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We investigate the magnetic response of normal-metal-superconductor proximity systems for arbitrary
concentrations of impurities and at arbitrary temperatures. Using the quasiclassical theory of superconductivity
a general linear-response formula is derived which yields a nonlocal current-field relation in terms of the
zero-field Green'’s functions. Various regimes between clean-limit and dirty-limit response are investigated by
analytical methods and by solving the general formula numerically. In the ballistic regime, a finite mean free
path reduces the nonlocality and leads to a stronger screening than in the clean limit even for a mean free path
much larger than the system size. Additionally, the range of the kernel describing the nonlocality is strongly
temperature dependent in this case. In the diffusive limit we find a crossover from local to nonlocal screening,
which restricts the applicability of the dirty-limit theor{/S0163-182@08)00445-7

[. INTRODUCTION even if the finite transparency of the interface is accounted
for.”® On the other hand, the breakdown field seen in the
A normal metal in good metallic contact to a supercon-nonlinear response to a magnetic field of some of the same
ductor acquires induced superconducting properties. The baamples was found to agree fairly well with the clean-limit
sic features of thigproximity effectwere already well under- theory? In this paper, guided by a numerical study, we clas-
stood in the sixties. One of these properties is thesify the intermediate regimes and show how the qualitative
diamagnetic screening of an applied magnetic field, whictdiscrepancies between theory and experiment can be re-
has been studied in a series of experiménfand theoreti- solved. In recent experiments on relatively clean samples a
cal works®>® low-temperature anomaly was reporféd:* The nearly per-
Already early in this development it was recognized thatfect screening al~vg/d was found to be reduced as the
the relevant length scale governing the superconducting cotemperature was lowered further. This reentrance effect has
relations is given by the thermal and impurity dependennot been explained up to now. We will not address this prob-
coherence lengths in the normal metal. The thermal length iem directly here, but rather provide an understanding of
given by é&r=v/27T in the clean limit(mean free path those facets of the proximity effect which are the necessary
—o0) andép = (&11/3)Y2 in the dirty limit (I—0). The finite  basis for further investigations.
thicknessd of the normal-metal layer is an intrinsic geomet-  From a theoretical point of view there is a major qualita-
ric length scale of the proximity effect. The interplay be- tive difference between the magnetic response in the dirty
tween the three length scalés, |, andd is relevant for the versus the clean limit. In the dirty limit the current-field re-
behavior of the microscopic quantities such as the spatidhtion is local and the screening can be almost complete. This
decay of the pair amplitude or the spectral density of statess in strong contrast to the clean limit, where the current-field
In this paper we investigate the range between the clean andlation is completely nonlocal and the current depends on
the dirty limiting cases and find several intermediate regimeshe vector potential integrated over the whole normal-metal
of interest, differing by the relative magnitudeséf, I, and  layer® As a consequence, there is an overscreening effect,
d. i.e., the magnetic field reverses its sign inside the normal
The theory of linear diamagnetic response of clean andanetal, and the magnetic susceptibility is limited to 3/4 of that
dirty N-S proximity systems has already been studiedof a perfect diamagnet. In the intermediate regime, the su-
extensively>®8While the dirty-limit theory was found to be perfluid density and the range of the current-field relations,
in agreement with early experimental wdfkthe samples both diminishing with decreasing mean free path, are shown
studied in more recent experimett$? fail to be described to affect the screening ability in a contrary way and thus
satisfactorily by either the clean or the dirty limit. They ex- compete in the magnetic response.
hibit the qualitatively different behavior of an intermediate = We investigate the magnetic response at arbitrary impu-
regime. In a previous pagewe were able to fit an experi- rity concentrations starting from the quasi-classical Green'’s
ment in the low-temperature regime with the dirty-limit functions in absence of the fields, which are discussed in
theory. However, the data for temperatufesve/d could  Sec. Il. On this basis, we develop a theory of linear current
not be reproduced by the dirty limit theory. These experi-response in Sec. Ill. We produce a general result with the
ments also show clear deviations from the clean-limit theorywell-known structure: the current densitgx) is given by a
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convolution of a kerneK(x,x’) with the vector potential z =Y
A(Xx). The kernel is given explicitly in terms of the Green’s r//
functions in the absence of the fields. Our formula easily J

yields the basic constitutive relations of the Lontfband
Pippard* type for a superconductor. With the help of this S N H
kernel we calculate the magnetic susceptibility of a proxim-
ity system at arbitrary impurity concentrations in Sec. IV.
We find that the impurities have nontrivial consequences on
the magnetic response. The range of the integral kernel can
be strongly temperature dependent, and can be given by ei- FIG. 1. Geometry of the proximity model system. The thickness
ther & or I. In particular, we show that even forconsider-  of the superconductor is assumed to be much greaterghathe
ably larger thatl the spatial dependence of the integral ker-pair potential is taken real and assumed to follow a step function:

nel strongly enhances the magnetic response, as comparede<) =A®(—Xx). In our gauge, the screening current and the vector
the clean limit. potential are parallel to the NS interface. The interface is assumed

to be perfect and the normal-metal—vacuum boundary to be specu-
larly reflecting.

X

1. QUASICLASSICAL EQUATIONS
AND PROXIMITY EFFECT
and satisfy the symmetry relatiorss" (—vg,X)=g(vg,X)
The basic set of equations appropriate for describing spagnd f* (— v ,x)=f(vg,x). The current is given by
tially inhomogeneous superconductors was developed by

Eilenbergel® and by Larkin and Ovchinnikd{ (for a recent

collection of papers on the quasiclassical method, see Ref. i2ep=m
17). They are transportlike equations for the quasiclassical j(x)=
Green'’s functions, i.e., the energy-integrated Gorkov Green'’s

functions, that are derived from the Gorkov equations under

the assumption that the length scales relevant for supercon;,q depends only on the imaginary partgf due to the
ductivity are much larger than atomic length scales. We treat e symmetry relations.

the presence of elastic impurities within the Born approxi- | this paper, we consider a system shown in Fig. 1 con-
mation (the full T-matrix-formalism has been shown to lead sisting of a normal-metal layer of thickness which is in

to quantitative changéd. The Eilenberger equations take jjea| contact with a semi-infinite superconductor. A mag-

Tgo (veQ(vE X)), &)

the form e=|e[) netic field (0,0H) is applied parallel to the metal surface,
1 producing screening currenf®,j(x),0] along the surface,

—v(V+2ieA(x))f (v, X)=| 20+ —(g(x))) f(ve,X) which depend on the coordinate The pair potential is taken
T to be a step functioA (x) = A®(—x). Assuming a thickness

1 d>¢,=vd27T., we can neglect the self-consistency of the
— ( 2A(X)+ —<f(x)>) g(ve,x);  pair potential. Furthermore, we assume specular reflection at
T the normal-metal-vacuum boundary.
In the absence of external fieldsve denote the corre-
20t %(g(x))) 1 (op,x) sponding Green'’s functions gy, f, andfg) Egs.(1) reduce

ve(V—2ieA)f(ve,x)= o

D

1
—(ZA(XH;(fT(X)>)9(UF,X); d ~ 5
_de_xfo(l)x,X):Zw(X)fo(Ux,X)_ZA(X)go(UX,X),

4
—veVg(ve,X)=

1
A+ ;<f<x>>)

X (F(ve,X) = fT(vg,x)). d ~ ~

{Hor20 = ior ) 0 g (0320 = 2000 T§(0,%) ~ 2B (0 go(v X)-
These are three coupled differential equations for the normal
(diagona] Green'’s functiong aan the anomalougoff-
diagona) Green'’s functiond andf'. They depend on Mat- . . ~
subara frequency = 7T(2n+1), the elastic scattering time We have mtroduce.d the gffgctwe frequenay(x) =
7=I/vg, and the Fermi velocityg, (.. .) denoting the av- +<go(_x))/27- and pair potenUaIA(x)T:A(x)+(fo(x)>/_27-_
erage over the Fermi surfa¢é=c=1 throughout The su- Equations(4) imply that fo(vy,X)=fo(—vx,x) and, since
perconducting order parametiis taken to be real. We note (fo(X))=(f}(x))*, for real A we obtain a rea{f(x)), too.
that the w-dependence of the Green’s functions has been Depending on the relative size of the thermal length
omitted in our notation. The Green’s functions obey the northe mean free path and the thicknesd we distinguish the
malization condition ballistic, the dirty and the intermediate diffusive regime that

are discussed in the following subsections. These regimes are
9%(ve,X)+ f(ve,X) T (vg,x)=1 (2)  also shown in Fig. 2.
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the numerical results found below. Limiting ourselvesto
<d allows us to consider the Green’s function for the first
Matsubara frequencyw= =T only. We restrict ourselves to
the forward directiorv,= +vg. From Eq.(4) we find that
fo=~2 exp(=x/&) remains unchanged as in E@), and fg
<1 and 1-gy<1 obey the approximate equations

d 1)\, 1
ax &) fo¥)=" T{fo(x)),
d 1
T @ 9000)== T{fa(0))f (), ®
with the approximate solutions

&r _
T — 2 A—xlég

FIG. 2. Dependence of the magnetic response on thermal length

&r=vd27T and mean free path. In the ballistic regimel
>min{&;,d} we distinguish three regionga) the clean limit with

1—go(x)= %e—”’ﬁ. (10)

infinite range of the kernel exhibiting a reduced diamagnetism

(overscreening (b) the quasiballistic limit with finite rangér in-
creasing screening at large temperatur@s, the ballistic limit
where the finite rangé enhances the screening althodghd. In
the diffusive regimd <¢7,d the range of the kernel is given by

Here we have usedfg)~f/2, which is valid sincef,
(—lv ) <fo(|vy]). Interestingly, while the induced super-
conducting correlations as described {fy(x)) remain un-
changed as compared to the clean litait, the values oifg

The dirty limit with nearly isotropic Green’s functions is restricted and 1—g, are of orderé;/l rather than exponentially sup-
tol<&,,¢7,d. Note that the current-field relations can still be local pressed as in Eq5). This is of importance for the current
or nonlocal depending on the relative size of penetration depth antesponse as we show below.

mean free path. For comparison, the conventionally assumed border

line between clean and dirty limitd € &) is indicated by a dotted B. Dirty limit

line.

A. Ballistic regime

The ballistic regime is limited by>min{&;,d}, which

ensures a ballistic propagation of the electrons over th
thickness or the thermal length of the normal layer, respec-

tively. As a limiting case, fot—« (clean limi Eq. (4) may
be solved analytically. FOF.> T =v/27d, the solution in
the normal metal takes the fofm

fo(vy,X)=e2@v)(d"Xcoshy,,

+ 2wd

fO(UX,X)Zf(—UX,X), Xd:m. (5)
X

At temperatures above the Andreev temperatdie, T,
only the first Matsubara frequenay= =T is relevant and
the decay of thd-function is governed b¥t=v/27T. Ty
determines the temperature at which thinction acquires
a finite value at the outer boundary.

An estimation using the Eilenberger equation &j.eas-
ily shows that the clean-limit solution is valid for

I>d exp2d/ép) if  &r<d, (6)

I>d if &>d. (7)

We note that this includes the regiah<l<¢&+, the finite
thickness preventing the small mean free paé; of be-

If impurity scattering dominates, as described (oy)/ 7
>w and (fo)/7>A, Eq. (4) can be reduced to the Usadel
equatiod® for the isotropic part(fy(x)). Assumingw<A

éhe solution in the normal metal takes the form

(fo(x))zcosk( \lzﬁw(d—x) /cos?‘( \/%0 d),
(11)

where D=v,2:T/3 is the diffusion constant. Equatiofl1)
shows that the important energy scale is the Thouless energy
E,=D/27d?. The coherence length in this caseéis(T)
=(D/27T)*?, which reflects the diffusive nature of the elec-
tron motion.

In the normal metal <¢+,d are necessary conditions for
the Usadel theory to be valid. However, as the numerical
results will confirm below, the Usadel theory in the normal
metal may not be applied without considering the supercon-
ductor inducing the proximity effect. The application of the
Usadel equations requires the Green'’s functions to be nearly
isotropic, which in the superconductor is only fulfilled for
(fo)/ 7>A. The validity of the Usadel theorin the absence
of fields) is thus restricted tol<d,&r, and 1<§,
=vd27T,, the dirty limit, see Fig. 2.

C. Intermediate diffusive regime

Now we relax all restrictions on the mean free path and

coming effective. In the remaining part of the ballistic re- investigate the regime between the ballistic regime and the
gime, see Fig. 2, the full solution is not known, but we maydirty limit. Equation(4) can be formally decoupled using the
produce an approximate solution, which characterizes welBchopohl-Maki transformatidf
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FIG. 3. Spatial dependence of the anomalous Green’s fundfx,v,) in a proximity normal-metal layer. The thickness ds

=10ve/T. and the frequency i®=vg/d. The mean free path is=d
f(vg) at the positions indicated by the arrows. We note that in
function.

fi(vy,X)

1+gO(UXIX) ,
12)

fO(vX1X)

_ oW ®) g _
T+ ol )" 20

aO(UX!X):

leading to the Riccati differential equations

d - -
—vxd—xao(vx,x)=2w(x)ao(vx,x)+A(x)(a(2)(vx,x)— 1),

ab(vy,X)=2w(x)af(vy,X)+A(X)(@}2v,,x) - 1).
(13)

Equations(13) provide the basis for éstable numerical so-

xdx

in (@) andl=0.1d in (b). The insets show the angular dependence

the Usadel theory the angular dependence would be given by a linear

side the normal metal, which is not accurately described by
the Usadel theory. For the dirty-limit theory to be valid in the
normal metal, the superconductor has to be dirty as well.

We note that in our present calculation we have assumed
the same mean free path in the superconductor and the nor-
mal metal. Allowing for different mean free paths would
affect the definition of the dirty and the intermediate regime,
and we do not further investigate this question here.

Ill. LINEAR-RESPONSE KERNEL

In this section we derive the general linear-response ker-
nel (22) of a normal-metal-superconductor sandwich in

lution. We have determined the impurity self-energies selfterms of the Green'’s functions in absence of the fields. We

consistently by an iteration procedure starting from the dirty-consider the quasi-one-dimensional system shown in Fig. 1,
limit expression. Representative results of the numerica®Ssuming a superconductor of thickneksand a normal

calculation are shown in Fig. 3.

We have chosen the frequeney=v/d and a mean free
path of I=d in Fig. 3@), 1=0.1d in Fig. 3b). Note the
distinction of thef-function for forward(v r,=v g, solid line
and backward propagatidior,= —vg, dashed ling As we

metal of thicknessd. The magnetic field is applied in
z-direction as described by the gaugje- A(x)e, . To calcu-

late the linear diamagnetic response, we separate the Green’s
functions into its real and imaginary parts, where the imagi-
nary part is of first order imA and the real part of zeroth

cross over from the ballistic to the diffusive regime, the Order:

backward propagating branch changes from a monotonical
increasingf-function ofx for [ =d to a decaying -function

for 1=0.1d. In the ballistic case the backward moving elec-

ly
f(vp,x)="fo(vy,X) +if1(vy,0y,X),

trons carry superconducting correlations only after reflection

from the normal-metal-vacuum boundatyd. In the dif-
fusive case, the backward propagatififunction is gener-

(e, X) = {(vx, X) +if ] (vx,0y,%),

ated by the impurity scattering from the forward branch, thus

taking the same functional dependencexpsee Fig. 3. This
behavior is illustrated in the insets, whefrds plotted as a

function ofuv, for fixed positions. The sharp features presen

in Fig. 3(@ are washed out by impurity scattering in Fig.
3(b). Remarkably, however, they are still far from the dirty-
limit behavior, for whichfy(vg,) in the insets is expected to
be a straight line. According to conventional wisddm
=0.Iv/w<<&7 would indicate the dirty limit. Considering
that we have chosed=10vg/T., implying |=vg/A, we
notice that the dirty-limit condition is not fulfilled in the
superconductor. The anisotropy of thdunction present in

the superconductor by proximity induces an anisotropy in-

g(vFIX):gO(UXIX)+igl(UX1Uy1X)- (14)

LI'he zeroth-order parts obey Bd,) discussed in the previous
section. The first-order parts of E€) read

_de_xfl(vx'UY'X):ZZ)(X)fl(vX'vy'X)

—2A(X)91(vx vy, X)
+2ev, A(X) fo(vy,X),
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numerically, see Ref. 21. We will now proceed analytically.

de_XfI(Uvay-X):Zw(x)fI(Uvaer) As a consequence of E¢L7) we find a,(— vy) —ay(vy)
and the same foa], which leads ta(f;)=(f])=0, as was
—2Z(x)g1(vx,vy,x) already noted above. Furthermore, snaxievx) a;(—uvy),
" we only have to consider one of the two equati¢ag., the
+2ev A(X)fo(vy,X) (19 first one. Equation(17) is an inhomogeneous first-order dif-

ferential equation, which can be integrated analytically. As-
suming thatf andf' do not change sign with the help of Eq.
91(vy,0y,X) (4) the solution can be written as

wherew(x), A(x) were given after Eq4) and

Fo(vx X) 10,0y X) + 10,0y X) T (05, X)

=— 5 (16) M(uy.X,Xo)  2evy
9o(vy,X) a1(vx,vy,X) =C(vy,vy) floaX)  vyfi(vy,X)
follows from the normalizatiort2). We now apply the Maki- oL O

Schopohl transformation defined in EG2) to the full equa- ) , o
tions of motions(1). After linearization we obtain X L [1—go(vx,X" ) IM(vy, X, X" )A(X")dX',
0
al(vxaUan)_ag(UXaX)aI(Uxrvax) (18)
fl(vxavyax)zz T 2 1
(1+a0(vx-x)a0(UXaX))
where
+ aI(UX,Uy,X)_agz(UX,X)al(UX,Uy,X)
fl(UX,Uy,X):Z T > y
(1+a0(vx,x)a0(vx,x)) A(X")
and Eqs(15) are decoupled into m(vx,x,x’)=exp( L T ox") - (19

vy, d
ZX d ay(vy,vy,X)= [w x)+A(x)ao(vx,x)]al(vx,vy,x) In this equationx, is an arbitrary reference point and the
X constantc has to be determined by the appropriate boundary
+ev, A(X)ag(vy,X), conditions. m satisfies the relations of a propagator,
m(u,x,x")=m(u,x’,x)"* and  m(u,x,x")m(u,x”,x")
q =m(u,x,x"). Now we determine the constamfor a system
Ux T ~ X t T of size [—dg,d]. We assume specular reflection at two
= —a1(vy, vy X)=[o(X) +A(X)ag(vy,X) a1 (vy,vy,X - UsoEde X P .
2 dx 210y X) =Le00+A00a0(vx X Ja1(vx vy X) boundaries ak= —d,,d and ideal interfaces between differ-
+ ent materials inside the system. The appropriate boundary
+evyA(X)ap(vx.X).- (A7 conditions  are  f(ug.vy.x=—dg,d)=F(—vy,vy.X=
For a more general form of these equations that has beends,d) and continuity at the mternal interfaces. The same
used to treat the linear electromagnetic response of vorticezonditions are valid fom, anda] . This leads to

d m(vy,d,x’)+m(—v,,d,x’) 1
4, M(vy,d,—dg)—M(—vy,d, — —ag L1 9olvx,

The current is determined by E@), using the Green'’s functiond 6), expressed by the soluti@th8). We obtain the following
general result for the linear current response in functional dependence of the vector potential,

x")JA(X")dx'. (20

d
jy(X)=—f K(x,x")A(x")dx’, (21)

—Ys

where the kerneK(x,x") is given by

2
du

K(x,x’)— [1+go(u,x)][1—go(u,x’)] O(x—x")ym(u,x,x" )+ 0 (x"'—x)m(—u,x,x")

>0

m(—u,x,dym(u,d,x’) m(u,X,—dgym(—u,—dg,x")
T mud, —dym(—u,—dg.d)  1-m(u,d,—dgm(—u,—dg,d)

m(—u,x,dym(u,d,—dgym(—u,—dg,x") m(u,x,—dg)ym(—u,—d,d)ym(u,d,x")
1-m(u,d,—dg)m(—u,—dg,d) + 1-m(u,d,—dg)m(—u,—dg,d)

(22
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Equation (22) gives the exact linear-response kernel of +m(—u,x,d)ym(u,d,x")]. (24)
any quasi-one-dimensional system, consisting of a combina-
tion of normal and superconducting layers extending from The magnetic response of the proximity system follows
x=—dg to x=d. The kernel is expressed in terms of the from the self-consistent solution of E@1) and the Maxwell
quasi-classical Green’s functions in absence of the fieldssquation
which may be specified for the particular problem of interest.
We note two characteristic features of Eg2): The factor .
[1—go(u,x")] measures the deviation of a quasiclassical tra- S AX)=—4mjy(X). (29
jectory from the normal statg,=1, which is inert to a mag-
netic field. The propagatan(u,x,x’) shows up in six sum- As boundary condition we used{dx)A(x)|,=q=H, where
mands which represent all the ballistic paths fraro x’,  H is the applied magnetic field, ar(0)=0, neglecting the
accounting for multiple reflection at the walls atds andd. penetration of the field into the superconductor. The inclu-
Thus the first two summands connectirgand x’ directly sion of the field penetration into the superconductor leads to
constitute the bulk contribution, while the additional four corrections~\s/d to p, which is a small ratio for typical
summands are specific to a finite systémsuming specular Proximity systems. Herisis the effective penetration depth
reflection at the boundaryWe note that a form similar to ©0f the superconductor, including the nonlocal or impurity
Eq. (22) may be derived for non-ideal interfaces between theeffects. The magnetic response of the normal-metal layer is
normal and superconducting layers, if the appropriate boundheasured by the screening fractiop=—4my=1
ary conditions following from Ref. 22 are taken into account —A(d)/Hd, which gives the fraction of the normal-metal
(these boundary conditions are only valid if the distance belayer that is effectively field free. It is given by the suscep-

2

tween two barriers is larger than the mean free path tibility . which is equal to the ratio of the average magne-
For illustration we reproduce the current response of dization to the applied magnetic field. .
half-infinite superconductor. Setting=0 and ds—c, the The general properties of the kerr{2R) are characterized

solution of the Eilenberger equatiof@) takes the simple by both the decayrange of the propagatom(ve ,x,x") and
form go=w/Q, fo=f =A/Q, whereQ=(A%+w?)¥2 In- the amplitude of the prefactor (1g,)(1—9g) which deter-

serting in Eq.(22) we obtain the linear-response kernel mines the degree of nonlocality of the relatiofzs). The
inverse decay length of the propagator is proportional to the
ezp'Z: A2 [(ug 1—u2/U§ off-diagonal part of the self-energy and the prefactor is
Ks(X,x")= - TZO a2 f du———— related to the superfluid density. We discuss below how, in

the proximity effect, the range of the kernel varies from in-

X[e7(20+l/7)(\x7x’|/u)+e(29+l/r)[(x+x’)/u]] finity to | gnd &1, exhibiting a strong temperature .depen—
' dence, which leads to nontrivial screening properties. Fur-
(23)  thermore, the superfluid density introduces an additional

length scale in the problem: the London length, which

which describes the current response of an arbitrary SUPef omes crucial for the distinction of various regimes.

conductor, as first derived by Gorké¥which here addition-
ally includes the effect of the boundary. For fields varying
rapidly spatially we arrive at a nonlocal current-field relation
of the Pippard-typé? while for slowly varying fields the A special case is the clean normal mefak(=). Here the
kernel can be integrated out in EQ1), producing the Lon- range is infinite and the current-field relation is completely
don result:®* We recall here certain generic features of thisnonlocal. It follows from Eq(22) that it is necessary to have
kernel, which are of importance below. In a dirty supercon-impurities in a normal metal to get a finite range of the ker-
ductor (2<1/7) the range is given by the mean free path nel. In the limitd> &, the current may be written as

=ve7. In a clean superconductor (), the range is

A. Clean limit

roughly given by the coherence length and is thus nearly , 1 d
temperature-independent. Jelear™ =~ 7252Td | A(x)dx. (26)
IV. MAGNETIC RESPONSE This defines a temperature-dependent penetration depth that

can be given explicitly in the [imit§=0 andT>T,:
For the NS system we consider in this paper, see Fig. 1,

the kernel(22) may be simplified usingn(u,x,—)—0 and m o
m(—u,—%,x)—0 asds— (u>0). The linear-response 47re2ne:')\ ; T=0
kernel takes the form A\(T)= \2T (27
N° 2(T/Tp).
o202 - o e?TTW;  T>T,.
Pr vF o Up—U A
K(xx)==—T2 | du—y . . .
T w0 Jo Vel Solving Maxwell's equation we find
X (1+go(u,x))(1=go(u,x" N[O (Xx—X") 3 d(2d—x)

xm(u,x,x" )+ 0(x’—x)m(—u,x,x") A(x)=Hx 1_Z[S>\2(T)+dz] ' (28
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and the screening fraction To achieve locality we need to hal'& A (X, T) in the region,
where the screening takes place. FegD/d? this meand
_ 3 (29 <\ (d) leading to the condition?<\yd. For T>D/d?
P=4¥ 1203(T)/d?’ screening takes place at=¢p and we have?<\&p(T).
The local penetration depth at the outer boundary can be
dsmall compared ta. In that case the screening fractipn
=1-\(d)/d can reach practically unity.

At high temperaturesT>E,, the inverse penetration
depth is exponentially suppressed on a scale of the
temperature-dependent coherence lerggifir). This length
defines the screening region and consequently

In the limit N(T)<<d the screening fraction is 3/4, thus the
screening is not perfectly diamagnetic. The magnetic fiel
inside the normal metal iB(x)/H=1—2p(1—x/d), show-
ing the effect of overscreening fgr>1/2, where the field
reverses sign inside the normal metal.

B. Dirty limit
Using the fact that the zeroth-order Green’s function is NGO
nearly isotropic and varies on a scaig(T)>1, we find for p(T)oe —g—=T V2, (35
the kernel(24)
e2p2 This result has already been obtained on the basis of
K(x,x')=— FTE (f(x))? Ginzburg-Landau theoryand numerically confirmed using
T w>0 Usadel theory* We expect that nonlocal screening, which
2 o may be taken into account using E§3), will only lead to
% f”quUF;U [e—|x—x’\llu+e(2d—x—x’)/lul guantitative corrections to E¢35). We will not consider this
0 VEU here but concentrate on the more interesting case in which

(30) nonlocality gives rise to a qualitatively different picture.
The kernel is factorized in a part containing the temperature
dependence and a part which is responsible for the nonlocal-
ity. The current is then expressed as As has been shown in the last two subsections, there are
two main differences in the observable properties of the in-
. 1 d , o duced screening in the clean or the dirty limit. First, the
100=- 4mN2(X,T) fo KgOXxDAX)AX". (81 gayration value op in the dirty limit can reach practically
unity, whereas in the clean limit it is limited to 3/4. The

C. Arbitrary impurity concentration: numerical results

The local penetration dept(x,T) is defined as analytic behavior at high temperatures is quite different too.
1 A In the dirty limit p shows an algebraic behavierT 2,
—= ;TE (f(x))? (320  Whereas in the clean limit we fingxexp(=2T/T,). From a

MXT) Ny a0 theoretical point of view these two limits are characterized

and the temperature-independent part of the kernel is give.y.a completely non]ocql const_ituti\_/e.relation in th.e clean
by imit and a local relation in the dirty limit. In this section we

will investigate the magnetic response in the regime between
3 Ix—x'| Ix—x'| these two extreme cases.
Ka(x,x")= E[El( | ) - E3( | ) To calculate the diamagnetic response, we have evaluated
the integral kernel in Eg(24) numerically using the results
from the Sec. Il and solving Maxwell’'s equation by a finite-
difference technique. Therefore, the parameters entering the
calculation arel/d and Ay /d, assumingl>§&,, and &;/d
(33 giving the temperature dependence.
In this formulaE,(z) =t "exp(~zfdt is the exponential Magnetic field distributions for various impurity concen-
integral. For\(x,T)> the vector potential may be taken out rations and temperatures are shown in Fig. 4. Thick lines
of the integral in Eq(31) and the spatial integral yields the §h9w the magnetic field anq thin lines the current dlstrlbuthn
well-known local current-vector potential relation used ininSide the normal metal. Different graphs correspond to dif-
Usadel theory® We note that for\<£, there may exist a fe_rent mean free paths and the curves inside each graph to
region (see Fig. 2 where the Green’s functions are nearly different temperatures. In all curves we have choagn
isotropic, and in absence of the field are given by Usadef 0-003. All these curves clearly show deviations from the
theory, but the current response is nonlocal. To put limits orfl€an-limit behavior, where the field decays linearly and the
the validity of the local relation, we consider the approxi- current density is spatially constant. Larger impurity concen-

mate form (f)~exg —x(20/D)¥?] to determine the local trations make it possible to localize the current on a length
penetration depth. As a result we find scale smaller than system size. Obviously, this scale is not
given by the mean free path, but can be considerably smaller.

X ) Later we will show what determines this length scale.
)\N|— if ¢p(T)>d, Whether the localization of the current increases or decreases
ANX,T)~ £ (T) (34) the screening fraction depepds on temperature. Notg thgt for
A DI oM if g (T)<d. all parameters chosen the field is overscreened, which is the

signature of a nonlocal constitutive relation.
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(thin lines in a proximity layer for different mean free paths. The
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The local screening strength depends on the local superfluid
density. At low temperatureB<T 4 the superfluid density at
x=d is finite and the field is screened exponentially, leading
to a screening fraction of nearly unity. A higher temperature
suppresses the superfluid density and the field penetrates to
the point where the density is large enough to screen effec-
tively. On the other hand, the locality of the kernel allows the
system to screen even if the superfluid density is suppressed
nearly everywhere. The screening is then enhanced in com-
parison to the clean limit. In Fig. 5 this appears &t

~ 6TA .

Let us now consider a mean free path of order or much
larger than the sample size. Even fer 10°d we see a de-
viation from the clean-limit expression at low temperatures.
Forl=10d andl=d screening is enhanced in comparison to
the clean limit at low and high temperatures. Only in an
intermediate regime, i.e., arourid=5T, in our case,p is
similar to the clean limit screening fraction. A qualitative
understanding may be gained from looking at the constitu-
tive relation in the limitl>d. In the limit T<Tj, the zeroth-
order Green’s functions are given by the clean-limit expres-

The screening fraction as a function of temperature issions(S). We approximate the kern€24) by

shown in Fig. 5. The different curves are for the clean limit

and for mean free pathgd=10%,10,1,0.1. We see that a

finite impurity concentration has strong influence on the

screening fraction, even if>d. It can either increase or

decrease the diamagnetic screening, depending on tempera-

ture.

K(X,X/)Z 5 [e—|x—x’|/I+e—(2d—x—x’)/l]_

1
8mA(T)
(36)

Sincel>d, the exponentials may be expanded to first order.

For the interpretation of these results we first consider thé\s a result, we obtain two contributions to the current

casel =0.1d. The lower-right graph in Fig. 4 shows that the

screening is nearly local, since overscreening is rather small.

1.0

08 |
—— Clean limit
—— =10
-------------- l=10d
----- I=d

06 — 1=0.1d

A(x)dx, (37

. -1 [
Jclean_m fo

, B 1 Jd [x—=x'|+2d—x—x’
)= 532 Td Jo |

A(x")dx'.
(38)

When will deviations from the clean limit become impor-
tant? It is clear that the impurities cannot be neglected, if Eq.
(38) is comparable to Eq37). We estimate this by calculat-

ing the two contributions to the current using the clean-limit
vector potential28). Comparing the two contributions, we
find that impurities can be neglected, if

Ne(T)=3INZ(T)I>d.

This equation defines a new length scale, the effective
penetration depth ., which determines the validity of the
clean-limit magnetic response. For the clean limit to be valid
at T=0 the condition\ ;4(0)>d has to be fulfilled, since in
this case the screening takes place on the geometrical scale
d. In the case\ (0)<<d the field is screened on a scalgy
and the screening fraction is strongly enhanced in compari-
FIG. 5. Numerical results for screening fraction of the normal son to the clean limit. Nevertheless, the clean-limit behavior

metal layer for\,=0.0031. The clean limit is indicated by a thin '€appears at higher temperatures, singg(T) grows with

line reachingo=0.75 for T—0. Even a very large mean free path [€MPerature. o o
of 10°d leads to an enhanced screening at low temperatures. For FOr T>Tjx the deviations from the clean limit are related

smaller mean free patfibut still >d) the screening is enhanced at t0 deviations of the zeroth-order Green'’s function from the
high and low temperatures. At the smallest mean free pathtbd ~ Clean-limit expression due to impurity scattering. The correc-
system is in the diffusive regime leading to a completely differenttion to g, given in Eq.(10), leads to a finite superfluid den-
temperature dependence. sity in the vicinity of the superconductor via the factor 1

04 |
(39

0.2

0.0

0 5
T,
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—g(x') in the kernel. The range of the propagator is modifiedFig. 2. In the ballistic regime, the validity of the clean-limit

by the correction(9) to f', leading to solution is restricted td>d exp(2/&;) for ér<<d and tol
>d for é&7>d. The last condition is the consequence of the

) 1 (x  , (f(xX") X' =X suppression of the density of states fo<vg/d, which en-

m(x,X") =ex T JX dx fT(x”) ~exp 2 & hances the effective mean free path tdvg/wd. In the

(40) diffusive regime, we found that the validity of the Usadel
] ) o equation(dirty limit) depends on the superconductor as well
Thus, the range of the kernel is now given &y, which is a5 the normal metal, and is thus restricted o0&, and |
strongly temperature dependent. Summarizing, we find foed, £;. The first condition is due to the fact that the induced
the current superconducting correlations are strongly anisotropic for a
1 d clean superconductot®$ &), even if the motion is diffusive
N a2l + X=X DI ETI AL in the normal metal. The intermediate diffusive regingg (
1) Nef(0) fo dx'e A, (4D <l<d) is not covered by these two cases. Here the full

again showing the importance of the new length s Eilenberger equation has to be solved, which requires a nu-

. i ; merical analysis; see Fig. 3.
In the limit Aey(0)>¢r the f'eld cannot_ b_e effec'uveﬂy To study the magnetic response of the proximity layer we
screened on the scalg, leading to a vanishing screening ha

) . ve derived explicit expressions for the general linear-
fraction. If X ¢(0)<<r the field can be screened on a length response kernel22) for an NS sandwich. This derivation
scale smaller thaé; and the screening fraction will be finite.

‘s theref id hat the i lav b local ay easily be generalized to systems such as Josephson
Itis there ore evident that the interplay between local ang,,etions or unconventional superconductors. We have used
nonlocal physics is of crucial importance for the screenin

. o 3 his linear-response kernel to study the magnetic response of
behavior of a normal-metal proximity layer. The most inter-y,o oroyimity system at arbitrary impurity concentrations.
e§t|ng regime occurs foIr>_d, where a transition between The nonlocal current-field relation is shown to have non-
different screening behaviors may be observed by varyingyia| consequences on the screening behavior of the normal

the temperature; see Fig. 2. L . metal. In the ballistic case, we found the clean-limit theory to
We note that the screening fraction is a nonmMonotoniG) . restricted further b <[ N2(T)113= Ny, Aot giving the
err e

f“”C“OU of the mean free p_ath. At.IOW te_mperature, with penetration depth for the nonlocal current-field relation. If
Increasing mean free paghe., increasing purily the screen- Neii>d, the screening takes place on the geometric length
ing fraction is reduced rather 'than enhanc;ed. Assuming &caled, leading to a saturation at the screening fraction of
Femperature—dependent scattering mechanism with decrea§[4 at low temperatures. K 4<d, the finite (even though

ing mean free path as a function of temperature, such qﬁrge mean free path strongly enhances the screening. Thus

electron-electron or electron-phonon interaction, we migh‘cOr typical samples withy<d even a mean free pathd
M - - - N . . . - .
speculate to observe a nonmonotofiie., re-entrantbehav cannot be neglected, i.e., the clean-limit behavior is practi-

7O e SUSCeplere e Sl of 0 SCAEIY caly unobservable, A rge lmperaT T, e
current-fieldprelatioh ngever gs is eviden¥from EqL9) mpurity concentration reduces the range of the linear-
’ '’ response kernel t§;, again enhancing the screening. Fur-

the largest off-diagonal self-energ | which includes, e.9.,  thermore, the screening fraction may serve to distinguish be-
impurity scattering will provide &low-temperaturgcutoff  tween samples with bulk impurities rather than a rough
for this behavior. boundary, since a nonzero screening fraction at large tem-
Finally we comment on the effect of a rough boundary.peratures isonly due to bulk impurity scattering. In dirty
For T>T, the Green’s functions are independent of thesystems, where the zeroth-order Green’s function is well de-
boundary condition ak=d. In this case &inite screening scribed by the Usadel approximation, the current-field rela-
fraction can only be due to impurity scattering; see Fig. Stion can still be nonlocal. We have shown that the applica-
For T<T, the screening behavior will be strongly affected pjlity of the local current-field relation is restricted 13
by a rough boundary. This makes it possible to distinguislk)\Nd for T<Eqy andI3<\2&p(T) for T>Eqy,. This shows
between clean samples with a rough boundary and samplegat in the presence of magnetic fields some caution is
containing impurities. needed in applying the Usadel theory.
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