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Composite-fermion edge states, fractional charge, and current noise
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A composite-fermion edge-state theory of current fluctuations, fractional quasiparticle charge, and Johnson-
Nyquist noise in the fractional quantum Hall regime is presented. It is shown that composite fermion current
fluctuations and the charges of the associated quasiparticles are strongly renormalized by the interactions
between composite fermions. The important interaction is that mediated by the fictitious electric field associ-
ated with composite fermion currents. The dressed current fluctuations and quasiparticle charges are calculated
self-consistently in a mean-field theory for smooth edges. Analytic results are obtained. The values of the
fractional quasiparticle charges obtained agree with the predictions of previous theories in the incompressible
regions of the two-dimensional electron gas where those theories apply. In the compressible regions the
magnitudes of the quasiparticle charges vary with position. Since Johnson-Nyquist noise arises from the
compressible regions, it is due to quasiparticles whose charges differ from the simple fractions ofe that apply
in the incompressible regions. Nevertheless, the Nyquist noise formulaS54kBTG is obeyed on fractional
quantum Hall plateaus. Some implications for the interpretation of recent shot noise measurements in the
fractional quantum Hall regime are briefly discussed.@S0163-1829~98!02924-5#
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I. INTRODUCTION

It was first shown by Laughlin1 that the fractional quan
tum Hall effect occurs because electron-electron interact
result in incompressible states of two-dimensional elect
systems at special filling fractions of a Landau level. Sub
quently, Jain showed that these incompressible many-b
states can be understood, in a mean-field sense, as a
from the spectral gaps between the single-particle Lan
levels of quasiparticles known as composite fermions
that the fractional quantum Hall effect can be viewed as
integer quantum Hall effect of composite fermions.2 The
composite-fermion theory has yielded many remarkable
sults and there is now an extensive theoretical and exp
mental body of literature supporting it and examining
ramifications.3

Following Jain’s suggestion that the fractional quantu
Hall effect is the integer quantum Hall effect of compos
fermions, a model of composite fermion edge states has b
proposed4,5 that generalizes the very successful edge s
theories of transport in the integer quantum Hall regime6–9 to
fractional quantum Hall phenomena. This mean-field mo
was developed for high-mobility systems with smooth ed
potentials and has been able to account for a great de
experimental data including the observed integer10 and
fractional11 quantized Hall conductances, the results of tra
port experiments on Hall bars with smooth potential barri
and constrictions,12–18and the observed Fermi-liquid-like be
havior of Aharonov-Bohm resonances associated with a
dots in the fractional quantum Hall regime.19,20

The singular gauge transformation2,21,22 that transforms
electrons into composite fermions by attaching to them tu
of fictitious magnetic flux preserves charge, and therefore
charge of a composite fermion is equal to that of an electr
However, it was pointed out by Goldhaber and Jain23 that the
local charge associated with the composite fermion
dressed by the presence of the other composite fermion
PRB 580163-1829/98/58~3!/1457~7!/$15.00
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the system and thus becomes fractional, the fractions b
in agreement with the fractional quasiparticle charges p
dicted earlier by Laughlin and others.1,24,25For example, for
the fractional fillingn51/3 of the lowest Landau level th
dressed quasiparticle charge2e* equals2e/3.

Recently experiments have been reported measuring
rent noise in the fractional quantum Hall regime26,27 as a
probe of the fractional quasiparticle charge. The results h
been interpreted26,27 as direct experimental evidence of fra
tionally charged quasiparticles withe* 5e/3 atn51/3. How-
ever, the theoretical predictions1,23–25 that e* 5e/3 at n
51/3 are based on the assumption that the electronic sta
incompressible, whereas current noise originates at the ed
of the sample where both incompressible and compress
regions occur. Furthermore Johnson-Nyquist noise arisesen-
tirely from thecompressibleregions. It is therefore of inter-
est to examine both the fractional quasiparticle charges
the associated current noise theoretically within an edge-s
model that admits both incompressible and compressible
gions at the edge. This is the purpose of the present arti

Section II contains a brief summary of those aspects
composite-fermion mean-field theory and of the edge-s
model4,5 that will be used in the remainder of this paper.

In Sec. III I discuss electric current fluctuations in th
fractional quantum Hall regime within the framework of th
edge-state model,4,5 and show that to understand these flu
tuations one must consider the interactions between the c
posite fermions, the important interactions being those me
ated by the fictitious electric field28–30,23 associated with
composite-fermion currents. These interactions renorma
the current fluctuations and their effects must be calcula
self-consistently. This is done analytically in a mean-fie
approximation and it is found that the dressing of the curr
fluctuations can be interpreted as a dressing of the charge
the composite fermion quasiparticles. The dressed compo
fermion charges are fractional and in incompressible regi
the predicted fractions agree with those obtained earlier
1457 © 1998 The American Physical Society
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1458 PRB 58GEORGE KIRCZENOW
Laughlin and others.1,24,25,23However, in the compressibl
regions near the edge the fractions are predicted to be di
ent and to vary smoothly with position. As the edge is a
proached and the local electron density tends to zero
dressed composite fermion charge approaches the ele
charge2e.

Current noise in mesoscopic systems has been discu
theoretically in recent years by many authors,31–39 but not
from the perspective of composite-fermion edge states
Sec. IV I calculate the Johnson-Nyquist noise on the fr
tional quantum Hall plateaus using the composite-ferm
edge-state model4,5 and the results of Sec. III for the dresse
current fluctuations. The method used is a generalizatio
the wave packet arguments of Landauer32 and Landauer and
Martin35 to composite-fermion edge-state theory and
fractional quantum Hall regime. Summing the contributio
of all of the active and silent modes4 of the edge-state mode
and including the variation of the dressed quasipart
charge across the edge obtained in Sec. III yields a resu
agreement with the Nyquist formulaS54kBTGH for all of
Jain’s filling fractions of a Landau level. HereS is the
Johnson-Nyquist noise on the fractional quantum Hall p
teau,kB is Boltzmann’s constant,T is the temperature, an
GH is the fractional quantized Hall conductance.

The significance of these results is discussed in Sec
where I also comment briefly on the implications for t
interpretation of recent shot noise experiments.

II. EDGE-STATE MODEL

In composite-fermion theory, a singular gauge transf
mation attaches a tube of fictitious magnetic flux with
even number of flux quanta to each electron.2,21,22The elec-
trons together with the attached flux tubes obey Fermi sta
tics and are called ‘‘composite fermions.’’2 In mean-field
theory the interactions between composite fermions that
due to the vector potentials associated with the tubes of
titious flux are replaced by interactions with a fictitious a
erage magnetic field and a fictitious electric field.

The fictitious average magnetic field is given by2,21,22

Bg52neB̂m
h

e
52mnB, ~1!

where an even integer numberm of flux quantah/e are
attached to each electron,ne is the two-dimensional electro
density,B̂ is the unit vector pointing in the direction of th
true magnetic fieldB, and n5neh/eB is the Landau-level
filling parameter. Thus the composite fermions experience
effective magnetic field

Be f f5B1Bg ~2!

and fill effective Landau levels spaced in energy by\ve f f
where

ve f f5euBe f fu/m* ~3!

is the effective cyclotron frequency andm* is the composite-
fermion effective mass. The fictitious electric field is28–30,23

Eg52~J3B̂!mh/e2, ~4!
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whereJ is the two-dimensional electric current density.
In the composite-fermion edge-state model4,5 it is as-

sumed that the electron density is slowly varying with po
tion and that, for local Landau-level filling fractions in th
vicinity of 1/m, the composite-fermion Landau-level ene
gies behave qualitatively like

Em,r5~r 1 1
2 !\ve f f1W, ~5!

where r 50,1,2, . . . and W is the position-dependen
composite-fermion effective potential energy that includ
the effects of the fictitious electric field. Equation~5! is a
good description of the composite-fermion Landau-le
structure in uniform systems2 and yields edge states tha
propagate in the direction consistent with experiments.4,40

This behavior of the composite-fermion Landau levels n
an edge is illustrated in Fig. 1. The effective magnetic fie
Be f f well away from the edge is parallel to the real magne
field in Fig. 1~a! and antiparallel in Fig. 1~b!. The apex of
each ‘‘fan’’ of energy levels occurs whereBe f f50 for some
even integerm; there according to Eqs.~1! and ~2! Em,r
5W. The different types of composite-fermion Landau le
els are labeled I, II, and III. Type I Landau levels are sile
edge modes in the sense that the average currents that
carry are independent of the electrochemical potential at
edge, provided that quasiequilibrium conditions prev
there.4 However, Landau levels of types II and III carry non
zero average net currents when the difference between
composite-fermion effective electrochemical potentials
opposite edges of the sample is not zero.4

III. CURRENT FLUCTUATIONS
AND FRACTIONAL CHARGE

Consider a two-dimensional electron gas~2DEG! of
lengthL in the x-y plane connecting source and drain co
tacts as depicted in Fig. 2. Suppose that the magnetic fieB
points in thez direction and define an effective vector pote
tial Ae f f5@0,*xBe f f(u)du,0# such that the effective mag
netic field experienced by composite fermions is given
Be f f5¹3Ae f f . The effective composite fermion Schro¨-
dinger equation for ther th composite fermion Landau leve
is then41

FIG. 1. Schematic drawing of the composite-fermion Landa
level structure near an edge. The effective magnetic fieldBe f f well
away from the edge is parallel to the real magnetic field in~a! and
antiparallel in~b!. The apex of each ‘‘fan’’ of energy levels occur
whereBe f f50 for an even integerm, wherem is the number of
fictitious flux quanta attached to each electron.mb is the number of
fictitious flux quanta attached to each electron in the bulk, far fr
the edges of the sample. Vertical dotted lines delimit the regi
with different m. The different types of composite-fermion edg
states are labeled I, II, and III.
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F 1

2m*
S \

i
¹1eAe f fD 2

1W~x!Gc r ,k~x,y!5e r ,kc r ,k~x,y!,

~6!

where

c r ,k~x,y!5eikyXr ,k~x!. ~7!

The net electric current in they direction is then

I 52
1

L(
r ,k

eNr ,kv r ,k , ~8!

whereNr ,k and v r ,k are the occupation and velocity of th
single-particle composite-fermion stateur ,k& and L is the
length of the sample. Since composite fermions obey Fe
statistics,Nr ,k takes the values 0 and 1. Fluctuations in t
values that theNr ,k take give rise to current noise. Howeve
an important complication is thate r ,k in Eq. ~6! @and there-
fore v r ,k in Eq. ~8!# depends on the specific configuration
occupation numbersNr ,k as will be discussed further below

In the spirit of mean field theory let us now approxima
the average electric current^I & by setting every occupation
numberNr ,k in Eq. ~8! formally equal to its ensemble ave
age value^Nr ,k& and replacingv r ,k by the corresponding
mean-field velocity functionv r ,k

av 5(1/\)(de r ,k
av /dk), where

e r ,k
av is the solution of Eq.~6! with Ae f f and W calculated

using the average occupation numbers^Nr ,k&. Then

^I &52
1

L(
r ,k

e^Nr ,k&v r ,k
av ~9!

or, equivalently,

^I &52
e

h(r
E ^Nr ,k&de r ,k

av . ~10!

Now let us alter the occupation numberNR,K of just one
single-particle stateuR,K& so that it differs from the mean
^NR,K& that figures in Eqs.~9! and ~10!, and examine the

FIG. 2. Schematic of a 2DEG of lengthL connecting source and
drain reservoirs in a magnetic field. The reservoirs are effectiv
short circuited by the capacitors C and C8 at the frequencies o
interest. Arrows indicate the direction of propagation of edge sta
i

corresponding deviationdI R,K of the currentI from ^I &.
~General current fluctuations will be treated at the end of t
section.!

Bearing in mind Eq.~10!, dI R,K can be written as

dI R,K5dI R,K
0 2

e

h(r
E ^Nr ,k&dUr ,k . ~11!

Here

Ur ,k5e r ,k* 2e r ,k
av ~12!

and

dI R,K
0 52

e

L
~NR,K2^NR,K&!vR,K* , ~13!

wheree r ,k* andv r ,k* are the self-consistent single-particle e
ergies and velocities for the composite-fermion system w
only NR,K differing from its mean.

Notice that the second term on the right-hand side of
~11! includes the effect of changing the occupation of t
single-particle composite-fermion state in Landau levelR
with wave vectorK on the currents carried by theother
single-particle composite-fermion states. It will be seen
low that this effect is very important.

To proceed further analytically I will assume that the ed
currents are of the quasiequilibrium type and that the e
potentialW(x) is so slowly varying withx that ^Nr ,k& varies
little over the range of values ofk that contribute
appreciably42 to the integral in Eq.~11!. In Eq. ~11!,
*^Nr ,k&dUr ,k then becomeŝNr ,K&*dUr ,k .

The occupation number fluctuationNR,K2^NR,K& affects
Ur ,k through the associated fluctuations in the fictitious el
tric field Eg , the Coulomb potential, and the effective ma
netic field. Only the first of these contributes to*dUr ,k be-
cause the others are local effects and do not affect
integral. Thus using Eq.~4! for Eg yields

E dUr ,k5DU5E e dEg .dx56
mh

e
dI R,K , ~14!

where the upper~lower! sign applies whenBe f f is parallel
~antiparallel! to B. Notice that thetotal current fluctuation
dI R,K is used for the integral of the fluctuation current de
sity in the last term in Eq.~14!. This ensures that the fina
result ~16! of this calculation will include the interaction
between composite fermions that are mediated by the fl
tuationdEg of the fictitious electric fieldself-consistently.

Replacing*^Nr ,k&dUr ,k by ^Nr ,K&*dUr ,k in Eq. ~11! and
using Eq.~14! yields

dI R,K5dI R,K
0 7mdI R,K(

r
^Nr ,K& ~15!

or

dI R,K5
dI R,K

0

16m( r ^Nr ,K&

. ~16!

The physical meaning of this result is that a sing
particle composite fermion current fluctuationdI R,K

0 gener-

ly

s.
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1460 PRB 58GEORGE KIRCZENOW
ates a fluctuation in the fictitious electric field that exten
over a distance of a few magnetic lengths. As a resu
‘‘kink’’ develops in the energy dispersions ofall of the
composite-fermion Landau levels in that vicinity modifyin
the velocities of the surrounding composite-fermion sta
Thus the single-particle current fluctuation is dressed by
disturbance that it generates in the surrounding compo
fermion medium. The dressing must be calculated s
consistently since the current fluctuation induced in the s
rounding medium generates its own contribution to
fluctuation in the fictitious electric field, which in turn affec
the current. The self-consistent calculation yields the dres
current fluctuationdI R,K given by Eq.~16!.

Thus the current fluctuation can be understood a
dressed quasiparticle associated with the composite ferm
in Landau-levelR with wave vectorK. The quasiparticle
propagates with same velocityvR,K* as the composite fer
mion. It is therefore intuitively appealing to rewrite Eq.~16!
for the dressed current fluctuation in a form analogous to
~13! for the ‘‘bare’’ current fluctuation but with a renorma
ized quasiparticle charge, i.e.,

dI R,K52
eR,K*

L
~NR,K2^NR,K&!vR,K* , ~17!

where the dressed quasiparticle charge is given by

2eR,K* 5
2e

16m( r ^Nr ,K&

. ~18!

Where the 2DEG is incompressible,^Nr ,K& is either 0 or 1
depending on whether ther th composite fermion Landau
level is full or empty, and therefore

2e* 5
2e

16mn
, ~19!

wheren5( r^Nr ,K& is an integer andm is an even integer
This agrees with the fractional quasiparticle charges
have been derived previously by other methods for inco
pressible states at Jain’s filling fractionsn5n/mn61 of a
Landau level.1,24,25,23For example, in the bulk for the frac
tional filling n51/3 of the lowest Landau level,m52, n
51, and the dressed quasiparticle charge2e* given by Eq.
~19! equals2e/3.

On the other hand as the depletion region at the edg
the sample is approached the filling of the compos
fermion Landau levels approaches zero. Thus( r^Nr ,K& →0
and Eq.~18! predicts that2e* tends to2e.

In the compressible regions between these two extre
the behavior of the quasiparticle charge can be obtained f
Eq. ~18! if the behavior of^Nr ,k& is known. For the usua
case of quasiequilibrium edge currents this is given by
Fermi function

^Nr ,k&5
1

eb~er ,k
av

2m i* !11
, ~20!

wherem i* is the composite-fermion electrochemical potent
for the i th ~closest! edge,b51/kBT, T is the temperature
and kB is Boltzmann’s constant. Johnson-Nyquist no
s
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arises from the compressible regions in this regime and
be evaluated using the above results in Sec. IV.

Since the modification of the velocities of the compos
fermions fromv r ,k

av to v r ,k* by the fictitious electric field as-
sociated with the current fluctuation is responsible for
dressing of the composite-fermion charge and since
dressed velocityvR,K* appears explicitly in Eq.~17! along
with e* it is of interest to consider how large the effect of th
fluctuation of the fictitious electric field onvR,K* may be. This
may be estimated as;(DU/\Dk), whereDU is as in Eq.
~14! andDk is the difference in wave vector between sta
separated by the magnetic lengtha5\/(eBe f f) in real space.
The result is found to be proportional toa/L and is therefore
very small for macroscopic samples. The dressing of the q
siparticle charge on the other hand is due to the modifica
by the fictitious electric field of the velocities of alarge
number~of the order ofL/a) of single-particle composite
fermion states and for that reason is a very significant ef
even though the modification of the individual composi
fermion velocities is very small.

Finally, it is important to consider whether the above r
sults that have been obtained by considering the dressin
a single single-particle current fluctuation are applicable
thermal current fluctuations that involve large numbers
such single-particle ‘‘excitations’’ simultaneously. This wi
be done in two steps:

First, if a current fluctuation is due to any number
single-particle excitations that are widely separated fr
each other~by much more than a magnetic length! in real
space then the dressing of each single-particle current fl
tuation will occur separately from the others and it follow
that Eq.~17! becomes

dI 52(
R,K

eR,K*

L
~NR,K2^NR,K&!vR,K* , ~21!

where dI is the total dressed current fluctuation, the su
over R and K is over the individual single-particle excita
tions that contribute to the current fluctuation and the dres
composite fermion quasiparticle charge2eR,K* is given by
Eq. ~18!.

Second, if a current fluctuation is due to any number
single-particle excitations that are all so close to each o
in real space that̂Nr ,k& does not vary appreciably over th
entire region containing these excitations for any co
posite fermion Landau levelr then the entire argumen
leading to Eq.~16! still holds if dI R,K

0 is replaced with
the sum of the ‘‘bare’’ single-particle current fluctuation
2 1/L (R,Ke(NR,K2^NR,K&)vR,K* anddI R,K is replaced with
the total dressed current fluctuationdI . The result of this
calculation turns out to be also given by Eqs.~21! and ~18!.

Since Eqs.~21! and ~18! are valid in the two opposite
limits of widely separated and closely spaced single-part
excitations discussed above it is reasonable to suppose
they are valid~or at least a good approximation! in general,
at the level of mean-field theory and provided that the ed
potential W(x) and ^Nr ,k& are sufficiently slowly varying
functions of x and k as has been assumed in the abo
analysis.
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IV. JOHNSON-NYQUIST NOISE

I will now apply the theory developed above to the sim
plest relevant experimentally observable phenomenon,
Johnson-Nyquist noise on fractional quantum Hall plate
where there is no backscattering of the composite fermio

Johnson-Nyquist noise is the electric current noise t
occurs in the absence of an applied voltage across a con
tor connecting two reservoirs and is due to thermal fluct
tions in the number of charge carriers that pass through
conductor per unit time. As depicted schematically in Fig.
the reservoirs are assumed to be effectively short circu
via two large capacitances to eliminate any voltage fluct
tions between them at the frequencies of interest.

Current noise is described in terms of the spectral den
of current-current fluctuations that is defined as follows43

Let the Fourier transform of the current fluctuations be

dI v5E
2`

`

dI ~ t !eivtdt. ~22!

The current-current correlation function̂dI (t)dI (t8)& de-
pends only ont2t8 if ^dI vdI v8& is of the form

^dI vdI v8&52pFvd~v1v8!. ~23!

It then follows that̂ (dI )2&[^dI (t)dI (t)& is given by

^~dI !2&5
1

pE0

`

Fvdv52E
0

`

F2p fd f ~24!

wherev52p f . Thus the spectral density of current fluctu
tions at frequencyf is

S~ f !52F2p f , ~25!

whereF is defined by Eq.~23!.
Let us now rewrite Eq.~21! as

dI ~ t !5(
R,K

dI R,K~ t !, ~26!

wheredI R,K(t) is the dressed contribution of the state w
wave vectorK in composite-fermion Landau levelR at time
t to the current fluctuation. The time dependence arises
cause the occupation numberNR,K fluctuates taking values 0
and 1 at different times as composite-fermion wave pack
in composite-fermion Landau levelR and centered on wav
vectorK are injected into the 2DEG and absorbed from it
the reservoirs. In the spirit of Landauer and Martin’s tre
ment of systems of ordinary fermions,32,35 I will assume that
these wave packets~which may be occupied or empty! are
mutually orthogonal and enter the 2DEG in a regular
quence at timestR,K,l spaced by the timedtR,K5tR,K,l 11
2tR,K,l that it takes a wave packet to traverse a distanceD
equal to its length. For the low frequenciesv of interest
(v!1/dtR,K), Eq. ~22! thus becomes

dI v5(
R,K

E
2`

`

dI R,K~ t ! eivtdt5 (
R,K,l

dtR,KdI R,K,le
ivtR,K,l,

~27!

where
he
s
s.
t
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e
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dI R,K,l5
1

dtR,K
E

tR,K,l

tR,K,l 11
dI R,K~ t !dt. ~28!

Assuming that the current fluctuations for differentR, K, and
l are uncorrelated, Eq.~27! yields

^dI vdI v8&5 (
R,K,l

^dI R,K,l
2 &dtR,K

2 ei ~v1v8!tR,K,l. ~29!

Noting that ^dI R,K,l
2 & is independent ofl and that for low

frequenciesv,v8!1/dtR,K , we may replace( le
i (v1v8)tR,K,l

by 2pd(v1v8)/dtR,K , Eq. ~29! becomes

^dI vdI v8&52p(
R,K

^dI R,K
2 &dtR,Kd~v1v8!, ~30!

which by comparison with Eqs.~23! and ~25! yields

S~ f !52(
R,K

^dI R,K
2 &dtR,K ~31!

for the spectral density of the current noise.
In Eq. ~31! dI R,K is as in Eqs.~17! and ~21! but with L

replaced byD since the wave packet basis is now bei
used. Settinĝ NR,K

2 & 5^NR,K& since NR,K5 0 or 1, using
uvR,K* u5D/dtR,K and approximatingvR,K* by vR,K

av ~which is
reasonable according to the discussion in Sec. III!, Eq. ~31!
yields

S~ f !52(
R,K

eR,K* 2

D
^NR,K&~12^NR,K&! uvR,K

av u. ~32!

Note that since 0<^NR,K&<1 the summand in Eq.~32! is
non-negative and is not zero only for states in compress
regions. Transforming the sum overK into an energy inte-
gral yields

S~ f !5
2

h(R E eR,K* 2^NR,K&~12^NR,K&!deR,K
av . ~33!

Assuming that̂ NR,K& is of the form given by Eq.~20! yields

]^NR,K&

]eR,K
av

52b^NR,K&~12^NR,K&! ~34!

and Eq.~33! becomes

S~ f !5
2

hb(
R

E eR,K* 2d^NR,K&. ~35!

Finally, noting the form ~18! of the dressed composite
fermion charge, Eq.~35! reduces to

S~ f !5
2e2

hb E dNtot

~16mNtot!
2

, ~36!

whereNtot stands for( r^Nr ,K&, the local total filling of the
composite-fermion Landau levels. In keeping with the no
negative character of the summand in Eq.~32!, the conven-
tion has been adopted that the direction of integration in E
~33!, ~35!, and ~36! is such thatdeR,K

av , d^NR,K&, anddNtot

are always positive, respectively.
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Equation ~36! gives the low-frequency Johnson-Nyqui
noise on fractional quantum Hall plateaus where there is
backscattering of composite fermions. In general the inte
consists of separate contributions from each region wh
Be f f is parallel or antiparallel toB at each of the edges of th
2DEG that run between the source and drain in Fig. 2.

Let us consider now the case illustrated in Fig. 1~a! where
Be f f is parallel toB far from the edges where the Landa
level filling n5nb /(mbnb11) is a Jain fraction withnb a
positive integer andmb an even positive integer. Suppos
initially for simplicity that only the type-III composite-
fermion Landau levels are present and that they empty
by one as the edge is approached. ThenNtot in Eq. ~36!
ranges from 0 at the edge tonb , the number of occupied
composite-fermion levels in the bulk, and the Johns
Nyquist noise~including the contributions from both edge
of the 2DEG! is given by

S~ f !5
4e2

hb E
0

nb dNtot

~11mbNtot!
2

5
4

b

e2

h

nb

~mbnb11!
. ~37!

This is just the Nyquist formulaS( f )54kBTG since on a
quantum Hall plateau the two-terminal conductan
G is equal to the quantized Hall conductanceGH
5(e2/h)@nb /(mbnb11)#.

Now let us consider the contribution of the ‘‘silent’’4

type-I composite-fermion Landau levels in Fig. 1~a! to S( f ).
For thesem5mb12. Let us suppose that the crossover fro
the type-III to the type-I states occurs at a local Landau-le
filling fraction nc whereNtot5nc for the type-III states and a
Ntot5nc8 for the type-I states. Then

nc

mbnc11
5nc5

nc8

~mb12!nc821
~38!

and

S~ f !5
4e2

hb S E
nc

nb dNtot

~11mbNtot!
2
1E

nc8

` dNtot

@12~mb12!Ntot#
2

1E
0

` dNtot

@11~mb12!Ntot#
2D , ~39!

where the first integral is the contribution of the type-
states, and the second~third! integral is that of the type-I
states for whichBe f f is antiparallel~parallel! to B. The limits
of integration whereNtot5` correspond toBe f f passing
through zero. Evaluation of Eq.~39! using the relation~38!
betweennc and nc8 once again yields the same Nyquist e
pression,

S~ f !5
4

b

e2

h

nb

~mbnb11!
, ~40!

as was obtained above by considering the simpler mo
with only type-III composite-fermion Landau levels. Thu
although the silent type-I levels contribute to the Johns
Nyquist noise, remarkably, thetotal of the type-I and type-III
Johnson-Nyquist noise is the same whether the type-I le
are present in the model or not.
o
al
re

e

-

e

l

el

-

ls

The Johnson-Nyquist noise on quantum Hall plateaus
the case shown in Fig. 1~b! whereBe f f is antiparallel toB far
from the edges can be calculated similarly. Here the Land
level filling in the bulk is the Jain fractionn5nb /(mbnb
21) with nb a positive integer andmb an even positive
integer. In this caseonly the type-I levels contribute to the
Johnson-Nyquist noise and the result of evaluating Eq.~36!
is

S~ f !5
4

b

e2

h

nb

~mbnb21!
, ~41!

once again in agreement with the Nyquist formulaS( f )
54kBTG. The result for S( f ) is once again the sam
whether only the states withm5mb or both the states with
m5mb andm5mb12 are included in the model.

V. CONCLUSIONS

In this paper it has been shown that interactions betw
composite fermions must be included in composite-ferm
theories of electric current noise.

The important interactions were found to be those me
ated by the fictitious electric field generated by compos
fermion current fluctuations. Their effects must be calcula
self-consistently. This was done analytically in mean-fie
theory for systems with smooth edge potentials.

The interactions were found to renormalize the curr
fluctuations and the charges of the quasiparticles assoc
with composite fermions, making the quasiparticles fractio
ally charged. Analytic expressions were obtained for
charges of the quasiparticles in both the incompressible
compressible regions of composite-fermion systems. In
incompressible regions the calculated fractions agree w
previous theories. In the compressible regions the quasi
ticle charge varies smoothly with position. It tends to ze
where the effective magnetic field vanishes and becom
equal to the electron charge where the composite-ferm
density becomes zero.

This theory of composite-fermion current fluctuations a
quasiparticle charge was then applied to an observable
nomenon by calculating the Johnson-Nyquist noise on fr
tional quantum Hall plateaus where there is no backsca
ing. The results obtained were in agreement with the Nyq
formula S54kBTG.

The Nyquist formula is usually derived from th
fluctuation-dissipation theorem44 so that this result is not sur
prising. However, the present derivation of the Nyquist fo
mula is of interest because it provides a good test of
mean-field theory of current fluctuations and quasiparti
charge in thisinteracting system, and because it provide
significant insights into the relationship between quasipa
cle fractional charge, composite-fermion edge states,
current noise. Some of these are the following.

The Johnson-Nyquist noise in the fractional quantum H
regime arises fromcompressibleregions of the 2DEG. It is
thereforenot primarily due to quasiparticles having the us
ally quoted values of the fractional charge that correspon
incompressible fractional quantum Hall states. For exam
for then51/3 quantum Hall state the Johnson-Nyquist no
arises from quasiparticles whose charges are for the m
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part not equal to 1/3 of the electron charge but span a wi
range of values.

Compressible edge channels associated with both the n
mal type-III and silent type-I composite-fermion Landau
level edge states4 contribute to the Johnson-Nyquist nois
when they are present at the edge, and their contributi
sum to yield the Nyquist formula.

Shot noise differs from Johnson-Nyquist noise in that
finite voltage is applied to the sample and a nonzero aver
current flows.Both incompressible and compressible region
at the edge contribute to the current noise in this case. A
discussion of shot noise is beyond the scope of this pap
e

c

.
ev

H
y

m

F
c

e

or-

ns

a
ge

ll
r;

however, it is already evident from the theory develope
above that quasiparticles with a range of different values
the quasiparticle charge associated with compressible and
compressible strips at the sample edges will contribute
shot noise. Thus the present work suggests that the ar
ments that have been used recently26,27to infer asinglevalue
of the fractional quasiparticle charge from shot noise me
surements may need some refinement.
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