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Diamagnetic response of a normal-metal–superconductor proximity system
at arbitrary impurity concentration
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We investigate the magnetic response of normal-metal–superconductor proximity systems for arbitrary
concentrations of impurities and at arbitrary temperatures. Using the quasiclassical theory of superconductivity
a general linear-response formula is derived which yields a nonlocal current-field relation in terms of the
zero-field Green’s functions. Various regimes between clean-limit and dirty-limit response are investigated by
analytical methods and by solving the general formula numerically. In the ballistic regime, a finite mean free
path reduces the nonlocality and leads to a stronger screening than in the clean limit even for a mean free path
much larger than the system size. Additionally, the range of the kernel describing the nonlocality is strongly
temperature dependent in this case. In the diffusive limit we find a crossover from local to nonlocal screening,
which restricts the applicability of the dirty-limit theory.@S0163-1829~98!00445-7#
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I. INTRODUCTION

A normal metal in good metallic contact to a superco
ductor acquires induced superconducting properties. The
sic features of thisproximity effectwere already well under
stood in the sixties. One of these properties is
diamagnetic screening of an applied magnetic field, wh
has been studied in a series of experimental1–4 and theoreti-
cal works.5–9

Already early in this development it was recognized th
the relevant length scale governing the superconducting
relations is given by the thermal and impurity depend
coherence lengths in the normal metal. The thermal lengt
given by jT5vF/2pT in the clean limit~mean free pathl
→`! andjD5(jTl /3)1/2 in the dirty limit (l→0). The finite
thicknessd of the normal-metal layer is an intrinsic geome
ric length scale of the proximity effect. The interplay b
tween the three length scalesjT , l , andd is relevant for the
behavior of the microscopic quantities such as the spa
decay of the pair amplitude or the spectral density of sta
In this paper we investigate the range between the clean
the dirty limiting cases and find several intermediate regim
of interest, differing by the relative magnitudes ofjT , l , and
d.

The theory of linear diamagnetic response of clean
dirty N-S proximity systems has already been stud
extensively.5,6,8 While the dirty-limit theory was found to be
in agreement with early experimental work,10 the samples
studied in more recent experiments11,12 fail to be described
satisfactorily by either the clean or the dirty limit. They e
hibit the qualitatively different behavior of an intermedia
regime. In a previous paper8 we were able to fit an experi
ment in the low-temperature regime with the dirty-lim
theory. However, the data for temperaturesT.vF /d could
not be reproduced by the dirty limit theory. These expe
ments also show clear deviations from the clean-limit theo
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even if the finite transparency of the interface is accoun
for.7,9 On the other hand, the breakdown field seen in
nonlinear response to a magnetic field of some of the sa
samples was found to agree fairly well with the clean-lim
theory.9 In this paper, guided by a numerical study, we cla
sify the intermediate regimes and show how the qualitat
discrepancies between theory and experiment can be
solved. In recent experiments on relatively clean sample
low-temperature anomaly was reported.11,3,4 The nearly per-
fect screening atT'vF /d was found to be reduced as th
temperature was lowered further. This reentrance effect
not been explained up to now. We will not address this pr
lem directly here, but rather provide an understanding
those facets of the proximity effect which are the necess
basis for further investigations.

From a theoretical point of view there is a major qualit
tive difference between the magnetic response in the d
versus the clean limit. In the dirty limit the current-field re
lation is local and the screening can be almost complete. T
is in strong contrast to the clean limit, where the current-fi
relation is completely nonlocal and the current depends
the vector potential integrated over the whole normal-me
layer.6 As a consequence, there is an overscreening eff
i.e., the magnetic field reverses its sign inside the norm
metal, and the magnetic susceptibility is limited to 3/4 of th
of a perfect diamagnet. In the intermediate regime, the
perfluid density and the range of the current-field relatio
both diminishing with decreasing mean free path, are sho
to affect the screening ability in a contrary way and th
compete in the magnetic response.

We investigate the magnetic response at arbitrary im
rity concentrations starting from the quasi-classical Gree
functions in absence of the fields, which are discussed
Sec. II. On this basis, we develop a theory of linear curr
response in Sec. III. We produce a general result with
well-known structure: the current densityj (x) is given by a
14 531 ©1998 The American Physical Society
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14 532 PRB 58W. BELZIG, C. BRUDER, AND A. L. FAUCHÈRE
convolution of a kernelK(x,x8) with the vector potential
A(x). The kernel is given explicitly in terms of the Green
functions in the absence of the fields. Our formula eas
yields the basic constitutive relations of the London13 and
Pippard14 type for a superconductor. With the help of th
kernel we calculate the magnetic susceptibility of a proxi
ity system at arbitrary impurity concentrations in Sec. I
We find that the impurities have nontrivial consequences
the magnetic response. The range of the integral kernel
be strongly temperature dependent, and can be given b
ther jT or l . In particular, we show that even forl consider-
ably larger thatd the spatial dependence of the integral k
nel strongly enhances the magnetic response, as compar
the clean limit.

II. QUASICLASSICAL EQUATIONS
AND PROXIMITY EFFECT

The basic set of equations appropriate for describing s
tially inhomogeneous superconductors was developed
Eilenberger15 and by Larkin and Ovchinnikov16 ~for a recent
collection of papers on the quasiclassical method, see
17!. They are transportlike equations for the quasiclass
Green’s functions, i.e., the energy-integrated Gorkov Gree
functions, that are derived from the Gorkov equations un
the assumption that the length scales relevant for super
ductivity are much larger than atomic length scales. We tr
the presence of elastic impurities within the Born appro
mation ~the full T-matrix-formalism has been shown to lea
to quantitative changes18!. The Eilenberger equations tak
the form (e5ueu)

2vF„“12ieA~x!…f ~vF ,x!5S 2v1
1

t
^g~x!& D f ~vF ,x!

2S 2D~x!1
1

t
^ f ~x!& Dg~vF ,x!;

vF~“22ieA! f †~vF ,x!5S 2v1
1

t
^g~x!& D f †~vF ,x!

~1!

2S 2D~x!1
1

t
^ f †~x!& Dg~vF ,x!;

2vF“g~vF ,x!5S D~x!1
1

2t
^ f ~x!& D

3„f ~vF ,x!2 f †~vF ,x!….

These are three coupled differential equations for the nor
~diagonal! Green’s function g and the anomalous~off-
diagonal! Green’s functionsf and f †. They depend on Mat-
subara frequencyv5pT(2n11), the elastic scattering tim
t5 l /vF , and the Fermi velocityvF , ^ . . . & denoting the av-
erage over the Fermi surface~\5c51 throughout!. The su-
perconducting order parameterD is taken to be real. We not
that the v-dependence of the Green’s functions has b
omitted in our notation. The Green’s functions obey the n
malization condition

g2~vF ,x!1 f ~vF ,x! f †~vF ,x!51 ~2!
y
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and satisfy the symmetry relationsg* (2vF ,x)5g(vF ,x)
and f * (2vF ,x)5 f †(vF ,x). The current is given by

j~x!5
i2epFm

p
T (

v.0
^vFg~vF ,x!&, ~3!

and depends only on the imaginary part ofg, due to the
above symmetry relations.

In this paper, we consider a system shown in Fig. 1 c
sisting of a normal-metal layer of thicknessd, which is in
ideal contact with a semi-infinite superconductor. A ma
netic field (0,0,H) is applied parallel to the metal surfac
producing screening currents@0,j (x),0# along the surface,
which depend on the coordinatex. The pair potential is taken
to be a step functionD(x)5DQ(2x). Assuming a thickness
d@j05vF/2pTc , we can neglect the self-consistency of t
pair potential. Furthermore, we assume specular reflectio
the normal-metal–vacuum boundary.

In the absence of external fields~we denote the corre
sponding Green’s functions byg0 , f 0 and f 0

†! Eqs.~1! reduce
to

2vx

d

dx
f 0~vx ,x!52ṽ~x! f 0~vx ,x!22D̃~x!g0~vx ,x!,

~4!

vx

d

dx
f 0

†~vx ,x!52ṽ~x! f 0
†~vx ,x!22D̃~x!g0~vx ,x!.

We have introduced the effective frequencyṽ(x)5v

1^g0(x)&/2t and pair potentialD̃(x)5D(x)1^ f 0(x)&/2t.
Equations~4! imply that f 0(vx ,x)5 f 0

†(2vx ,x) and, since
^ f 0(x)&5^ f 0

†(x)&* , for realD we obtain a real̂ f 0(x)&, too.
Depending on the relative size of the thermal lengthjT ,

the mean free pathl , and the thicknessd we distinguish the
ballistic, the dirty and the intermediate diffusive regime th
are discussed in the following subsections. These regimes
also shown in Fig. 2.

FIG. 1. Geometry of the proximity model system. The thickne
of the superconductor is assumed to be much greater thanj0 , the
pair potential is taken real and assumed to follow a step funct
D(x)5DQ(2x). In our gauge, the screening current and the vec
potential are parallel to the NS interface. The interface is assu
to be perfect and the normal-metal–vacuum boundary to be sp
larly reflecting.
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A. Ballistic regime

The ballistic regime is limited byl @min$jT ,d%, which
ensures a ballistic propagation of the electrons over
thickness or the thermal length of the normal layer, resp
tively. As a limiting case, forl→` ~clean limit! Eq. ~4! may
be solved analytically. ForTc@TA[vF/2pd, the solution in
the normal metal takes the form6

f 0~vx ,x!5e~2v/vx!~d2x!/coshxd ,

f 0
†~vx ,x!5 f ~2vx ,x!, xd5

2vd

uvxu
. ~5!

At temperatures above the Andreev temperature,T@TA ,
only the first Matsubara frequencyv5pT is relevant and
the decay of thef -function is governed byjT5vF/2pT. TA
determines the temperature at which thef -function acquires
a finite value at the outer boundary.

An estimation using the Eilenberger equation Eq.~4! eas-
ily shows that the clean-limit solution is valid for

l @d exp~2d/jT! if jT!d, ~6!

l @d if jT@d. ~7!

We note that this includes the regiond! l !jT , the finite
thickness preventing the small mean free pathl !jT of be-
coming effective. In the remaining part of the ballistic r
gime, see Fig. 2, the full solution is not known, but we m
produce an approximate solution, which characterizes w

FIG. 2. Dependence of the magnetic response on thermal le
jT5vF/2pT and mean free pathl . In the ballistic regimel
@min$jT ,d% we distinguish three regions:~a! the clean limit with
infinite range of the kernel exhibiting a reduced diamagnet
~overscreening!, ~b! the quasiballistic limit with finite rangejT in-
creasing screening at large temperatures,~c! the ballistic limit
where the finite rangel enhances the screening althoughl @d. In
the diffusive regimel !jT ,d the range of the kernel is given byl .
The dirty limit with nearly isotropic Green’s functions is restricte
to l !j0 ,jT ,d. Note that the current-field relations can still be loc
or nonlocal depending on the relative size of penetration depth
mean free path. For comparison, the conventionally assumed bo
line between clean and dirty limits (l 5jT) is indicated by a dotted
line.
e
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the numerical results found below. Limiting ourselves tojT
!d allows us to consider the Green’s function for the fi
Matsubara frequencyv5pT only. We restrict ourselves to
the forward directionvx51vF . From Eq.~4! we find that
f 0'2 exp(2x/jT) remains unchanged as in Eq.~5!, and f 0

†

!1 and 12g0!1 obey the approximate equations

S d

dx
2

1

jT
D f 0

†~x!52
1

l
^ f 0~x!&,

d

dx
„12g0~x!…52

1

l
^ f 0~x!& f ~x!, ~8!

with the approximate solutions

f 0
†~x!5

jT

2l
e2x/jT, ~9!

12g0~x!5
jT

2l
e22x/jT. ~10!

Here we have used̂ f 0&' f /2, which is valid since f 0
(2uvxu)! f 0(uvxu). Interestingly, while the induced supe
conducting correlations as described by^ f 0(x)& remain un-
changed as compared to the clean limit~5!, the values off 0

†

and 12g0 are of orderjT / l rather than exponentially sup
pressed as in Eq.~5!. This is of importance for the curren
response as we show below.

B. Dirty limit

If impurity scattering dominates, as described by^g0&/t
@v and ^ f 0&/t@D, Eq. ~4! can be reduced to the Usad
equation19 for the isotropic part̂ f 0(x)&. Assumingv!D
the solution in the normal metal takes the form

^ f 0~x!&5coshSA2v

D
~d2x! D Y coshSA2v

D
dD ,

~11!

where D5vF
2t/3 is the diffusion constant. Equation~11!

shows that the important energy scale is the Thouless en
ETh5D/2pd2. The coherence length in this case isjD(T)
5(D/2pT)1/2, which reflects the diffusive nature of the ele
tron motion.

In the normal metall !jT ,d are necessary conditions fo
the Usadel theory to be valid. However, as the numer
results will confirm below, the Usadel theory in the norm
metal may not be applied without considering the superc
ductor inducing the proximity effect. The application of th
Usadel equations requires the Green’s functions to be ne
isotropic, which in the superconductor is only fulfilled fo
^ f 0&/t@D. The validity of the Usadel theory~in the absence
of fields! is thus restricted to l !d,jT , and l !j0
5vF/2pTc , the dirty limit, see Fig. 2.

C. Intermediate diffusive regime

Now we relax all restrictions on the mean free path a
investigate the regime between the ballistic regime and
dirty limit. Equation~4! can be formally decoupled using th
Schopohl-Maki transformation20

th
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er
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FIG. 3. Spatial dependence of the anomalous Green’s functionf 0(x,vx) in a proximity normal-metal layer. The thickness isd
510vF /Tc and the frequency isv5vF /d. The mean free path isl 5d in ~a! and l 50.1d in ~b!. The insets show the angular dependen
f (vFx) at the positions indicated by the arrows. We note that in the Usadel theory the angular dependence would be given by
function.
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a0~vx ,x!5
f 0~vx ,x!

11g0~vx ,x!
, a0

†~vx ,x!5
f 0

†~vx ,x!

11g0~vx ,x!
,

~12!

leading to the Riccati differential equations

2vx

d

dx
a0~vx ,x!52ṽ~x!a0~vx ,x!1D̃~x!„a0

2~vx ,x!21…,

vx

d

dx
a0

†~vx ,x!52ṽ~x!a0
†~vx ,x!1D̃~x!„a0

†2~vx ,x!21….

~13!

Equations~13! provide the basis for a~stable! numerical so-
lution. We have determined the impurity self-energies s
consistently by an iteration procedure starting from the dir
limit expression. Representative results of the numer
calculation are shown in Fig. 3.

We have chosen the frequencyv5vF /d and a mean free
path of l 5d in Fig. 3~a!, l 50.1d in Fig. 3~b!. Note the
distinction of thef -function for forward~vFx5vF , solid line!
and backward propagation~vFx52vF , dashed line!. As we
cross over from the ballistic to the diffusive regime, t
backward propagating branch changes from a monotonic
increasingf -function of x for l 5d to a decayingf -function
for l 50.1d. In the ballistic case the backward moving ele
trons carry superconducting correlations only after reflect
from the normal-metal–vacuum boundaryx5d. In the dif-
fusive case, the backward propagatingf -function is gener-
ated by the impurity scattering from the forward branch, th
taking the same functional dependence ofx; see Fig. 3. This
behavior is illustrated in the insets, wheref is plotted as a
function ofvx for fixed positions. The sharp features prese
in Fig. 3~a! are washed out by impurity scattering in Fi
3~b!. Remarkably, however, they are still far from the dirt
limit behavior, for whichf 0(vFx) in the insets is expected t
be a straight line. According to conventional wisdoml
50.1vF /v!jT would indicate the dirty limit. Considering
that we have chosend510vF /Tc , implying l'vF /D, we
notice that the dirty-limit condition is not fulfilled in the
superconductor. The anisotropy of thef -function present in
the superconductor by proximity induces an anisotropy
f-
-
al

lly

-
n

s

t

-

side the normal metal, which is not accurately described
the Usadel theory. For the dirty-limit theory to be valid in th
normal metal, the superconductor has to be dirty as well

We note that in our present calculation we have assum
the same mean free path in the superconductor and the
mal metal. Allowing for different mean free paths wou
affect the definition of the dirty and the intermediate regim
and we do not further investigate this question here.

III. LINEAR-RESPONSE KERNEL

In this section we derive the general linear-response k
nel ~22! of a normal-metal–superconductor sandwich
terms of the Green’s functions in absence of the fields.
consider the quasi-one-dimensional system shown in Fig
assuming a superconductor of thicknessds and a normal
metal of thicknessd. The magnetic field is applied in
z-direction as described by the gaugeA5A(x)ey . To calcu-
late the linear diamagnetic response, we separate the Gre
functions into its real and imaginary parts, where the ima
nary part is of first order inA and the real part of zeroth
order:

f ~vF ,x!5 f 0~vx ,x!1 i f 1~vx ,vy ,x!,

f †~vF ,x!5 f 0
†~vx ,x!1 i f 1

†~vx ,vy ,x!,

g~vF ,x!5g0~vx ,x!1 ig1~vx ,vy ,x!. ~14!

The zeroth-order parts obey Eq.~4! discussed in the previou
section. The first-order parts of Eq.~1! read

2vx

d

dx
f 1~vx ,vy ,x!52ṽ~x! f 1~vx ,vy ,x!

22D̃~x!g1~vx ,vy ,x!

12evyA~x! f 0~vx ,x!,
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vx

d

dx
f 1

†~vx ,vy ,x!52ṽ~x! f 1
†~vx ,vy ,x!

22D̃~x!g1~vx ,vy ,x!

12evyA~x! f 0
†~vx ,x! ~15!

whereṽ(x), D̃(x) were given after Eq.~4! and

g1~vx ,vy ,x!

52
f 0~vx ,x! f 1

†~vx ,vy ,x!1 f 1~vx ,vy ,x! f 0
†~vx ,x!

2g0~vx ,x!
~16!

follows from the normalization~2!. We now apply the Maki-
Schopohl transformation defined in Eq.~12! to the full equa-
tions of motions~1!. After linearization we obtain

f 1~vx ,vy ,x!52
a1~vx ,vy ,x!2a0

2~vx ,x!a1
†~vx ,vy ,x!

„11a0~vx ,x!a0
†~vx ,x!…2

,

f 1
†~vx ,vy ,x!52

a1
†~vx ,vy ,x!2a0

†2~vx ,x!a1~vx ,vy ,x!

„11a0~vx ,x!a0
†~vx ,x!…2

,

and Eqs.~15! are decoupled into

2
vx

2

d

dx
a1~vx ,vy ,x!5@ṽ~x!1D̃~x!a0~vx ,x!#a1~vx ,vy ,x!

1evyA~x!a0~vx ,x!,

vx

2

d

dx
a1

†~vx ,vy ,x!5@ṽ~x!1D̃~x!a0
†~vx ,x!#a1

†~vx ,vy ,x!

1evyA~x!a0
†~vx ,x!. ~17!

For a more general form of these equations that has b
used to treat the linear electromagnetic response of vort
en
es

numerically, see Ref. 21. We will now proceed analytical
As a consequence of Eq.~17! we find a1(2vy)52a1(vy)
and the same fora1

† , which leads tô f 1&5^ f 1
†&50, as was

already noted above. Furthermore, sincea1
†(vx)5a1(2vx),

we only have to consider one of the two equations~e.g., the
first one!. Equation~17! is an inhomogeneous first-order di
ferential equation, which can be integrated analytically. A
suming thatf and f † do not change sign with the help of Eq
~4! the solution can be written as

a1~vx ,vy ,x!5c~vx ,vy!
m~vx ,x,x0!

f 0
†~vx ,x!

2
2evy

vxf 0
†~vx ,x!

3E
x0

x

@12g0~vx ,x8!#m~vx ,x,x8!A~x8!dx8,

~18!

where

m~vx ,x,x8!5expS 2

vx
E

x

x8 D̃~x9!

f 0
†~vx ,x9!

dx9D . ~19!

In this equationx0 is an arbitrary reference point and th
constantc has to be determined by the appropriate bound
conditions. m satisfies the relations of a propagato
m(u,x,x8)5m(u,x8,x)21 and m(u,x,x9)m(u,x9,x8)
5m(u,x,x8). Now we determine the constantc for a system
of size @2ds ,d#. We assume specular reflection at tw
boundaries atx52ds ,d and ideal interfaces between diffe
ent materials inside the system. The appropriate bound
conditions are f (vx ,vy ,x52ds ,d)5 f (2vx ,vy ,x5
2ds ,d) and continuity at the internal interfaces. The sam
conditions are valid fora1 anda1

† . This leads to
c~vx ,vy!52e
vy

vx
E

2ds

d m~vx ,d,x8!1m~2vx ,d,x8!

m~vx ,d,2ds!2m~2vx ,d,2ds!
@12g0~vx ,x8!#A~x8!dx8. ~20!

The current is determined by Eq.~3!, using the Green’s functions~16!, expressed by the solution~18!. We obtain the following
general result for the linear current response in functional dependence of the vector potential,

j y~x!52E
2ds

d

K~x,x8!A~x8!dx8, ~21!

where the kernelK(x,x8) is given by

K~x,x8!5
e2pF

2

p
T (

v.0
E

0

vF
du

vF
22u2

vF
2u

@11g0~u,x!#@12g0~u,x8!#FQ~x2x8!m~u,x,x8!1Q~x82x!m~2u,x,x8!

1
m~2u,x,d!m~u,d,x8!

12m~u,d,2ds!m~2u,2ds ,d!
1

m~u,x,2ds!m~2u,2ds ,x8!

12m~u,d,2ds!m~2u,2ds ,d!

1
m~2u,x,d!m~u,d,2ds!m~2u,2ds ,x8!

12m~u,d,2ds!m~2u,2ds ,d!
1

m~u,x,2ds!m~2u,2ds ,d!m~u,d,x8!

12m~u,d,2ds!m~2u,2ds ,d! G . ~22!
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Equation ~22! gives the exact linear-response kernel
any quasi-one-dimensional system, consisting of a comb
tion of normal and superconducting layers extending fr
x52ds to x5d. The kernel is expressed in terms of th
quasi-classical Green’s functions in absence of the fie
which may be specified for the particular problem of intere
We note two characteristic features of Eq.~22!: The factor
@12g0(u,x8)# measures the deviation of a quasiclassical
jectory from the normal stateg0[1, which is inert to a mag-
netic field. The propagatorm(u,x,x8) shows up in six sum-
mands which represent all the ballistic paths fromx to x8,
accounting for multiple reflection at the walls at2ds andd.
Thus the first two summands connectingx and x8 directly
constitute the bulk contribution, while the additional fo
summands are specific to a finite system~assuming specula
reflection at the boundary!. We note that a form similar to
Eq. ~22! may be derived for non-ideal interfaces between
normal and superconducting layers, if the appropriate bou
ary conditions following from Ref. 22 are taken into accou
~these boundary conditions are only valid if the distance
tween two barriers is larger than the mean free path!.

For illustration we reproduce the current response o
half-infinite superconductor. Settingd50 and ds→`, the
solution of the Eilenberger equation~4! takes the simple
form g05v/V, f 05 f 0

†5D/V, whereV5(D21v2)1/2. In-
serting in Eq.~22! we obtain the linear-response kernel

KS~x,x8!5
e2pF

2

p
T (

v.0

D2

V2 E
0

vF
du

12u2/vF
2

u

3@e2~2V11/t!~ ux2x8u/u!1e~2V11/t!@~x1x8!/u##,

~23!

which describes the current response of an arbitrary su
conductor, as first derived by Gorkov,23 which here addition-
ally includes the effect of the boundary. For fields varyi
rapidly spatially we arrive at a nonlocal current-field relati
of the Pippard-type,14 while for slowly varying fields the
kernel can be integrated out in Eq.~21!, producing the Lon-
don result.13 We recall here certain generic features of th
kernel, which are of importance below. In a dirty superco
ductor (V!1/t) the range is given by the mean free pathl
5vFt. In a clean superconductor (1/t!V), the range is
roughly given by the coherence lengthj0 and is thus nearly
temperature-independent.

IV. MAGNETIC RESPONSE

For the NS system we consider in this paper, see Fig
the kernel~22! may be simplified usingm(u,x,2`)→0 and
m(2u,2`,x)→0 as ds→` (u.0). The linear-response
kernel takes the form

K~x,x8!52
e2pF

2

p
T (

v.0
E

0

vF
du

vF
22u2

vF
2u

3„11g0~u,x!…„12g0~u,x8!…@Q~x2x8!

3m~u,x,x8!1Q~x82x!m~2u,x,x8!
f
a-

s,
t.

-

e
d-
t
-

a

r-

-

1,

1m~2u,x,d!m~u,d,x8!#. ~24!

The magnetic response of the proximity system follo
from the self-consistent solution of Eq.~21! and the Maxwell
equation

d2

dx2 A~x!524p j y~x!. ~25!

As boundary condition we use (d/dx)A(x)ux5d5H, where
H is the applied magnetic field, andA(0)50, neglecting the
penetration of the field into the superconductor. The inc
sion of the field penetration into the superconductor lead
corrections;lS/d to r, which is a small ratio for typical
proximity systems. HerelS is the effective penetration dept
of the superconductor, including the nonlocal or impur
effects. The magnetic response of the normal-metal laye
measured by the screening fractionr524px51
2A(d)/Hd, which gives the fraction of the normal-meta
layer that is effectively field free. It is given by the susce
tibility x, which is equal to the ratio of the average magn
tization to the applied magnetic field.

The general properties of the kernel~22! are characterized
by both the decay~range! of the propagatorm(vF ,x,x8) and
the amplitude of the prefactor (11g0)(12g0) which deter-
mines the degree of nonlocality of the relations~21!. The
inverse decay length of the propagator is proportional to
off-diagonal part of the self-energyD̃ and the prefactor is
related to the superfluid density. We discuss below how
the proximity effect, the range of the kernel varies from i
finity to l and jT , exhibiting a strong temperature depe
dence, which leads to nontrivial screening properties. F
thermore, the superfluid density introduces an additio
length scale in the problem: the London lengthlN , which
becomes crucial for the distinction of various regimes.

A. Clean limit

A special case is the clean normal metal (l→`). Here the
range is infinite and the current-field relation is complete
nonlocal. It follows from Eq.~22! that it is necessary to hav
impurities in a normal metal to get a finite range of the k
nel. In the limitd@j0 the current may be written as

j clean52
1

4pl2~T!d E
0

d

A~x!dx. ~26!

This defines a temperature-dependent penetration depth
can be given explicitly in the limitsT50 andT@TA :

l2~T!5H m

4pe2ne
5:lN

2 ; T50

lN
2 T

12TA
e2~T/TA!; T@TA .

~27!

Solving Maxwell’s equation we find

A~x!5HxS 12
3

4

d~2d2x!

@3l2~T!1d2# D , ~28!
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and the screening fraction

r5
3

4112l2~T!/d2 . ~29!

In the limit l(T)!d the screening fraction is 3/4, thus th
screening is not perfectly diamagnetic. The magnetic fi
inside the normal metal isB(x)/H5122r(12x/d), show-
ing the effect of overscreening forr.1/2, where the field
reverses sign inside the normal metal.

B. Dirty limit

Using the fact that the zeroth-order Green’s function
nearly isotropic and varies on a scalejD(T)@ l , we find for
the kernel~24!

K~x,x8!52
e2pF

2

p
T (

v.0
^ f ~x!&2

3E
0

vF
du

vF
22u2

vF
2u

@e2ux2x8u/ lu1e~2d2x2x8!/ lu#.

~30!

The kernel is factorized in a part containing the temperat
dependence and a part which is responsible for the nonlo
ity. The current is then expressed as

j ~x!52
1

4pl2~x,T!
E

0

d

Kd~x,x8!A~x8!dx8. ~31!

The local penetration depthl(x,T) is defined as

1

l2~x,T!
5

4pt

lN
2 T (

v.0
^ f ~x!&2 ~32!

and the temperature-independent part of the kernel is g
by

Kd~x,x8!5
3

4l FE1S ux2x8u
l D2E3S ux2x8u

l D
1E1S 2d2x2x8

l D2E3S 2d2x2x8

l D G .
~33!

In this formulaEn(z)5*1
`t2nexp(2zt)dt is the exponential

integral. Forl(x,T)@ l the vector potential may be taken o
of the integral in Eq.~31! and the spatial integral yields th
well-known local current-vector potential relation used
Usadel theory.19 We note that forl!j0 there may exist a
region ~see Fig. 2! where the Green’s functions are near
isotropic, and in absence of the field are given by Usa
theory, but the current response is nonlocal. To put limits
the validity of the local relation, we consider the appro
mate form ^ f &;exp@2x(2v/D)1/2# to determine the loca
penetration depth. As a result we find

l~x,T!'H lN

x

l
if jD~T!@d,

lN

jD~T!

l
ex/jD~T! if jD~T!!d.

~34!
d

s

e
al-

en

el
n

To achieve locality we need to havel ,l(x,T) in the region,
where the screening takes place. ForT!D/d2 this meansl
!l(d) leading to the conditionl 2!lNd. For T@D/d2

screening takes place atx'jD and we havel 2!lNjD(T).
The local penetration depth at the outer boundary can
small compared tod. In that case the screening fractionr
512l(d)/d can reach practically unity.

At high temperaturesT@ETh , the inverse penetration
depth is exponentially suppressed on a scale of
temperature-dependent coherence lengthjD(T). This length
defines the screening region and consequently

r~T!}
jD~T!

d
}T21/2. ~35!

This result has already been obtained on the basis
Ginzburg-Landau theory5 and numerically confirmed using
Usadel theory.24 We expect that nonlocal screening, whic
may be taken into account using Eq.~33!, will only lead to
quantitative corrections to Eq.~35!. We will not consider this
here but concentrate on the more interesting case in w
nonlocality gives rise to a qualitatively different picture.

C. Arbitrary impurity concentration: numerical results

As has been shown in the last two subsections, there
two main differences in the observable properties of the
duced screening in the clean or the dirty limit. First, t
saturation value ofr in the dirty limit can reach practically
unity, whereas in the clean limit it is limited to 3/4. Th
analytic behavior at high temperatures is quite different t
In the dirty limit r shows an algebraic behavior}T21/2,
whereas in the clean limit we findr}exp(22T/TA). From a
theoretical point of view these two limits are characteriz
by a completely nonlocal constitutive relation in the cle
limit and a local relation in the dirty limit. In this section w
will investigate the magnetic response in the regime betw
these two extreme cases.

To calculate the diamagnetic response, we have evalu
the integral kernel in Eq.~24! numerically using the results
from the Sec. II and solving Maxwell’s equation by a finit
difference technique. Therefore, the parameters entering
calculation arel /d and lN /d, assumingl .j0 , and jT /d
giving the temperature dependence.

Magnetic field distributions for various impurity concen
trations and temperatures are shown in Fig. 4. Thick lin
show the magnetic field and thin lines the current distribut
inside the normal metal. Different graphs correspond to d
ferent mean free paths and the curves inside each grap
different temperatures. In all curves we have chosenlN
50.003d. All these curves clearly show deviations from th
clean-limit behavior, where the field decays linearly and
current density is spatially constant. Larger impurity conce
trations make it possible to localize the current on a len
scale smaller than system size. Obviously, this scale is
given by the mean free path, but can be considerably sma
Later we will show what determines this length sca
Whether the localization of the current increases or decre
the screening fraction depends on temperature. Note tha
all parameters chosen the field is overscreened, which is
signature of a nonlocal constitutive relation.
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The screening fraction as a function of temperature
shown in Fig. 5. The different curves are for the clean lim
and for mean free pathsl /d5104,10,1,0.1. We see that
finite impurity concentration has strong influence on t
screening fraction, even ifl .d. It can either increase o
decrease the diamagnetic screening, depending on tem
ture.

For the interpretation of these results we first consider
casel 50.1d. The lower-right graph in Fig. 4 shows that th
screening is nearly local, since overscreening is rather sm

FIG. 4. Magnetic induction~thick lines! and current densities
~thin lines! in a proximity layer for different mean free paths. Th
different curves in each graph correspond to temperatures ofT/TA

50.04 ~solid line!, 5 ~short-dashed line!, and 8~long-dashed line!.

FIG. 5. Numerical results for screening fraction of the norm
metal layer forlN50.003d. The clean limit is indicated by a thin
line reachingr50.75 for T→0. Even a very large mean free pa
of 104d leads to an enhanced screening at low temperatures.
smaller mean free paths~but still .d! the screening is enhanced
high and low temperatures. At the smallest mean free path 0.1d the
system is in the diffusive regime leading to a completely differ
temperature dependence.
s
t

ra-

e

ll.

The local screening strength depends on the local super
density. At low temperaturesT!TA the superfluid density a
x5d is finite and the field is screened exponentially, lead
to a screening fraction of nearly unity. A higher temperatu
suppresses the superfluid density and the field penetrate
the point where the density is large enough to screen ef
tively. On the other hand, the locality of the kernel allows t
system to screen even if the superfluid density is suppre
nearly everywhere. The screening is then enhanced in c
parison to the clean limit. In Fig. 5 this appears atT
'6TA .

Let us now consider a mean free path of order or mu
larger than the sample size. Even forl 5104d we see a de-
viation from the clean-limit expression at low temperatur
For l 510d andl 5d screening is enhanced in comparison
the clean limit at low and high temperatures. Only in
intermediate regime, i.e., aroundT55TA in our case,r is
similar to the clean limit screening fraction. A qualitativ
understanding may be gained from looking at the const
tive relation in the limitl @d. In the limit T!TA the zeroth-
order Green’s functions are given by the clean-limit expr
sions~5!. We approximate the kernel~24! by

K~x,x8!5
1

8pl2~T!d
@e2ux2x8u/ l1e2~2d2x2x8!/ l #.

~36!

Sincel @d, the exponentials may be expanded to first ord
As a result, we obtain two contributions to the current

j clean5
21

4pl2~T!d E
0

d

A~x!dx, ~37!

j imp~x!5
1

8pl2~T!d E
0

d ux2x8u12d2x2x8

l
A~x8!dx8.

~38!

When will deviations from the clean limit become impo
tant? It is clear that the impurities cannot be neglected, if
~38! is comparable to Eq.~37!. We estimate this by calculat
ing the two contributions to the current using the clean-lim
vector potential~28!. Comparing the two contributions, w
find that impurities can be neglected, if

leff~T![A3 l2~T!l @d. ~39!

This equation defines a new length scale, the effec
penetration depthleff , which determines the validity of the
clean-limit magnetic response. For the clean limit to be va
at T50 the conditionleff(0).d has to be fulfilled, since in
this case the screening takes place on the geometrical s
d. In the caseleff(0)!d the field is screened on a scaleleff
and the screening fraction is strongly enhanced in comp
son to the clean limit. Nevertheless, the clean-limit behav
reappears at higher temperatures, sinceleff(T) grows with
temperature.

For T@TA the deviations from the clean limit are relate
to deviations of the zeroth-order Green’s function from t
clean-limit expression due to impurity scattering. The corr
tion to g, given in Eq.~10!, leads to a finite superfluid den
sity in the vicinity of the superconductor via the factor

l

or

t
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2g(x8) in the kernel. The range of the propagator is modifi
by the correction~9! to f †, leading to

m~x,x8!5expS 1

l E
x

x8
dx9

^ f ~x9!&
f †~x9! D'expS 2

x82x

jT
D .

~40!

Thus, the range of the kernel is now given byjT , which is
strongly temperature dependent. Summarizing, we find
the current

j ~x!'
21

leff~0!3 E
0

d

dx8e22@~x81ux2x8u!/jT#A~x8!, ~41!

again showing the importance of the new length scaleleff .
In the limit leff(0)@jT the field cannot be effectively
screened on the scalejT , leading to a vanishing screenin
fraction. If leff(0)!jT the field can be screened on a leng
scale smaller thanjT and the screening fraction will be finite

It is therefore evident that the interplay between local a
nonlocal physics is of crucial importance for the screen
behavior of a normal-metal proximity layer. The most inte
esting regime occurs forl .d, where a transition betwee
different screening behaviors may be observed by vary
the temperature; see Fig. 2.

We note that the screening fraction is a nonmonoto
function of the mean free path. At low temperature, w
increasing mean free path~i.e., increasing purity!, the screen-
ing fraction is reduced rather than enhanced. Assumin
temperature-dependent scattering mechanism with dec
ing mean free path as a function of temperature, such
electron-electron or electron-phonon interaction, we mi
speculate to observe a nonmonotonic~i.e., re-entrant! behav-
ior of the susceptibility~here the smallness of the scatteri
rate is compensated by the high sensibility of the nonlo
current-field relation!. However, as is evident from Eq.~19!,
the largest off-diagonal self-energy (D̃) which includes, e.g.,
impurity scattering will provide a~low-temperature! cutoff
for this behavior.

Finally we comment on the effect of a rough bounda
For T@TA the Green’s functions are independent of t
boundary condition atx5d. In this case afinite screening
fraction can only be due to impurity scattering; see Fig.
For T,TA the screening behavior will be strongly affecte
by a rough boundary. This makes it possible to distingu
between clean samples with a rough boundary and sam
containing impurities.

V. CONCLUSIONS

We have investigated the diamagnetic response of a p
imity layer for arbitrary impurity concentration using th
quasiclassical theory of superconductivity. We found a va
ety of different regimes in which the physics is differe
from the previously studied clean and dirty limits.

We have first investigated the proximity effect in the a
sence of fields, distinguishing three different regimes,
d
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Fig. 2. In the ballistic regime, the validity of the clean-lim
solution is restricted tol @d exp(2d/jT) for jT!d and to l
@d for jT@d. The last condition is the consequence of t
suppression of the density of states forv!vF /d, which en-
hances the effective mean free path to; lvF /vd. In the
diffusive regime, we found that the validity of the Usad
equation~dirty limit ! depends on the superconductor as w
as the normal metal, and is thus restricted tol !j0 and l
!d,jT . The first condition is due to the fact that the induc
superconducting correlations are strongly anisotropic fo
clean superconductor (l @j0), even if the motion is diffusive
in the normal metal. The intermediate diffusive regime (j0
! l !d) is not covered by these two cases. Here the
Eilenberger equation has to be solved, which requires a
merical analysis; see Fig. 3.

To study the magnetic response of the proximity layer
have derived explicit expressions for the general line
response kernel~22! for an NS sandwich. This derivation
may easily be generalized to systems such as Josep
junctions or unconventional superconductors. We have u
this linear-response kernel to study the magnetic respons
the proximity system at arbitrary impurity concentration
The nonlocal current-field relation is shown to have no
trivial consequences on the screening behavior of the nor
metal. In the ballistic case, we found the clean-limit theory
be restricted further byd,@l2(T) l #1/35leff , leff giving the
penetration depth for the nonlocal current-field relation.
leff.d, the screening takes place on the geometric len
scaled, leading to a saturation at the screening fraction
3/4 at low temperatures. Ifleff,d, the finite ~even though
large! mean free path strongly enhances the screening. T
for typical samples withlN!d even a mean free pathl @d
cannot be neglected, i.e., the clean-limit behavior is pra
cally unobservable. At large temperaturesT@TA , a finite
impurity concentration reduces the range of the line
response kernel tojT , again enhancing the screening. Fu
thermore, the screening fraction may serve to distinguish
tween samples with bulk impurities rather than a rou
boundary, since a nonzero screening fraction at large t
peratures isonly due to bulk impurity scattering. In dirty
systems, where the zeroth-order Green’s function is well
scribed by the Usadel approximation, the current-field re
tion can still be nonlocal. We have shown that the appli
bility of the local current-field relation is restricted tol 2

!lNd for T!ETh andl 3!lN
2 jD(T) for T@ETh . This shows

that in the presence of magnetic fields some caution
needed in applying the Usadel theory.
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