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Nonequilibrium dislocation dynamics and instability of driven vortex lattices in two dimensions
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We consider dislocations in a vortex lattice that is driven in a two-dimensional superconductor with random
impurities. The structure and dynamics of dislocations are studied in this genuine nonequilibrium situation on
the basis of a coarse-grained equation of motion for the displacement field. The presence of dislocations leads
to a characteristic anisotropic distortion of the vortex density that is controlled by a Kardar-Parisi-Zhang
nonlinearity in the coarse-grained equation of motion. This nonlinearity also implies a screening of the inter-
action between dislocations and thereby an instability of the vortex lattice to the proliferation of free disloca-
tions.[S0163-182898)02342-X

[. INTRODUCTION dertake a study of the stability of the topological order of the
dynamic state focusing specifically on the two-dimensional
Transport of periodic media such as vortex lattices in suvortex lattice driven through a disordered environment. We
perconductors and charge-density waves through random edescribe an intrinsic nonequilibrium mechanism giving rise
vironments plays a paradigmatic role in condensed-matteto the proliferation of topological defects and therefore the
physics. While the pinning dominated low-drive regime ex-instability of the driven vortex lattice.
hibiting glassy features has long been a subject of extensive The outline of this paper is as follows: in Sec. Il we
research, the nontrivial properties of the high-velocity re-specify the coarse-grained equation of motion for the dis-
gime were recognized only recently. The prediction of aplacement field. In Sec. lll we study the anisotropic and sub-
disorder-induced nonequilibrium phase transititrom plas-  diffusive nature of the dynamics of a single dislocation ne-
tic to coherent motion of the vortex lattice upon increasingglecting the effect of the Kardar-Parisi-Zhan(KPZz)
drive triggered extensive studies of rapidly driven disorderechonlinearity, which is discussed further in Sec. IV. There we
lattices and has attracted much recent interest in the8ry, show that the KPZ term leads to a “spiral” structure of
experiments;® and simulationg®-%° dislocations, screening their long-range interaction, and re-
The observed dynamic transition can be described qualieovering a normal diffusion of defects. Our results are sum-
tatively as dynamic “melting” in analogy to the equilibrium marized and discussed in Sec. V. Some technical aspects are
melting transition, where disorder induces an effectivedeferred to the Appendix.
“shaking” temperaturé. However, this analogy cannot be
extended to the important questions regarding the effect of
disorder on structural properties of driven lattices. The intrin- Il. MODEL
sic nonequilibrium nature of the driven state renders the
analysis of the structural transition specifically challenging. We examine a dilute system of “test” dislocations em-
Even theequilibriummelting is described theoretically in the bedded into the elastic medium of the two-dimensional vor-
two-dimensional case only. Within the Kosterlitz-ThoulessteX lattice. The vortices are driven along one of the principal
(KT) theory'® melting is mediated by the unbinding of dis- lattice directions, the axis. The dynamics can be formulated
location pairs. The underlying melting mechanisms are byn terms of a Langevin equation of motion for the displace-
far less understood in higher dimensions. Yet the issue of thBientu of vortices from their perfect lattice positions that
stability of the ordered phase with respect to the formation ofove with average velocity.® The motion is governed by
topological defects was identified as a key issue for the struc@ competition of elastic interactions between vortices, ther-
tural transitions, and substantial progress was achieved ifal noise, and pinning forces. Pinning is described by a
understanding the role and contribution of disorder in thepotential V with local correlation V(R)V(0)=Aq4(R),
static casé!/ Whereas in equilibrium the criteria for the sta- where thes function is supposed to have a width of the order
bility of topological order follow from comparing relevant of the superconducting coherence length
energy scales, the analysis of defect nucleation innitwe- Since the unbinding of dislocations is controlled by their
equilibrium situation is more subtle since it can no longerinteraction on large scales it is legitimate to use a coarse-
rely on energy balance considerations. In this paper we urgrained description of the vortex lattice. It was derived
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recently*~®that on large spatial scales the equation of motransformed equation. For simplicity of notation we subse-
tion assumes the form quently drop the tilde identifying transformed quantities.

. A
7U=CV2u+ F + {+ xVut (VU2 +f(r+ve). (1) IIl. LINEAR PROBLEM  (A=0)

We first examine the model in the absence of the KPZ
For our purposes it is sufficient to retain only the componenhonlinearity to set the stage for its subsequent inclusion. In
of the displacement field parallel to the velocity. Although the above model dislocations are incorporated as a disconti-
the other components also experience fluctuations on larggyity in the displacement field of amplitud® the vortex
scales, they can only further increase the instability of thepacing. Due to the restriction of our consideration to the
lattice, which we find below to occur even in the absence ofjisplacement component parallel to the velocity, the only
transverse displacements. Equatighis written in the frame  possible orientations of Burgers vectors are parallel or anti-
moving with the average velocity of the vortices, where eactharallel to the velocity.
vortex has a vanishing average displacement around its av- |n order to derive the dynamic response of a dislocation to
erage position. 7 is the vortex friction coefficient. For sim-  the fluctuations of the elastic medium it is convenient to split
plicity we consider the elastic interaction as uniform, i.e., Wethe displacement field into a topologically nontriviahulti-
use only one elastic constanf ignoring a distinction be- yajued partu, and a single-valued patt_,
tween shear and compression moduli and additional aniso-
tropic corrections obtained from coarse grainitids a ther- _ _
mal noise with temperatur&. Although », ¢, and T are u(r, b =ue(r =re() +u-(r.), (33
renormalized under coarse graining, the corrections are small
in comparison to the original values for sufficiently large a (3b)
drift velocities. The stress coefficient and the Kardar- '
Parisi-ZhangKPZ2) nonlinearity)\,19 which are absent in the
bare equation of motion, are generated under coarse graifthe dislocation position is4(t) and ¢(r) is the angle en-
ing. The pinning forcd, which is simply a derivative of the closed between theaxis andr. The problem at hand is then
pinning potential in the bare equation of motion, acquires &o derive an equation of motion far. andry from Eq. (1).
random-force character under renormalization. In principle;To this end we consider for the momen{t) as given and
it depends on the displacement &g +vt+u). However, find
this dependence can be neglected after the coarse graining
has been performed. In the_Iimit of large drift velocities these U_—cV2U_=¢+f(r+vt)— 7rg Vuo(r—ry. (4
parameters take the following valués:

Since this equation is linear in_ one can easily calculate

- Aqc? (2a) u_ for given{, f, and dislocation trajectoryy. Eventually
£y’ we determine the dislocation velocity in response to the
forces¢ andf from a condition of local equilibrium for the
AgC? dislocation core,
A== m, (2b)
7 Vu_(rg(t),)=0. (5)
SE~ A (20 This equation is valid for “slow” changes afi_ such that
- &’ c the displacement singularity “instantly” moves to a point
where it is no longer subject to forces because its environ-
A2 ment u_ is locally homogeneousu_ can be directly ob-
S 0 tained from Eq(4) that has to be imposed with a short-scale
f(R)f(0)~———=8(R), 2
(R0 59202 (R) 2d cutoff of ordera.
Supposing that the fluctuations of the elastic medium are
(Z(r,1)2(0,0)=27T8(r) (). (2¢  Weak and the dislocation displacement is slow, the equation

of motion for the dislocation can be written in the form
f and ¢ are assumed to be Gaussian distributed with zero
mean.ais the vortex lattice spacing. The actual driving force — oy o) w)=fw) (6)
F= nv + SF required to achieve the prescribed veloaitys
determined from the consistency condition that the averaggith a Peach-Koehler—like force
displacement must vanish.
The linear stress term in E@l) can actually be elimi-

) . ~ ~ fo(t)=€,5V guS(ro(t),t) (7)
nated by a transformation of the displacemalt,t) =u(r PP d
—(x/m)tx,t) to a new frame moving with velocity=v (e is the totally antisymmetric tensor; see the Appendix for
— x! m in the laboratory framé&’ The coordinates are related some intermediate stepsHereu®!is the contribution tai_

by T=r+ (tx/7)x, wherex denotes the unit vector along the arising from the external forces andf at zero dislocation
velocity direction. The following analysis is based on thevelocity. The dislocation drag coefficient
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a 1 good approximation for a considerable time interval because
Ne(w)= 2l Py (8a  of the logarithmic divergence of the drag coefficient. From
k—inw+ck the above equations one finds that the motioauperdiffu-
sive along thex direction
an | 47C tiarct 41C for |w|< 41rC
~——1In iarctan—— | for |w|< 112 312
8mc " plwla’® 7|w|a? a2 — o7 04C 1t i
([xa(t) =x4(0)1%) 5.2 12 >~ (12
(8b) 37v °%? In?(4mc|t|/ na?)

diverges Iogarithmically for small frequencies because of thQ)n |arge time sca|e$t|> 7730 2T2/(;g2, where the pinning
long-ranged response of the displacement field to the dislacontribution dominates over the thermal contribution. The
cation motion. This divergence with vanishing frequency isyalidity of Eq. (12) is limited by the fact that the nonlinear
equivalent to a divergence with increasing system size &erms in the equation of motion fag have been neglected.

zero frequency. It is characteristic for two dimensions andrhis could lead on largest time scales to a further renormal-

has been found previously for dislocations in vortex I""Ftice%zation of the dislocation velocity. However, a quantitative

retaining bqth dlsplacerzr;ent componéhtsand also in calculation of the dislocation velocity is beyond the scope of
pattern-forming sy_stenfé: . the present paper, since it would require the inclusion of
The force entering E¢6) has zero mean and correlations additional contributions to the equation of motion, such as
rEPRY RN , those due to Peierls barriers. However, despite the possibility
(faa(@)Tap(@)) = 8w+ 0" )P p(w), (%3 that Eq.(12) may not capture the true large-scale behavior
one may conclude from a comparison of EtR) to Eq.(11)
, (9b) that the shaking effects of disorder correspond on large
scales to an effectively infinite temperature. This result pro-
vides a first indication for a disorder-driven unbinding of

~~ 279T+g8(w+k-Vv)

D, 4 (0)= J kK
,3((1)) k A 7]2w2+02k4

where the disorder contribution is proportional tp

) ~ o i dislocations.
=A§/£8n*v? andk, == ge,gkz. Itis instructive to compare
the relative strength of thermal and pinning contributions IV. NONLINEAR PROBLEM (A #0)
h 7T 4mc \? So far the quadratic KPZ nonlinearity has been excluded
D p(w)~ 5aﬁ8 o In| 1+ 2 | (108 from our analysis and now we address the question of how it
™ ne modifies the above findings. For simplicity, we initially drop
1 ) the random force term and the thermal noise to examine the
pine v 9 nw 77 structure and dynamics of single dislocations as well as the
PPN w)~ for |ow|< , (10p ) X ) ) .
vy 6m2n%v3 C a2 interaction between dislocations. In this case, @9.is re-
n n :
duced to the Burgers equation
1/2 2
. g T°C
PPN (W)~ — for |o|<—. (100 - A
XX 4m2c2y| no | ] e pu=cV2u+ E(Vu)2+ oF. (13

At low frequency the pinning contribution to thecompo- |y analogy to the usual pinning problem we consider the
”ep?} IS negItLg|bIe in comparison to the thermal contributionygrtex drift velocity, which enters the last equation through

Pyy(0)<Pyy(w). However, the pinning contribution to the ) ' a5 prescribed, and determine the related force contribution
x _component dominates over the thermal contributionse o the stationarity condition= 0. Topological defects

pin th
(DXX(,“’)>(DXX(“,’)' . . in Eq. (13) were studied recently in the context of pattern-
Since fy vanishes on average, the dislocation has Meafyrming systemg3-28 where they constitute the source of

zero velocity in the frame of Ed6), i.e.,_gheir velocity i «gpira| waves.” Therefore it is possible to carry over part of
smaller than that of the vortices ky/»ecv ~. The diffusive  he previously achieved analysis to the present context.

behavior of di;locations _is read_ily found from E). In.the It is convenient to perform the well-known Hopf-Cole
absence of disorder, dislocations actually mauebdiffu-  anstormation that leads to a linear equation for the function
sively W=exp@Au/2c),
32T It] N TN 2
([Tga(D) =T go(0) )~ —— ——— (1)) 7W=cV°W—cksW. (14)

2 2
a%7 In(4ct|/7a®) Looking for a stationary solution, the constant

for |t|> pa®/4mc. Despite this peculiar dynamic behavior,
the fluctuation-dissipation theorem holds for dislocations in
the absence of disorder, which implies that dislocation pairs
nevertheless unbind at the KT transition temperature.

The presence of disorder can significantly affect the dif-will be determined from the condition that the solution is not
fusive behavior of the dislocation. For qualitative purposessingular at the coréfor the simplest choicé&y;=0 the solu-
we may still use the linear response approach, where thion W exhibits a nonphysical™! singularity atr =0). Note,
forces acting on the dislocation are evaluated at the undighat the stationarity ofi implies thatA and 6F must have
placed dislocation position. This approach should provide @pposite sign.

, A
ko——Ea“F (15)
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Equation(13) possesses a solution of the form e esescseccscccnssosse
7.5 ® o O 00 000000 PC0OISSIIIOGS

o 0 6 0 0608000600 COIOIRPIIROSS
(16) ® & 0 00060 0000OOIGOIBNOIOSNBINIS
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® & 005060000000 0PCC0NVVCSS
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a
U(r)=5—e(r)+p(r),

wherep(r) is a rotation-symmetric contribution induced by 25! 60606950006 006060600000s
the KPZ nonlinearity. This solution still represents a topo- esessscsosssssscsscee
logical defect with the characteristic multivaluedness of the Y0 e,
displacementi(¢+277m) =u(¢) +am (our explicit consid- © 6000600606606 060000000006
erations apply tan=1 only, the generalization to integer 75| ®ee s s e ees0scecscsece
Ls sttra_ightforwarai The angular and radial dependence¥\bf PR il
actorize, _ o0 000 0000COOGCOROOOROGOTNTDS
5 ® ® ® 00 00900 OOONOENINSIBSTOISINPS

Wo(l',(p)=eXF[(a)\/4ﬂTC)(p]W(r), (17) ® 0 ¢ & 5 00 00O OOOOSIOIONEOIBSOESS

-7.5 e & 0 60 000000000000 CMCS
® 0 0 6660006606006 060060600090

and for a stationary solution of E¢l4) the radial contribu-

-10 -5 0 5
tion w(r)=exdAu(r)/2c] has to satisfy a modified Bessel x
equation . _ . :
FIG. 1. Schematic illustration of the structure of a single dislo-
1 2 cation(marked by the symbal ) in the vortex lattice driven along
‘9r2W+ —(9rW+a—W=k(2)W, (18) the x axi; (Ie_ngth_s are in units oia)_. The de_nsity is increased/
r r2 reduced in directions in front of/behind the dislocation.
wherea=a\/4mc. Thus the solution to E18) is a modi-  jn W, the multidislocation solution can be approximated as a

fied Bessel function w(r)=Ki,(kor) with imaginary |inear superposition of individual solutions,
index?® This solution has two characteristic length scales

separating three regions. On large length sce¥ek = kgl ~
this solution decays exponentialby(r) <exg —kor J/ir*2 For W(r)= Z Wo(([r=ril) +w, (21)
r<k51 anda<<1 an expansion of the Bessel function yields
w(r)~sinafIn(2/kor) — y}] with Euler's constanty. Thus  \here the correctionv is introduced in order to fix “topo-
w(r) assumes a maximum at a second characteristic scale|ggical conditions” imposed by the field. For a well-
1w separated ensemble of dislocations the overlap between the
ro=ko "e” ™. (19 individual contributions tow is exponentially small. From

unphysical. It is important to keep in mind that the equationtion The resultin interacti?)/n between two dislocatians
of motion for the displacement field is valid only on scalesand' { decavs gs exXp 2kolri—ri[] for Ko|ri—ri|>1
larger than a cutoff scal@; of the order of the vortex spac- (for kJ|r-—r-|z1 there isg croslsovjer o the uosulal Jowerlike
ing. Therefore the oscillatory behavior wfat small scales is beha\(;iolj 2651 P

an artifact of Eq.(13) that does not account for the disloca- :

tion core structure. The above solution is physically mean. cr;rehn(:ast};;:(ﬁtuirr? |glf Sticrl]\lﬁtestﬂ;?lthgIlsalltt)t?:et“i)snclcs)r:lurztgzéeddin
ingful only as long asu(r) or w(r) depend monotonously y 9. . P

on the distance. i.e.. the outermost maximum of the Solutiolgront of the dislocation, whereas it is diluted behind the dis-
found above ha’s.to”be identified with the core radius Thulocation. This effect is independent of the orientation of the

. . ) %urgers vector parallel or antiparallel with the velocity.
Eq. (19 actually determmeko, % equivalently, the screen Given the fact that\ is positive this effect can be easily
ing lengthLg as a function ofx,

understood from Eq(13) if one considers the KPZ nonlin-
earity as perturbation to the usual dislocation: the displace-
ment strains are largest close to the dislocation core. There-
fore the vortices close to the core experience a force that
3 AqC drives them further in the direction of the velocity until the

L=kg *~R.e™2*~ag"/v0’, (209

U0:27T2§4a37]3' (20D glastic forces establish force equilibrium in a configuration,

where all vortices move with the same velocity
For smallea, i.e., large velocity of the vortex latticel  is Due to the presence of the KPZ term in the equation of
exponentially large. Since for—« the solution w~ motion (13) the force required to achieve a vortex motion

ext —kor Jr/? has exponential asymptotics, the displacemenwith velocity v is reduced:SF=F— pv=— (2¢/\)k3<0.
u~(2c/N)Inw=~—(2c/\)kgr increasesproportional to the However, this contribution of the KPZ term, which is gener-
distancefrom the dislocation core. ated by disorder, actually represents only a further correction
The exponential decay of the Bessel function impbas  to the immediate pinning forcé&c), which is positive. For
ponential screeningf the interaction between several dislo- largev the correction due to the KPZ term is negligible in
cations at positions; with distances large compared ltq. comparison to the pinning force, since the former contribu-
(For pattern-forming systems, this screening was a subject dfon decays exponentially for large whereas the latter de-
intensive investigation®~2) Indeed, since Eq14) is linear  cays only algebraically. Considering both contributions con-
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Let us first consider only the effect of thermal noise
Averaging Eq.(25) and utilizing the exponential decay @f
at larger, we readily obtain a normal diffusive behavior

(ra()~t. (26)

Thus, the exponential screening of the dislocation field due
to the KPZ nonlinearity is responsible for the transition from
- 100 -50 0 50 100 subdiffusion[Eq. (11)] to normal diffusion.
x To include the effect of quenched disorder we have to
FIG. 2. Schematic illustration of a dislocation pdiepeating Perform an additional disorder averaging of E(®5).

two unit cells with periodic boundary conditionis the driven vor- ~ Thereby we have to assume that the position of the disloca-
tex lattice. The vortex density changes quite abruptly along protion is not correlated with the disorder, which is true at large
nounced shock-wave fronts. The vortex lattice is shown here in &nough drift velocity where the dislocation moves with the
square lattice to make the local rotations and compression of theortices. As in the case of purely thermal noise we obtain
unit cell graphically more transparent although in reality the vortexnormal diffusion of the dislocation due to the exponential

lattice is hexagonal. localization ofW, in contrast to superdiffusion in the linear
case.

sistently together, one finds> 7v, i.e., even in the presence

of the KPZ nonlinearity disorder actually slows down the V. CONCLUSIONS

vortex motion.

The structure of the vortex lattice in the presence of a The most important implication of the exponential screen-
dislocation/antidislocatiomair is illustrated in Fig. 2. This ing of the dislocation interaction is that even arbitrarily weak
structure was calculated numerically directly from E§3)  thermal noise or random force result in anbinding of dis-
using a lattice domain with periodic boundary conditions. Inlocations (see Ref. 28 This means that the corresponding
Fig. 2 two such domains are reproduced. The inhomogeneitikosterlitz-Thouless temperature is zero in this situation, and
of the density is apparent and the density can change alortat the topological order of the vortex lattice is always de-
narrow boundaries that correspond to shock-wave frbnts. stroyed on largest scales. While previous arguments in favor

Let us now include the effect of weak thermal noise andof such an instability were based on scaling argunfeatsl
disorder in the dynamics of a single dislocation. After thenumerical simulation’d we have presented here an intrinsic
Hopf-Cole transformation Eq1) assumes the form nonequilibrium mechanismThis instability mechanism is
primarily based on the presence of the KPZ nonlinearity in
the equation of motion, which is generated by coarse grain-
ing the equation of motion of a driven vortex lattice.

) ) ] ) ] ) At this point we would like to recall that our analysis was
To derive the resulting equation of motion for a dislocationpased on the simplified model with only one displacement
we apply a perturbation techniqﬁ‘i‘ewh.ere the force fields of  component. Fluctuations of the second component will prob-
thermal noise and disorder are projected on the translatiogyy |ead to a significant further reduction of the stability of
modesW, , of the unperturbed Eq22) (see also the Appen- the vortex lattice, i.e., the true screening length could possi-
dix). Since the translation mode is sim; = dx ,\Wo, the  ply be smaller than the value fau, calculated above.

7W=cV2W— ck§W+2)\—C[§+ f(r+vt)]W. (22

equation of motion for the dislocation positiog is of the It is instructive to compare the dislocation screening
form lengthL to the crossover scale where the KPZ nonlinearity
N becomes relevant for thermal fluctuations of the displace-
ar :_f A2/ [Z(r )+ F(r' —ro(t)+ Vi) ment field in the abse_nce_of dislocations. The latter scale is
4780 2¢ ( ol ! £.=exp(8rc®7TA\?),*? i.e., it is also exponentially large for

, , small\. However, the functional dependence)ofs differ-
X Wo(r')VWo(r") 23 ent andL < ¢, for small\. (Note, thaté. is defined only for
with an effective drag coefficienyy of the form finite temperature whild g is well defined even for zero
temperaturg. Therefore, dislocations become important for
7 , , the structure of the system before it can show a crossover to
”dzif d2r [VWo(r')J2. 24 the strong-coupling byehavior of the elastic system.
In a remote analogy the interaction of dislocation pairs in
Because of the exponential localization of the funct,  a driven vortex lattice can be compared to the interaction of
the drag coefficienyy is finite, in contrast to the linear case, vortex pairs in a superconducting film. In the former case
where it diverges logarithmically with the volume. From Eq. screening is induced by disorder, which in the latter case is
(23) we obtain the mean-squared displacem@bbreviating  provided by magnetic fields. In the absence of screening both
{M=7(r™,t) and f=f[rM—ry(t™M)+vt™]) systems would perform a Kosterlitz-Thouless transition.
2 Screening suppresses this transition as a large-scale phenom-
L L S Dem e erE e en enon. However, for large enough screening lengths this
(ré(t))=4cz fodt fodt fdzr d2r"([ + 110+ 1"]) Crossover can still be well pronougr]lced. The sgreeni?lg length
7d of the vortex interaction in films is known to be macroscopic.
XWo(r") VW (r")YWo(r")VWo(r"). (250  The screening length of dislocatiohg as found above will
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also be macroscopic far>v, because of its exponential port from the Deutsche Forschungsgemeinschaft under
increase with the vortex drift velocity. It is therefore possible Project No. SFB341 and Grant No. SCHE/513/2-1.

that the lattice may be well ordered on experimentally rel-
evant scales and that dynamic melting or freezing can still be

found as a pronounced crossover. _ , In this appendix we give some intermediate steps of the

_In the nonequilibrium mechanism for the dislocation un-c4|cylation leading to equation of motidé) for the disloca-
binding examined above the KPZ nonlinearity played a masjon, in the linear medium. Furthermore, we relate this calcu-
jor role. Itis worthwhile to point out that even if dislocations |a4i0n to a projection of the force field onto the translation
are artificially suppressed in a purely elastic approach, thig,gges of the dislocation, as used in Sec. IV.

nonlinearity can induce dynamic transitions between pgq, givenry Eq. (4) can be solved fou_ . Equation(s)
“rough” and “flat” sliding phases® The above analysis {nen implies

demonstrates that even the “flat” sliding phase is actually
penetrated by free dislocations on length scales beyand ~ 0=¢€,5V gu_(rq(t),t)
Therefore one might suspect that their presence modifies the
nature of this roughening transition or even blurs the transi-
tion, turning it into a mere crossover. Again, this crossover
lrgzgyey(;artmbsetl)obcsiﬁ;\fble becausg grows exponentially for MLEE ) HE (1 V) = i g(t) - Vuo(r —rg(t D],
To conclude, we have found an instability of the simpli- whereG is the Green'’s function fou_ . In linear response,
fied one-component model of a drifting vortex lattice to pro- ¢, f, and hence, are small and one may replacgt’) by
liferation of free defects. As already mentioned above, the ,(t) in the previous equation. This equation has to be un-

presence of a second displacement component can only le@@rstood as force balance between the contribuftj@mising
to a further increase of fluctuations and to a reduction of therom the external force fieldg andf and the friction force

instability. We have presented an intrinsic nonequilibrium
mechanism for such an instability based on the presence of¢
the KPZ nonlinearity in the coarse-grained equation of mo
tion for the displacement field of a vortex lattice driven in a
disordered environment. The instability is due to an expo
nential screening of the dislocation interaction on a stale
that increases exponentially with the drift velocity of the
vortex lattice.

APPENDIX

:eaﬁf d?r'dt’'VaG(ry(t) —r' ,t—t")

rq. The separation of these contributions leads to(BJ.

Let us now briefly discuss the connection between the
‘approaches used in Secs. Il and IV to calculate the disloca-
tion dynamics. The subdiffusive behavior of dislocations in
the linear system can be easily obtained from the equation of
motion, taking into account that in the linear systéththe
translation mode isu,,=d, Uo~1/r. Thus, the effective
mass diverges as inFor the mean-squared displacement we
obtain (dropping the disorder term
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