2j> S<i>-S<j>—BEi Sii), (1)

J B
>N (4SH (S — 5zhssi,  (®)

whereb,(r) is a continuous Bose field with the commutator
[ba(f),bg(r_’)]:azéa_ﬁa(r—r’), 9, is the two-component
gradient,a is the lattice constant, and summation oyds

+_ .t - _pt —(ata_pt
S'=a'b, S =bla, S=(aa-b'b)/2. 2) implied. After bosonization we find

To restrict the Hilbert space to the physical states, the con- J
strainta’a+b'b=2S is introduced, which corresponds to H=f dzr[JS(aij)(ajba)— Nbi(ajb;)bﬁ(ajba)
S-S=5(S+1) for the original Hamiltonian. The boson

Hamiltonian is B ;
- ﬁhﬁbﬁba , 9
H=-3 > [a'(ha(a'(j)a(j)+a'(i)b(i)b'(j)a(j) which is normal ordered, as necessary for the functional in-
{n tegral. This is basically the Hamiltonian of the complex pro-

+bT(ia(i)a(j)b(j)+bT(i)b(i)bT(j)b(j)] jective CPN™! model!® We have used the fact that the lat-
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tice Hamiltonian(6) can be normal ordered trivially since
spins at different sites commute so théig(i)sﬁ(j)
= :sg(i)sfg(j):, where :: denotes normal ordering.

Now we write down the partition function as a coherent

state functional integral, where the Bose fields are replaced

by complex fields,

sz DZbQD)\eXp(—% johﬁdrf d2r£[b;)\]), (10

where the functional integral takes eabl(r,7) over the
whole complex plane and eaaltr,7) parallel to the imagi-
nary axis(a constant real part is irrelevantere and in the
following we neglect constant factors i 7 is the imagi-
nary time, 8 is the inverse temperature, amtlis the La-
grangian

h J
L= 205 d0bo+IS3;07)(d1ba) = 105 (91b5)04(d1Da)

B
_2_a2hgbzba+)\bzba_NS)\' (17

The first term is the usual Berry pha&g is the time deriva-
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Of course we obtain the same results if we do not fix the
gauge. The gauge freedom then leads to the appearance of
zero modes, which turn out not to enter in the magnetization.

B. Mean-field theory

Up to this point the treatment has been exact. In the fol-
lowing we derive mean-fieldMF) results, which are exact
for N—oo and approximate for finit&l. This approximation
is not the same as standard MF theory for the Heisenberg
model. As we will see, SIN) MF theory captures the low-
energy spin-wave physics of the Heisenberg model and cor-
rectly predicts the absence of long-range order at finite tem-
peratures.

The MF approximation is the leading order of a stationary
phase approximation for the SNJ partition function. The
MF solution is assumed to be homogeneous and static, i.e.,
Q and\ are assumed to be constant. This assumption is not
justified for all system&? it should hold in ferromagnets,

though!’ The MF valuesQ and\ are chosen in such a way
that the MF free energlf has a saddle point. If we sktto

its MF value the constrain7) is no longer satisfied locally
but only on average. In order to diagonalize the action we
introduce Fourier transforms of the, fields,

tive) and the last two terms come from the constraint using

the identity 2r8(¢)=[.dxe*?. \ is a Lagrange multi-
plier at each poinfr,7).

To decouple the quartic term we introduce a Hubbard-

Stratonovich fieldQ(r,7): Since
1 (%8 , I .
J' DQJ'eX _% J;) de der N[_lNQj_(ajba)ba]

X[INQ;— g(ajbﬂ)]) (12)

is independent db,,, we can multiply the partition function
with this expressionQ; can be chosen real since an imagi-
nary part ofQ; would not couple to thé,, fields because
b%d;bg is purely imaginary. We get

Z:f D2baD)\DQJ‘eXF< _% fﬁﬁdrf dzrﬁ’[b,)\,Q])
0
(13
with

i
L'= 30 dob,+IS(Gb%)(9b,) +NIQQ,

; . B .
+13Q;b7(9;b,) ~13Q;(db})b,— 55 hzbjb,

+\b*b,—NS\. (14)

We see thaQ is a gauge field If we multiply all b, by a
local phase factoh ,(r,7)—e'*"?b_(r,7), we reobtain the
Lagrangian(14) by letting Q;— Q;+ Sd;6. We know from
gauge theory tha contains more information than is physi-

cally relevant; we have the freedom to choose a gauge. W.

use a transverse gauge,

3,Q;=0.

(15

a2
b,(r,7)=

2m

d2k2 eik'r_iw”Tba(k,i ‘Un)a

oy,

(16)

whereiw,=i27n/kh B are bosonic Matsubara frequencies.
From now on summation over indices is written out. With
Eq. (14) and the definitiorh;= 6(15(—1)”‘+1 the MF parti-
tion function is

zo=f Dzba(k,iwn)exp( —~ MNBJQ- Qa2+ Na?NSBh

— | %X cg[b]), 17)
iwp
where is the total number of sites and
Lh=pa’d, (—iﬁwn+JSI€a2—236-ka2
B a 2y | h* : ;
— Eha+a N | b (Kiwn)ba(K,iwy). (18
We introduce a nhumber of new symbols,
_ — B — — ~ ~ B
A=a’B\— % Q-Qa? J=pJ, BE%. (19

Evaluation of the Gaussian integrals yields

II 11

|(J.)n a

( —iBhwy+JISKa?—23Q- ka?

) -1
e . . .
Writing the product as the exponential of a sum, replacing

thek sum by an integrals — (Va*/4=?) [d?k, and shifting
k by Q/S, we obtain

Zooc e/\/NSX]__k_[

- = J__
—Bhg+A+§Q-Qa2 (20)
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_ Na? ) magnetization is basically the difference of the number of
Zo“eXP(NNSA— = J d<k “up” and “down” bosons. (i) The dependence @, on the
field B through A is irrelevant at the MF level since
s ~ 2_BpaL n d In Zy/dA=0 by definition. This is not the case at theN1/
X%:n 21 In —1phwy+ISKa®~BhG+A] level. (iii) The normalized magnetizatial,/S exhibits the

21) universality mentioned in Sec. I: It only dependsdsf and
11

The MF partition function and thus all MF quantities only Finally we compare the MF magnetization with the origi-
depend on\ andQ throughA.. The saddle-point equation for ng| Heisenberg model. From Eq&4) and(25) we obtain at

Aisdln ZolaA 0, resulting in low temperatures
0=AMNS
N Mo—S=——In(1—e #B) (26)
a 1 47JS
kS S — _ N T
4 lon @ —iBlhiw,+ISKa*~Bhy+A up to exponentlally small corrections to the fi@dof order

(220 of A—B=e ~8m3°(1— e~ FB) . However, Eq(26) is just the
agnetization of the Heisenberg model neglecting magnon
teractions. This means that the SJY(MF theory captures
the correct low-energy spin-wave physics. Consequently, we
expect higher-order corrections to be small for [®dw

The Matsubara sum in this expression is not well defmecin
since the summands do not fall off fast enough. In writing it
as a contour integral the contribution from closing the con-
tour does not vanish. The usual procedure is to introduce a
convergence factoe™'7#%“n and let y—0 afterwards. The _
result is ambiguous, depending on the sign in the exponen- C. 1IN corrections

tial. Here, Eq.(22) only has solutions for positive sign. Con-  To take fluctuations in the auxiliary fields and Q into
sequently, account, we write

2 . .
o:ws—%é fd2kn8(33k2a2—§hg+X) AT, 7)=N+IAN(r,7), (27)

Qi(r,)=0+AQ;(r,7). (28)

N AL BRa
- ~A+Bh
=MNS+— za: In(1—e475Na). (23 The fluctuations i\ are imaginary since. has to be inte-
4mJS grated along the imaginary axis in EQ.0). The fluctuations
Here,ng(€)=1/(e“—1) is the Bose function. Eventually we i(n ?j are real. They are subject to the gauge constraint in Eq.
find™ 15.
We follow the procedure outlined by AuerbathThe ex-
1 — . act partition function is
S=———[In(1-e **B)+In(1-e 27B)]. (249
8mJS

_ Z:f DANDAQjexp—NS), (29
Equation(24) for A can be evaluated analytically. For given
A we have the freedom to choo&e andA is then fixed by  where the actiors is expanded in a series for small fluctua-

Eq.(19). This is a consequence of gauge invariance since Edionsr , with r , standing for any modax(r,7) or AQ;(r,7),
(15) specifies the gauge only up to a constant. We choose

Q=0. (The square lattice model without continuum approxi-

mation runs into problems at this point since the quantity S= 20 - S(n) AP v (30
corresponding t@ shows a spurious first-order transition at
the MF level) o _ where summation over repeated field indiegsis here and
The MF magnetization normalized so thep(T=0)=S  in the following implied. On the other hand, the action can
can be obtained from E@21) (Ref. 11 be written asS= Sy+ Sgir+ Sioop With'’
2 d 94z 1 -1
0= AN dB 0 SO=NTr In G, -, (31
— L e B in(1—e By (29 P fﬁﬁd f &2r (NJ NS, 37
8.3 a=Nz ), 97 r(NJQ-Q )s (32

Some notes are in orddi) Equation(24) states that the total
number of “up” and “down” bosons(with h{=1 and—1,

1
Sioon== Tr In(1+Gyu,r ), 33
respectively is conserved, whereas E(®5) states that the loop™ N ( ov/r/) (33
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AL AQj To find the vertex factorg, we write the exact partition

aVaVaY ' GEaVaVaValaVaV function Z of Eq. (13) in terms of Fourier transforms, where
the b, dependent part of the Lagrangian is

(@) (b)

B
L"=pa’ —ihw,+JISKa?— ~h?
FIG. 1. Diagrams contributing tS; . A ; ( @n 2«

where the trace sums over space, time, and boson fl&yor, (L . '3_34
is the MF bosonic Green function, and is a vertex factor X Do (K Twn)bo(k Twn) + 27
coupling the fluctuatiom , to two bosons.

The first term,Sy, has the standard form for a noninter- X D f d2q>, [—2JQ(q,iv,)-ka?
acting system. It stems from thHeintegral part of the MF @ [
free energy; see Eq21). The Green function can be read off

from the MF partition function,

iv,
+a2\ (0,1 1) 10% (K, i ) Do (K— i 0 — i 7).

(36)

a B — (i 2 a 23y\—1
Gi(Kiiwn)=(~ihw+ISKa’—Bhg/2+a’h) ™", (34) The first expression in parentheses is the inverse Green func-

tion (G3) 1. The same prefactors have to be included in the
The second termSg,, comes from the constant part of the vertex factors, which are the coefficients of the terms
MF free energy but also contains fluctuations in the fields r,bib,. Consequently,
which do not involve bosons. The constant part conspires

with S, to form the MF free energy- BFo=NS®. The a? 4m® . 2m

fluctuating part contains a first-order termAn, correspond- UM T o a2 T s (37)
ing to the coupling of\ to the constanNSin Eq. (14), and

a second-order term iAQ; from the Q- Q term. The corre- a2 42 20

sponding diagrams are shown in Fig. 1. vaQ,= 5o W(—ZJ)asz: -7 2Ja2k]- . (39

The third termS;4,,, Ccontains the contribution of fluctua-
tionsr , coupling to bosons. It is the result of a Iinked-cluster-l-he factor 42/ Na2
expansion. By expanding the logarithm we obtain the contri
bution from Sisep to S,

in both cases stems from the integral
‘over g. The factor ofi in vy, comes from Eq(27).

We now consider the expectation vak b,) for any «
(no summation implied From this we obtain two important
> Tr(Gov,.---Gouy ). quantities: The average number of bosons per site
P ' " =3 (blb,), and the magnetizatioM =N"= h%b!b,).

(39 Inserting a source termL[j,]==,j.,bib, into the La-
The sumSp runs over all permutations of the vertices. grangian(14), where the source curreff, is constant, we

The first few termsS(™ are shown diagrammatically in Fig. find
2. Solid lines with arrows denote MF boson Green functions 1 14z
Gy and the dots correspond to vertex factogs The wrig- (blby=— g —
gly lines are external legs,. Disconnected diagrams are NBa® Z dj,
taken care of by a linked cluster expansion, which puts the
whole series into the exponential. No internallines appear Inserting the series expansion of E§0), evaluating the de-
since as far as the action is concernedrth@,7) are exter- rivative, and expanding the exponential of the terms contain-
nal variables. ing S, n=3, we obtain
For(zn)>3 Eq. (35) is the only contribution, wherea$")
andS'“’ contain contributions frondg, andS,,. The total .. N
first-order termS® can be shown to vanisk? as it should <bab“>_/\/ﬁazz f DAADAQ,
since we are expanding around a saddle point.
( “ 1 85/n3.../
>< n

m’@ m@“ﬂ” 2w r/l”'r/“)
R TE
(@) (b)

1 m
Z — sm
n! S('/l'”/nr/l I’/n)

é‘(n) _1 (_1)n+1
/l---/n|loop_N - 4

(39

jo=0

m=0 m!

n=3
N 5@
m Xexp — 5 AN (40
(©) All terms are Gaussian integrals, which can be evaluated by

pairwise contraction over the fields.. Diagrammatically,
FIG. 2. Diagrams contributing 6o any contraction is represented by connecting two vertices by
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a random phase approximation (RPA) fluctuation propaga-

tor D=(S®) "1, which we represent by a heavy wriggly
line.

In the next step we calculate thjg derivative of S(.
The derivative basically replaces, by — (G,)? so that we
may expect it to be related 5("" ). The Green function in
the presence of the source term is

G§(K,iwy) =(—ifhw,+ISRa?—Bh%/2+a’\ +a%j,) !

so that its derivative i99G/dj,=—Gga’G§. The vertex
factor associated with, differs fromwv,, only in a factor of
i vja=277/\f’1a2. With Eq. (35) we have

J N1 (-p"?

n) -
71l o 27N n
| -

e _

a

x; Tr(Govj Gov,,*Govy,
n

+-- 4+ Gov/l' . Go‘l)jaGo'U/n).
(41

The sum containgin! terms and not if+1)! becauseuja
cannot appear to the right ®pn. The invariance of the trace

under cyclic rotation allows us to write this expression as
sum over all 6+1)! permutations of the vertices; ,

Uyl if we introduce a correction factor for over-
counting,nn!/(n+1)!=n/(n+1). We obtaif’

I N1 (-p"*?
o ST 2 N e

X 2 Tr(Govj Gov,,-+-Gov,.)

Pn+1

Af n+1)

ZE AR (42)

Equation(17.29 in Ref. 17 differs from this result because
of different definitions of vertex factors. It follows that

N
T - )
(blba) =5 s f DANDAQ,

X

D e U
“o nl Tl /a “n

©

XZ(

m=0

__N)m
m!

m
L o
n! C1n C1 “n

p>

N
X ex;{ - S(/zl)/zr/lr/z) : (43

In principle, we can evaluate the integral for any term in this

series. The contraction of two variables gives

1 N 2) 1
hl _= o= D@y
> f Dr/r/lr/zex% > S(/i/ér/lr/z) N (S iy

(44)

a

FIG. 3. The diagram for the MF magnetization.

where ther , are assumed to be redln fact they are real
only in direct space but complex in Fourier space. We can
use the Gaussian integral for complex fields, which has an
additional factor of 2, and note tha&A(—q,—iv,) and
AN(qg,iv,) are not independent sincAN(—Q,—iv,)
=AN*(q,iv,) and similarly for AQ. Thus we have to re-
strict the sum oveng to one half-space. The factor of 1/2
obtained in this way cancels the factor 2 from the Gaussian
integral] The RPA propagatdD is the inverse of the matrix
S®). We obtain all terms in the expansi¢43) by writing
down all allowed diagrams consisting of any number of bo-
son loops with one external, leg, represented by a dashed
line, and an even number of internal vertices, and connecting
the latter by RPA propagators in all possible ways. Allowed
diagrams are connected and do not contain loops with only
one or two internal vertices and no external vertex because
first-order terms cancel in an expansion around a saddle
point and the loop with two internal legs is already included
in the RPA propagator.

To figure out which terms are of which order ifNL/note
that the magnetizatiom =N~*= ,h%(b'b,) contains an ex-
plicit factor of 1IN. Furthermore, each loop contributes a
factor of N from summation over flavor&he loop with the
external vertex does not contain a sum but has an expligit
and each RPA propagator contributes a factor of;1¢ee
Eq. (44).

The leading term is depicted in Fig. 3. It is of ordé¢? in
the magnetization. This term reproduces the MF magnetiza-
tion (25). Contributions of order N in the magnetization
have to contain the same number of loops and propagators.
The only two allowed diagrams are shown in Fig. 4. Simi-
larly, we could write down the diagrams to any order.

The two relevant contributions are, from Figax

N
o___ N
b1 2mwpa’z
x | Dr, As8?™Y r v, ex —ES(D ror
729] i1/ 478 2 Sty
_ (2+1) [ e(2)y-1
W‘S}cﬁ/l/z(s v (45

FIG. 4. 1N diagrams contributing to the magnetization. Dia-
gram (a) corresponds t(D(lo) in Eq. (45 and (b) corresponds to
DY in Eq. (46).
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and from Fig. 4b), — 1 300 0
n=NS+-— > T+ =
2N i, | Zpot  MNIZI+S gof
N N — -
D<20>Em f Dr, 1+}1>r/1( g> 1 Nng(A-B)+ng(A+B)
MN 2 n(A-B)+ng(A+B)
3) (2
XS/2/3/4r/2r/3r/4ex;1< 55 //r/’r/) S 408 S g0t
x> . - ~NS+0. (53)
1 an | Zp00  AN/2J+3 gof
=- 2 5<1+1)5(/ (8P (8@
4mpBa 34 12 34 We thus see explicitly that the constraii is still satisfied

(46)  atthe 1N level. This is a special case of Auerbach’s general
proof'’ that the constraint is satisfied to any order. Thus we

D contains a sum over all three possible pairings of thd'€€d not “shift the saddle point,” i.e., adjust so that the

fourr .. We have utilized the symmetry &) in each pair cor\l/strar:nus ST'” Isa;tlsg]edw ntribution to the maanetiz
of indices. The evaluation of the relevasit” is relegated to € how calculate the T contribution 1o the magnetiza

Appendix A. With the results found there we can write downt'on’
the two terms inb'b,)=D{?+DY,

1
M=Mo™ I
1 O'C” O'Cw ay _ar ay _ar
L — Z o . ~l B)' (47) y E 2 (c1—hy) g . 2 (c1—hy)af
2N a.iy E/;(To MN/2J+ 2 go?’ @ EBg-g /\/N/ZTJ"'EBUE
(54)
DO _ i ng(A—Bhg) whereM, is the MF magnetizatioi25) and
2 — ~ — ~
MN ng(A=B)+ng(A+B) — —
S 06’ Zpol T a(A-B)tng(A+B) 9
X > 7 - . (48 Ng( )+ ng( )
dim | 2pog  AN/2J+3 4o

Expressing the momentum sum by an integral we find

where we have introduced new symbols,
M=Mo— N 872 j q

Ng(€x+ o) — Ne( € qn) S (ci—hY)ag  Z,(ci—hy)ol’
o=, B(€ict gr2) ~Na(€ic—gr2 (49) «S ( (c1—hg)oy (ci—hy)o}

K —iBhv,+23Sqka? o S p0f AN/ZI+3 4o

1 a
=Mo—§ g2 | 99X [AMo(aivg)+AM (q.ivy)].

vy

_E K2a2 Ne( €kt g2) — Ne( €k gp)
= 2a

- : (50)
—iBhv,+23Sqka? (56)
The first term in the parentheses is due to fluctuatitins
1), a 1), a while the second comes frolQ.
oi =3 Ng (€k+q2) ~Np (€k—g) (51) The same resul56) can be found by writing down the
0 K —iBhv,+23Sqka? ' one-loop contribution to the free energy and taking the de-

rivative with respect to magnetic field. In this way we find

physical interpretations for the twoN/diagrams: The term

coming from the explicitB dependence of the free energy
— (52) corresponds to Fig.(d), whereas the indirect dependence
—iBhiv,+2JSqka’ throughA (B) corresponds to Fig.(8).

Although the expressio(b6) for the magnetization is for-
mally correct, great care is needed in evaluating the fre-
) guency sum. We will first show briefly how naive evaluation
Bose function. leads to a spurious divergence of the integral over momen-

Before we turn to the magnetization we look at the total b 9 ; g

' tum g and then present the solution to this problem. The
number of bosons per site=3 (b}b,). The MF contribu-  solution involves carefully taking into account normal order-
tion is no—NS since A was chosen that way. To the next ing of boson operators. First, we derive the contributions to
order, the magnetization for large momentugnof the (in Fig. 4

1 1
E k ng )(Eliy+q/2) - I’]E )(elffqlz)

ot

with ef=JSKa?—Bh®+A and the derivativen§" of the
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vertical) RPA propagator. We express the momentum sum in 2 Na? 1
a o . . . . c.—h®eo !~ _
oy ando{ by an miegral and shift the variablein the two n (c1—hg)og 42 ((—iﬁﬁvn—JSq2a2)3
summands bk—k¥q/2,
1
NaZ (—iBhv,+IScFa?)?
O-O,J_ =52 ~
am X f d?k(23sqka®)?> (c;—h)
fd k[ 3 ] ! )
k3a?[| =i gh v+ 23Sqka’— IS Pa? xng’(ISKa?~Bhy+A) (60)
1 and consequently, for largs
- —iﬁhvn+235qk1a2+38q2a2) _ S (Ci—h®ed  Ja
_ ~ J— MO(QJVn): s B EZ’JTZN
X ng(JSKa?—Bh%+A), (57) 890
( 1
x| — — 5
where the uppeflower) expression in{ } pertains toog —iphv,—JScfa
(o), andog’ and ¢’ are obtained by replacingg by 1
n(l). Formally, we expand for smakl; since largek are - ho 1 3S 2)
exponentially suppressed. Odd powerskepfvanish so that |Bhvn a
X D (cl—hg)f d?kkng
. N&? 1 ¢
O-OJ'_477'2 meven (—i,Bﬁvn—quzaz)m“ X(TJSkzaz_Ehgdl'A)- (61
1 Adding the two fractions under the sum and performing the
- — = ) Matsubara sum we find
(—iBhv,+ISfa?)mtt
. 1 1
X f dzk[ kgaz](23SqIqaz)mnB(jSI@az—Ehg+/T). v | —iBhv,—JScfa? —iBhv,+JISfa?
—2JScfa? Jsdta?
8 = 92 =—coth —qz
i (Bhvy)?+(IScfa®)? 2
This is an asymptotic series and does not converge. How- (62

ever, for our argument we only need the first two nonvanish-

For large momentung we thus obtain
ing terms, which are well defined. g M

The leading term ir® o reads 1
AM dvg)=— ———— C —hg
E o @ivn == — = 2 (ca=hg)
N 1 . M
o= — . = XIn(1—e A+Bhgy=¢, — —2 63
; 477JS(—|,8ﬁvn—JSq2a2 ( A 63
1 TeEne The large momentum limit of thAQ contribution is found
- hvtISE 2) 2 In(1—-e @) more easily. We have to consid&éM , (qg,iv,) for large mo-
|Bhivy aj e menta; see Eq(56). The leading order i=0) term of
1 1 Eﬂof is negligible compared to the constant added to it.
= 5(—i,8hvn—38q2a2 —iﬁﬁvn+38q2a2) Furthermore, them=0 term in = (c,;—h})o]" does not

vanish. Thus the leading term is
(59

Ja* 1

|,8ﬁvn—JSq2a  —iBhiv,+ISca?

where the last step follows from the saddle-point equatior‘? (

(24). Thus them=0 term is independent of magnetic field.

Similarly we find =,(c;—h%)o§'=0 to the same order, X >, (c;—h )f d?kiZnP(IsKka?-Bhe+A). (64
where we have used E@5). This result is not surprising “«

sinceX,(c,—h )UW is, up to a factor, the magnetic field This expression is equal to E¢1). Consequently, for large
derivative of2 ,og . The leading nonvanishingr(=2) term  momenta the integrand of the external momentum integral in
is Eq. (56) is
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— 3
2(c1=Mo/9), (65 ‘S‘(M)(O,O),AQz(*qﬁiVn),AQz(q,ivn)

which is independent of momentum. This term would lead to (2m)°% )
a strong UV divergence of thg integral in Eq.(56). e IBa ; >

We now discuss the cure. As mentioned above, we have “
to normal order the operators before we can write the parti- "Vn”ngl)(e@q,z)—e' vnnng)(eﬁiqm) s
tion function as a functional integral. Careful treatment of X - = 5 4J°a"ks.
ordering is often essential to resolve ambiguities in the ex- —iphv,+2JSgka
pectation value of operator products at equal times. Here we (69)

are interested ifb! (r,7)b,(r,7)). One way of dealing with
these ambiguities is to split the time of the operators in theS(?*1) follows as above.
Lagrangian in such a way that the creation operator is at an The Matsubara sum of the leading largeerm is now,
infinitesimally later time than the annihilation operator. Theinstead of Eq(62),
time-ordered product in the definition of the Green function
then takes care of normal ordering at equal times. ( e "7 etimm )
ivy .

If the action contains a term like - = 5T = >
—ipBhv,—JISfa? —iphv,+IScfa

1 (48 —2JScfa?
AS=—fdfd2r C (r, )b (r, 7+ 9)b(r,7), = =
N Jp 7] €12 cdri b mby(rn) = (Bhivp) 2+ (ISFa?)?
(66)
2Bhv, i
Xcosvynp+ >~ 5 Sinvyy
where >0 is small, then, after Fourier transformation, (Bhvy)?+(IScfa’) 70
JScfa?  sinhJScfa®(1/2— )
Ba’ = —coth 5 + lim — >
AS=5— d’kd?q >, > cu(Quivy) .ot  SinhIScfa?/2
log,lvy «
i . . JSdta?
Xelwnnbz(kvlwn)ba(k_qvlwr‘l_lVr‘l) (67) :1_C0th ;12 (70)

The coefficient,, obtains a phase factef®n”, whereiw, is  The sine series exactly cancels the leading term of the naive
the frequency of the boson created at this point. We split theeries for large), making the remaining expression exponen-
time in this way in the exact Lagrangidfi4) as well as in  tially small. In other words, the phase factors introduced to
the source ternj b*b,. As a consequence, phase factorsensure correct operator ordering just remove the constant
containing the frequency of the outgoing boson appear at all65) from the integrand for largg. The exponential factors
vertices. The only places where they are relevant turn out ta@re irrelevant in all other terms, which are of higher order in
be inS®) andS@* Y. In the first term in Eq(A7) we obtain ~ 1/iv, and are thus unambiguous.

a total factor ofel®n7gi(entvn)ngionn— g3ionmgivn7 from the Deriving a convergence factoe®'"n” is a common
three vertices. The factor containiig,, is irrelevant since method to resolve the ambiguity of a Matsubara sum. What
the sum ovei w, is unambiguous anyway. We are left with is unusual here is that two different factors appear for the
an overall factor o'*n”. The second term from the symme- two terms. It is easy to fall into the trap of thinking that one
trization in Eq.(A7) obtains a factoe™'*n”. If the two terms should simply add the two fractions under the frequency sum

are added, the terms which have the denominators squardd Ed. (62), arguing that the sum then looks unambiguous.
obtain a prefactor of 2sin v,7, which vanishes in the limit This loses an essential contribution because of the two dif-
7—0 (the denominators are already of second order in freferent phase factors.

guency so that ambiguities or divergences do not pese We utilize the above result by calculating thentegrand
the remaining terms are numerically without taking normal ordering into account and

then subtracting the consta(@5) explicitly. The frequency
sum is expressed in terms of a contour integral. First we
analyze the analytic structure ofg etc. in the complex
plane. If we replace the sum ovietby an integral in Eq(49)

for oy we see that the integrand of tke integral has a pole

3)
AN(0,0),AN(—0, —ivy),AN(Q,ivy)

(2m)3. 5 and, consequentlyry has a branch cut. Furthermore, it can
=W'Ba be shown thatt ,o7 does not have zeros apart from the
_ _ trivial caseq=0. The quantity=,(c,—h%)og’ obviously
e " (€l ) — €T ME (€ g0) also has a branch cut along the real axis and does not have
X zk: % —iBhv,+23Sqka? poles. Consequently, th&\ contribution to the magnetiza-

tion, AMy, has a branch cut and no poles. The contour of
X (— B?a%), (68) integration,C, is shown in Fig. 5. We have
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ReassesaenasssseRMMRSY MARMMSSSMARSOMIORRSS
0.0 ; ;
AN —— SU(N) mean field
04 r —— SUN) 1N
\ L =\ SU(N) 1/N expon.
© Monte Carlo
02t
T ol R EEee
FIG. 5. Contour of integration for the Matsubara sum avey. "0 5 10 15

T/B

i 2 AMy= i 51; dvng(Bhv)AM, FIG. 6. SUN) magnetization for magnetic_ fieldsa) B/J
hB iv,#0 2@ ¢ =0.05, (b) B/J=0.1, and(c) B/J=0.25 as a function of tempera-
ture in units ofB. The thin solid line is the MF magnetization, the
. thick solid line includes M corrections linearly, the thick dashed
- 2_714[_ JcedvnB(,Bﬁ v)AM(0) line includes them in the exponential to force positivity, and the
circles with error bars are quantum Monte Carlo results for a
j*f_’_ J“” 32x 32 lattice(Refs. 12, 13, and Appendix)C
—®© €
can force the result to be positive by putting the fluctuations
7y . o e : ;
into an exponential: In writing down the functional integral
whereAq(v)=—2 Im AMy(v+i9) is the spectral function of we should impose the constraint that the total magnetization
AM, andC, is a positively directed circular path of radius be positive. This constraint can be implemented by writing
e—0 around the origin. SincA, vanishes continuously at the full magnetization a&! = M e and expanding in pow-
the origin we get, after moving the last term to the left-handers of 1N. If M=My+My+O(1/N?) then g=1
side, +Mn/Mg+ O(1/N?). Both expansions arequally validto
L 1 order 1N. Of course, this method seems dubious if thd 1/
* term is not small.
hB % AMo=—o— f_mdvnB('Bﬁ VAg(v). (72 In Fig. 6 we plot the magnetization f@=1/2 and the
fieldsB/J=0.05,0.1,0.25 as a function @7B. At the lowest
A similar equation holds for thaQ contribution,AM, . We  temperatures the S model describes the Monte Carlo
do not discuss the numerical methods in any detail since thepagy|ts quite well, as expected since the BYnodel cap-
are standard. We only note that it is useful to expand thures the correct low-energy physics. Thal Torrections are
Bose functionsg in oy etc. in a geometric series becausethus very small here. At high temperatures, however, the 1/
this allows one to perform the integrals odermnalytically,  term is too large for all considered fields. Although the re-
thereby replacing 2D integrals by numerical summation ofsults with the exponentiation trick are better and show the
well-behaved series. correct qualitative behavior, they are not quantitatively better
After evaluating the frequency sum, we have to subtracthan the MF results. We discuss the results further at the end
the constant65). Numerically the correction term is indeed of the next section.
found to cancel the constant for large The new leading
term drops off as ? so that theq integral diverges only
logarithmically. We regularize the integral by restricting it to 1. O (N) MODEL
the first Brillouin zone, i.e., by a lattice cutoff. We use a

circular Brillouin zone. The integration over the anglegab
then trivial. In the last section the Heisenberg model was rewritten in

We find that fluctuations in andQ always decrease the terms of Bose fields and the resulting @Jmodel with two
magnetization, as is intuitively expected. In fact the magneboson flavors was generalized to SY( The homomor-
tization to order I can become slightly negative. Of phism between the groups 8)J and Q3) opens another
course, the exact magnetization cannot be negative. Appaway to obtain a largé&l theory. In this section the Heisenberg
ently the 1N expansion does not work well for $2). We  model is mapped onto an(8 model, which is then gener-

+ dvng(Bhiv)[—iAg(v)]|,

A. General considerations
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alized to ON). Many concepts are identical to the SU( J o B v
case. However, the ®f) model adds a number of compli- H=-5 <|Z> SE(1)S4(1) = 2 Z. h5Sh(i) (73
cations. J
The group theory involved here can be found elsewfiére. \ith h=[(0;i,0,(~1,0,0),(0,0,0).
In brief, the Lie groups S(2) and O3) have the same alge- T generalize the model to ®, we introduceN Bose

bra, up to different representations. This means that the infie|ds b, subject to the constraints

finitesimal generators of SB), namely the Pauli matrices,

have the same commutation relations as the three infinitesi- NS

mal generators of @), (Xy)ij=—2i€jx. Put informally, bzba:?, (74)
SU(2) and O3) have the same local structure, although the

global structure is different. Note that we could also talk
about the S) model instead of (B) since the two have the bLbLzO. (75
same algebra.

The upshot of this is that we can map the Heisenberghe ON) spin matrices arsgzblbﬁ—b;;ba. The second
model onto an @) model. We introduce three Bose fields constraint again restricts the Hilbert space by identifying,
b, and letS'=—i€zblbs, k=x,y,z, where we again as- say,bj\b{|#) with another state. The G Hamiltonian is
sume summation over repeated indices. It is easily shown
that the commutators of the spin componeﬁihsare correct. 3J _ B _

To restrict the Hilbert space to the physical states two con- H==-5§ PESHOEAE 5 > hgshi), (79
straints are needeb!b,=S andb!b! =0. The second con- @ '

straint ngeds explanqtion. _Let us f:onsider_ the eigenstates Qhereh containsN/3 copies of the 8) matrix along the
S for a single spin. Sinc&? is not diagonal in boson flavors diagonal.NSis an integer multiple of 3.

we introduce new bosons;=(by+iby)/v2, cy=(b; The next steps are similar to the SU)( model. Going
—ib,)/V2, and cz=bz. Then S*=—clc;+clc, and the  over to the continuum and inserting bosons we get
constraints react/c,=S and clci+clcl+clcl=0. The

eigenstates of* are simultaneous eigenstatesc{cl, cgcz, 3]

and clc;. As an example, the following table shows the H:f dzr{Js(ﬁij)(O"jba)—Wbl(ﬁjbg)bﬁ(ﬁjba)
eigenvalues of the number operators an&ofor S=2. The

first constraint means that there are two bosons. _ ;hgbg b, . 77
cle, cic, clcs &
In writing the partition function as a functional integral, the
2 0 0 —2 first constraint(74) is implemented using a Lagrange multi-
1 0 1 -1 plier field . Two Lagrange multiplierg.; and w, are intro-
1 1 0 0 duced to enforce the two components of the second con-
0 1 1 1 straint (75). They couple to theb, fields in the form
0 2 0 2 u1Reb b+ uolm b,b,=u*b, b /2+ ub*b*/2, where we
0 0 2 0 have introducequ=u;+iu,, which is somewhat mislead-

ing, though, since bothw; and u, have to be integrated
The state wittS?=0 is obviously counted twice. The second along theimaginaryaxis. The partition function reads
c?nTstraint justTr?moves the last state. It can be rewritten as
c3Csl )= —2cicy|¢), where|y) is any state. This means 1 (8
that the state one gets by creating tegobosons is the same Z:J D?b,DAD?u ex;{ % fo de erL[b;x,M]),
as the one produced by creating ote and onec,. The (78)
second constraint thus reduces the Hilbert space by identify-
ing states with one another. For gene®althe second con- where
straint removes spurious spin multiplets of lower total spin.

The first constraint does not make sense for half integer 3]
spin. We assums& integer. We will not have to do this for L= ;bzaobavLJS(aij)(ajba)— sz(&jbz)bﬂ(ajba)
evenN in O(N) theory.
The Q(3) spin matrix should be an element of the algebra, B .. . NS 1

which consists of antisymmetricx33 matrices. In three di- B ?hﬁbﬁbfr)‘baba_ ?)‘JF oM beb,
mensions any antisymmetric matrix is dual to an axial vec-
tor. This is in fact the reason why angular momenta can be
written as axial vectors in three dimensions. Here we go the
opposite way and define the spin matrix ngieaﬁksk
= blbﬁ—bgba. Using the antisymmetry o83, the Hamil-  The quartic term is decoupled using a Hubbard-Stratonovich
tonian (1) becomes transformation,

a

1
+ 5 ubibY. (79
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h
L'= ajbz(goba‘FJS((?Jbz)((glba)+3NJQ]Q]
) ) B
+313Q;b%(9b,) — 313Q;(9b3)b,— —hgbib,

NS 1 1
+Abib,— 5N+ Eu*babﬁ E,u,b*b*

? a~a?

(80)

whereQ); is real and a gauge field. As compared to 8)J(
additional complications arise since under gauge chapges

transforms like a charge 2 particle, as discussed below. We

choose the transverse gaugeQ;=0.

B. Mean-field theory

Again, MF theory is exact foN—. We make a static
assumption foi, Q, andu. We then express the fieldls, in
terms of Fourier transforms. The partition function reads

Zozf Dzba(k,iwn)exp{—SM\IBJa Qa?

+/\/a2N?S BN— | d?k>, z:g[b]) (81)

iw,
with
Li[b]=pBa%Y, (—ikw,+ISKa?
—6JQ-ka?+a?\)b% (K,i wn)b,(K,iwp)

—BaZEﬁ Bhab% (K,i wn)ba(k,iwy)

2
as
+BaY, > W=k, —Twn)b,(k,iw)

@

a®
+RY o ubi(—k —iwpbh(kiwy),

o

(82

man term we substitute new fields,

where sums are again written out. To diagonalize the Zee-
Zouex

1 .
03n+1:E(b3n+l+|b3n+z)a

03n+225(b3n+1_ib3n+2)1 Can+3=Dbzni3. (83

After shifting the integration variablk to k+3(5/8 we get
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1475
Lylcl=pa>, ( —ihw,+JISKa?—Bh”

N 9‘]__2 * ; i
+al\— 5 Q-Qa*|ci(kiwp)c,(k,iwy)

2
ac _
cpaS Lo~k iwpc(kiion)

a? —
+pa?Y, ?Mci(—k,—iwn)c’;(k,iwn),

(84)

where h is diagonal with the diagonal elements1,1,0,
-1,1,0,... and

3n+2
a=14 3n+1
3n+3

for a=3n+1
for a=3n+2
for a=3n+3.

(85

The partition function depends onandQ only throughA

=a’BN—(9BJ/S)Q-Qa?. To get rid of the terms mixing
(k,iw,) with (—k,—iw,) we note that (k,iw,) is even in

w, and introduce new fields,

da(k,iwn)= ‘%[Ca(k!iwn)_ica(_k!i wp)].  (86)

Then we have

£yd]=pa®>, (—iﬁwn+JS|3a2

-Bh*+

B dy, (K,i wp)da(k,iwp)

ia® —
+Ba?> 2 p*da(K,iwn)da(K,iwp)

a2
S - (Ko di(Kivy). (87

The fieldsd, are now integrated out. We defide= 8J and

B=pB (note different definition oB). By integrating over
thed,, putting the product into the exponential, and evalu-
ating the flavor sum we obtain

Na? N
472 3

NS —

Iy 2
N3A d<k

X (3In[(—iBhwy+ISKaZ+N)?—a*B2u* u]

+ In[(—iBﬁwn+38k2a2+x)2—a4,82;*;—~52])}.
(88)

The MF values\ and u are determined by the saddle-point
equations
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d1nZ, d1nZ, dlnZ,
—— =0, —— =0, —— =0. (89
AN om ou*

The last two are equivalent. They yield

0=a*p%u J d%kY,

o

1 1 1
- _ _ — 4 — — — .
(2 (—iBhw,+ISKa%+A)°—a*Bu*u (—iBho,+ISKa’+A)?>—a*B?u* u—B?
(90)
One solution isw=0. For x#0 we get

In(1—e A @Blul) —In(1—e A+a%Bluly  n(1—e A VBHHaBTutuy (1 g At VBRI

0= — + : 9D
2a°p]u| VBZ+a's2ut

which does not have solutions fqe#0. Such solutions C. IN corrections

would correspond to broken gauge symmetfyywe hadu The method used to calculate théN1¢orrections is simi-
#0, a term like |(aj—6Qj/S),u|2 would appear in the lar to the SUN) case. However, the second constrdirf)
gauge-invariant Lagrangian, which would make the gaugéntroduces additional problems. The magnetization is now
field Q massivé® (this is the Anderson-Higgs mechanism 3 2
In our case, however, it is massless at the saddle point. _> ajpth v— 2 fayt

The partition function is now M N g,; hﬁ(b“bﬂ> N 26,: ha{CaCa). (96

using the definition ot, in Eq. (83). Fourier transforming

2
Zoocexr{/\/N?S e ﬁ% 42K thec, we find(c!c,)=(d d,) (no summation impliedand
3 "
g e M= 2 he(did,). (97
XY, Y, In(—iphw,+ISKka2-Bh+A)|. N “

on @ In the following we use the representation in terms of fields
(92 d,, Eq.(86). The fluctuations are written as
The MF equation forA becomebt N, 7)=N+iAN(r,7), (98)
1 o _ o pma(r,7)=0+1Awuq(r,7), (99
S=———[In(1-e *"B)+In(1-e M) +In(1-e 278)] _
47JS Mo(r, 7)=0+i1Apu,(r,7), (100
(93
Q;(r,7)=0+AQ(r,7), (10D
and the MF magnetizationfs where A\, AQj, Au,, andAu, are all real. For conve-
nience we use a compleXu=Au;+iAw, so thatu(r,7)
M= In 7. —— 1 In(1—e A+B =iAu(r,7) andu*(r,7)=—iAu*(r,7). The SUN) meth-
0" ANg dB NZo= 47733[ n(l-e ) ods of Ref. 17 can be adapted to theNp(model; we write
—In(1-e ""8)], (94) z:f DAND?A uDAQ;exp —NS) (102

which exhibits the same universality as the S)fesult. At and expand the actiof as in Eq.(30) for SU(N), wherer ,
low temperatures, can also stand foAu or Au*. We can also writeS=S,
+ Sdir+ Sloop W|th

1 1
Mo—S=———In(1—e PB)+ ——In(1—e 2/B 1 _
0 47JS ( ) 27JS ( ) SOZN Trin G, L (103
(95
. . g 1 (B ) NS
up to exponentially small corrections to the magnetic field. Sdi,=m f de der| 3NJQ-Q— ?)\ , (109
0

Thus, although the leading term is the same as the noninter-
acting magnon approximation, E(R6), the second term is
different. Thus we expect the correct behavior at the lowest
temperatures but deviations already Tor 2B.

1
SIOOp:N Tr In l+GOZ U/r/) . (105)
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................ D(ZO):_ 3 _ nB(A__Bhg) _
2N ng(A—B)+ng(A)+ng(A+B)
/ - /

o ¢ B B B Br Br
(@) (b) y 2300 N 2507 i 2 g0,
7 B ~ B |’
FIG. 7. Diagrams in the N magnetization containing u fluc- @i | 200 NN/GJ"‘Eﬁ‘Tf 250
tuations. (110
The (norma) MF Green function can be read off from Eq. where
(87), _
R _ N 1+ ng( €+ q2) +Na(€_g)
Go(k,iwy)=(—ihw,+ISKa’~Bhg+a®\) "L, 0= : 22 e
(106 K —iBhv,+2ISKa%+JISfa%/2+2A
_ (111
For ©=0 no anomalous Green function exists since there is B
no dzdi term. . . . ar n%l)( elf-*— q/2) + nf?,l)( Eﬁ— q/2)
The constant part afy;, together withS, again gives the Oy =§k:

H %] 2.7 2 A
MF actionS(9). The first-order terms cancel. The vertex fac- —iBhv,+2)SKa’+ISfa’/2+2A

tors can be found in analogy to SNJ, r
1+ng(€gs ) +Ne(€k_qp)

UAAZZWWiaZ, vAMZZWW I§a2, Vapr = ZWW I§a2, (=i phvy+23SKa2+ISa2i2+20)2)
(112
vag= ZWW(—BJ)aij _ (107 'ir;e other SXTboIs are identical to the $J(case ifhf is
placed byh;,.
The diagrammatics are similar to the SU( case. ForA\ With Eq. (97) the 1N contribution to the magnetization
and AQ fluctuations the only differences af® The AQ; reads
vertices contain an additional factor of 3 each, giving 9 in .
S®, (ii) the directAQ; propagator fromSy;, contains an B 1 3a? 2> S (ci—h®ad’
additional factor of 3iii) h? is replaced byh®, (iv) now U0 N 82 qi,,n 3 goh

B=pB, and(v) A is given by Eq.(93).

In particular, we find S 00)a0,00=0 as for the S ci—h)e® 3 (ci—h%)e?
SU(N) model. Thus gauge fluctuations are massless for + AN/EI+S of +2 S o (113
o BY x
O(N) as well as for SUY). B¥L
The contribution fromAu requires some thought. From with
Egs.(80) and(87) we see that\u couples to two “creation
operators”d;dz—, whereasA u* couples tod,d,. Conse- ng(A—B)—ng(A+B)
quently, the boson loop i$? can only contain one\u C1=——— — m——— (1149
vertex and oné u* vertex or neither of them. Thu$® and Ng(A—B)+ng(A)+ng(A+B)

the RPA propagator do not miku with other fluctuations.  gyajuation of theAx andAQ, contributions is analogous to
Consequently, the only contributions {d}d,) at the IN  the SUN) case. In particular, naive summation over,
level correspond to the diagrams in Fig. 7, where the zig-zagesults in a strong divergence. The constant term in the inte-
line denotes the\ RPA propagator. Note the directions of grand for large momenta is 8{—M,/S). Numerical calcu-

the boson |in952-) 2 2i1) lations confirm this result. Again, the spurious divergence is
We deriveS(AM*’AM, S(M(O,O)’A#*,AM, and S}a?Al‘*vAM in removed by taking operator ordering into account.
Appendix B. We can then integrate out the fluctuatiahg. We now turn to theAu contribution. From Eq(111) we

is a complex field so that the contraction of a pair yields ~see thatoy diverges logarithmically at large momentukn
because of the summand 1 in the numerator. However, the
. N 52 2 (21 —1 Apu contribution to the magnetization is finite. To see this,
v f D2,2,2, 8% ) /1/éz/iz/é _N(‘S )/1/2' we use a finite cutofK and letK—o in the result.c? is
(109  dominated by

Consequently, the diagrams of Figgayand {a) added to-
gether, and Figs.(®) plus 7b), respectively, are P

*
1 ( ag’ al’ o' )
1

Na? 5 1
= d%k — - =
47" JksKk  —iBhy,+2ISKa%+ISFa2+2A

DP=— > + — +2
2N QT | Sp0f  AN/EI+Spof  Zpok

[In(—iBhv,+2ISKPa?+ISFa?/2+2A)

(109 87JS
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—In(—iBhvy,+IScfa®/2+2A)]. (115

For ¢’ the corresponding contribution is

al _2N< l
0-* = ~ ~ ~ J—
8mJS \ —iBhv,+2ISK2a2+IScfa%/2+ 2A
1
- —~ —|. (116
—iBhv,+ISFaZ/2+2A

Note that these two expressions do not dependroifhe
frequency sum over thAu contribution is

_2 AM*(QJ Vn)

Sa(ci—hg)ay’

-3

iVn an-f
1 1
—iBhv.+ex —iBhv +e
:_2012 B n K B n 0 ,
i In(—iBhv,+e)—In(—iBhvy+ e

(117
where e,=23SKa?+JSa%/2+2A. Since this contribu-

tion is proportional ta, it comes only from the diagram Fig.

7(b).

The sum overv, can be evaluated by contour integration.
As noted in Appendix B, splitting the time to enforce correct

operator ordering results in an overall factor of expfg),
which removes any ambiguity in the, sum. In the complex

v plane,AM, has a branch cut along the real axis between
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0.0

—— O(N) mean field
— O(N) I/N

fffff SU(N) mean field
© Monte Carlo

04 |

02 r

0.0

0 5 10 15
T/B

FIG. 8. ON) magnetization for magnetic field¢éa) B/J
=0.05, (b) B/J=0.1, and(c) B/J=0.25. The thin solid line is the
MF magnetization, the thick solid curve includesNl¢orrections,
the circles with error bars are quantum Monte Carlo results for a
32x 32 lattice(Refs. 12, 13, and Appendix)Cand the dashed curve
shows the SU{) MF magnetization for comparison.

ng(A—B)—ng(A+B)
ng(A—B)+ng(A)+ng(A+B)

(120

the pointsey /A8 and ex /7 B and two poles on top of the

branch points. The contour integral contains three terms:

Two from integrating around the branch points in small ) ) ) S
semicircles and one from integrating the spectral function of® few remarks are in orderd) This contributionincreases
AM, along the branch cut. The two semicircles contributetn® magnetization, whereas fluctuations\iandQ decrease

—2cq[np(€p) +Ng(ek)]. For K—oo this expression be-
comes—2c,ng(€p). The spectral function is

ame, T edhip—v v elhip

B [In(ex/hB—v)—In(v—eglhB)]*+ 7
(118

A,=—

and the integral over it can be shown to vanish Kor> .
Thus

> AM,=—2c;ng(ISRa?/2+2A)

ivy

(119

for K—o, With Eq. (113 the full contribution fromAu to
the magnetization is

1 3a?

d? 2AM,
N 872 q%

it. The physical explanation is that the MF approximation,
which enforces the second constraitjb| =0 only on aver-
age, undeestimates the magnetization because it contains
contributions from spurious multiplets of lower total spin.

(i) The A contribution has a typical energy scale ah 2

since excitations of energyA2 (and highey are removed by
the second constraini?5). (i) The g integral overAM, is
well behaved for largg so that a cutoff, which is necessary
for the AN and AQ contributions, does not change the result
appreciably but would complicate the calculations.

Figure 8 shows the magnetization f&=1/2 andB/J
=0.05,0.1,0.25 as a function @f/B. The Ax fluctuations
win over the other contributions; the magnetization is larger
than the MF result. We see that the \D(1/N expansion
gives much better results than the SU)(model except at
low temperatures. At small/B the magnetization seems to
be unphysically large, especially for smaller fields. At mod-
erate temperatures the Q) 1/N magnetization is better than
both MF results. At high temperatures, the Monte Carlo data
consistently fall slightly below the O{) 1/N and, forB/J
=0.25, even below the ™) MF results.
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0.5 ‘ - JS? andB. Whereas the MF results exhibit this universality,
\ - gl(';\(l’)\%r;':s';iggd it is violated by small logarithmic corrections at thé\llevel
0.4 | 3 ON) 1N for both models, as expectéd.
¥ © Monte Carlo Our results can be compared with the microscopic ap-
03 : . igipz:::::: gz‘c’vzzp) proach of Kasner and MacDonaltiwhich includes spin-
s " exp P) wave corrections to the electronic self-energy. This approach
0z | is microscopically better justified than the Heisenberg model.
: E\ﬁ”nnu\;u\ However, the magnetization from Ref. 14 is consistently too
n@m\n;t%\ large and even MF SW) and ON) results agree better
0.1 ¢ ] with Monte Carlo data.
’ =% Comparison to NMR experiments by Barrettal® shows
0.0 ‘ ‘ ‘ a number of discrepancies. At low temperature, the experi-
0 2 TjB 6 8 mental data look flat, whereas at higithey drop well below

the theoretical results. These discrepancies are mainly due to
FIG. 9. Comparison of SW{) and ON) results, as well as the scaling of the data, which is done by setting the measured
quantum Monte Carlo results for a X@6 lattice, with experimen-  magnetization, which is reduced by disorderStim the limit
tal data from Manfraet al. (Ref. 9. The open squares were ob- T_,Q.
tained swgeping the temp_erature at fixed field and the filled squares Recent magnetoabsorption measurements by Manfra
by sweeping the field at fixed temperature. et al® show better agreement with our results. In Fig. 9 we
compare data of Ref. 9 with SM), O(N), and quantum
Recall that the SU{) MF approximation works well at Monte Carlo results. In the calculations we have used the
low temperatures because it coincides with the noninteractexchange constant corrected for finite width of the quantum
ing magnon approximation for the Heisenberg modelwell, which yields B/J~0.32. The Monte Carlo data fall
whereas the ) MF magnetization does not. TheNLtor-  pelow the ON) 1/N results abovd ~J, as discussed above.
rections for the O) model(predominantly fromAu at low  The experimental data agree quite well with $l)¢heory at
T) are large and in fact overcompensate for the error made gy temperatures and with ®) 1/N (and Monte Carlp
the MF level. , results at moderate temperatures, as expected. At higher
There is a distinct crossover to the moderateegime,  the experimental data show more noise but lie mostly above
where SUN) MF becomes too large, SB) 1/N becomes he ON) 1/N curve. This discrepancy foF>J is probably
quite wrong, and Q) 1/N is rather good. In fact it is sur- qye to neglected higher gradient terms in EY. The ex-
prisingly good considering thatN/is not really small. Itis  perimental system is a continuous itinerant magnet, which

not fully clear why the ON) model works better than the nropaply explains the deviations from Monte Carlo lattice
SU(N) model at moderate and high temperatures. The reasaimulations.

may lie in the different behavior of gaugaQ) fluctuations
in the two model$® In the SUN) model they are massless
in general, whereas for ®f) they are massless only because
the MF value ofu happens to vanish for this particular sys-
tem. In both cases the zero mass leads to an overestimate of We have calculated W/ corrections to larg& Schwinger
fluctuations at the N level. However, in the O{) model  boson mean field theories for the two-dimensional ferromag-
fluctuations inu are available to compensate for this, therebynetic Heisenberg model, meant to describe a quantum Hall
partly restoring the effect a massive gauge field would havesystem at filling factorv=1. Normal ordering of operators
One might think that Of) should be worse since the has to be carefully taken into account to obtain the correc-
O(N) model forN>3 does not have skyrmions, whereas thetions. Using a O) model, we find reasonable agreement of
SU(N) model has them for aN.® However, the I expan- the 1N corrected magnetization with both quantum Monte
sion does not contain these nonperturbative effects anywagarlo simulation¥*® and experimenfsat moderate and
On the other hand, they are, in principle, captured by thénigher temperatures. At low temperatures, the IS$JJfnodel
Monte Carlo simulation® works better since it reproduces the correct low-energy phys-
The deviations between @) results and Monte Carlo ics. However, the SUN) model does not describe the data
data at high temperatures aBdJ=0.25 or larger(see Fig. anywhere else, confirming Auerbach’s remark that laxge
9) are probably due to thermally created skyrmions or to themethods are “either surprisingly successful or completely
fact that the simulations are done on a lattice, whereas tharong.” 1’ Effects of thermally created skyrmions, which
1/N calculations use a continuum approximation. The disperare not included in our approach, are small. Away from fill-
sion of the former is a cosine band if bosonized, whereas thimg factor v=1, skyrmions are present in the ground state
latter has parabolic dispersion. Both effects should becomand should be important. The natural next step leading on
important for temperature$=J since both the bandwidth from this work would be to incorporate these skyrmions. In
and the typical skyrmion energy are of the orderJofin-  addition higher derivative terms due to the long-range Cou-
deed, the deviations start d~J. (In the same region lomb interaction should be investigated.
higher-order gradient terms not included in the Heisenberg Details of the numerical techniquébriefly outlined in
model should become important. Appendix Q as well as Monte Carlo results for the NMR
We have also investigated the universal dependence amlaxation rate 1T, will be presented elsewhef&ef. 13.

IV. SUMMARY AND CONCLUSIONS
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k+q/2 i®,+v,

142) _4772
2 /1/2|dirr/1r/2_ N

APPENDIX A: CALCULATION OF DIAGRAMS _
FOR SU(N) X > JAQ(—q,—ivy)-AQ(q,iv,)a
q,1vy

(A1)

Here, we derive explicit expressions fa&#(®), S©), _ . . .
Note thatAQ;(—q,—iv,)=AQ} (q,iv,) sinceAQj(r,) is

SO and S@TY). We first calculate the Gaussian part real. The sarhe hords min. bolow
2) . . . . . . y .
Sﬁl/zr/lr/zlz in the action. It consists of two contributions, The loop part follows from Eq(35). The notation is

see Figs. (b) and 2b). The first term is easily read off from shown in Fig. 10. Inserting Eqg34), (37), and (38) we
Sgir in Eq. (32), obtain

1 2
—iBhon—iBhvy+IS(k+q/2)%a?~Bh+ A N

2
%5(/1)/2||oopr/lr/2= -

333

Ton Ko

2N

o

1 21

X [ Ba?AN(q,iv,) —23a2(k+q/2)- AQ(q,ivy)] — — —
—iBhw,+IS(k—q/2)2a2~Bhe+A N

X [iBa’AN(—0,—ivy) —2Ja*(k—q/2)- AQ(—g,—ivy)]. (A2)
Performing the Matsubara sum oves, and utilizing the periodicity of the Bose functiary we get

1 472 nB(6§+q/2)_nB(6?7q/2)

2N N? din K “@ gy, +23Sq-ka?

382, ool /,T /= [i Ba®AN(—0q,—ivy) —2Ja®(k—0/2)- AQ(—q, —ivy)]

X[ Ba?AN(q,iv,) —2Ja%(k+q/2)- AQ(q,ivy)], (A3)

whereeﬁE\NJSI@az—Ehg+ A. At this point we use the transverse gauged Q(q,iv,) =0. We choose coordinates in such a
way thatk; andAQ, are parallel tog. ThenAQ,(q,iv,)=0 and the last expression simplifies,

1 4x? nB(eg+q/2)_nB(€?7ql2)

2N N? dlvy K " _ighiy,+23Sqka?

2) —
5 S(/1/2|Ioopr/lr/2_

X [—B%a*AN(—q,—ivy) AN(Q,i vy) +43%a*KEAQ,(— 0, — 1) AQ,(q,i vy ]. (Ad)
Terms mixingA\N and AQ vanish since their coefficient is odd k3. Adding Eq.(Al) to Eq. (A4) yields

4772 Ne( €k+qr2) — NB(€K—gr2)
Az)z(—qv—ivn),AA(q,ivn)z_Z . S 2 (- g7, (A0)
NN @ _ighv,+23Sqka
82 472 Ne(€k+q2) ~NB(€k—g2) ~
S(Azéz(_%_iVn)xAQZ(QriVn):_Ja2+ 2 E . %] 2 4’\]234k2, (A6)
N NN K "« _igfiv,+23Sgka

all other components vanish. The fact ti4f) only connects fluctuations atj(i v,) and (—q,—iv,) just means that the RPA
propagator conserves energy and momentum. The real p&it?bis always positive except fQﬁ(A%Z(o,O),AQZ(o,O): 0. Thus
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there is one zero mode, which results in an additional factor in the partition function, which, however, does not depend on field
and is thus irrelevant for the magnetization. The zero modpg=a, i v,= 0 shows that gaug@Q) fluctuations are massless.
For the remaining modes,(?) can be inverted to get the RPA propagaiorwhich is also positive. The saddle point is thus
stable.

Looking at the diagrams in Fig. 4 we see that the horizontal propagator in the right diagram can onty=0@, at,,=0
since the sourcg, does not insert any frequency or momentum. In fact, it can onlgX@,0), as we will see. Keeping this
is mind we calculateS‘(/al)/z/g. SinceS® is symmetric in its indices we can assume that is AN(0,0). Furthermorey

determines px We start from the definitio35),

S, /= %[Tr(GOv/lGov/zGov/B) +Tr(Gov, Gov,,Gov,,)]. (A7)
The first of the two summands is
- > > By, ! —
N Kia, “a b i Bhw, +IS(k—qg/2)%a2-Bhe+ A
1 1

X

—iBhwy—iBhv,+IS(k+q/2)%a2—Bhe+ A —iBhw,+IS(k—q/2)%a?~Bh+ A

ng[IS(k+q/2)2a?—Bho+ A ]
(i Bhv,—23Sqka?)?

1
N ; ; BPv v .,

d ng(2)
dz —z—iBhv,+IS(k+q/2)%a?—Bho+ A

2=JS(k—q/2)2a2-Bh®+ A

1 . ng[IS(k+a/2)%a2—Bh+A] ng[IS(k—q/2)2a?—Bh+A]
== 2 B v, : - - : -
N k (—iBhv,+23Sqka?)? (—iBhv,+23Sqka?)?
D3 2.2 _BRhYL A-
ng’[JS(k—q/2)a—Bhi+ A
R [JS(k—q é ] A8)
—iBhv,+23Sqka?
|
where n’(e)=d"ng(e€)/de” is the 1-th derivative of the The second term in EqA7) just hasr,, andr,  ex-

Bose function. With the vertex factors the last expressiorchanged, which meargs andiv,, have opposite sign. Thus,
becomes 3)
AN(0,0),AN(— 0, —ivy), AN(Q,ivy)

..:(277)3 2 2 i Ba? g (2m)°
N3N T S 43%a%k3 :N3Niﬁa2
JS(k+q/2)%a2—Bhe+ A’ a a
X{”B[ (k+a/2)“a atA] XE 2 nfal)(karq/z)_ngl)(equIZ)( p2a%)
. - 2\2 ~ - ’
(—iphv,+2JSqka?) k '« —jBhv,+2]Sqka?
-~ r s (A10)
ng(JS(k—ag/2)“a*—Bhi+A)
(—iBhv,+23Sgka?)? As)\)(O,O),AQZ(—q,—iVn),AQz(q,iVn)
Oy _ 2,2_Bhat A- 3
ng’[IS(k—a/2)a—Bhi+A] 2
s 2 Cowe =g
—iBfiv,+23Sqka? N°N
1) a (1) _a
Ng~(€ktq) —NE (€—q2) ~
where the uppeflower] term in the curly brackets is for sz: > _ - ~ 2 Aalic,
r/ZZA)\(qviVn) [AQ,(qivy)]. FOrr/leQZ(O,O) the in- @ —iBhv,+2JSqgka

tegrand would be odd ik, so that this contribution vanishes. (A1)
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where the fractions in EqA9) containing the denominator k- q/2,im,
squared have cancelled upon adding the two terms. v
We can now calculaté **1) andS2*1), These expres-
sions contain a verteXUja=277a2/N instead of vy,
=2mia?/N. The sourcg , inserts zero momentum and fre-
quency. FoiS*+1 we are thus only interested 8{* 7 ;o)
[the left loop in Fig. 4b)]. By taking the limit to zero fre- K+q/2,i@,+v,
guency and momentum, we obtain

q.iv, q.iv,

FIG. 11. Notation of momenta and frequencies &? with

2) 4772 externalAu legs. The momenta and frequencies are measured in the
A)\(O,O),A)\(O,O):NZN direction of the attached arrows.
S S ndFskaz—Bhe+ A 2.4 (2+1) . _
X 2 ng’(JSk'a“—Bhj+ A)(— B“a”) 14 AQx(—0,—ivy),AQy(q,ivy)
_ @2 o g e ) e (e gn) et
_ 2,4 AR ALR =
_stlg a’[ng(A—B)+ng(A+B)]. N3N K —iBhiv,+23Sqka?
(A12) (A15)

Keeping in mind thaj, couples only to the boson of flavor
o we find similarly APPENDIX B: CALCULATION OF DIAGRAMS FOR O (N)

1+1) _ 2.4 _Bha We start withS§'</, using the notation shown in Fig. 11.
g ENCI /\/NT]SB a'ng(A—Bhy).  (AL3) In analogy to Eq(35),

From S®) we infer @1,

5(2

1
Ap* (quivn) Ap(Givg) NTr(GOUA,u*GSUAM)- (B1)

2+1)
J o AN(=d,—ivp),AN(Q,ivy)

24 Here, one of the Green functions is the complex conjugate
(=B, since the line is traversed against the direction of the boson

1 1
C2m)® o e g g (kg

N3N K - ~ 2
|Bhvy+2JSgka propagator. The momentum and frequencyGgf are mea-
(A14) sured counterclockwise. We find
|
52 TS S :

vp),A vn o . . ~ ~ —

(@ivdutaing =\ P S 4 —|ﬁﬁwn—|ﬁﬁun+35(k+q/2)2a2—shg+A
y _ 1 _ 2 ,82 42 > 1+nB(ilkl+q/2)+rlB(€I((y—q/2) _
—iBhw,—IS(k—q/2)2aZ+ Bh ~A R @ —jBhv,+23SKa2+ISdta/2+2A

(B2)

with ef=JSKa?—Bh2+A. Here, we have used thaf+h%=0 and the identityng(— €)= —ng(e)—1. The real part is
positive so that the functional integral is well defined. This kind of expression is known from the theory of scattering
processes.

S(f)\)(olo)’AM*’AM can be derived similarly,

S _ (2m)®ipa®
ANMO0,Au* (Qivn) Au(@ivn) — Ar3N g

« 2 2 ngl)( 6!?—%— q/2) + n(Bl)( E?— q/2) —9 1+ nB( €Z+ q/2) + nB( EZ— q/2)
@ \ —iBhv,+23SKRa2+ISRaZ2+2A  (—iBhv,+2ISKRa?+ISPa/2+2A)2
(B3)
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The term containing the denominator squared does not cancel in this case. To obtain this result we have summed over boson
frequencies w,, using contour integration. One has to consider operator ordering to do this properly. Since the anomalous
combinationsd%dz andd_d, in the Hamiltonian contain two commuting operators time splitting is not necessary and no phase
factors appear im,, andv, ,« . On the other hand, the other vertices obtain factorsiexpf. It can be shown that the two
terms in @, coming from the symmetrization in Eq(A7), obtain factors of expl,7)expirv,7) and exp
(—iw,m)explv,7), respectively. The different factors im,, are crucial in arriving at Eq(B3). Furthermore, we obtain an
overall factor of exp@,n).

Immediately we find

2+ _ (2m)® pa®
i o Ap*(Qivg),Au(q,ivy) N3N 4

> 2 ngl)( Elf+q/2) + nél)( 6ﬁ—qlz) —9 1+ nB(EZ+ q/2) + nB(EI[(I—qIZ)
K\ —iphv,+2ISKa2+ISfa22+2A  (—iphv,+23SKa2+ISda/2+2A )2

(B4)
Finally, we have to recalculatégzg(oyo)VM(O'O). By replacingh? by h? in Eq. (A12) we get
™ — ~ — — ~
8800.n00= ——= B [Ne(A—B) +ng(A) +ng(A+B)]. (85)
NS
APPENDIX C: THE QUANTUM MONTE CARLO limit n—o poses no problenithe average powe¢n) is

TECHNIQUE given by|E|3, whereE is the total internal energy
In order to test the accuracy of the analytic results, we We want to emphasize an important technical detail that

have carried out quantum Monte Carlo simulations using thénakes the_sampzling pa_rticularly efficient: _The external field
stochastic series expansion metibehich is ideally suited 1S chosen in thec direction. This automatically causes the
for the present calculation since it does not introduce angimulation to become grand-canonical and there are no
systematic errors. Sufficiently large lattices can be studied stPnger any problems associated with a restricted winding
that finite-size effects are completely negligible. number. If the transverse field is not too weaB/{

The method is based on a Taylor expansion of the densiti0.02), itcauses the autocorrelation times of all calculated
matrix e #". Writing H in terms of its one- and two-body quantities to become very short, even though only purely
terms,H=3M .H;, the partition function can be written?s local updates are used. Furthermore, it enables easy access to

observables involving both diagonal and off-diagonal opera-
n . . . .
AH H 1) tors. Details of the implementation will be presented

L Me s elsewheré?

o For a 4x4 system we have compared our QMC data with
whereS, denotes a squer;ce on|nQ|cé§, (2,....,| n), Where  oyact diagonalization results, and they agree to within statis-
li e 1,...M, and|a)=|S},S;,....S) is an eigenstate of all tjca) errors. Relative errors are typically of the order 4éor
the operatorsS”. The sequences and the states are samplegl| system sizes considered. For all the field strengths pre-
using as the relative weight{8)"/n!(|II{_ H, |a), which  sented in this paper, the results forx(86 and 332 sites
for the present case can be made positive definite by addinggree to this precisioffinite-size effects increase with de-
a suitable constant td. For a system of finitéd’andB only ~ creasingB), and we have presented magnetization results
sequences of finite length contribute significantly and theonly for the larger size in this paper.

D> (—B)“<a

@ n=0 'S, n!
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