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Nonequilibrium dislocation dynamics and instability of driven vortex lattices in two dimensions
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We consider dislocations in a vortex lattice that is driven in a two-dimensional superconductor with random
impurities. The structure and dynamics of dislocations are studied in this genuine nonequilibrium situation on
the basis of a coarse-grained equation of motion for the displacement field. The presence of dislocations leads
to a characteristic anisotropic distortion of the vortex density that is controlled by a Kardar-Parisi-Zhang
nonlinearity in the coarse-grained equation of motion. This nonlinearity also implies a screening of the inter-
action between dislocations and thereby an instability of the vortex lattice to the proliferation of free disloca-
tions. @S0163-1829~98!02342-X#
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I. INTRODUCTION

Transport of periodic media such as vortex lattices in
perconductors and charge-density waves through random
vironments plays a paradigmatic role in condensed-ma
physics. While the pinning dominated low-drive regime e
hibiting glassy features has long been a subject of exten
research, the nontrivial properties of the high-velocity
gime were recognized only recently. The prediction of
disorder-induced nonequilibrium phase transition1 from plas-
tic to coherent motion of the vortex lattice upon increas
drive triggered extensive studies of rapidly driven disorde
lattices and has attracted much recent interest in theory1–6

experiments,7–9 and simulations.10–15

The observed dynamic transition can be described qu
tatively as dynamic ‘‘melting’’ in analogy to the equilibrium
melting transition, where disorder induces an effect
‘‘shaking’’ temperature.1 However, this analogy cannot b
extended to the important questions regarding the effec
disorder on structural properties of driven lattices. The intr
sic nonequilibrium nature of the driven state renders
analysis of the structural transition specifically challengin
Even theequilibriummelting is described theoretically in th
two-dimensional case only. Within the Kosterlitz-Thoule
~KT! theory16 melting is mediated by the unbinding of dis
location pairs. The underlying melting mechanisms are
far less understood in higher dimensions. Yet the issue of
stability of the ordered phase with respect to the formation
topological defects was identified as a key issue for the st
tural transitions, and substantial progress was achieve
understanding the role and contribution of disorder in
static case.17 Whereas in equilibrium the criteria for the st
bility of topological order follow from comparing relevan
energy scales, the analysis of defect nucleation in thenon-
equilibrium situation is more subtle since it can no long
rely on energy balance considerations. In this paper we
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dertake a study of the stability of the topological order of t
dynamic state focusing specifically on the two-dimensio
vortex lattice driven through a disordered environment. W
describe an intrinsic nonequilibrium mechanism giving r
to the proliferation of topological defects and therefore t
instability of the driven vortex lattice.

The outline of this paper is as follows: in Sec. II w
specify the coarse-grained equation of motion for the d
placement field. In Sec. III we study the anisotropic and s
diffusive nature of the dynamics of a single dislocation n
glecting the effect of the Kardar-Parisi-Zhang~KPZ!
nonlinearity, which is discussed further in Sec. IV. There
show that the KPZ term leads to a ‘‘spiral’’ structure
dislocations, screening their long-range interaction, and
covering a normal diffusion of defects. Our results are su
marized and discussed in Sec. V. Some technical aspect
deferred to the Appendix.

II. MODEL

We examine a dilute system of ‘‘test’’ dislocations em
bedded into the elastic medium of the two-dimensional v
tex lattice. The vortices are driven along one of the princi
lattice directions, thex axis. The dynamics can be formulate
in terms of a Langevin equation of motion for the displac
ment u of vortices from their perfect lattice positions th
move with average velocityv.18 The motion is governed by
a competition of elastic interactions between vortices, th
mal noise, and pinning forces. Pinning is described by
potential V with local correlation V(R)V(0)5D0d(R),
where thed function is supposed to have a width of the ord
of the superconducting coherence lengthj.

Since the unbinding of dislocations is controlled by th
interaction on large scales it is legitimate to use a coa
grained description of the vortex lattice. It was deriv
14 541 ©1998 The American Physical Society
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14 542 PRB 58ARANSON, SCHEIDL, AND VINOKUR
recently2,4–6 that on large spatial scales the equation of m
tion assumes the form

hu̇5c“2u1dF1z1x¹xu1
l

2
~“u!21 f ~r1vt !. ~1!

For our purposes it is sufficient to retain only the compon
of the displacement field parallel to the velocity. Althoug
the other components also experience fluctuations on l
scales, they can only further increase the instability of
lattice, which we find below to occur even in the absence
transverse displacements. Equation~1! is written in the frame
moving with the average velocity of the vortices, where ea
vortex has a vanishing average displacement around its
erage positionr . h is the vortex friction coefficient. For sim
plicity we consider the elastic interaction as uniform, i.e.,
use only one elastic constantc, ignoring a distinction be-
tween shear and compression moduli and additional an
tropic corrections obtained from coarse graining.z is a ther-
mal noise with temperatureT. Although h, c, and T are
renormalized under coarse graining, the corrections are s
in comparison to the original values for sufficiently larg
drift velocities. The stress coefficientx and the Kardar-
Parisi-Zhang~KPZ! nonlinearityl,19 which are absent in the
bare equation of motion, are generated under coarse g
ing. The pinning forcef, which is simply a derivative of the
pinning potential in the bare equation of motion, acquire
random-force character under renormalization. In princip
it depends on the displacement asf (r1vt1u). However,
this dependence can be neglected after the coarse gra
has been performed. In the limit of large drift velocities the
parameters take the following values:4

x'
D0c2

j3a3h3v3
, ~2a!

l'
D0c2

j4a2h3v3
, ~2b!

dF'
D0

j4hv
, ~2c!

f ~R! f ~0!'
D0

2

j6h2v2
d~R!, ~2d!

^z~r ,t !z~0,0!&52hTd~r !d~ t !. ~2e!

f and z are assumed to be Gaussian distributed with z
mean.a is the vortex lattice spacing. The actual driving for
F5hv1dF required to achieve the prescribed velocityv is
determined from the consistency condition that the aver
displacement must vanish.

The linear stress term in Eq.~1! can actually be elimi-
nated by a transformation of the displacementũ( r̃ ,t)5u„r̃
2(x/h)t x̂,t… to a new frame moving with velocityṽ5v
2x/h in the laboratory frame.20 The coordinates are relate
by r̃5r1(tx/h) x̂, wherex̂ denotes the unit vector along th
velocity direction. The following analysis is based on t
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transformed equation. For simplicity of notation we subs
quently drop the tilde identifying transformed quantities.

III. LINEAR PROBLEM „l50…

We first examine the model in the absence of the K
nonlinearity to set the stage for its subsequent inclusion
the above model dislocations are incorporated as a disco
nuity in the displacement field of amplitudea, the vortex
spacing. Due to the restriction of our consideration to
displacement component parallel to the velocity, the o
possible orientations of Burgers vectors are parallel or a
parallel to the velocity.

In order to derive the dynamic response of a dislocation
the fluctuations of the elastic medium it is convenient to s
the displacement field into a topologically nontrivial~multi-
valued! part u0 and a single-valued partu; ,

u~r ,t !5u0„r2rd~ t !…1u;~r ,t !, ~3a!

u0~r ![
a

2p
w~r !. ~3b!

The dislocation position isrd(t) and w(r ) is the angle en-
closed between thex axis andr . The problem at hand is the
to derive an equation of motion foru; and rd from Eq. ~1!.
To this end we consider for the momentrd(t) as given and
find

hu̇;2c“2u;5z1 f ~r1vt !2h ṙd•“u0~r2rd!. ~4!

Since this equation is linear inu; one can easily calculate
u; for given z, f , and dislocation trajectoryrd . Eventually
we determine the dislocation velocityṙd in response to the
forcesz and f from a condition of local equilibrium for the
dislocation core,

“u;„rd~ t !,t…50. ~5!

This equation is valid for ‘‘slow’’ changes ofu; such that
the displacement singularity ‘‘instantly’’ moves to a poi
where it is no longer subject to forces because its envir
ment u; is locally homogeneous.u; can be directly ob-
tained from Eq.~4! that has to be imposed with a short-sca
cutoff of ordera.

Supposing that the fluctuations of the elastic medium
weak and the dislocation displacement is slow, the equa
of motion for the dislocation can be written in the form

2 ivhd~v!rd~v!5fd~v! ~6!

with a Peach-Koehler–like force

f a~ t !5eab¹bu;
ext
„rd~ t !,t… ~7!

(e is the totally antisymmetric tensor; see the Appendix
some intermediate steps!. Hereu;

ext is the contribution tou;

arising from the external forcesz and f at zero dislocation
velocity. The dislocation drag coefficient
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hd~v!5
a

2Ek

1

2 ihv1ck2
~8a!

'
ah

8pcS ln
4pc

huvua2
1 iarctan

4pc

huvua2D for uvu!
4pc

ha2

~8b!

diverges logarithmically for small frequencies because of
long-ranged response of the displacement field to the di
cation motion. This divergence with vanishing frequency
equivalent to a divergence with increasing system size
zero frequency. It is characteristic for two dimensions a
has been found previously for dislocations in vortex lattic
retaining both displacement components21 and also in
pattern-forming systems.22,23

The force entering Eq.~6! has zero mean and correlation

^ f da~v! f db~v8!&5d~v1v8!Fab~v!, ~9a!

Fab~v!5E
k
k̃ak̃b

2hT1gd~v1k•v!

h2v21c2k4
, ~9b!

where the disorder contribution is proportional tog
[D0

2/j6h2v2 andk̃a[(beabkb . It is instructive to compare
the relative strength of thermal and pinning contributions

Fab
th ~v!'dab

hT

8pc2
lnF11S 4pc

hva2D 2G , ~10a!

Fyy
pin~v!'

g

6p2h2v3Uhv

c U1/2

for uvu!
p2c

ha2
, ~10b!

Fxx
pin~v!'

g

4p2c2v
U c

hvU1/2

for uvu!
p2c

ha2
. ~10c!

At low frequency the pinning contribution to they compo-
nent is negligible in comparison to the thermal contributi
Fyy

pin(v)!Fyy
th (v). However, the pinning contribution to th

x component dominates over the thermal contribut
Fxx

pin(v)@Fxx
th (v).

Since fd vanishes on average, the dislocation has m
zero velocity in the frame of Eq.~6!, i.e., their velocity is
smaller than that of the vortices byx/h}v23. The diffusive
behavior of dislocations is readily found from Eq.~6!. In the
absence of disorder, dislocations actually movesubdiffu-
sively,

^@r da~ t !2r da~0!#2&'
32T

a2h

utu

ln~4pcutu/ha2!
~11!

for utu@ha2/4pc. Despite this peculiar dynamic behavio
the fluctuation-dissipation theorem holds for dislocations
the absence of disorder, which implies that dislocation p
nevertheless unbind at the KT transition temperature.

The presence of disorder can significantly affect the d
fusive behavior of the dislocation. For qualitative purpos
we may still use the linear response approach, where
forces acting on the dislocation are evaluated at the un
placed dislocation position. This approach should provid
e
o-
s
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n

n
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-
s
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good approximation for a considerable time interval beca
of the logarithmic divergence of the drag coefficient. Fro
the above equations one finds that the motion issuperdiffu-
sivealong thex direction

^@xd~ t !2xd~0!#2&'
64gc1/2

3pvh5/2a2

utu3/2

ln2~4pcutu/ha2!
~12!

on large time scalesutu@h3v2T2/cg2, where the pinning
contribution dominates over the thermal contribution. T
validity of Eq. ~12! is limited by the fact that the nonlinea
terms in the equation of motion forrd have been neglected
This could lead on largest time scales to a further renorm
ization of the dislocation velocityṽ. However, a quantitative
calculation of the dislocation velocity is beyond the scope
the present paper, since it would require the inclusion
additional contributions to the equation of motion, such
those due to Peierls barriers. However, despite the possib
that Eq.~12! may not capture the true large-scale behav
one may conclude from a comparison of Eq.~12! to Eq.~11!
that the shaking effects of disorder correspond on la
scales to an effectively infinite temperature. This result p
vides a first indication for a disorder-driven unbinding
dislocations.

IV. NONLINEAR PROBLEM „lÞ0…

So far the quadratic KPZ nonlinearity has been exclud
from our analysis and now we address the question of ho
modifies the above findings. For simplicity, we initially dro
the random force term and the thermal noise to examine
structure and dynamics of single dislocations as well as
interaction between dislocations. In this case, Eq.~1! is re-
duced to the Burgers equation

hu̇5c“2u1
l

2
~“u!21dF. ~13!

In analogy to the usual pinning problem we consider
vortex drift velocity, which enters the last equation throu
l, as prescribed, and determine the related force contribu
dF from the stationarity conditionu̇50. Topological defects
in Eq. ~13! were studied recently in the context of patter
forming systems,23–28 where they constitute the source
‘‘spiral waves.’’ Therefore it is possible to carry over part
the previously achieved analysis to the present context.

It is convenient to perform the well-known Hopf-Col
transformation that leads to a linear equation for the funct
W[exp(lu/2c),

hẆ5c“2W2ck0
2W. ~14!

Looking for a stationary solution, the constant

k0
252

l

2c2
dF ~15!

will be determined from the condition that the solution is n
singular at the core~for the simplest choicek050 the solu-
tion W exhibits a nonphysicalr 21 singularity atr 50). Note,
that the stationarity ofu implies thatl and dF must have
opposite sign.
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Equation~13! possesses a solution of the form

u~r !5
a

2p
w~r !1m~r !, ~16!

wherem(r ) is a rotation-symmetric contribution induced b
the KPZ nonlinearity. This solution still represents a top
logical defect with the characteristic multivaluedness of
displacementu(w12pm)5u(w)1am ~our explicit consid-
erations apply tom51 only, the generalization to integerm
is straightforward!. The angular and radial dependences ofW
factorize,

W0~r ,w!5exp@~al/4pc!w#w~r !, ~17!

and for a stationary solution of Eq.~14! the radial contribu-
tion w(r )5exp@lm(r)/2c# has to satisfy a modified Bess
equation

] r
2w1

1

r
] rw1

a2

r 2
w5k0

2w, ~18!

wherea[al/4pc. Thus the solution to Eq.~18! is a modi-
fied Bessel function w(r )5Kia(k0r ) with imaginary
index.29 This solution has two characteristic length sca
separating three regions. On large length scalesr @Ls[k0

21

this solution decays exponentially,w(r )}exp@2k0r#/r
1/2. For

r !k0
21 anda!1 an expansion of the Bessel function yiel

w(r )'sin@a$ln(2/k0r )2g%# with Euler’s constantg. Thus
w(r ) assumes a maximum at a second characteristic sc

r 0[k0
21e2p/2a. ~19!

For r !r 0 the solution becomes strongly oscillating, which
unphysical. It is important to keep in mind that the equat
of motion for the displacement field is valid only on scal
larger than a cutoff scaleRc of the order of the vortex spac
ing. Therefore the oscillatory behavior ofw at small scales is
an artifact of Eq.~13! that does not account for the disloc
tion core structure. The above solution is physically me
ingful only as long asm(r ) or w(r ) depend monotonously
on the distance, i.e., the outermost maximum of the solu
found above has to be identified with the core radius. T
Eq. ~19! actually determinesk0 , or equivalently, the screen
ing lengthLs as a function ofa,30

Ls5k0
21;Rce

p/2a;ae~v/v0!3
, ~20a!

v0
35

D0c

2p2j4a3h3
. ~20b!

For smalla, i.e., large velocityv of the vortex lattice,Ls is
exponentially large. Since forr→` the solution w;
exp@2k0r#/r

1/2 has exponential asymptotics, the displacem
u'(2c/l)ln w'2(2c/l)k0r increasesproportional to the
distancefrom the dislocation core.

The exponential decay of the Bessel function impliesex-
ponential screeningof the interaction between several disl
cations at positionsr i with distances large compared toLs .
~For pattern-forming systems, this screening was a subjec
intensive investigations.25–27! Indeed, since Eq.~14! is linear
-
e

s

n

-

n
s

t

of

in W, the multidislocation solution can be approximated a
linear superposition of individual solutions,

W~r !5(
i

W0~ ur2r iu!1w̃, ~21!

where the correctionw̃ is introduced in order to fix ‘‘topo-
logical conditions’’ imposed by the fieldu. For a well-
separated ensemble of dislocations the overlap between
individual contributions toW is exponentially small. From
the velocity of a dislocation under the influence of oth
dislocations one can actually obtain the dislocation inter
tion. The resulting interaction between two dislocationsi
and j decays as exp@22k0ur i2r ju# for k0ur i2r ju@1
~for k0ur i2r ju,1 there is a crossover to the usual powerli
behavior!.26,31

The structure of such a ‘‘spiral’’ dislocation is illustrate
schematically in Fig. 1. Note that the lattice is compressed
front of the dislocation, whereas it is diluted behind the d
location. This effect is independent of the orientation of t
Burgers vector parallel or antiparallel with the velocit
Given the fact thatl is positive this effect can be easil
understood from Eq.~13! if one considers the KPZ nonlin
earity as perturbation to the usual dislocation: the displa
ment strains are largest close to the dislocation core. Th
fore the vortices close to the core experience a force
drives them further in the direction of the velocity until th
elastic forces establish force equilibrium in a configuratio
where all vortices move with the same velocityv.

Due to the presence of the KPZ term in the equation
motion ~13! the force required to achieve a vortex motio
with velocity v is reduced:dF5F2hv52(2c/l)k0

2,0.
However, this contribution of the KPZ term, which is gene
ated by disorder, actually represents only a further correc
to the immediate pinning force~2c!, which is positive. For
large v the correction due to the KPZ term is negligible
comparison to the pinning force, since the former contrib
tion decays exponentially for largev whereas the latter de
cays only algebraically. Considering both contributions co

FIG. 1. Schematic illustration of the structure of a single dis
cation~marked by the symbol') in the vortex lattice driven along
the x axis ~lengths are in units ofa). The density is increased
reduced in directions in front of/behind the dislocation.
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sistently together, one findsF.hv, i.e., even in the presenc
of the KPZ nonlinearity disorder actually slows down t
vortex motion.

The structure of the vortex lattice in the presence o
dislocation/antidislocationpair is illustrated in Fig. 2. This
structure was calculated numerically directly from Eq.~13!
using a lattice domain with periodic boundary conditions.
Fig. 2 two such domains are reproduced. The inhomogen
of the density is apparent and the density can change a
narrow boundaries that correspond to shock-wave fronts19

Let us now include the effect of weak thermal noise a
disorder in the dynamics of a single dislocation. After t
Hopf-Cole transformation Eq.~1! assumes the form

hẆ5c“2W2ck0
2W1

l

2c
@z1 f ~r1vt !#W. ~22!

To derive the resulting equation of motion for a dislocati
we apply a perturbation technique,26 where the force fields o
thermal noise and disorder are projected on the transla
modesWx,y of the unperturbed Eq.~22! ~see also the Appen
dix!. Since the translation mode is simplyWx,y5]x,yW0 , the
equation of motion for the dislocation positionr 0 is of the
form

hd] tr 05
l

2cE d2r 8@z~r 8,t !1 f „r 82r0~ t !1vt…#

3W0~r 8!“W0~r 8! ~23!

with an effective drag coefficienthd of the form

hd5
h

2E d2r 8@“W0~r 8!#2. ~24!

Because of the exponential localization of the functionW0 ,
the drag coefficienthd is finite, in contrast to the linear cas
where it diverges logarithmically with the volume. From E
~23! we obtain the mean-squared displacement„abbreviating
z (n)[z(r (n),t (n)) and f (n)[ f @r (n)2r0(t (n))1vt (n)#…

^r0
2~ t !&5

l2

4c2hd
E

0

t

dt8E
0

t

dt9E d2r 8d2r 9^@z81 f 8#@z91 f 9#&

3W0~r 8!“W0~r 9!W0~r 9!“W0~r 9!. ~25!

FIG. 2. Schematic illustration of a dislocation pair~repeating
two unit cells with periodic boundary conditions! in the driven vor-
tex lattice. The vortex density changes quite abruptly along p
nounced shock-wave fronts. The vortex lattice is shown here
square lattice to make the local rotations and compression of
unit cell graphically more transparent although in reality the vor
lattice is hexagonal.
a

ity
ng

d

n

Let us first consider only the effect of thermal noisez.
Averaging Eq.~25! and utilizing the exponential decay ofW
at larger, we readily obtain a normal diffusive behavior

^r0
2~ t !&;t. ~26!

Thus, the exponential screening of the dislocation field d
to the KPZ nonlinearity is responsible for the transition fro
subdiffusion@Eq. ~11!# to normal diffusion.

To include the effect of quenched disorder we have
perform an additional disorder averaging of Eq.~25!.
Thereby we have to assume that the position of the dislo
tion is not correlated with the disorder, which is true at lar
enough drift velocity where the dislocation moves with t
vortices. As in the case of purely thermal noise we obt
normal diffusion of the dislocation due to the exponent
localization ofW, in contrast to superdiffusion in the linea
case.

V. CONCLUSIONS

The most important implication of the exponential scree
ing of the dislocation interaction is that even arbitrarily we
thermal noise or random force result in anunbinding of dis-
locations ~see Ref. 28!. This means that the correspondin
Kosterlitz-Thouless temperature is zero in this situation, a
that the topological order of the vortex lattice is always d
stroyed on largest scales. While previous arguments in fa
of such an instability were based on scaling arguments2 and
numerical simulations14 we have presented here an intrins
nonequilibrium mechanism. This instability mechanism is
primarily based on the presence of the KPZ nonlinearity
the equation of motion, which is generated by coarse gra
ing the equation of motion of a driven vortex lattice.

At this point we would like to recall that our analysis wa
based on the simplified model with only one displacem
component. Fluctuations of the second component will pr
ably lead to a significant further reduction of the stability
the vortex lattice, i.e., the true screening length could po
bly be smaller than the value forLs calculated above.

It is instructive to compare the dislocation screeni
lengthLs to the crossover scale where the KPZ nonlinear
becomes relevant for thermal fluctuations of the displa
ment field in the absence of dislocations. The latter scal
jc[exp(8pc3/hTl2),32 i.e., it is also exponentially large fo
small l. However, the functional dependence ofl is differ-
ent andLs!jc for smalll. ~Note, thatjc is defined only for
finite temperature whileLs is well defined even for zero
temperature.! Therefore, dislocations become important f
the structure of the system before it can show a crossove
the strong-coupling behavior of the elastic system.

In a remote analogy the interaction of dislocation pairs
a driven vortex lattice can be compared to the interaction
vortex pairs in a superconducting film. In the former ca
screening is induced by disorder, which in the latter cas
provided by magnetic fields. In the absence of screening b
systems would perform a Kosterlitz-Thouless transitio
Screening suppresses this transition as a large-scale phe
enon. However, for large enough screening lengths
crossover can still be well pronounced. The screening len
of the vortex interaction in films is known to be macroscop
The screening length of dislocationsLs as found above will

-
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also be macroscopic forv@v0 because of its exponentia
increase with the vortex drift velocity. It is therefore possib
that the lattice may be well ordered on experimentally r
evant scales and that dynamic melting or freezing can stil
found as a pronounced crossover.

In the nonequilibrium mechanism for the dislocation u
binding examined above the KPZ nonlinearity played a m
jor role. It is worthwhile to point out that even if dislocation
are artificially suppressed in a purely elastic approach,
nonlinearity can induce dynamic transitions betwe
‘‘rough’’ and ‘‘flat’’ sliding phases.33 The above analysis
demonstrates that even the ‘‘flat’’ sliding phase is actua
penetrated by free dislocations on length scales beyondLs .
Therefore one might suspect that their presence modifies
nature of this roughening transition or even blurs the tran
tion, turning it into a mere crossover. Again, this crosso
may yet be observable becauseLs grows exponentially for
large drift velocities.

To conclude, we have found an instability of the simp
fied one-component model of a drifting vortex lattice to pr
liferation of free defects. As already mentioned above,
presence of a second displacement component can only
to a further increase of fluctuations and to a reduction of
instability. We have presented an intrinsic nonequilibriu
mechanism for such an instability based on the presenc
the KPZ nonlinearity in the coarse-grained equation of m
tion for the displacement field of a vortex lattice driven in
disordered environment. The instability is due to an ex
nential screening of the dislocation interaction on a scaleLs
that increases exponentially with the drift velocity of th
vortex lattice.
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APPENDIX

In this appendix we give some intermediate steps of
calculation leading to equation of motion~6! for the disloca-
tion in the linear medium. Furthermore, we relate this cal
lation to a projection of the force field onto the translati
modes of the dislocation, as used in Sec. IV.

For givenrd Eq. ~4! can be solved foru; . Equation~5!
then implies

05eab¹bu;„rd~ t !,t…

5eabE d2r 8dt8¹bG„rd~ t !2r 8,t2t8…

3@z~r 8,t8!1 f ~r 81vt8!2h ṙd~ t8!•¹u0„r 82rd~ t8!…#,

whereG is the Green’s function foru; . In linear response
z, f , and henceṙd are small and one may replacerd(t8) by
rd(t) in the previous equation. This equation has to be
derstood as force balance between the contributionfd arising
from the external force fieldsz and f and the friction force
hdṙd . The separation of these contributions leads to Eq.~6!.

Let us now briefly discuss the connection between
approaches used in Secs. III and IV to calculate the dislo
tion dynamics. The subdiffusive behavior of dislocations
the linear system can be easily obtained from the equatio
motion, taking into account that in the linear system~4! the
translation mode isuxy5]x,yu0;1/r . Thus, the effective
mass diverges as lnr. For the mean-squared displacement
obtain ~dropping the disorder term!

^r0
2~ t !&5

1

hd
E

0

tE
0

tE d2r 8d2r 9dt8dt9

3^z8z9“u0~r 8!“u0~r 9!&

instead of Eq. ~25!. After averaging we obtain
^r0

2(t)&;t/ ln r't/ln t, which coincides with Eq.~11!.
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