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1/N expansion for two-dimensional quantum ferromagnets
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The magnetization of a two-dimensional ferromagnetic Heisenberg model, which represents a quantum Hall
system at filling factorn51, is calculated employing a largeN Schwinger boson approach. Corrections of
order 1/N to the mean-field (N5`) results for both the SU(N) and the O(N) generalization of the bosonized
model are presented. The calculations are discussed in detail and the results are compared with quantum Monte
Carlo simulations as well as with recent experiments. The SU(N) model describes both Monte Carlo and
experimental data well at low temperatures, whereas the O(N) model is much better at moderate and high
temperatures.@S0163-1829~98!00727-9#
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I. INTRODUCTION

Progress in materials synthesis has allowed study o
variety of two-dimensional~2D! systems such as thin films
surfaces, and semiconductor quantum wells. These sys
as well as the nearly 2D cuprates have led to much intere
2D quantum magnetism. It has been found that 2D elec
gases in quantum wells in the quantum Hall regime are i
erant ferromagnets.1–3 The strong external magnetic fiel
quenches the kinetic energy, leading to widely separa
Landau levels, but because of band-structure effect
couples only weakly to the electron spins. Thus low-ene
spin fluctuations play an important role.

These 2D continuum ferromagnets exhibit topological
citations called skyrmions1,4 in analogy to the Skyrme mode
of nuclear physics.5,6 In the quantum Hall system these e
citations carry electrical charge.1,4 At filling factor n51, i.e.,
if the spin-up states in the lowest Landau level are just fill
skyrmions only appear as thermal excitations of the form
skyrmion-antiskyrmion pairs. At filling factors away from
unity, however, skyrmions appear even in the ground sta7

At all filling factors, low-energy spin fluctuations are als
present. The combination of spin fluctuations and skyrmi
dramatically alters the magnetization8,2,9 and the specific
heat.10

For a quantitative understanding it is useful to first stu
the case ofn51 to isolate the effect of low-energy spi
fluctuations, which are expected to be well described b
Heisenberg model, at least at low enough temperatures
higher temperatures higher-order gradient terms neglecte
the Heisenberg model could become importa
Renormalization-group arguments11 show that inD522e
dimensions the magnetizationM of the quantum Hall ferro-
magnet at n51 is a universal function, M /S
5 f (JS2/T,B/T), whereS is the spin,J is the exchange cou
pling, andB is the external magnetic field. ForD52 this
universality is violated by logarithmic corrections.11 In the
Heisenberg model the magnetization only depends on
three dimensionless quantitiesS, J/T, and B/T. Read and
Sachdev11 have evaluated the magnetization using SU(N)
PRB 580163-1829/98/58~3!/1464~21!/$15.00
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and O(N) Schwinger boson formulations of mean-field~MF!
theory, i.e.,N→`, for the Heisenberg model. In a rece
communication12 we have presented analytic results for t
leading 1/N corrections to the magnetization and results
extensive quantum Monte Carlo simulations. In the pres
paper we present details of the 1/N theory. Details of the
Monte Carlo simulations are given elsewhere.13 An alterna-
tive microscopic approach that includes spin-wave corr
tions to the electronic self-energy has also recently b
developed.14

Schwinger boson theories15,16 have proved useful in find-
ing MF theories that respect the symmetry of the Ham
tonian. Formal results to any order in 1/N have also been
obtained.17,18However, numerically evaluating the first-orde
(1/N) corrections is not an easy task. Trumperet al.19 have
evaluated various ground-state quantities of a frustrated
tiferromagnet in the absence of external fields. Although th
are not using the largeN formalism, their method is equiva
lent to a 1/N expansion to first order.

There are a number of subtle pitfalls in the 1/N calcula-
tions, e.g., regarding normal ordering of operators. It see
worthwhile to present the calculations in some detail for
benefit of readers interested in using 1/N expansion methods
We also hope to make the physical interpretation of th
theories clearer and shed some light on the level of accu
of 1/N expansions.

In the following we give an overview of this work. Firs
the Heisenberg Hamiltonian is mapped onto an equiva
boson system. There are several ways of doing this. On
the Holstein-Primakoff representation,20 which has a number
of disadvantages, e.g., the square root of operators it in
duces, and we do not employ it here. Instead we introd
Schwinger bosons15 in two different ways. The first, pre
sented in Sec. II A, makes use of the SU~2! symmetry in spin
space of the Heisenberg model~which is explicitly broken by
an external field!. The second utilizes the local equivalen
between the groups SU~2! and O~3! to write down an equiva-
lent O~3! boson model~Sec. III A!. Subsequently, the two
models are generalized to SU(N) and O(N), respectively,
1464 © 1998 The American Physical Society
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which containN bosons at each site. At this point a rema
may be in order on what we donot mean by the O(N)
model. It is not anN component vector model, e.g., anN
component quantum nonlinears model. Rather, the spin op
erators are generators of the Lie group O(N). Only for N
53 are the generators antisymmetric 333 matrices, which
are dual to~axial! vectors. Thus our results are not eas
compared to expansions in the number of components of
spin vectors, as developed by Garanin21 for a classical sys-
tem.

It is now possible to expand in 1/N as a small parameter
MF theory becomes exact for both SU~`! and O~`!.17 The
1/N expansion is a saddle-point expansion around this
solution, not a perturbative expansion in the interaction.
this reason it is, in principle, equally valid at all temper
tures. Also, it does respect the symmetry of the Heisenb
model. This property makes even the MF results qual
tively correct. In particular, the absence of long-range or
if no external field is present is correctly predicted. Aft
rederiving the MF magnetization in Sec. II B for the SU(N)
model and in Sec. III B for O(N), we calculate the 1/N cor-
rections using a diagrammatic approach17 ~Secs. II C and
III C !. These corrections take fluctuations around the MF
sult into account. We will make use of gauge invariance
simplify our task. Here we also have to discuss the effec
normal ordering. In principle, terms to any order in 1/N can
be obtained in the same way.

The system without exchange interaction can be sol
exactly for any value of the spinS and for anyN in both the
SU(N) and the O(N) model. It can be used to check the 1/N
expansion. However, the interaction introduces a numbe
additional complications.

II. SU„N… MODEL

A. General considerations

We start from a Heisenberg model with nearest-neigh
interaction on a square lattice in a constant magnetic fie

H52J(̂
i j &

S~ i !•S~ j !2B(
i

Sz~ i !, ~1!

where the sum over̂i j & is over all nearest-neighbor bond
A factor of gmB has been absorbed into the fieldB. The total
spin at each site isS; S( i )•S( i )5S(S11). We express the
spins in terms of Bose operators using a Schwinger bo
representation, where two Bose fieldsa andb are introduced
according to15,22

S15a†b, S25b†a, Sz5~a†a2b†b!/2. ~2!

To restrict the Hilbert space to the physical states, the c
straint a†a1b†b52S is introduced, which corresponds t
S•S5S(S11) for the original Hamiltonian. The boso
Hamiltonian is

H52
J

2 (̂
i j &

@a†~ i !a~ i !a†~ j !a~ j !1a†~ i !b~ i !b†~ j !a~ j !

1b†~ i !a~ i !a†~ j !b~ j !1b†~ i !b~ i !b†~ j !b~ j !#
he

F
r

rg
-
r

-
o
f

d
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r
,

n

n-

2
B

2 (
i

@a†~ i !a~ i !2b†~ i !b~ i !#, ~3!

neglecting a constant. For this Hamiltonian to be equival
to the Heisenberg model, the spin operators expresse
terms of bosons have to have the correct commutation r
tions. This is easily shown to be the case.

Utilizing the SU~2! symmetry group of the spins we writ
the Hamiltonian in a more compact form by first defining
SU~2! spin matrix

S[S a†a a†b

b†a b†bD , ~4!

with the constraint TrS52S. The Hamiltonian is

H52
J

2 (̂
i j &

Sb
a~ i !Sa

b~ j !2
B

2 (
i

~sz!b
aSa

b~ i !, ~5!

where sz is a Pauli matrix and summation over repeat
indices is implied. Here, the spin matricesS( i ) should be
infinitesimal generators of the SU~2! group, i.e., elements o
the corresponding algebra. This is not the case since the
erators are traceless. However, if we had definedS as an
element of the algebra, the Hamiltonian would only chan
by a constant and we use the more convenient definition~4!.

The group SU~2! is generalized to SU(N) for any evenN.
The generalization of the Hamiltonian~5! is

H52
J

N (̂
i j &

Sb
a~ i !Sa

b~ j !2
B

2 (
i

hb
aSa

b~ i !, ~6!

whereS andh areN3N Hermitian matrices andS is subject
to the constraint TrS5NS. We choosehb

a5dab(21)a11 so
that we regain the SU~2! model for N52. The Schwinger
boson representation now requiresN boson speciesba ,22

Sb
a5ba

†bb , and the constraint is

ba
†ba5NS. ~7!

We now go over to the continuum for mathematical conv
nience. The continuum model may actually give a better
scription of itinerant magnets but is harder to compare
Monte Carlo simulations on a lattice. Up to a constant
obtain

H5E d2r F J

2N
~] jSb

a!~] jSa
b!2

B

2a2 hb
aSa

bG , ~8!

whereba(r ) is a continuous Bose field with the commutat
@ba(r ),bb

†(r 8)#5a2dabd(r2r 8), ] j is the two-component
gradient,a is the lattice constant, and summation overj is
implied. After bosonization we find

H5E d2r FJS~] jba
† !~] jba!2

J

N
ba

†~] jbb
† !bb~] jba!

2
B

2a2 hb
abb

†baG , ~9!

which is normal ordered, as necessary for the functional
tegral. This is basically the Hamiltonian of the complex pr
jective CPN21 model.18 We have used the fact that the la
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tice Hamiltonian~6! can be normal ordered trivially sinc
spins at different sites commute so thatSb

a( i )Sa
b( j )

5:Sb
a( i )Sa

b( j ):, where :: denotes normal ordering.
Now we write down the partition function as a cohere

state functional integral, where the Bose fields are repla
by complex fields,

Z5E D2baDlexpS 2
1

\ E
0

\b

dtE d2rL@b;l# D , ~10!

where the functional integral takes eachba(r ,t) over the
whole complex plane and eachl~r ,t! parallel to the imagi-
nary axis~a constant real part is irrelevant!. Here and in the
following we neglect constant factors inZ. t is the imagi-
nary time, b is the inverse temperature, andL is the La-
grangian

L5
\

a2 ba* ]0ba1JS~] jba* !~] jba!2
J

N
ba* ~] jbb* !bb~] jba!

2
B

2a2 hb
abb* ba1lba* ba2NSl. ~11!

The first term is the usual Berry phase~]0 is the time deriva-
tive! and the last two terms come from the constraint us
the identity 2pd(f)5*2`

` dxeixf. l is a Lagrange multi-
plier at each point~r ,t!.

To decouple the quartic term we introduce a Hubba
Stratonovich fieldQ~r ,t!: Since

E DQjexpS 2
1

\ E
0

\b

dtE d2r
J

N
@2 iNQj2~] jba* !ba#

3@ iNQj2bb* ~] jbb!# D ~12!

is independent ofba , we can multiply the partition function
with this expression.Qj can be chosen real since an imag
nary part ofQj would not couple to theba fields because
bb* ] jbb is purely imaginary. We get

Z5E D2baDlDQjexpS 2
1

\ E
0

\b

dtE d2rL8@b;l,Q# D
~13!

with

L85
\

a2 ba* ]0ba1JS~] jba* !~] jba!1NJQjQj

1 iJQjba* ~] jba!2 iJQj~]ba* !ba2
B

2a2 hb
abb* ba

1lba* ba2NSl. ~14!

We see thatQ is a gauge field: If we multiply all ba by a
local phase factor,ba(r ,t)→eiu(r ,t)ba(r ,t), we reobtain the
Lagrangian~14! by letting Qj→Qj1S] ju. We know from
gauge theory thatQ contains more information than is phys
cally relevant; we have the freedom to choose a gauge.
use a transverse gauge,

] jQj50. ~15!
t
d

g

-

e

Of course we obtain the same results if we do not fix
gauge. The gauge freedom then leads to the appearan
zero modes, which turn out not to enter in the magnetizat

B. Mean-field theory

Up to this point the treatment has been exact. In the
lowing we derive mean-field~MF! results, which are exac
for N→` and approximate for finiteN. This approximation
is not the same as standard MF theory for the Heisenb
model. As we will see, SU(N) MF theory captures the low
energy spin-wave physics of the Heisenberg model and
rectly predicts the absence of long-range order at finite te
peratures.

The MF approximation is the leading order of a stationa
phase approximation for the SU(N) partition function. The
MF solution is assumed to be homogeneous and static,
Q andl are assumed to be constant. This assumption is
justified for all systems,23 it should hold in ferromagnets
though.17 The MF valuesQ̄ and l̄ are chosen in such a wa
that the MF free energyF0 has a saddle point. If we setl to
its MF value the constraint~7! is no longer satisfied locally
but only on average. In order to diagonalize the action
introduce Fourier transforms of theba fields,

ba~r ,t!5
a2

2p E d2k(
ivn

eik•r2 ivntba~k,ivn!, ~16!

where ivn5 i2pn/\b are bosonic Matsubara frequencie
From now on summation over indices is written out. Wi
Eq. ~14! and the definitionhb

a5dab(21)a11 the MF parti-
tion function is

Z05E D2ba~k,ivn!expS 2NNbJQ̄•Q̄a21Na2NSbl̄

2E d2k(
ivn

L09@b# D , ~17!

whereN is the total number of sites and

L095ba2(
a

S 2 i\vn1JSk2a222JQ̄•ka2

2
B

2
ha

a1a2l̄ Dba* ~k,ivn!ba~k,ivn!. ~18!

We introduce a number of new symbols,

L̄[a2bl̄2
bJ

S
Q̄•Q̄a2, J̃[bJ, B̃[

bB

2
. ~19!

Evaluation of the Gaussian integrals yields

Z0}eNNSL̄)
k

)
ivn

)
a

S 2 ib\vn1 J̃Sk2a222J̃Q̄•ka2

2B̃ha
a1L̄1

J̃

S
Q̄•Q̄a2D 21

. ~20!

Writing the product as the exponential of a sum, replac
thek sum by an integral,(k→(Na2/4p2)*d2k, and shifting
k by Q̄/S, we obtain
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Z0}expSNNSL̄2
Na2

4p2 E d2k

3(
ivn

(
a

ln@2 ib\vn1 J̃Sk2a22B̃ha
a1L̄# D

~21!

The MF partition function and thus all MF quantities on
depend onl̄ andQ̄ throughL̄. The saddle-point equation fo
L̄ is ] ln Z0 /]L̄50, resulting in

05NNS

2
Na2

4p2 E d2k(
ivn

(
a

1

2 ib\vn1 J̃Sk2a22B̃ha
a1L̄

.

~22!

The Matsubara sum in this expression is not well defin
since the summands do not fall off fast enough. In writing
as a contour integral the contribution from closing the co
tour does not vanish. The usual procedure is to introduc
convergence factore6 ihb\vn and leth→0 afterwards. The
result is ambiguous, depending on the sign in the expon
tial. Here, Eq.~22! only has solutions for positive sign. Con
sequently,

05NNS2
Na2

4p2 (
a

E d2knB~ J̃Sk2a22B̃ha
a1L̄ !

5NNS1
N

4p J̃S
(
a

ln~12e2L̄1B̃ha
a
!. ~23!

Here,nB(e)51/(ee21) is the Bose function. Eventually w
find11

S52
1

8p J̃S
@ ln~12e2L̄1B̃!1 ln~12e2L̄2B̃!#. ~24!

Equation~24! for L̄ can be evaluated analytically. For give
L̄ we have the freedom to chooseQ̄, andl̄ is then fixed by
Eq. ~19!. This is a consequence of gauge invariance since
~15! specifies the gauge only up to a constant. We cho
Q̄50. ~The square lattice model without continuum appro
mation runs into problems at this point since the quan
corresponding toQ̄ shows a spurious first-order transition
the MF level.!

The MF magnetization normalized so thatM0(T50)5S
can be obtained from Eq.~21! ~Ref. 11!

M05
2

NNb

d

dB
ln Z0

52
1

8p J̃S
@ ln~12e2L̄1B̃!2 ln~12e2L̄2B̃!#. ~25!

Some notes are in order:~i! Equation~24! states that the tota
number of ‘‘up’’ and ‘‘down’’ bosons~with ha

a51 and21,
respectively! is conserved, whereas Eq.~25! states that the
d
t
-
a

n-

q.
se
-
y

magnetization is basically the difference of the number
‘‘up’’ and ‘‘down’’ bosons. ~ii ! The dependence ofZ0 on the
field B through L̄ is irrelevant at the MF level since
] ln Z0 /]L̄50 by definition. This is not the case at the 1/N
level. ~iii ! The normalized magnetizationM0 /S exhibits the
universality mentioned in Sec. I: It only depends onJ̃S2 and
B̃.11

Finally we compare the MF magnetization with the orig
nal Heisenberg model. From Eqs.~24! and~25! we obtain at
low temperatures

M02S>
1

4p J̃S
ln~12e2bB! ~26!

up to exponentially small corrections to the fieldB of order
of L̄2B̃>e28p J̃S2

/(12e2bB). However, Eq.~26! is just the
magnetization of the Heisenberg model neglecting mag
interactions. This means that the SU(N) MF theory captures
the correct low-energy spin-wave physics. Consequently,
expect higher-order corrections to be small for lowT.

C. 1/N corrections

To take fluctuations in the auxiliary fieldsl and Q into
account, we write

l~r ,t!5l̄1 iDl~r ,t!, ~27!

Qj~r ,t!501DQj~r ,t!. ~28!

The fluctuations inl are imaginary sincel has to be inte-
grated along the imaginary axis in Eq.~10!. The fluctuations
in Qj are real. They are subject to the gauge constraint in
~15!.

We follow the procedure outlined by Auerbach.17 The ex-
act partition function is

Z5E DDlDDQjexp~2NS!, ~29!

where the actionS is expanded in a series for small fluctu
tionsr l with r l standing for any modeDl~r ,t! or DQj (r ,t),

S5 (
n50

`
1

n!
Sl 1 •••l n

~n! r l 1
•••r l n

, ~30!

where summation over repeated field indicesl i is here and
in the following implied. On the other hand, the action c
be written asS5S01Sdir1Sloop with17

S05
1

N
Tr ln G0

21 , ~31!

Sdir5
1

N\ E
0

\b

dtE d2r ~NJQ•Q2NSl!, ~32!

Sloop5
1

N
Tr ln~11G0y l r l !, ~33!
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where the trace sums over space, time, and boson flavorG0
is the MF bosonic Green function, andy l is a vertex factor
coupling the fluctuationr l to two bosons.

The first term,S0 , has the standard form for a noninte
acting system. It stems from thek integral part of the MF
free energy; see Eq.~21!. The Green function can be read o
from the MF partition function,

G0
a~k,ivn!5~2 i\vn1JSk2a22Bha

a/21a2l̄ !21.
~34!

The second term,Sdir , comes from the constant part of th
MF free energy but also contains fluctuations in the fieldsr l

which do not involve bosons. The constant part consp
with S0 to form the MF free energy2bF05NS (0). The
fluctuating part contains a first-order term inDl, correspond-
ing to the coupling ofl to the constantNS in Eq. ~14!, and
a second-order term inDQj from theQ•Q term. The corre-
sponding diagrams are shown in Fig. 1.

The third term,Sloop, contains the contribution of fluctua
tionsr l coupling to bosons. It is the result of a linked-clust
expansion. By expanding the logarithm we obtain the con
bution fromSloop to S (n),

Sl 1 •••l n

~n! u loop5
1

N

~21!n11

n (
Pn

Tr~G0y l 1
•••G0y l n

!.

~35!

The sum(Pn
runs over all permutations of then vertices.

The first few termsS (n) are shown diagrammatically in Fig
2. Solid lines with arrows denote MF boson Green functio
G0 and the dots correspond to vertex factorsy l . The wrig-
gly lines are external legsr l . Disconnected diagrams ar
taken care of by a linked cluster expansion, which puts
whole series into the exponential. No internalr l lines appear
since as far as the action is concerned ther l (r ,t) are exter-
nal variables.

For n>3 Eq. ~35! is the only contribution, whereasS (1)

andS (2) contain contributions fromSdir andSloop. The total
first-order termS (1) can be shown to vanish as it shou
since we are expanding around a saddle point.

FIG. 1. Diagrams contributing toSdir .

FIG. 2. Diagrams contributing toSloop.
s

r
i-

s

e

To find the vertex factorsy l we write the exact partition
functionZ of Eq. ~13! in terms of Fourier transforms, wher
the ba dependent part of the Lagrangian is

L95ba2(
a

S 2 i\vn1JSk2a22
B

2
ha

aD
3ba* ~k,ivn!ba~k,ivn!1

ba4

2p

3(
a

E d2q(
inn

@22JQ~q,inn!•ka2

1a2l~q,inn!#ba* ~k,ivn!ba~k2q,ivn2 inn!.

~36!

The first expression in parentheses is the inverse Green f
tion (G0

a)21. The same prefactors have to be included in
vertex factors, which are the coefficients of the term
r l ba* ba . Consequently,

yDl5
a2

2p

4p2

Na2 ia25
2p

N ia2, ~37!

yDQj
5

a2

2p

4p2

Na2 ~22J!a2kj52
2p

N 2Ja2kj . ~38!

The factor 4p2/Na2 in both cases stems from the integr
over q. The factor ofi in yDl comes from Eq.~27!.

We now consider the expectation value^ba
†ba& for anya

~no summation implied!. From this we obtain two importan
quantities: The average number of bosons per siten̄
5(a^ba

†ba&, and the magnetizationM5N21(aha
a^ba

†ba&.
Inserting a source termDL@ j a#5(a j aba* ba into the La-
grangian~14!, where the source currentj a is constant, we
find

^ba
†ba&52

1

Nba2

1

Z

]Z

] j a
U

j a50

. ~39!

Inserting the series expansion of Eq.~30!, evaluating the de-
rivative, and expanding the exponential of the terms conta
ing S (n), n>3, we obtain

^ba
†ba&5

N

Nba2Z E DDlDDQj

3S (
n50

`
1

n!

]Sl 1 •••l n

~n!

] j a
r l 1

•••r l n
D

3 (
m50

`
~2N!m

m! S (
n53

`
1

n!
Sl 1 •••l n

~n! r l 1
•••r l nD m

3expS 2
N

2
Sl 1l 2

~2! r l 1
r l 2D . ~40!

All terms are Gaussian integrals, which can be evaluated
pairwise contraction over the fieldsr l . Diagrammatically,
any contraction is represented by connecting two vertices
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a random phase approximation (RPA) fluctuation propag
tor D5(S (2))21, which we represent by a heavy wrigg
line.

In the next step we calculate thej a derivative ofS (n).
The derivative basically replacesG0 by 2(G0)2 so that we
may expect it to be related toS (n11). The Green function in
the presence of the source term is

G0
a~k,ivn!5~2 i\vn1JSk2a22Bha

a/21a2l̄1a2 j a!21

so that its derivative is]G0
a/] j a52G0

aa2G0
a . The vertex

factor associated withj a differs fromyDl only in a factor of
i , y j a

52pN21a2. With Eq. ~35! we have

]

] j a
Sl 1 •••l n

~n! U
j a50

5
N
2p

1

N

~21!n12

n

3(
Pn

Tr~G0y j a
G0y l 1

•••G0y l n

1•••1G0y l 1
•••G0y j a

G0y l n
!.

~41!

The sum containsnn! terms and not (n11)! becausey j a
cannot appear to the right ofy l n

. The invariance of the trace
under cyclic rotation allows us to write this expression a
sum over all (n11)! permutations of the verticesy j a

,

y l 1
,...,y l n

, if we introduce a correction factor for over

counting,nn!/(n11)!5n/(n11). We obtain17

]

] j a
Sl 1 •••l n

~n! u j a505
N
2p

1

N

~21!n12

n11

3 (
Pn11

Tr~G0y j a
G0y l 1

•••G0y l n
!

5
N
2p
Sj a ;l 1 •••l n

~n11! . ~42!

Equation~17.25! in Ref. 17 differs from this result becaus
of different definitions of vertex factors. It follows that

^ba
†ba&5

N

2pba2Z E DDlDDQj

3S (
n50

`
1

n!
Sj a ;l 1 •••l n

~n11! r l 1
•••r l nD

3 (
m50

`
~2N!m

m! S (
n53

`
1

n!
Sl 1 •••l n

~n! r l 1
•••r l nD m

3expS 2
N

2
Sl 1l 2

~2! r l 1
r l 2D . ~43!

In principle, we can evaluate the integral for any term in t
series. The contraction of two variables gives

1

Z E Dr l r l 1
r l 2

expS 2
N

2
S

l
18l

28
~2!

r l
18
r l

28D5
1

N
~S ~2!! l 1l 2

21 ,

~44!
-

a

s

where ther l are assumed to be real.@In fact they are real
only in direct space but complex in Fourier space. We c
use the Gaussian integral for complex fields, which has
additional factor of 2, and note thatDl(2q,2 inn) and
Dl(q,inn) are not independent sinceDl(2q,2 inn)
5Dl* (q,inn) and similarly for DQ. Thus we have to re-
strict the sum overq to one half-space. The factor of 1/
obtained in this way cancels the factor 2 from the Gauss
integral.# The RPA propagatorD is the inverse of the matrix
S (2). We obtain all terms in the expansion~43! by writing
down all allowed diagrams consisting of any number of b
son loops with one externalj a leg, represented by a dashe
line, and an even number of internal vertices, and connec
the latter by RPA propagators in all possible ways. Allow
diagrams are connected and do not contain loops with o
one or two internal vertices and no external vertex beca
first-order terms cancel in an expansion around a sad
point and the loop with two internal legs is already includ
in the RPA propagator.

To figure out which terms are of which order in 1/N, note
that the magnetizationM5N21(aha

a^ba
†ba& contains an ex-

plicit factor of 1/N. Furthermore, each loop contributes
factor of N from summation over flavors~the loop with the
external vertex does not contain a sum but has an explicitN!,
and each RPA propagator contributes a factor of 1/N; see
Eq. ~44!.

The leading term is depicted in Fig. 3. It is of orderN0 in
the magnetization. This term reproduces the MF magnet
tion ~25!. Contributions of order 1/N in the magnetization
have to contain the same number of loops and propaga
The only two allowed diagrams are shown in Fig. 4. Sim
larly, we could write down the diagrams to any order.

The two relevant contributions are, from Fig. 4~a!,

D 1
~0![

N

2pba2Z

3E Dr l
1
2Sj a ;l 1l 2

~211! r l 1
r l 2

expS 2
N

2
S

l
18l

28
~2!

r l
18
r l

28D
5

1

4pba2 Sj a ;l 1l 2

~211! ~S ~2!! l 1l 2

21 , ~45!

FIG. 3. The diagram for the MF magnetization.

FIG. 4. 1/N diagrams contributing to the magnetization. Di
gram ~a! corresponds toD 1

(0) in Eq. ~45! and ~b! corresponds to
D 2

(0) in Eq. ~46!.
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and from Fig. 4~b!,

D 2
~0![

N

2pba2Z E Dr l Sj a ;l 1

~111!r l 1S 2
N

6 D
3Sl 2l 3l 4

~3! r l 2
r l 3

r l 4
expS 2

N

2
S

l
18l

28
~2!

r l
18
r l

28D
52

1

4pba2 Sj a ;l 1

~111!Sl 2l 3l 4

~3! ~S ~2!! l 1l 2

21 ~S ~2!! l 3l 4

21 .

~46!

D 2
(0) contains a sum over all three possible pairings of

four r l . We have utilized the symmetry ofS (3) in each pair
of indices. The evaluation of the relevantS (n) is relegated to
Appendix A. With the results found there we can write dow
the two terms in̂ ba

†ba&5D 1
(0)1D 2

(0) ,

D 1
~0!5

1

2N (
q,inn

S s0
a8

(bs0
b

1
s'

a8

NN/2J̃1(bs'
b D , ~47!

D 2
~0!52

1

NN

nB~L̄2B̃ha
a!

nB~L̄2B̃!1nB~L̄1B̃!

3 (
q,inn

S (bs0
b8

(bs0
b

1
(bs'

b8

NN/2J̃1(bs'
b D , ~48!

where we have introduced new symbols,

s0
a[(

k

nB~ek1q/2
a !2nB~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
, ~49!

s'
a[(

k
k2

2a2
nB~ek1q/2

a !2nB~ek2q/2
a !

2 ib\nn12J̃Sqk1a2
, ~50!

s0
a8[(

k

nB
~1!~ek1q/2

a !2nB
~1!~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
, ~51!

s'
a8[(

k
k2

2a2
nB

~1!~ek1q/2
a !2nB

~1!~ek2q/2
a !

2 ib\nn12J̃Sqk1a2
~52!

with ek
a[ J̃Sk2a22B̃ha

a1L̄ and the derivativenB
(1) of the

Bose function.
Before we turn to the magnetization we look at the to

number of bosons per siten̄5(a^ba
†ba&. The MF contribu-

tion is n̄05NS since L̄ was chosen that way. To the ne
order,
e

l

n̄5NS1
1

2N (
q,inn

S (as0
a8

(bs0
b 1

(as'
a8

NN/2J̃1(bs'
b D

2
1

NN

N

2

nB~L̄2B̃!1nB~L̄1B̃!

nB~L̄2B̃!1nB~L̄1B̃!

3 (
q,inn

S (bs0
b8

(bs0
b 1

(bs'
b8

NN/2J̃1(bs'
b D 5NS10. ~53!

We thus see explicitly that the constraint~7! is still satisfied
at the 1/N level. This is a special case of Auerbach’s gene
proof17 that the constraint is satisfied to any order. Thus
need not ‘‘shift the saddle point,’’ i.e., adjustL̄ so that the
constraint is still satisfied.

We now calculate the 1/N contribution to the magnetiza
tion,

M5M02
1

2NN

3 (
q,inn

S (a~c12ha
a!s0

a8

(bs0
b 1

(a~c12ha
a!s'

a8

NN/2J̃1(bs'
b D ,

~54!

whereM0 is the MF magnetization~25! and

c1[
nB~L̄2B̃!2nB~L̄1B̃!

nB~L̄2B̃!1nB~L̄1B̃!
. ~55!

Expressing the momentum sum by an integral we find

M5M02
1

N

a2

8p2 E d2q

3(
inn

S (a~c12ha
a!s0

a8

(bs0
b 1

(a~c12ha
a!s'

a8

NN/2J̃1(bs'
b D

[M02
1

N

a2

8p2 E d2q(
inn

@DM0~q,inn!1DM'~q,inn!#.

~56!

The first term in the parentheses is due to fluctuationsDl
while the second comes fromDQ.

The same result~56! can be found by writing down the
one-loop contribution to the free energy and taking the
rivative with respect to magnetic field. In this way we fin
physical interpretations for the two 1/N diagrams: The term
coming from the explicitB dependence of the free energ
corresponds to Fig. 4~a!, whereas the indirect dependen
throughL̄(B) corresponds to Fig. 4~b!.

Although the expression~56! for the magnetization is for-
mally correct, great care is needed in evaluating the
quency sum. We will first show briefly how naive evaluatio
leads to a spurious divergence of the integral over mom
tum q and then present the solution to this problem. T
solution involves carefully taking into account normal orde
ing of boson operators. First, we derive the contributions
the magnetization for large momentumq of the ~in Fig. 4
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vertical! RPA propagator. We express the momentum sum
s0

a ands'
a by an integral and shift the variablek in the two

summands byk→k7q/2,

s0,'
a 5
Na2

4p2

3E d2kH 1
k2

2a2J S 1

2 ib\nn12J̃Sqk1a22 J̃Sq2a2

2
1

2 ib\nn12J̃Sqk1a21 J̃Sq2a2D
3nB~ J̃Sk2a22B̃ha

a1L̄ !, ~57!

where the upper~lower! expression in$ % pertains tos0
a

(s'
a ), and s0

a8 and s'
a8 are obtained by replacingnB by

nB
(1) . Formally, we expand for smallk1 since largek are

exponentially suppressed. Odd powers ofk1 vanish so that

s0,'
a 5
Na2

4p2 (
meven

S 1

~2 ib\nn2 J̃Sq2a2!m11

2
1

~2 ib\nn1 J̃Sq2a2!m11D
3E d2kH 1

k2
2a2J ~2J̃Sqk1a2!mnB~ J̃Sk2a22B̃ha

a1L̄ !.

~58!

This is an asymptotic series and does not converge. H
ever, for our argument we only need the first two nonvani
ing terms, which are well defined.

The leading term in(as0
a reads

(
a

s0
a>2

N
4p J̃S

S 1

2 ib\nn2 J̃Sq2a2

2
1

2 ib\nn1 J̃Sq2a2D(a ln~12e2L̄1B̃ha
a
!

5NNSS 1

2 ib\nn2 J̃Sq2a2
2

1

2 ib\nn1 J̃Sq2a2D ,

~59!

where the last step follows from the saddle-point equat
~24!. Thus them50 term is independent of magnetic fiel
Similarly we find (a(c12ha

a)s0
a8>0 to the same order

where we have used Eq.~55!. This result is not surprising
since (a(c12ha

a)s0
a8 is, up to a factor, the magnetic fiel

derivative of(as0
a . The leading nonvanishing (m52) term

is
in

-
-

n

(
a

~c12ha
a!s0

a8>
Na2

4p2 S 1

~2 ib\nn2 J̃Sq2a2!3

2
1

~2 ib\nn1 J̃Sq2a2!3D
3E d2k~2J̃Sqk1a2!2(

a
~c12ha

a!

3nB
~1!~ J̃Sk2a22B̃ha

a1L̄ ! ~60!

and consequently, for largeq,

DM0~q,inn!5
(a~c12ha

a!s0
a8

(bs0
b >

J̃a4

2p2N

3S 1

2 ib\nn2 J̃Sq2a2

2
1

2 ib\nn1 J̃Sq2a2D
3(

a
~c12ha

a!E d2kk1
2nB

~1!

3~ J̃Sk2a22B̃ha
a1L̄ !. ~61!

Adding the two fractions under the sum and performing
Matsubara sum we find

(
inn

S 1

2 ib\nn2 J̃Sq2a2
2

1

2 ib\nn1 J̃Sq2a2D
5(

inn

22J̃Sq2a2

~b\nn!21~ J̃Sq2a2!2
52coth

J̃Sq2a2

2
.

~62!

For large momentumq we thus obtain

(
inn

DM0~q,inn!>2
1

4pNJ̃S2 (
a

~c12ha
a!

3 ln~12e2L̄1B̃ha
a
!5c12

M0

S
. ~63!

The large momentum limit of theDQ contribution is found
more easily. We have to considerDM'(q,inn) for large mo-
menta; see Eq.~56!. The leading order (m50) term of
(bs'

b is negligible compared to the constant added to
Furthermore, them50 term in (a(c12ha

a)s'
a8 does not

vanish. Thus the leading term is

J̃a4

2p2N S 1

2 ib\nn2 J̃Sq2a2
2

1

2 ib\nn1 J̃Sq2a2D
3(

a
~c12ha

a!E d2kk2
2nB

~1!~ J̃Sk2a22B̃ha
a1L̄ !. ~64!

This expression is equal to Eq.~61!. Consequently, for large
momenta the integrand of the external momentum integra
Eq. ~56! is
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2~c12M0 /S!, ~65!

which is independent of momentum. This term would lead
a strong UV divergence of theq integral in Eq.~56!.

We now discuss the cure. As mentioned above, we h
to normal order the operators before we can write the pa
tion function as a functional integral. Careful treatment
ordering is often essential to resolve ambiguities in the
pectation value of operator products at equal times. Here
are interested in̂ba

†(r ,t)ba(r ,t)&. One way of dealing with
these ambiguities is to split the time of the operators in
Lagrangian in such a way that the creation operator is a
infinitesimally later time than the annihilation operator. T
time-ordered product in the definition of the Green functi
then takes care of normal ordering at equal times.

If the action contains a term like

DS5
1

N\ E
0

\b

dtE d2r(
a

ca~r ,t!ba* ~r ,t1h!ba~r ,t!,

~66!

whereh.0 is small, then, after Fourier transformation,

DS5
ba6

2pN E d2kd2q (
ivn ,inn

(
a

ca~q,inn!

3eivnhba* ~k,ivn!ba~k2q,ivn2 inn!. ~67!

The coefficientca obtains a phase factoreivnh, whereivn is
the frequency of the boson created at this point. We split
time in this way in the exact Lagrangian~14! as well as in
the source termj aba* ba . As a consequence, phase facto
containing the frequency of the outgoing boson appear a
vertices. The only places where they are relevant turn ou
be inS (3) andS (211). In the first term in Eq.~A7! we obtain
a total factor ofeivnhei (vn1nn)heivnh5e3ivnheinnh from the
three vertices. The factor containingivn is irrelevant since
the sum overivn is unambiguous anyway. We are left wit
an overall factor ofeinnh. The second term from the symme
trization in Eq.~A7! obtains a factore2 innh. If the two terms
are added, the terms which have the denominators squ
obtain a prefactor of 2i sin nnh, which vanishes in the limit
h→0 ~the denominators are already of second order in
quency so that ambiguities or divergences do not arise! and
the remaining terms are

SDl~0,0!,Dl~2q,2 inn!,Dl~q,inn!
~3!

5
~2p!3

N 3N
iba2

3(
k

(
a

e2 innhnB
~1!~ek1q/2

a !2einnhnB
~1!~ek2q/2

a !

2 ib\nn12J̃Sqk1a2

3~2b2a4!, ~68!
o

e
ti-
f
-
e

e
n

e

ll
to

red

-

SDl~0,0!,DQ2~2q,2 inn!,DQ2~q,inn!
~3!

5
~2p!3

N 3N
iba2(

k
(
a

3

2 innhnB
~1!~ek1q/2

a !2einnhnB
~1!~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
4J̃2a4k2

2.

~69!

S (211) follows as above.
The Matsubara sum of the leading largeq term is now,

instead of Eq.~62!,

(
inn

S e2 innh

2 ib\nn2 J̃Sq2a2
2

e1 innh

2 ib\nn1 J̃Sq2a2D
h→01

5(
inn

S 22J̃Sq2a2

~b\nn!21~ J̃Sq2a2!2

3cosnnh1
2b\nn

~b\nn!21~ J̃Sq2a2!2
sin nnh D

h→01

52coth
J̃Sq2a2

2
1 lim

h→01

sinh J̃Sq2a2~1/22h!

sinh J̃Sq2a2/2

512coth
J̃Sq2a2

2
. ~70!

The sine series exactly cancels the leading term of the n
series for largeq, making the remaining expression expone
tially small. In other words, the phase factors introduced
ensure correct operator ordering just remove the cons
~65! from the integrand for largeq. The exponential factors
are irrelevant in all other terms, which are of higher order
1/inn and are thus unambiguous.

Deriving a convergence factore6 innh is a common
method to resolve the ambiguity of a Matsubara sum. W
is unusual here is that two different factors appear for
two terms. It is easy to fall into the trap of thinking that on
should simply add the two fractions under the frequency s
in Eq. ~62!, arguing that the sum then looks unambiguo
This loses an essential contribution because of the two
ferent phase factors.

We utilize the above result by calculating theq integrand
numerically without taking normal ordering into account a
then subtracting the constant~65! explicitly. The frequency
sum is expressed in terms of a contour integral. First
analyze the analytic structure ofs0

a etc. in the complexn
plane. If we replace the sum overk by an integral in Eq.~49!
for s0

a we see that the integrand of thek1 integral has a pole
and, consequently,s0

a has a branch cut. Furthermore, it ca
be shown that(as0

a does not have zeros apart from th
trivial case q50. The quantity(a(c12ha

a)s0
a8 obviously

also has a branch cut along the real axis and does not
poles. Consequently, theDl contribution to the magnetiza
tion, DM0 , has a branch cut and no poles. The contour
integration,C, is shown in Fig. 5. We have
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1

\b (
innÞ0

DM05
1

2p i R
C
dnnB~b\n!DM0

5
1

2p i F2E
Ce

dnnB~b\n!DM0~0!

1S E
2`

2e

1E
e

` D dnnB~b\n!@2 iA0~n!#G ,
~71!

whereA0(n)[22 Im DM0(n1id) is the spectral function o
DM0 andCe is a positively directed circular path of radiu
e→0 around the origin. SinceA0 vanishes continuously a
the origin we get, after moving the last term to the left-ha
side,

1

\b (
inn

DM052
1

2p E
2`

`

dnnB~b\n!A0~n!. ~72!

A similar equation holds for theDQ contribution,DM' . We
do not discuss the numerical methods in any detail since
are standard. We only note that it is useful to expand
Bose functionsnB in s0

a etc. in a geometric series becau
this allows one to perform the integrals overk analytically,
thereby replacing 2D integrals by numerical summation
well-behaved series.

After evaluating the frequency sum, we have to subtr
the constant~65!. Numerically the correction term is indee
found to cancel the constant for largeq. The new leading
term drops off as 1/q2 so that theq integral diverges only
logarithmically. We regularize the integral by restricting it
the first Brillouin zone, i.e., by a lattice cutoff. We use
circular Brillouin zone. The integration over the angle ofq is
then trivial.

We find that fluctuations inl andQ always decrease th
magnetization, as is intuitively expected. In fact the mag
tization to order 1/N can become slightly negative. O
course, the exact magnetization cannot be negative. Ap
ently the 1/N expansion does not work well for SU~2!. We

FIG. 5. Contour of integration for the Matsubara sum overinn .
d

ey
e

f

t

-

r-

can force the result to be positive by putting the fluctuatio
into an exponential: In writing down the functional integr
we should impose the constraint that the total magnetiza
be positive. This constraint can be implemented by writi
the full magnetization asM5M0eg and expandingg in pow-
ers of 1/N. If M5M01M1/N1O(1/N2) then g51
1M1/N /M01O(1/N2). Both expansions areequally validto
order 1/N. Of course, this method seems dubious if the 1N
term is not small.

In Fig. 6 we plot the magnetization forS51/2 and the
fieldsB/J50.05,0.1,0.25 as a function ofT/B. At the lowest
temperatures the SU(N) model describes the Monte Carl
results quite well, as expected since the SU(N) model cap-
tures the correct low-energy physics. The 1/N corrections are
thus very small here. At high temperatures, however, theN
term is too large for all considered fields. Although the r
sults with the exponentiation trick are better and show
correct qualitative behavior, they are not quantitatively be
than the MF results. We discuss the results further at the
of the next section.

III. O „N… MODEL

A. General considerations

In the last section the Heisenberg model was rewritten
terms of Bose fields and the resulting SU~2! model with two
boson flavors was generalized to SU(N). The homomor-
phism between the groups SU~2! and O~3! opens another
way to obtain a largeN theory. In this section the Heisenber
model is mapped onto an O~3! model, which is then gener

FIG. 6. SU(N) magnetization for magnetic fields~a! B/J
50.05, ~b! B/J50.1, and~c! B/J50.25 as a function of tempera
ture in units ofB. The thin solid line is the MF magnetization, th
thick solid line includes 1/N corrections linearly, the thick dashe
line includes them in the exponential to force positivity, and t
circles with error bars are quantum Monte Carlo results fo
32332 lattice~Refs. 12, 13, and Appendix C!.
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alized to O(N). Many concepts are identical to the SU(N)
case. However, the O(N) model adds a number of compl
cations.

The group theory involved here can be found elsewher24

In brief, the Lie groups SU~2! and O~3! have the same alge
bra, up to different representations. This means that the
finitesimal generators of SU~2!, namely the Pauli matrices
have the same commutation relations as the three infini
mal generators of O~3!, (Xk) i j 522i e i jk . Put informally,
SU~2! and O~3! have the same local structure, although t
global structure is different. Note that we could also ta
about the SO~3! model instead of O~3! since the two have the
same algebra.

The upshot of this is that we can map the Heisenb
model onto an O~3! model. We introduce three Bose field
ba and letSk52 i ekabba

†bb , k5x,y,z, where we again as
sume summation over repeated indices. It is easily sho
that the commutators of the spin componentsSk are correct.
To restrict the Hilbert space to the physical states two c
straints are needed,ba

†ba5S andba
†ba

†50. The second con
straint needs explanation. Let us consider the eigenstate
Sz for a single spin. SinceSz is not diagonal in boson flavor
we introduce new bosonsc1[(b11 ib2)/&, c2[(b1

2 ib2)/&, and c3[b3 . Then Sz52c1
†c11c2

†c2 and the
constraints readca

†ca5S and c1
†c2

†1c2
†c1

†1c3
†c3

†50. The
eigenstates ofSz are simultaneous eigenstates toc1

†c1 , c2
†c2 ,

and c3
†c3 . As an example, the following table shows th

eigenvalues of the number operators and ofSz for S52. The
first constraint means that there are two bosons.

c1
†c1 c2

†c2 c3
†c3 Sz

2 0 0 22
1 0 1 21
1 1 0 0
0 1 1 1
0 2 0 2
0 0 2 0

The state withSz50 is obviously counted twice. The secon
constraint just removes the last state. It can be rewritten
c3

†c3
†uc&522c1

†c2
†uc&, where uc& is any state. This mean

that the state one gets by creating twoc3 bosons is the sam
as the one produced by creating onec1 and onec2 . The
second constraint thus reduces the Hilbert space by iden
ing states with one another. For generalS, the second con-
straint removes spurious spin multiplets of lower total sp

The first constraint does not make sense for half inte
spin. We assumeS integer. We will not have to do this fo
evenN in O(N) theory.

The O~3! spin matrix should be an element of the algeb
which consists of antisymmetric 333 matrices. In three di-
mensions any antisymmetric matrix is dual to an axial v
tor. This is in fact the reason why angular momenta can
written as axial vectors in three dimensions. Here we go
opposite way and define the spin matrix bySb

a[ i eabkS
k

5ba
†bb2bb

†ba . Using the antisymmetry ofSb
a , the Hamil-

tonian ~1! becomes
n-

si-

e

g

n

-

of

as

y-

.
r

,

-
e
e

H52
J

2 (̂
i j &

Sb
a~ i !Sa

b~ j !2
B

2 (
i

hb
aSa

b~ i ! ~73!

with h5@(0,i ,0),(2 i ,0,0),(0,0,0)#.
To generalize the model to O(N), we introduceN Bose

fields ba subject to the constraints

ba
†ba5

NS

3
, ~74!

ba
†ba

†50. ~75!

The O(N) spin matrices areSb
a5ba

†bb2bb
†ba . The second

constraint again restricts the Hilbert space by identifyin
say,bN

† bN
† uc& with another state. The O(N) Hamiltonian is

H52
3J

2N (̂
i j &

Sb
a~ i !Sa

b~ j !2
B

2 (
i

hb
aSa

b~ i !, ~76!

whereh containsN/3 copies of the O~3! matrix along the
diagonal.NS is an integer multiple of 3.

The next steps are similar to the SU(N) model. Going
over to the continuum and inserting bosons we get

H5E d2r FJS~] jba
† !~] jba!2

3J

N
ba

†~] jbb
† !bb~] jba!

2
B

a2 hb
abb

†baG . ~77!

In writing the partition function as a functional integral, th
first constraint~74! is implemented using a Lagrange mult
plier field l. Two Lagrange multipliersm1 andm2 are intro-
duced to enforce the two components of the second c
straint ~75!. They couple to theba fields in the form
m1Rebaba1m2Im baba5m*baba/21mba* ba* /2, where we
have introducedm5m11 im2 , which is somewhat mislead
ing, though, since bothm1 and m2 have to be integrated
along theimaginaryaxis. The partition function reads

Z5E D2baDlD2m expS 2
1

\ E
0

\b

dtE d2rL@b;l,m# D ,

~78!

where

L5
\

a2 ba* ]0ba1JS~] jba* !~] jba!2
3J

N
ba* ~] jbb* !bb~] jba!

2
B

a2 hb
abb* ba1lba* ba2

NS

3
l1

1

2
m* baba

1
1

2
mba* ba* . ~79!

The quartic term is decoupled using a Hubbard-Stratonov
transformation,
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L85
\

a2 ba* ]0ba1JS~] jba* !~] jba!13NJQjQj

13iJQjba* ~] jba!23iJQj~] jba* !ba2
B

a2 hb
abb* ba

1lba* ba2
NS

3
l1

1

2
m* baba1

1

2
mba* ba* , ~80!

whereQj is real and a gauge field. As compared to SU(N),
additional complications arise since under gauge changem
transforms like a charge 2 particle, as discussed below.
choose the transverse gauge,] jQj50.

B. Mean-field theory

Again, MF theory is exact forN→`. We make a static
assumption forl, Q, andm. We then express the fieldsba in
terms of Fourier transforms. The partition function reads

Z05E D2ba~k,ivn!expS 23NNbJQ̄•Q̄a2

1Na2
NS

3
bl̄2E d2k(

ivn

L09@b# D ~81!

with

L09@b#5ba2(
a

~2 i\vn1JSk2a2

26JQ̄•ka21a2l̄ !ba* ~k,ivn!ba~k,ivn!

2ba2(
ab

Bhb
abb* ~k,ivn!ba~k,ivn!

1ba2(
a

a2

2
m̄* ba~2k,2 ivn!ba~k,ivn!

1ba2(
a

a2

2
m̄ba* ~2k,2 ivn!ba* ~k,ivn!,

~82!

where sums are again written out. To diagonalize the Z
man term we substitute new fields,

c3n115
1

&
~b3n111 ib3n12!,

c3n125
1

&
~b3n112 ib3n12!, c3n135b3n13 . ~83!

After shifting the integration variablek to k13Q̄/S we get
e

e-

L09@c#5ba2(
a

S 2 i\vn1JSk2a22Bĥa
a

1a2l̄2
9J

S
Q̄•Q̄a2D ca* ~k,ivn!ca~k,ivn!

1ba2(
a

a2

2
m̄* cā~2k,2 ivn!ca~k,ivn!

1ba2(
a

a2

2
m̄cā

* ~2k,2 ivn!ca* ~k,ivn!,

~84!

where ĥ is diagonal with the diagonal elements21,1,0,
21,1,0,... and

ā5H 3n12 for a53n11
3n11 for a53n12
3n13 for a53n13.

~85!

The partition function depends onl̄ and Q̄ only throughL̄

[a2bl̄2(9bJ/S)Q̄•Q̄a2. To get rid of the terms mixing
(k,ivn) with (2k,2 ivn) we note thatca(k,ivn) is even in
vn and introduce new fields,

da~k,ivn!5
1

&
@ca~k,ivn!2 ica~2k,ivn!#. ~86!

Then we have

L09@d#5ba2(
a

S 2 i\vn1JSk2a2

2Bĥa
a1

L̄

b
D da* ~k,ivn!da~k,ivn!

1ba2(
a

ia2

2
m̄* dā~k,ivn!da~k,ivn!

2ba2(
a

ia2

2
m̄dā

* ~k,ivn!da* ~k,ivn!. ~87!

The fieldsda are now integrated out. We defineJ̃[bJ and
B̃[bB ~note different definition ofB̃!. By integrating over
the da , putting the product into the exponential, and eva
ating the flavor sum we obtain

Z0}expFN NS

3
L̄2
Na2

4p2

N

3 E d2k

3(
ivn

~ 1
2 ln@~2 ib\vn1 J̃Sk2a21L̄ !22a4b2m̄* m̄#

1 ln@~2 ib\vn1 J̃Sk2a21L̄ !22a4b2m̄* m̄2B̃2#! G .
~88!

The MF valuesL̄ andm̄ are determined by the saddle-poi
equations
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] ln Z0

]L̄
50,

] ln Z0

]m̄
50,

] ln Z0

]m̄*
50. ~89!

The last two are equivalent. They yield

05a4b2m̄E d2k(
ivn

S 1

2

1

~2 ib\vn1 J̃Sk2a21L̄ !22a4b2m̄* m̄
1

1

~2 ib\vn1 J̃Sk2a21L̄ !22a4b2m̄* m̄2B̃2D .

~90!

One solution ism̄50. For m̄Þ0 we get

05
ln~12e2L̄2a2bum̄u!2 ln~12e2L̄1a2bum̄u!

2a2bum̄u
1

ln~12e2L̄2AB̃21a4b2m̄* m̄!2 ln~12e2L̄1AB̃21a4b2m̄* m̄!

AB̃21a4b2m̄* m̄

, ~91!
g

ld
te

e

lds
which does not have solutions form̄Þ0. Such solutions
would correspond to broken gauge symmetry;if we hadm̄
Þ0, a term like u(] j26Qj /S)mu2 would appear in the
gauge-invariant Lagrangian, which would make the gau
field Q massive25 ~this is the Anderson-Higgs mechanism!.
In our case, however, it is massless at the saddle point.

The partition function is now

Z0}expFN NS

3
L̄2
Na2

4p2 E d2k

3(
ivn

(
a

ln~2 ib\vn1 J̃Sk2a22B̃ĥa
a1L̄ !G .

~92!

The MF equation forL̄ becomes11

S52
1

4p J̃S
@ ln~12e2L̄1B̃!1 ln~12e2L̄!1 ln~12e2L̄2B̃!#

~93!

and the MF magnetization is11

M05
3

NNb

d

dB
ln Z052

1

4p J̃S
@ ln~12e2L̄1B̃!

2 ln~12e2L̄2B̃!#, ~94!

which exhibits the same universality as the SU(N) result. At
low temperatures,

M02S>
1

4p J̃S
ln~12e2bB!1

1

2p J̃S
ln~12e22bB!

~95!

up to exponentially small corrections to the magnetic fie
Thus, although the leading term is the same as the nonin
acting magnon approximation, Eq.~26!, the second term is
different. Thus we expect the correct behavior at the low
temperatures but deviations already forT;2B.
e

.
r-

st

C. 1/N corrections

The method used to calculate the 1/N corrections is simi-
lar to the SU(N) case. However, the second constraint~75!
introduces additional problems. The magnetization is now

M5
3

N (
ab

hb
a^ba

†bb&5
3

N (
a

ĥa
a^ca

†ca&, ~96!

using the definition ofca in Eq. ~83!. Fourier transforming
theca we find ^ca

†ca&5^da
†da& ~no summation implied! and

M5
3

N (
a

ĥa
a^da

†da&. ~97!

In the following we use the representation in terms of fie
da , Eq. ~86!. The fluctuations are written as

l~r ,t!5l̄1 iDl~r ,t!, ~98!

m1~r ,t!501 iDm1~r ,t!, ~99!

m2~r ,t!501 iDm2~r ,t!, ~100!

Qj~r ,t!501DQj~r ,t!, ~101!

where Dl, DQj , Dm1 , and Dm2 are all real. For conve-
nience we use a complexDm5Dm11 iDm2 so thatm(r ,t)
5 iDm(r ,t) andm* (r ,t)52 iDm* (r ,t). The SU(N) meth-
ods of Ref. 17 can be adapted to the O(N) model; we write

Z5E DDlD2DmDDQjexp~2NS! ~102!

and expand the actionS as in Eq.~30! for SU(N), wherer l

can also stand forDm or Dm* . We can also writeS5S0
1Sdir1Sloop with

S05
1

N
Tr ln G0

21 , ~103!

Sdir5
1

N\ E
0

\b

dtE d2r S 3NJQ•Q2
NS

3
l D , ~104!

Sloop5
1

N
Tr lnS 11G0(

l
y l r l D . ~105!
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The ~normal! MF Green function can be read off from Eq
~87!,

G0
a~k,ivn!5~2 i\vn1JSk2a22Bĥa

a1a2l̄ !21.
~106!

For m̄50 no anomalous Green function exists since ther
no da* da* term.

The constant part ofSdir together withS0 again gives the
MF actionS (0). The first-order terms cancel. The vertex fa
tors can be found in analogy to SU(N),

yDl5
2p

N ia2, yDm5
2p

N
i

2
a2, yDm* 5

2p

N
i

2
a2,

yDQj
5

2p

N ~26J!a2kj . ~107!

The diagrammatics are similar to the SU(N) case. ForDl
and DQ fluctuations the only differences are~i! The DQj
vertices contain an additional factor of 3 each, giving 9
S (2), ~ii ! the directDQj propagator fromSdir contains an
additional factor of 3,~iii ! ha

a is replaced byĥa
a , ~iv! now

B̃[bB, and~v! L̄ is given by Eq.~93!.
In particular, we findSDQ2(0,0),DQ2(0,0)

(2) 50 as for the

SU(N) model. Thus gauge fluctuations are massless
O(N) as well as for SU(N).

The contribution fromDm requires some thought. From
Eqs.~80! and ~87! we see thatDm couples to two ‘‘creation
operators’’da* dā

* , whereasDm* couples todadā . Conse-
quently, the boson loop inS (2) can only contain oneDm
vertex and oneDm* vertex or neither of them. ThusS (2) and
the RPA propagator do not mixDm with other fluctuations.
Consequently, the only contributions to^da

†da& at the 1/N
level correspond to the diagrams in Fig. 7, where the zig-
line denotes theDm RPA propagator. Note the directions o
the boson lines.

We deriveSDm* ,Dm
(2) , SDl(0,0),Dm* ,Dm

(3) , andSj a ;Dm* ,Dm
(211) in

Appendix B. We can then integrate out the fluctuations.Dm
is a complex field so that the contraction of a pair yields

1

Z E D2zl zl 1
* zl 2

expS 2
N

2
S

l
18l

28
~2!

z
l

18
* zl

28D5
2

N
~S ~2!! l 1l 2

21 .

~108!

Consequently, the diagrams of Figs. 4~a! and 7~a! added to-
gether, and Figs. 4~b! plus 7~b!, respectively, are

D 1
~0!5

1

2N (
q,inn

S s0
a8

(bs0
b

1
s'

a8

NN/6J̃1(bs'
b

12
s!

a8

(bs!
bD ,

~109!

FIG. 7. Diagrams in the 1/N magnetization containingDm fluc-
tuations.
is

r

g

D 2
~0!52

3

2NN

nB~L̄2B̃ĥa
a!

nB~L̄2B̃!1nB~L̄ !1nB~L̄1B̃!

3 (
q,inn

S (bs0
b8

(bs0
b

1
(bs'

b8

NN/6J̃1(bs'
b

12
(bs!

b8

(bs!
b D ,

~110!

where

s!
a[(

k

11nB~ek1q/2
a !1nB~ek2q/2

ā !

2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄
,

~111!

s!
a8[(

k
S nB

~1!~ek1q/2
a !1nB

~1!~ek2q/2
ā !

2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄

22
11nB~ek1q/2

a !1nB~ek2q/2
ā !

~2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄ !2D ,

~112!

the other symbols are identical to the SU(N) case ifha
a is

replaced byĥa
a .

With Eq. ~97! the 1/N contribution to the magnetization
reads

M5M02
1

N

3a2

8p2 E d2q(
inn

S (a~c12ĥa
a!s0

a8

(bs0
b

1
(a~c12ĥa

a!s'
a8

NN/6J̃1(bs'
b

12
(a~c12ĥa

a!s!
a8

(bs!
b D ~113!

with

c1[
nB~L̄2B̃!2nB~L̄1B̃!

nB~L̄2B̃!1nB~L̄ !1nB~L̄1B̃!
. ~114!

Evaluation of theDl andDQ2 contributions is analogous to
the SU(N) case. In particular, naive summation overinn
results in a strong divergence. The constant term in the i
grand for large momenta is 3(c12M0 /S). Numerical calcu-
lations confirm this result. Again, the spurious divergence
removed by taking operator ordering into account.

We now turn to theDm contribution. From Eq.~111! we
see thats!

a diverges logarithmically at large momentumk
because of the summand 1 in the numerator. However,
Dm contribution to the magnetization is finite. To see th
we use a finite cutoffK and letK→` in the result.s!

a is
dominated by

s!
a>
Na2

4p2 E
k<K

d2k
1

2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄

5
N

8p J̃S
@ ln~2 ib\nn12J̃SK2a21 J̃Sq2a2/212L̄ !
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2 ln~2 ib\nn1 J̃Sq2a2/212L̄ !#. ~115!

For s!
a8 the corresponding contribution is

s!
a8>

22N

8p J̃S
S 1

2 ib\nn12J̃SK2a21 J̃Sq2a2/212L̄

2
1

2 ib\nn1 J̃Sq2a2/212L̄
D . ~116!

Note that these two expressions do not depend ona. The
frequency sum over theDm contribution is

(
inn

DM !~q,inn!

[(
inn

(a~c12ĥa
a!s!

a8

(as!
a

522c1(
inn

1

2 ib\nn1eK
2

1

2 ib\nn1e0

ln~2 ib\nn1eK!2 ln~2 ib\nn1e0!
,

~117!

where ek[2J̃Sk2a21 J̃Sq2a2/212L̄. Since this contribu-
tion is proportional toc1 it comes only from the diagram Fig
7~b!.

The sum overinn can be evaluated by contour integratio
As noted in Appendix B, splitting the time to enforce corre
operator ordering results in an overall factor of exp(innh),
which removes any ambiguity in theinn sum. In the complex
n plane,DM ! has a branch cut along the real axis betwe
the pointse0 /\b and eK /\b and two poles on top of the
branch points. The contour integral contains three ter
Two from integrating around the branch points in sm
semicircles and one from integrating the spectral function
DM ! along the branch cut. The two semicircles contribu
22c1@nB(e0)1nB(eK)#. For K→` this expression be
comes22c1nB(e0). The spectral function is

A!52
4pc1

\b

P
1

eK /\b2n
1P

1

n2e0 /\b

@ ln~eK /\b2n!2 ln~n2e0 /\b!#21p2

~118!

and the integral over it can be shown to vanish forK→`.
Thus

(
inn

DM !522c1nB~ J̃Sq2a2/212L̄ ! ~119!

for K→`. With Eq. ~113! the full contribution fromDm to
the magnetization is

2
1

N

3a2

8p2 E d2q(
inn

2DM !
.
t

n

s:
l
f

e

52
1

N

3

p J̃S
ln~12e22L̄!

3
nB~L̄2B̃!2nB~L̄1B̃!

nB~L̄2B̃!1nB~L̄ !1nB~L̄1B̃!
. ~120!

A few remarks are in order:~i! This contributionincreases
the magnetization, whereas fluctuations inl andQ decrease
it. The physical explanation is that the MF approximatio
which enforces the second constraintba

†ba
†50 only on aver-

age, underestimates the magnetization because it conta
contributions from spurious multiplets of lower total spi
~ii ! The Dm contribution has a typical energy scale of 2L̄

since excitations of energy 2L̄ ~and higher! are removed by
the second constraint~75!. ~iii ! The q integral overDM ! is
well behaved for largeq so that a cutoff, which is necessar
for the Dl andDQ contributions, does not change the res
appreciably but would complicate the calculations.

Figure 8 shows the magnetization forS51/2 and B/J
50.05,0.1,0.25 as a function ofT/B. The Dm fluctuations
win over the other contributions; the magnetization is larg
than the MF result. We see that the O(N) 1/N expansion
gives much better results than the SU(N) model except at
low temperatures. At smallT/B the magnetization seems t
be unphysically large, especially for smaller fields. At mo
erate temperatures the O(N) 1/N magnetization is better tha
both MF results. At high temperatures, the Monte Carlo d
consistently fall slightly below the O(N) 1/N and, for B/J
50.25, even below the O(N) MF results.

FIG. 8. O(N) magnetization for magnetic fields~a! B/J
50.05, ~b! B/J50.1, and~c! B/J50.25. The thin solid line is the
MF magnetization, the thick solid curve includes 1/N corrections,
the circles with error bars are quantum Monte Carlo results fo
32332 lattice~Refs. 12, 13, and Appendix C!, and the dashed curve
shows the SU(N) MF magnetization for comparison.
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Recall that the SU(N) MF approximation works well at
low temperatures because it coincides with the noninter
ing magnon approximation for the Heisenberg mod
whereas the O(N) MF magnetization does not. The 1/N cor-
rections for the O(N) model~predominantly fromDm at low
T! are large and in fact overcompensate for the error mad
the MF level.

There is a distinct crossover to the moderateT regime,
where SU(N) MF becomes too large, SU(N) 1/N becomes
quite wrong, and O(N) 1/N is rather good. In fact it is sur
prisingly good considering that 1/N is not really small. It is
not fully clear why the O(N) model works better than th
SU(N) model at moderate and high temperatures. The rea
may lie in the different behavior of gauge~DQ! fluctuations
in the two models.25 In the SU(N) model they are massles
in general, whereas for O(N) they are massless only becau
the MF value ofm happens to vanish for this particular sy
tem. In both cases the zero mass leads to an overestima
fluctuations at the 1/N level. However, in the O(N) model
fluctuations inm are available to compensate for this, there
partly restoring the effect a massive gauge field would ha

One might think that O(N) should be worse since th
O(N) model forN.3 does not have skyrmions, whereas t
SU(N) model has them for allN.6 However, the 1/N expan-
sion does not contain these nonperturbative effects anyw
On the other hand, they are, in principle, captured by
Monte Carlo simulations.13

The deviations between O(N) results and Monte Carlo
data at high temperatures andB/J50.25 or larger~see Fig.
9! are probably due to thermally created skyrmions or to
fact that the simulations are done on a lattice, whereas
1/N calculations use a continuum approximation. The disp
sion of the former is a cosine band if bosonized, whereas
latter has parabolic dispersion. Both effects should beco
important for temperaturesT>J since both the bandwidth
and the typical skyrmion energy are of the order ofJ. In-
deed, the deviations start atT;J. ~In the same region
higher-order gradient terms not included in the Heisenb
model should become important.!

We have also investigated the universal dependence

FIG. 9. Comparison of SU(N) and O(N) results, as well as
quantum Monte Carlo results for a 16316 lattice, with experimen-
tal data from Manfraet al. ~Ref. 9!. The open squares were ob
tained sweeping the temperature at fixed field and the filled squ
by sweeping the field at fixed temperature.
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J̃S2 andB̃. Whereas the MF results exhibit this universalit
it is violated by small logarithmic corrections at the 1/N level
for both models, as expected.11

Our results can be compared with the microscopic
proach of Kasner and MacDonald,14 which includes spin-
wave corrections to the electronic self-energy. This appro
is microscopically better justified than the Heisenberg mod
However, the magnetization from Ref. 14 is consistently
large and even MF SU(N) and O(N) results agree bette
with Monte Carlo data.

Comparison to NMR experiments by Barrettet al.8 shows
a number of discrepancies. At low temperature, the exp
mental data look flat, whereas at highT they drop well below
the theoretical results. These discrepancies are mainly du
the scaling of the data, which is done by setting the measu
magnetization, which is reduced by disorder, toS in the limit
T→0.

Recent magnetoabsorption measurements by Ma
et al.9 show better agreement with our results. In Fig. 9
compare data of Ref. 9 with SU(N), O(N), and quantum
Monte Carlo results. In the calculations we have used
exchange constant corrected for finite width of the quant
well, which yields B/J'0.32. The Monte Carlo data fal
below the O(N) 1/N results aboveT;J, as discussed above
The experimental data agree quite well with SU(N) theory at
low temperatures and with O(N) 1/N ~and Monte Carlo!
results at moderate temperatures, as expected. At highT
the experimental data show more noise but lie mostly ab
the O(N) 1/N curve. This discrepancy forT.J is probably
due to neglected higher gradient terms in Eq.~1!. The ex-
perimental system is a continuous itinerant magnet, wh
probably explains the deviations from Monte Carlo latti
simulations.

IV. SUMMARY AND CONCLUSIONS

We have calculated 1/N corrections to largeN Schwinger
boson mean field theories for the two-dimensional ferrom
netic Heisenberg model, meant to describe a quantum
system at filling factorn51. Normal ordering of operators
has to be carefully taken into account to obtain the corr
tions. Using a O(N) model, we find reasonable agreement
the 1/N corrected magnetization with both quantum Mon
Carlo simulations12,13 and experiments9 at moderate and
higher temperatures. At low temperatures, the SU(N) model
works better since it reproduces the correct low-energy ph
ics. However, the SU(N) model does not describe the da
anywhere else, confirming Auerbach’s remark that largeN
methods are ‘‘either surprisingly successful or complet
wrong.’’ 17 Effects of thermally created skyrmions, whic
are not included in our approach, are small. Away from fi
ing factor n51, skyrmions are present in the ground sta
and should be important. The natural next step leading
from this work would be to incorporate these skyrmions.
addition higher derivative terms due to the long-range C
lomb interaction should be investigated.

Details of the numerical techniques~briefly outlined in
Appendix C! as well as Monte Carlo results for the NM
relaxation rate 1/T1 will be presented elsewhere~Ref. 13!.
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APPENDIX A: CALCULATION OF DIAGRAMS
FOR SU„N…

Here, we derive explicit expressions forS (2), S (3),
S (111), and S (211). We first calculate the Gaussian pa
Sl 1l 2

(2) r l 1
r l 2

/2 in the action. It consists of two contribution

see Figs. 1~b! and 2~b!. The first term is easily read off from
Sdir in Eq. ~32!,
r
a
s
F
y
lla

1
2Sl 1l 2

~2! udirr l 1
r l 2

5
4p2

N

3 (
q,inn

J̃DQ~2q,2 inn!•DQ~q,inn!a2.

~A1!

Note thatDQj (2q,2 inn)5DQj* (q,inn) sinceDQj (r ,t) is
real. The same holds forDl, below.

The loop part follows from Eq.~35!. The notation is
shown in Fig. 10. Inserting Eqs.~34!, ~37!, and ~38! we
obtain

FIG. 10. Notation of momenta and frequencies forS (2) with
externalDl or DQ legs.
a

1
2Sl 1l 2

~2! u loopr l 1
r l 2

52
1

2N
(

q,inn
(

k,ivn
(
a

1

2 ib\vn2 ib\nn1 J̃S~k1q/2!2a22B̃ha
a1L̄

2p

N

3 @ iba2Dl~q,inn!22J̃a2~k1q/2!•DQ~q,inn!#
1

2 ib\vn1 J̃S~k2q/2!2a22B̃ha
a1L̄

2p

N

3 @ iba2Dl~2q,2 inn!22J̃a2~k2q/2!•DQ~2q,2 inn!#. ~A2!

Performing the Matsubara sum overivn and utilizing the periodicity of the Bose functionnB we get

1
2Sl 1l 2

~2! u loopr l 1
r l 2

5
1

2N

4p2

N 2 (
q,inn

(
k

(
a

nB~ek1q/2
a !2nB~ek2q/2

a !

2 ib\nn12J̃Sq•ka2
@ iba2Dl~2q,2 inn!22J̃a2~k2q/2!•DQ~2q,2 inn!#

3@ iba2Dl~q,inn!22J̃a2~k1q/2!•DQ~q,inn!#, ~A3!

whereek
a[ J̃Sk2a22B̃ha

a1L̄. At this point we use the transverse gauge,q•DQ(q,inn)50. We choose coordinates in such
way thatk1 andDQ1 are parallel toq. ThenDQ1(q,inn)50 and the last expression simplifies,

1

2
Sl 1l 2

~2! u loopr l 1
r l 2

5
1

2N

4p2

N 2 (
q,inn

(
k

(
a

nB~ek1q/2
a !2nB~ek2q/2

a !

2 ib\nn12J̃Sqk1a2

3 @2b2a4Dl~2q,2 inn!Dl~q,inn!14J̃2a4k2
2DQ2~2q,2 inn!DQ2~q,inn!#. ~A4!

Terms mixingDl andDQ vanish since their coefficient is odd ink2 . Adding Eq.~A1! to Eq. ~A4! yields

SDl~2q,2 inn!,Dl~q,inn!
~2! 5

4p2

N 2N
(

k
(
a

nB~ek1q/2
a !2nB~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
~2b2a4!, ~A5!

SDQ2~2q,2 inn!,DQ2~q,inn!
~2! 5

8p2

N
J̃a21

4p2

N 2N
(

k
(
a

nB~ek1q/2
a !2nB~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
4J̃2a4k2

2, ~A6!

all other components vanish. The fact thatS (2) only connects fluctuations at (q,inn) and (2q,2 inn) just means that the RPA
propagator conserves energy and momentum. The real part ofS (2) is always positive except forSDQ2(0,0),DQ2(0,0)

(2) 50. Thus
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there is one zero mode, which results in an additional factor in the partition function, which, however, does not depend
and is thus irrelevant for the magnetization. The zero mode atq50, inn50 shows that gauge~DQ! fluctuations are massless
For the remaining modes,S (2) can be inverted to get the RPA propagatorD, which is also positive. The saddle point is th
stable.

Looking at the diagrams in Fig. 4 we see that the horizontal propagator in the right diagram can only be atq50, inn50
since the sourcej a does not insert any frequency or momentum. In fact, it can only beDl~0,0!, as we will see. Keeping this
is mind we calculateSl 1l 2l 3

(3) . SinceS (3) is symmetric in its indices we can assume thatr l 1
is Dl~0,0!. Furthermore,r l 2

determinesr l 3
. We start from the definition~35!,

Sl 1l 2l 3

~3! 5
1

N
@Tr~G0y l 1

G0y l 2
G0y l 3

!1Tr~G0y l 1
G0y l 3

G0y l 2
!#. ~A7!

The first of the two summands is

1

N
(

k,ivn
(
a

b3y l 1
y l 2

y l 3

1

2 ib\vn1 J̃S~k2q/2!2a22B̃ha
a1L̄

3
1

2 ib\vn2 ib\nn1 J̃S~k1q/2!2a22B̃ha
a1L̄

1

2 ib\vn1 J̃S~k2q/2!2a22B̃ha
a1L̄

5
1

N
(

k
(
a

b3y l 1
y l 2

y l 3F nB@ J̃S~k1q/2!2a22B̃ha
a1L̄#

~ ib\nn22J̃Sqk1a2!2

2
d

dz

nB~z!

2z2 ib\nn1 J̃S~k1q/2!2a22B̃ha
a1L̄

U
z5 J̃S~k2q/2!2a22B̃h

a
a1L̄

G
5

1

N
(

k
(
a

b3y l 1
y l 2

y l 3F nB@ J̃S~k1q/2!2a22B̃ha
a1L̄#

~2 ib\nn12J̃Sqk1a2!2
2

nB@ J̃S~k2q/2!2a22B̃ha
a1L̄#

~2 ib\nn12J̃Sqk1a2!2

2
nB

~1!@ J̃S~k2q/2!2a22B̃ha
a1L̄#

2 ib\nn12J̃Sqk1a2
G , ~A8!
io

r

.

,

where nB

(n)(e)[dnnB(e)/den is the n-th derivative of the
Bose function. With the vertex factors the last express
becomes

¯5
~2p!3

N 3N
(

k
(
a

iba2H 2b2a4

4J̃2a4k2
2J

3F nB@ J̃S~k1q/2!2a22B̃ha
a1L̄#

~2 ib\nn12J̃Sqk1a2!2

2
nB~ J̃S~k2q/2!2a22B̃ha

a1L̄ !

~2 ib\nn12J̃Sqk1a2!2

2
nB

~1!@ J̃S~k2q/2!2a22B̃ha
a1L̄#

2 ib\nn12J̃Sqk1a2
G , ~A9!

where the upper@lower# term in the curly brackets is fo
r l 2

5Dl(q,inn) @DQ2(q,inn)#. For r l 1
5DQ2(0,0) the in-

tegrand would be odd ink2 so that this contribution vanishes
n
The second term in Eq.~A7! just hasr l 2

and r l 3
ex-

changed, which meansq and inn have opposite sign. Thus

SDl~0,0!,Dl~2q,2 inn!,Dl~q,inn!
~3!

5
~2p!3

N 3N
iba2

3(
k

(
a

nB
~1!~ek1q/2

a !2nB
~1!~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
~2b2a4!,

~A10!

SDl~0,0!,DQ2~2q,2 inn!,DQ2~q,inn!
~3!

5
~2p!3

N 3N
iba2

3(
k

(
a

nB
~1!~ek1q/2

a !2nB
~1!~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
4J̃2a4k2

2,

~A11!
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where the fractions in Eq.~A9! containing the denominato
squared have cancelled upon adding the two terms.

We can now calculateS (111) andS (211). These expres-
sions contain a vertexy j a

52pa2/N instead of yDl

52p ia2/N. The sourcej a inserts zero momentum and fre
quency. ForS (111) we are thus only interested inSj a ;Dl(0,0)

(111)

@the left loop in Fig. 4~b!#. By taking the limit to zero fre-
quency and momentum, we obtain

SDl~0,0!,Dl~0,0!
~2! 5

4p2

N 2N

3(
k

(
a

nB
~1!~ J̃Sk2a22B̃ha

a1L̄ !~2b2a4!

5
p

2NJ̃S
b2a4@nB~L̄2B̃!1nB~L̄1B̃!#.

~A12!

Keeping in mind thatj a couples only to the boson of flavo
a we find similarly

Sj a ;Dl~0,0!
~111! 52

ip

NNJ̃S
b2a4nB~L̄2B̃ha

a!. ~A13!

FromS (3) we inferS (211),

Sj a ;Dl~2q,2 inn!,Dl~q,inn!
~211!

5
~2p!3

N 3N
ba2(

k

nB
~1!~ek1q/2

a !2nB
~1!~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
~2b2a4!,

~A14!
Sj a ;DQ2~2q,2 inn!,DQ2~q,inn!
~211!

5
~2p!3

N 3N
ba2(

k

nB
~1!~ek1q/2

a !2nB
~1!~ek2q/2

a !

2 ib\nn12J̃Sqk1a2
4J̃2a4k2

2.

~A15!

APPENDIX B: CALCULATION OF DIAGRAMS FOR O „N…

We start withS (2), using the notation shown in Fig. 11
In analogy to Eq.~35!,

SDm* ~q,inn!,Dm~q,inn!
~2!

52
1

N
Tr~G0yDm* G0* yDm!. ~B1!

Here, one of the Green functions is the complex conjug
since the line is traversed against the direction of the bo
propagator. The momentum and frequency ofG0* are mea-
sured counterclockwise. We find

FIG. 11. Notation of momenta and frequencies forS (2) with
externalDm legs. The momenta and frequencies are measured in
direction of the attached arrows.
ttering
SDm* ~q,inn!,Dm~q,inn!
~2!

52
p2

N 2N
b2a4 (

k,ivn
(
a

1

2 ib\vn2 ib\nn1 J̃S~k1q/2!2a22B̃ĥa
a1L̄

3
1

2 ib\vn2 J̃S~k2q/2!2a21B̃ĥā
ā
2L̄

5
p2

N 2N
b2a4(

k
(
a

11nB~ek1q/2
a !1nB~ek2q/2

ā !

2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄

~B2!

with ek
a[ J̃Sk2a22B̃ĥa

a1L̄. Here, we have used thatĥa
a1ĥā

ā
50 and the identitynB(2e)52nB(e)21. The real part is

positive so that the functional integral is well defined. This kind of expression is known from the theory of sca
processes.
SDl(0,0),Dm* ,Dm

(3) can be derived similarly,

SDl~0,0!,Dm* ~q,inn!,Dm~q,inn!
~3!

5
~2p!3

N 3N

ib3a6

4

3(
k

(
a

S nB
~1!~ek1q/2

a !1nB
~1!~ek2q/2

ā !

2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄
22

11nB~ek1q/2
a !1nB~ek2q/2

ā !

~2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄ !2D .

~B3!
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The term containing the denominator squared does not cancel in this case. To obtain this result we have summed o
frequenciesivn using contour integration. One has to consider operator ordering to do this properly. Since the ano
combinationsdā

†
da

† anddāda in the Hamiltonian contain two commuting operators time splitting is not necessary and no
factors appear inyDm andyDm* . On the other hand, the other vertices obtain factors exp(ivnh). It can be shown that the two
terms in S (3), coming from the symmetrization in Eq.~A7!, obtain factors of exp(ivnh)exp(innh) and exp
(2ivnh)exp(innh), respectively. The different factors inivn are crucial in arriving at Eq.~B3!. Furthermore, we obtain an
overall factor of exp(innh).

Immediately we find

Sj a ;Dm* ~q,inn!,Dm~q,inn!
~211!

5
~2p!3

N 3N

b3a6

4

3(
k

S nB
~1!~ek1q/2

a !1nB
~1!~ek2q/2

ā !

2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄
22

11nB~ek1q/2
a !1nB~ek2q/2

ā !

~2 ib\nn12J̃Sk2a21 J̃Sq2a2/212L̄ !2D .

~B4!

Finally, we have to recalculateSDl(0,0),Dl(0,0)
(2) . By replacingha

a by ĥa
a in Eq. ~A12! we get

SDl~0,0!,Dl~0,0!
~2! 5

p

3NJ̃S
b2a4@nB~L̄2B̃!1nB~L̄ !1nB~L̄1B̃!#. ~B5!
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APPENDIX C: THE QUANTUM MONTE CARLO
TECHNIQUE

In order to test the accuracy of the analytic results,
have carried out quantum Monte Carlo simulations using
stochastic series expansion method,26 which is ideally suited
for the present calculation since it does not introduce
systematic errors. Sufficiently large lattices can be studied
that finite-size effects are completely negligible.

The method is based on a Taylor expansion of the den
matrix e2bH. Writing H in terms of its one- and two-bod
terms,H5( i 51

M Hi , the partition function can be written as26

Z5(
a

(
n50

`

(
Sn

~2b!n

n! K aUA)
i 51

n

Hl iUaL , ~C1!

whereSn denotes a sequence of indices (l 1,l 2,...,l n), where
l i P 1, ...,M, and ua&5uS1

z,S2
z,...,SN

z & is an eigenstate of al
the operatorsSi

z. The sequences and the states are sam
using as the relative weight (2b)n/n! ^auP i 51

n Hl i
ua&, which

for the present case can be made positive definite by ad
a suitable constant toH. For a system of finiteN andb only
sequences of finite length contribute significantly and
yi,

,

z.
e
e

y
so

ty

ed

ng

e

limit n→` poses no problem~the average power̂n& is
given by uEub, whereE is the total internal energy!.

We want to emphasize an important technical detail t
makes the sampling particularly efficient: The external fie
is chosen in thex̂ direction. This automatically causes th
simulation to become grand-canonical and there are
longer any problems associated with a restricted wind
number. If the transverse field is not too weak (B/J
*0.02), it causes the autocorrelation times of all calcula
quantities to become very short, even though only pur
local updates are used. Furthermore, it enables easy acce
observables involving both diagonal and off-diagonal ope
tors. Details of the implementation will be present
elsewhere.13

For a 434 system we have compared our QMC data w
exact diagonalization results, and they agree to within sta
tical errors. Relative errors are typically of the order 1024 for
all system sizes considered. For all the field strengths p
sented in this paper, the results for 16316 and 32332 sites
agree to this precision~finite-size effects increase with de
creasingB!, and we have presented magnetization res
only for the larger size in this paper.
.
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