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A composite-fermion edge-state theory of current fluctuations, fractional quasiparticle charge, and Johnson-
Nyquist noise in the fractional quantum Hall regime is presented. It is shown that composite fermion current
fluctuations and the charges of the associated quasiparticles are strongly renormalized by the interactions
between composite fermions. The important interaction is that mediated by the fictitious electric field associ-
ated with composite fermion currents. The dressed current fluctuations and quasiparticle charges are calculated
self-consistently in a mean-field theory for smooth edges. Analytic results are obtained. The values of the
fractional quasiparticle charges obtained agree with the predictions of previous theories in the incompressible
regions of the two-dimensional electron gas where those theories apply. In the compressible regions the
magnitudes of the quasiparticle charges vary with position. Since Johnson-Nyquist noise arises from the
compressible regions, it is due to quasiparticles whose charges differ from the simple fraciomhsioapply
in the incompressible regions. Nevertheless, the Nyquist noise forBwikkgTG is obeyed on fractional
guantum Hall plateaus. Some implications for the interpretation of recent shot noise measurements in the
fractional quantum Hall regime are briefly discusge$0163-182698)02924-3

[. INTRODUCTION the system and thus becomes fractional, the fractions being
in agreement with the fractional quasiparticle charges pre-
It was first shown by Laughlinthat the fractional quan- dicted earlier by Laughlin and otheté*2°For example, for
tum Hall effect occurs because electron-electron interactionthe fractional filling v=1/3 of the lowest Landau level the
result in incompressible states of two-dimensional electrorressed quasiparticle chargee* equals—e/3.
systems at special filling fractions of a Landau level. Subse- Recently experiments have been reported measuring cur-
guently, Jain showed that these incompressible many-bodient noise in the fractional quantum Hall regihé’ as a
states can be understood, in a mean-field sense, as arisipgpbe of the fractional quasiparticle charge. The results have
from the spectral gaps between the single-particle Landabeen interpreted?’ as direct experimental evidence of frac-
levels of quasiparticles known as composite fermions andionally charged quasiparticles widf =e/3 atv=1/3. How-
that the fractional quantum Hall effect can be viewed as thever, the theoretical predictioh®2° that e* =e/3 at v
integer quantum Hall effect of composite fermidn§he  =1/3 are based on the assumption that the electronic state is
composite-fermion theory has yielded many remarkable reincompressiblewhereas current noise originates at the edges
sults and there is now an extensive theoretical and experf the sample where both incompressible and compressible
mental body of literature supporting it and examining itsregions occur. Furthermore Johnson-Nyquist noise aéres
ramifications’ tirely from the compressibleegions. It is therefore of inter-
Following Jain’s suggestion that the fractional quantumest to examine both the fractional quasiparticle charges and
Hall effect is the integer quantum Hall effect of compositethe associated current noise theoretically within an edge-state
fermions, a model of composite fermion edge states has beanodel that admits both incompressible and compressible re-
proposed® that generalizes the very successful edge statgions at the edge. This is the purpose of the present article.
theories of transport in the integer quantum Hall rediméen Section Il contains a brief summary of those aspects of
fractional quantum Hall phenomena. This mean-field modetomposite-fermion mean-field theory and of the edge-state
was developed for high-mobility systems with smooth edgemodef® that will be used in the remainder of this paper.
potentials and has been able to account for a great deal of In Sec. Il | discuss electric current fluctuations in the
experimental data including the observed intéyeand fractional quantum Hall regime within the framework of the
fractional! quantized Hall conductances, the results of transedge-state modéf® and show that to understand these fluc-
port experiments on Hall bars with smooth potential barrierduations one must consider the interactions between the com-
and constriction$?~*8and the observed Fermi-liquid-like be- posite fermions, the important interactions being those medi-
havior of Aharonov-Bohm resonances associated with antiated by the fictitious electric fietd 3922 associated with
dots in the fractional quantum Hall regini&?° composite-fermion currents. These interactions renormalize
The singular gauge transformatfoit?? that transforms the current fluctuations and their effects must be calculated
electrons into composite fermions by attaching to them tubeself-consistently. This is done analytically in a mean-field
of fictitious magnetic flux preserves charge, and therefore thapproximation and it is found that the dressing of the current
charge of a composite fermion is equal to that of an electronfluctuations can be interpreted as a dressing of the charges of
However, it was pointed out by Goldhaber and 34ihat the  the composite fermion quasiparticles. The dressed composite
local charge associated with the composite fermion ifermion charges are fractional and in incompressible regions
dressed by the presence of the other composite fermions the predicted fractions agree with those obtained earlier by
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Laughlin and other§?*?>2*However, in the compressible @ o
regions near the edge the fractions are predicted to be differ memy2 | mem, . menge2 | wem, .
ent and to vary smoothly with position. As the edge is ap- { “\

>

proached and the local electron density tends to zero thess
dressed composite fermion charge approaches the electrc&c’
charge—e.

Current noise in mesoscopic systems has been discusse
theoretically in recent years by many authdfs>° but not
from the perspective of composite-fermion edge states. In FIG. 1. Schematic drawing of the composite-fermion Landau-
Sec. IV | calculate the Johnson-Nyquist noise on the fraclevel structure near an edge. The effective magnetic Bgld well
tional quantum Hall plateaus using the composite-fermioraway from the edge is parallel to the real magnetic fiel@anand
edge-state mod? and the results of Sec. Il for the dressed antiparallel in(b). The apex of each “fan” of energy levels occurs
current fluctuations. The method used is a generalization ofhereB¢=0 for an even integem, wherem is the number of
the wave packet arguments of Landadend Landauer and fictitious flux quanta attached to each electnom.is the number of
Martin®® to composite-fermion edge-state theory and thdictitious flux quanta attached to each electron in the bulk, far from
fractional quantum Hall regime. Summing the contributionsth.e ed.ges of the samp!e. Vertical dotted lines Qelimit the regions
of all of the active and silent modbsf the edge-state model with different m. The different types of composite-fermion edge
and including the variation of the dressed quasiparticle®iates are labeled I, 11, and Il
charge across the edge obtained in Sec. Il yields a result in

agreement with the Nyquist formuls=4ksT Gy, for all of whereJ is the two-dimensional electric current density.
Jain’s filling fractions of a Landau level. Her® is the In the composite-fermion edge-state mddelt is as-

Johnson-Nyquist noise on the fractional quantum Hall p|a_sumed that the electron density is slowly varying with posi-

teau,kg is Boltzmann's constantl is the temperature, and tion and that, for local Landau-level filling fractions in the
Gy i tBhe fractional quantized Hall conductance ' vicinity of 1/m, the composite-fermion Landau-level ener-

The significance of these results is discussed in Sec. \gieS behave qualitatively like
where | also comment briefly on the implications for the

Distance from the edge —

— 1
interpretation of recent shot noise experiments. Em,r=(r+2)hweq+W, )
where r=0,1,2... and W is the position-dependent
Il. EDGE-STATE MODEL composite-fermion effective potential energy that includes

the effects of the fictitious electric field. Equati@h) is a

In composite-fermion theory, a singular gauge transforq,4 gescription of the composite-fermion Landau-level
mation attaches a tube of fictitious magnetic flux with an

structure in uniform systerisand yields edge states that
even number of flux quanta to each electféh??The elec- ¥ y g

her with th hed 1 bes ob °C* propagate in the direction consistent with experiméfifs.
trons together with the attached flux tubes obey Fermi statistig pehavior of the composite-fermion Landau levels near
tics and are called “composite fermiong.'In mean-field

h he i ) b ite fermi h an edge is illustrated in Fig. 1. The effective magnetic field
theory the interactions between composite fermions that a8 well away from the edge is parallel to the real magnetic

due to the vector potentials associated with the tubes of ﬁcﬂeld in Fig. 1@ and antiparallel in Fig. (b). The apex of
titious flux are replaced by interactions with a fictitious av- each “fan” of energy levels occurs wheR =0 for some
erage n"n_agr)etic field and afictiti(_)us_ elegtric_ field. 22 even integem; there according to Eqql) and (2) E,,,
The fictitious average magnetic field is giver’8y =W. The different types of composite-fermion Landau lev-
h els are labeled I, II, and Ill. Type | Landau levels are silent
= —neém—= —mvB, ) edge modes in the sense that the average currents that they
e carry are independent of the electrochemical potential at the
edge, provided that quasiequilibrium conditions prevail
there? However, Landau levels of types Il and Il carry non-
zero average net currents when the difference between the

density,B is the unit vector pointing in the direction of the ., ygjte-fermion effective electrochemical potentials at
true magnetic fieldB, and v=n.h/eB is the Landau-level opposite edges of the sample is not Z&ro.

filling parameter. Thus the composite fermions experience an
effective magnetic field

By

where an even integer number of flux quantah/e are
attached to each electrom, is the two-dimensional electron

IIl. CURRENT FLUCTUATIONS
Ber=B+ By 2) AND FRACTIONAL CHARGE

Consider a two-dimensional electron gé2DEG) of
lengthL in the x-y plane connecting source and drain con-
tacts as depicted in Fig. 2. Suppose that the magneticBield

Wetr=€|Bope/m* 3) points in thez direction and define an effective vegtor poten-
tial Ags=[0,/"Bets(u)du,0] such that the effective mag-
is the effective cyclotron frequency amtf* is the composite- netic field experienced by composite fermions is given by
fermion effective mass. The fictitious electric field®$°?®  B_;;=VXA.. The effective composite fermion Schro
A dinger equation for theth composite fermion Landau level
Eq=—(JXB)mhe?, (4) is therf?

and fill effective Landau levels spaced in energy fty.;
where
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FIG. 2. Schematic of a 2DEG of lengthconnecting source and

drain reservoirs in a magnetic field. The reservoirs are effectively,

short circuited by the capacitors C and @t the frequencies of

interest. Arrows indicate the direction of propagation of edge states(.1

2

h
| TV eAess] FWIX) | ((X,Y) = € kihr k(X,Y),
2m*\ |
(6)
where
e k(XY) =€YX 1(X). 7
The net electric current in the direction is then
1
IZ_E% eI\Ir,kvr,kr €S))

whereN,  andv,  are the occupation and velocity of the
single-particle composite-fermion stafek) and L is the
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corresponding deviatiodlr  of the currentl from (I).
(General current fluctuations will be treated at the end of this
section)

Bearing in mind Eq(10), Jlr x can be written as

5|R,K:5|gy,<—§2 f(N,,kmur,k. (12)

Here
Uy k= €k €r (12)

and
Slpk="— E(NR,K—<NR,K>)U§,K: (13

wheree;, andvy, are the self-consistent single-particle en-
ergies and velocities for the composite-fermion system with
nly Ng ¢ differing from its mean.

Notice that the second term on the right-hand side of Eq.
1) includes the effect of changing the occupation of the
single-particle composite-fermion state in Landau leRel
with wave vectorK on the currents carried by thether
single-particle composite-fermion states. It will be seen be-
low that this effect is very important.

To proceed further analytically | will assume that the edge
currents are of the quasiequilibrium type and that the edge
potentialW(x) is so slowly varying withx that(N, ,) varies
little over the range of values ok that contribute
appreciablf? to the integral in Eq.(11). In Eg. (1),
J{N; dU, , then become$N, ) [dU, \.

The occupation number fluctuatiof « —(Ng k) affects
U,  through the associated fluctuations in the fictitious elec-
tric field Ey, the Coulomb potential, and the effective mag-
netic field. Only the first of these contributes fd U, , be-
cause the others are local effects and do not affect the

(6]

length of the sample. Since composite fermions obey Fernintegral. Thus using Ed4) for Eg yields

statistics,N, , takes the values 0 and 1. Fluctuations in the
values that thé\, , take give rise to current noise. However,
an important complication is that , in Eq. (6) [and there-
forev,  in Eq. (8)] depends on the specific configuration of
occupation numbersl, , as will be discussed further below.

In the spirit of mean field theory let us now approximate
the average electric curreft) by setting every occupation
numberN, , in Eq. (8) formally equal to its ensemble aver-
age value(N, ,) and replacingv, x by the corresponding
mean-field velocity functiorv = (1/4)(del/dK), where
e?f’k is the solution of Eq(6) with A.s; and W calculated
using the average occupation numb@xs ). Then

O

1
_[2 e(N; 1 0v% 9

or, equivalently,

e
=-23 [ (N ode 10
Now let us alter the occupation numbbli  of just one
single-particle stat¢R,K) so that it differs from the mean

(Ngr) that figures in Eqs(9) and (10), and examine the

mh
f dUr,k:AU:f e 5Eg.dX= i?& RK 1 (14

where the uppeflower) sign applies wheB.; is parallel
(antiparalle] to B. Notice that thetotal current fluctuation
Slr k is used for the integral of the fluctuation current den-
sity in the last term in Eq(14). This ensures that the final
result (16) of this calculation will include the interactions
between composite fermions that are mediated by the fluc-
tuation 6E, of the fictitious electric fieldself-consistently
Replacingf(N; ,)dU, , by (N, ) fdU,  in Eq. (11) and
using Eq.(14) yields

Slpk= 513+ mdl R,KZ (N; k) (15)
or
518
5' R,K:$' (16)
1im2r <Nr.K>

The physical meaning of this result is that a single-
particle composite fermion current quctuatiGﬁhgyK gener-
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ates a fluctuation in the fictitious electric field that extendsarises from the compressible regions in this regime and will
over a distance of a few magnetic lengths. As a result de evaluated using the above results in Sec. IV.
“kink” develops in the energy dispersions dfll of the Since the modification of the velocities of the composite
composite-fermion Landau levels in that vicinity modifying fermions fromuv ) to vy, by the fictitious electric field as-
the velocities of the surrounding composite-fermion statessociated with the current fluctuation is responsible for the
Thus the single-particle current fluctuation is dressed by theressing of the composite-fermion charge and since the
disturbance that it generates in the surrounding compositetressed velocity)’FZ,K appears explicitly in Eq(17) along
fermion medium. The dressing must be calculated selfwith e* it is of interest to consider how large the effect of the
consistently since the current fluctuation induced in the surfyctuation of the fictitious electric field aré, . may be. This
rounding medium generates its own contribution to themay pe estimated as (AU/#AK), whereAU is as in Eq.
fluctuation in the fictitious electric field, which in turn affects (14) and Ak is the difference in wave vector between states
the current. The self-consistent calculation yields the dressegeparated by the magnetic length #1/(eBe;;) in real space.
current fluctuationbl g « given by Eq.(16). The result is found to be proportional &L and is therefore
Thus the current fluctuation can be understood as ey small for macroscopic samples. The dressing of the qua-
dressed quasiparticle associated with the composite fermiagnarticle charge on the other hand is due to the modification
in Landau-levelR with wave vectorK. The quasiparticle y the fictitious electric field of the velocities of large
propagates with same velocityz « as the composite fer- ymper(of the order ofL/a) of single-particle composite-
mion. It is therefore intuitively appealing to rewrite H36)  fermion states and for that reason is a very significant effect

for the dressed current fluctuation _in aform _analogous to Edeven though the modification of the individual composite-
(13) for the “bare” current fluctuation but with a renormal- fermion velocities is very small.

ized quasiparticle charge, i.e., Finally, it is important to consider whether the above re-
ot sults that have been obtained by considering the dressing of
&K . . N s .
Slpk=— (Nrx—(Nri)vk k. (17) a single single-particle current fluqtuatlon are applicable to
L thermal current fluctuations that involve large numbers of

such single-particle “excitations” simultaneously. This will
be done in two steps:
—e First, if a current fluctuation is due to any number of
—eRk=————. (18 single-particle excitations that are widely separated from
1+mY, (N, k) each otherlby much more than a magnetic lenpth real
space then the dressing of each single-particle current fluc-
Where the 2DEG is incompressibl@y, ) is either 0 or 1 tuation will occur separately from the others and it follows

depending on whether theth composite fermion Landau that EG.(17) becomes
level is full or empty, and therefore

where the dressed quasiparticle charge is given by

*
—e €Rr,K .
et = 1=—> K (Ng—(N 21
e’c_limn’ (19 0 %:2 L (Nrk=(Nr))VR K 2D

wheren=3 (N, ) is an integer anan is an even integer.
This agrees with the fractional quasiparticle charges thawhere &l is the total dressed current fluctuation, the sum
have been derived previously by other methods for incomover R andK is over the individual single-particle excita-
pressible states at Jain’s filling fractioms=n/mn+1 of a  tions that contribute to the current fluctuation and the dressed
Landau level:?*%23Fgr example, in the bulk for the frac- composite fermion quasiparticle chargeey,  is given by
tional filling »=1/3 of the lowest Landau levem=2, n  Eq.(18).
=1, and the dressed quasiparticle charge® given by Eq. Second, if a current fluctuation is due to any number of
(19) equals—e/3. single-particle excitations that are all so close to each other

On the other hand as the depletion region at the edge dn real space thatN, ,) does not vary appreciably over the
the sample is approached the filing of the composite-entire region containing these excitations for any com-
fermion Landau levels approaches zero. TByéN, () —0  posite fermion Landau levet then the entire argument
and Eq.(18) predicts that-e* tends to—e. leading to Eq.(16) still holds if &l %,K is replaced with

In the compressible regions between these two extremeabe sum of the “bare” single-particle current fluctuations
the behavior of the quasiparticle charge can be obtained from 1/L 3 «e(Ng x—(Nr k))vi « @ndélg ¢ is replaced with
Eq. (18) if the behavior of(N, ) is known. For the usual the total dressed current fluctuatiah. The result of this
case of quasiequilibrium edge currents this is given by thealculation turns out to be also given by E¢&1) and(18).
Fermi function Since Egs.(21) and (18) are valid in the two opposite

limits of widely separated and closely spaced single-particle
1 excitations discussed above it is reasonable to suppose that
eBleimp 1’ (20 they are valid(or at least a good approximatipim general,
at the level of mean-field theory and provided that the edge

whereu;* is the composite-fermion electrochemical potentialpotential W(x) and (N, ,) are sufficiently slowly varying
for the ith (closest edge,8=1/kgT, T is the temperature, functions of x and k as has been assumed in the above
and kg is Boltzmann’s constant. Johnson-Nyquist noiseanalysis.

<Nr,k>:
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IV. JOHNSON-NYQUIST NOISE tRK,I+1

1
5' R'K’Izé\[_RKﬁ 5' R’K(t)dt- (28)

I will now apply the theory developed above to the sim- -y

lest relevant experimentally observable phenomenon, th . . .
i P y P jXssummg that the current fluctuations for differéqtk, and

Johnson-Nyquist noise on fractional quantum Hall plateau .
ya g P are uncorrelated, Eq27) yields

where there is no backscattering of the composite fermions.
Johnson-Nyquist noise is the electric current noise that .
occurs in the absence of an applied voltage across a conduc- (81,81 )= 2, (81% ) ot5 e @@ iRl (29)
tor connecting two reservoirs and is due to thermal fluctua- RK
tions in the numt?er_ of charge carriers that pass th.rough thﬁoting that(ﬁlzRK ) is independent of and that for low
conductor per unit time. As depicted schematically in Fig. 2, ™
the reservoirs are assumed to be effectively short circuite
via two large capacitances to eliminate any voltage fluctua-
tions between them at the frequencies of interest.
Current noise is described in terms of the spectral density (81,81, )=2m>, (S1& ) trkdw+w’),  (30)
of current-current fluctuations that is defined as folldws. RK

Let the Fourier transform of the current fluctuations be which by comparison with Eq€23) and (25) yields

gequencies»,w%l/atR,K, we may replac& e (@ )tri,
y 2md(w+ ') St , EQ.(29) becomes

6Iw=f sl(t)e'“dt. (22) S(f)=2>, (812 )tk (31
- RK ' '
The current-current correlation functiofdl(t)5l(t")) de-  for the spectral density of the current noise.
pends only ort—t’ if {81,6l,/) is of the form In Eq. (31) Slgk is as in Egs(17) and(21) but with L
) replaced byD since the wave packet basis is now being
(81,0l,)=27F ,0(0+"). (23 used. SettingNZ ) =(Ng) sinceNgx= 0 or 1, using
* _ H H * av H H
It then follows that((81)2)=(5l(t) 5l (t)) is given by lvRk|=D/dtrk and approximating x by vg’ (which is
reasonable according to the discussion in Seg, By. (31)
((5|)2>=—f Fwdwzzf Fondf (24)
mJo 0

er K’
f) =22, —(N 1—(N av . 32
wherew=27f. Thus the spectral density of current fluctua- S % D (Nrid(1=(Nri)) [vrid- (32

tions at frequency is : : .
I quency | Note that since &(Ngk)<1 the summand in Eq:32) is

S(f)=2F,.«, (25) non-negative and is not zero only for states in compressible
i regions. Transforming the sum ovErinto an energy inte-
whereF is defined by Eq(23). gral yields

Let us now rewrite Eq(21) as

2

S(f)= HE f ek kAN )(1—(Ng))deg . (33)

(=2, dlrk(t), (26) §
RK Assuming thatNg ) is of the form given by Eq(20) yields

where Sl k(t) is the dressed contribution of the state with

wave vectorK in composite-fermion Landau lev8 at time HNg k)

t to the current fluctuation. The time dependence arises be- 9e¥y

cause the occupation numkég « fluctuates taking values 0 '

and 1 at different times as composite-fermion wave packetgnd Eq.(33) becomes

in composite-fermion Landau lev8®l and centered on wave )

vectorK are injected into the 2DEG and absorbed from it by _ < *x 2

the reservoirs. In the spirit of Landauer and Martin’s treat- S(h= h/B2 f eri UNr ). (39

ment of systems of ordinary fermiod&3°| will assume that _ _

these wave packetsvhich may be occupied or emptare F|na[ly, noting the form(18) of the dressed composite-

mutually orthogonal and enter the 2DEG in a regular seférmion charge, Eq(35) reduces to

guence at timesg x| spaced by the timedtg «=tg g +1 )

—trk, that it takes a wave packet to traverse a distdbce S(f)= Zi dNiot (36)

equal to its length. For the low frequencies of interest hBJ (1=mNg)?’

(w<<1/6tg k), Eq. (22) thus becomes

=—B(Nrk)(1—(Ngrk)) (34)

where Ny, stands for= (N, ), the local total filling of the
o , , composite-fermion Landau levels. In keeping with the non-
=2, f Slri(t) e@ldt= > Otgy Sl €@K, negative character of the summand in E2), the conven-
RIS RK 27 tion has been adopted that the direction of integration in Egs.
(33), (35), and (36) is such thaide?e’fK, d(Ng k), anddN
where are always positive, respectively.



1462 GEORGE KIRCZENOW PRB 58

Equation(36) gives the low-frequency Johnson-Nyquist  The Johnson-Nyquist noise on quantum Hall plateaus for
noise on fractional quantum Hall plateaus where there is nthe case shown in Fig(l) whereBy; is antiparallel taB far
backscattering of composite fermions. In general the integratom the edges can be calculated similarly. Here the Landau-
consists of separate contributions from each region wherkevel filling in the bulk is the Jain fractionn=n,/(mgyn,

B+ IS parallel or antiparallel t® at each of the edges of the —1) with n, a positive integer andn, an even positive
2DEG that run between the source and drain in Fig. 2. integer. In this casenly the type-I levels contribute to the

Let us consider now the case illustrated in Fige)Wwhere  Johnson-Nyquist noise and the result of evaluating (B6)

Bes¢ is parallel toB far from the edges where the Landau- is
level filling v=ny/(Mmyn,+1) is a Jain fraction witm, a
positive integer andn, an even positive integer. Suppose 4

initially for simplicity that only the type-lll composite- S(f)ZEFm, (41)
fermion Landau levels are present and that they empty one bTb

by one as the edge is approached. T\ in Eq. (36)  once again in agreement with the Nyquist form@éf)
ranges from O at the edge tg,, the number of occupied =4k, TG. The result for S(f) is once again the same

composite-fermion levels in the bulk, and the Johnsonywhether only the states with=m; or both the states with
Nyquist noise(including the contributions from both edges m=m, andm=m,+2 are included in the model.

of the 2DEQ is given by

- 4e? (n, ANy - 4 e? V. CONCLUSIONS

M 37

SH= hBJo (1+myNg? B h (mpny+1)°

In this paper it has been shown that interactions between
composite fermions must be included in composite-fermion
This is just the Nyquist formul&(f)=4kgTG since on a theories of electric current noise.
quantum Hall plateau the two-terminal conductance The important interactions were found to be those medi-
G is equal to the quantized Hall conductandey ated by the fictitious electric field generated by composite-
=(e?/h)[ny/(myn,+1)]. fermion current fluctuations. Their effects must be calculated

Now let us consider the contribution of the “silerft” self-consistently. This was done analytically in mean-field
type-I composite-fermion Landau levels in Figajlto S(f).  theory for systems with smooth edge potentials.

For thesen=m,+ 2. Let us suppose that the crossover from The interactions were found to renormalize the current
the type-lll to the type-I| states occurs at a local Landau-levefluctuations and the charges of the quasiparticles associated
filling fraction v, whereN,,= n, for the type-Ill states and at with composite fermions, making the quasiparticles fraction-

Nio= N, for the type-I states. Then ally charged. Analytic expressions were obtained for the
charges of the quasiparticles in both the incompressible and

N, n. _compressib!e regions of composite-fermion systems. In t_he

Py H (38 mcompressmle_ regions the calcula}ted frag:t|ons agree ywth
bile (mp+2)nc—1 previous theories. In the compressible regions the quasipar-

and ticle charge varies smoothly with position. It tends to zero

where the effective magnetic field vanishes and becomes

4e?( (ns dN . dN equa_l to the electron charge where the composite-fermion
S(f)= _( f tot +f tot density becomes zero.
hB\ Jn. (1+mpN)?  Ini[1—(my+2)Ny]? This theory of composite-fermion current fluctuations and
quasiparticle charge was then applied to an observable phe-
* dNiot nomenon by calculating the Johnson-Nyquist noise on frac-
fo [14(my+2)Nyd?)’ B9 tional quantum Hall plateaus where there is no backscatter-

ing. The results obtained were in agreement with the Nyquist
where the first integral is the contribution of the type-lll formula S=4kgTG.
states, and the secorithird) integral is that of the type-I The Nyquist formula is usually derived from the
states for whictB. is antiparallel(paralle) to B. The limits  fluctuation-dissipation theorethso that this result is not sur-
of integration whereN,;=% correspond toB.; passing prising. However, the present derivation of the Nyquist for-
through zero. Evaluation of Eq439) using the relation(38) mula is of interest because it provides a good test of the
betweenn, andn/ once again yields the same Nyquist ex- mean-field theory of current fluctuations and quasiparticle

pression, charge in thisinteracting system, and because it provides
significant insights into the relationship between quasiparti-
4 ¢? Ny cle fractional charge, composite-fermion edge states, and
S(f)= B (Mgt 1)’ (40 current noise. Some of these are the following.
b

The Johnson-Nyquist noise in the fractional quantum Hall
as was obtained above by considering the simpler modekegime arises frontompressiblaegions of the 2DEG. It is
with only type-lll composite-fermion Landau levels. Thus thereforenot primarily due to quasiparticles having the usu-
although the silent type-I levels contribute to the Johnsonally quoted values of the fractional charge that correspond to
Nyquist noise, remarkably, thetal of the type-I and type-1ll  incompressible fractional quantum Hall states. For example,
Johnson-Nyquist noise is the same whether the type-I levefor the v=1/3 quantum Hall state the Johnson-Nyquist noise
are present in the model or not. arises from quasiparticles whose charges are for the most
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part not equal to 1/3 of the electron charge but span a widehowever, it is already evident from the theory developed

range of values. above that quasiparticles with a range of different values of
Compressible edge channels associated with both the nothe quasiparticle charge associated with compressible and in-

mal type-lll and silent type-I composite-fermion Landau- compressible strips at the sample edges will contribute to

level edge statéscontribute to the Johnson-Nyquist noise shot noise. Thus the present work suggests that the argu-

when they are present at the edge, and their contributionments that have been used recéefitfy to infer asinglevalue

sum to yield the Nyquist formula. of the fractional quasiparticle charge from shot noise mea-
Shot noise differs from Johnson-Nyquist noise in that asurements may need some refinement.

finite voltage is applied to the sample and a nonzero average

current rows.Both incompressible and c.ompres.sible regions ACKNOWLEDGMENT

at the edge contribute to the current noise in this case. A full
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