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Square vortex lattices for two-component superconducting order parameters

D. F. Agterberg
Theoretische Physik, Eidgeno¨ssiche Technische Hochschule-Ho¨nggerberg, 8093 Zu¨rich, Switzerland

~Received 25 June 1998!

I investigate the vortex lattice structure of the Ginzburg-Landau free energy for a two component order
parameter in the weak-coupling clean limit when the field is along the high-symmetry axis in a tetragonal
crystal. It is shown that the vortex-lattice phase diagram as a function of the Ginzburg-Landau free-energy
parameters includes phases with a hexagonal, centered rectangular, rectangular, and square unit cells. It is also
shown that the square vortex lattice has the largest region of stability. The field distribution of the square vortex
lattice nearHc2 is determined and the application of this model to Sr2RuO4 is discussed.
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The oxide Sr2RuO4 has a structure similar to high-Tc ma-
terials and was discovered to be superconducting with aTc
51.35 K by Maenoet al. in 1994.1 It has been establishe
that this superconductor is not a conventionals-wave super-
conductor: NQR measurements show no indication o
Hebel-Slichter peak in 1/T1T,2 Tc is strongly suppressed b
nonmagnetic impurities,3 and tunneling experiments are in
consistent withs-wave pairing.4 More recently there have
been two experimental results that shed more light on
nature of the superconducting state. ThemSR experiments of
Luke et al. indicate that the superconducting statebreaks
time reversal symmetry, which implies that the superc
ducting order parameter must have more than
component.5 Of the possible representations~reps! of the
D4h point group, the two-dimensional~2D! G5u representa-
tion ~rep! is the most likely state that exhibits this propert
The order parameter in this case has two compon
(h1 ,h2) that share the same rotation-inversion symme
properties as (kx ,ky).

6 The brokenT state would then corre
spond to (h1 ,h2)}(1,i ). Theoretical arguments supporting
triplet pairing state have been given in Ref. 7. Given that t
material may well be described by such an order parame
it is of interest to explore further consequences of a tw
component order parameter. In an earlier work it was sho
that a consequence of the low-temperature broken time
versal symmetry state is that the mean-field vortex lat
phase diagram will exhibit two vortex lattice phases wh
the field is along a high-symmetry direction in the ba
plane.8 Another important experimental development is t
observation of a square vortex lattice in Sr2RuO4 by Rise-
man et al.9 Within the context of the orbital-dependent s
perconductivity model for Sr2RuO4 the orientation of the
square vortex lattice relative to the underlying ionic latti
dictates which of the Ru orbitals exhibit
superconductivity.8,10 This work focuses on the magnetic
field distribution and the structure of the vortex lattice for t
field along thec axis for this two-component model.

The free energy for theG5u representation of the tetrago
nal point group is given by6
PRB 580163-1829/98/58~21!/14484~6!/$15.00
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f 52auhW u21b1uhW u4/21b2~h1h2* 2h2h1* !2/2

1b3uh1u2uh2u21k1~ uD̃xh1u21uD̃yh2u2!1k2~ uD̃yh1u2

1uD̃xh2u2!1k5~ uD̃zh1u21uD̃zh2u2!1k3@~D̃xh1!

3~D̃yh2!* 1H.c.#1k4@~D̃yh1!~D̃xh2!* 1H.c.#

1h2/~8p!, ~1!

where a5a0(T2Tc), D̃ j5¹ j2(2ie/\c)Aj , h5¹3A,
and A is the vector potential. To simplify the analysis th
Ginzburg-Landau coefficients are determined within a we
coupling approximation in the clean limit. The measur
ments of Mackenzieet al. of Tc as a function of impurity
concentration show that the ratio of the mean free path to
zero-temperature coherence length is.8 for Tc.1.3 K ~Ref.
3! indicating that the clean limit should be a reasonable
proximation for Sr2RuO4. Without an experimental knowl-
edge of the characteristic frequency of the boson respons
for the pairing~presumably ferromagnetic spin fluctuation!
it cannot be determined that the weak-coupling limit is a
propriate for Sr2RuO4. Note that the spin fluctuation theor
of Mazin and Singh indicates thatTc /TP'1022, whereTP
is the characteristic paramagnon frequency.11 This estimate
in conjunction withTc /TF'1024 indicates that the weak
coupling approximation is reasonable for Sr2RuO4, but fur-
ther experiments are required to ensure this. Taking for
G5u rep the gap function described by the pseudo-sp

pairing gap matrix~note that this choice is not unique!: D̂
5 i @h1vx /(^vx

2&)1/21h2vy /(^vx
2&)1/2#szsy where the brack-

ets ^ & denote an average over the Fermi surface ands i are
the Pauli matrices, writingh15(h11 ih2)/A2, h25(h1

2 ih2)/A2, and rotating (D̃x ,D̃y) by an angleu about thez

axis to obtain (D̃ x̃ ,D̃ ỹ), the following dimensionless free
energy is found:
14 484 ©1998 The American Physical Society
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f 52~ uh1u21uh2u2!1~ uh1u41uh2u4!/212uh1u2uh2u21n@~h2h1* !21~h2* h1!2#/21uDx̃h1u21uDỹh2u21uDx̃h2u2

1uDỹh1u21~ei2u1ne2 i2u!@~Dx̃h1!~Dx̃h2!* 2~Dỹh1!~Dỹh2!* #/21~e2 i2u1nei2u!@~Dx̃h2!~Dx̃h1!* 2~Dỹh2!

3~Dỹh1!* #/21I ~e2 i2u2nei2u!@~Dx̃h2!~Dỹh1!* 1~Dỹh2!~Dx̃h1!* #/22I ~ei2u2ne2 i2u!@~Dx̃h1!~Dỹh2!*

1~Dỹh1!~Dx̃h2!* #/21k̃5~ uDzh1u21uDzh2u2!1h2, ~2!
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where h5¹3A, Dn5¹n /k2 iAn , f is in units Bc
2/(4p),

lengths are in unitsl5@\2c2b1 /(32e2k1ap)#1/2, k̃5

52k5 /k12, k125k11k254k1 /(31n), n5(^vx
4&

23^vx
2vy

2&)/(^vx
4&1^vx

2vy
2&), h is in units A2Bc

5F0 /(2plz) ~here Bc has been chosen to represent t
thermodynamic critical field!, a5a0(T2Tc), j
5(k12/2a)1/2, andk5l/j. The parametern ~note unu<1)
gives a measure of the square anisotropy of the Fermi
face. For a cylindrical Fermi surfacen50 and for a square
Fermi surfaceunu51. It is easy to verify that in zero field
(h1 ,h2)}(1,i ) is the stable ground state forunu<1.

For the magnetic field along thec axis the ground state i
found by settingDz50. Writing P15Ak( iD x̃1Dỹ)/A2H
and P25Ak( iD x̃2Dỹ)/A2H, minimizing the quadratic
portion of Eq. 2 with respect toh1 andh2 yields

kS h1

h2
D 5HS 112N e22iuP1

2 1ne2iuP2
2

e2iuP2
2 1ne22iuP1

2 112N
D

3S h1

h2
D , ~3!

where N5P1P2 . The maximum value of the externall
applied fieldH that allows a nonzero solution for (h1 ,h2)
yields the upper critical fieldHc2

. At H5Hc2 the vector

potential is that for a spatially uniform fieldA5(0,Hx,0).
Expanding (h1 ,h2) in terms of the eigenstates ofN ~Lan-
dau levels! up to N532 and diagonalizing the resulting ma
trix yields the result foreH5k/Hc2

shown as a function ofn
in Fig. 1.

FIG. 1. eH5k/Hc2
as a function ofn.
r-

The form of the eigenstate of theHc2
solution is

found to be h1(r )5(n>0a4n12f4n12(r ), and h2(r )
5(n>0a4nf4n(r ), wherefn(r ) are the harmonic oscillato
wave functions~Landau levels!. As is well known, these
wave functions have a large degeneracy, and the form of
vortex lattice is found by including the nonlinear terms of t
Ginzburg-Landau equations perturbatively to break this
generacy. Following the procedure of Abrikosov, the avera
Gibbs free-energy density is found to be~a derivation of this
result for unconventional superconductors can be found
Ref. 12 and for a mixedd- and s-wave order parameter in
Ref. 13!

ḡ52H22
~Hc2

2H !2

~2k̃221!bA

, ~4!

where

bA5
hs

2

~hs!
2

, ~5!

2k̃25
f 4

hs
2

, ~6!

f 4 is the fourth-order homogeneous free energy,hs is the
field ~along thec axis! induced by the supercurrent, and th
overbar denotes a spatial average. The form of the vo
lattice is found by minimizing (2k̃221)bA . To do thishs
must be found. By minimizing the Ginzburg-Landau fre
energy with respect to the vector potential the following
lation is found forhs :

j 1[
]hs

]y
2 i

]hs

]x

5h1* ~P2h1!1h1~P1h1!* 1h2* ~P2h2!

1h2~P1h2!* 1ei2u@h2* ~P1h1!1h1~P2h2!* #

1nei2u@h1* ~P1h2!1h2~P2h1!* #

j 2[
]hs

]y
1 i

]hs

]x
5h1~P2h1!* 1h1* ~P1h1!

1h2~P2h2!* 1h2* ~P1h2!1e2 i2u@h2~P1h1!*

1h1* ~P2h2!#1ne2 i2u@h1~P1h2!* 1h2* ~P2h1!#

~7!
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Near Hc2
the field hs is found by substituting the vecto

potential for the homogeneous field and the order param
solution nearHc2

into the right-hand side of Eq.~7!. Writing

the left-hand side of Eq. 7 asj i5(n,m( j i)n,mfnfm* and writ-
ing hs5(n,mhn,mfnfm* yields ~see Ref. 14!

hl ,l5(
n5 l

`

~ j 1!n11,n /An11, ~8!

hl ,p5@Al ~ j 1! l 21,p2Ap~ j 1!p21,l* #/~p2 l !, lÞp.

The form ofbA andk̃ will therefore be determined by term
of the typefn(r )fm* (r )fp(r )f l* (r ). To evaluate such term
I make the assumption that the vortex lattice unit cell co
tains one flux quantum. The shape of the unit cell is k
arbitrary and the convention introduced by Saint-Jam
et al.15 to describe the unit cell is used. The lattice geome
is depicted in Fig. 2.

The lattice vectors are a15a(1,0) and a2
5b(cosa,sina), with the single flux quantum constrain
ab sina52p, wherea and b are in unitsl H5Alj/H. This
assumption allows the functionsfn to be written as12

fn~r !522n/2p21/4~n! !21/2

3(
m

cmei2p~m21/2!x/ae2~y2ym!2/2Hn~y2ym!,

~9!

where cn5eipn(r112nr), yn5(n21/2)A2ps, s
5(b/a)sina, r5(b/a)cosa, andHn are the Hermite poly-
nomials. To evaluatebA and k̃ it is useful to express the
spatial averages in terms of a sum over the reciprocal la
of the vortex lattice. The reciprocal lattice is given byG
5 l 1k11 l 2k2 where k15(2p/a sina)(sina,2cosa) k2
5(2p/b sina)(1,0). The general form ofbA becomes

bA5

(
n,m,p,l

an,m,p,l (
l 1 ,l 2

^fnfm* & l 1 ,l 2
^fpf l* &2 l 1 ,2 l 2

F(
n

an^ufnu2&0,0G2 ,

~10!

where the coefficientsan,m,p,l andan are determined byf 4 ,
hs , and the form of the eigenfunction nearHc2

c , ^ f & l 1 ,l 2

5(ab sina)21*uce
2iG•r f (r ), and uc denotes the unit cell

The following relation makes this formulation for determi
ing bA and k̃ useful ~found using the addition theorem fo
Hermite polynomials!:

^fpfm* & l 1 ,l 2
5

Ap!m!

2m1p
^uf0u2& l 1 ,l 2

3(
r 50

p

(
s50

m Cr ,sHp2r@2zl 1 ,l 2
#Hm2s@zl 1 ,l 2

* #

~p2r !! ~m2s!!
,

~11!

where
ter

-
t
s
y

e

Cr ,s5 (
l 50

[ r /2]

(
p50

[s/2]

~21! l 1p

3
~r 1s22l 22p!!22 l 2p1~r 1s!/2

~r 22l !! ~s22p!! l ! p! @~r 1s!/22 l 2p#!
,

~12!

zl 1 ,l 2
5Ap@ l 1As1 i ( l 22r l 1)/As#, and

^uf0u2& l 1 ,l 2
5

Ap

b sina
eip~ l 11 l 21 l 1l 2!e2ps l 1

2/2e2p~ l 22 l 1r!2/2s.

~13!

The following relation is also useful:

^fpf0* & l 1 ,l 2
5@A2zl 1 ,l 2

#p^uf0u2& l 1 ,l 2
. ~14!

The relations~11!–~14! are straightforward to implement nu
merically.

In the analysis of the form of the vortex lattice the para
etern was considered to lowest order in perturbation the
~recall that unu<1 so thatn provides a natural expansio
parameter!. The limit n50 was considered by Zhitomirsk
who analytically found the ground-state eigenvector n
Hc2

.16 The solution of the order parameter to first order inn

is

~h1 ,h2!5@f01b4ne2 i4uf4 ,2ei2u~ef21b6ne2 i4uf6!#,

~15!

where e5A32A2'0.317 84, b452A3e(101A6)/(36
116A6)'0.182 30, andb65A30b4 /(101A6)'0.080 203.
Substituting this solution for the eigenstate nearHc2

into Eq.
~7! yields the coefficients

~ j 1!0,1512A2e,

~ j 1!0,55ei4un~A5b42A6b6!,

~ j 1!1,25A2e22e,

~ j 1!1,65ei4ub6n~A2e21!,

~ j 1!2,35A3e2,

~ j 1!2,75ei4uA7eb6n,

~ j 1!3,05ei4un~2b42A3e!,

~ j 1!4,15e2 i4unb4~12A2e!,

~ j 1!5,25e2 i4uen~A6b62A5b4!,

~ j 1!6,35e2 i4ub6nA3e.

Application of Eq.~8! yields
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hs52hs0@~123/A2e12e2!uf0u21~2e22e/A2!uf1u2

1e2uf2u21n@~A10eb4/42A6b6/4!~ei4uf1* f5

1e2 i4uf5* f1!1~A30eb4/42eb62A2b6/4!~ei4uf2* f6

1e2 i4uf6* f2!1~A3e/22b4!~ei4uf4* f0

1e2 i4uf0* f4!#, ~16!

where

hs05
b sina

Ap~122A2e14e2!

Hc22H

~2k̃221!bA

. ~17!

Using this expression forhs , (2k̃221)bA should be mini-
mized with respect tou, s, and r to find the form of the
vortex lattice. It can be proven whenn.0 (n,0) (2k̃2

21)bA can be minimized foru5p/4 (u50). For n50,
(2k̃221)bA is independent ofu. This is to be expected
sincen50 corresponds to a cylindrically symmetric Ferm
surface. It is also found thatk̃ varies weakly ('0.01) for the
different vortex lattice structures studied in this paper~such
behavior is also present for mixedd- and s-wave order
parameters13!. While this variation is small it determines th
form of the vortex lattice in the region ofk̃'1/A2 and at
smallk the vortex lattice phase diagram becomes quite r

The form of the vortex lattice found in the largek limit
agrees with that found under more restrictive assumption
Ref. 8. In this limit the lattice structure depends uponn. The
behavior of the vortex lattice as a function ofn is similar to
the behavior as a function of temperature found
borocarbide17 and d-wave18,13 superconductors. Forn50 a
hexagonal lattice is found. Asunu increases the lattice de
forms continuously untilunu50.0114. For 0,unu,0.0114
the vortex lattice is a centered rectangular lattice as show
Fig. 3 ~which can be described byu5p/42a, r5cosa, and
s5sina where p/3,a,p/2, a5p/3 corresponds to the
hexagonal lattice anda5p/2 to the square lattice!. For unu
>0.0114 the vortex lattice is square. Ifn>0.0114 the vortex
lattice is rotatedp/4 with respect to the underlying crysta
lattice while for n<20.0114 the vortex lattice is aligne
with the underlying crystal lattice.

As mentioned above whenk becomes sufficiently smal
the vortex lattice phase diagram becomes richer. Figur
shows the region of stability for the three vortex lattice sta
that were found to be stable. In addition to the two pha
described above, a third phase appears for smallk. The vor-
tex lattice for this phase has a rectangular unit cell and
described byr50 ands5b/a. This phase is stable becau

FIG. 2. The vortex lattice unit cell.
.
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r
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3
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k̃ is smaller for this phase than for both the square and h
agonal lattices. For a cylindrically symmetric Fermi surfa
(n50) andk,0.75 the hexagonal vortex lattice is no long
the stable structure. This arises becausek̃ is in a local maxi-
mum for the hexagonal lattice.

The type-I to type-II transition can also be determined a
it is not given by k̃51/A2 but by Hc2

5Hc ~which corre-

sponds tok5eA3/2 up to corrections that are second ord
in n). For a conventional superconductork̃51/A2 andHc2

5Hc are equivalent. Here it is found that thek for which
k̃51/A2 is less thank5eA3/2 for all lattice structures stud
ied. An analysis of the Gibbs energies indicates that
Meissner state is the stable phase forH near Hc2

when k

,eA3/2.
Clearly, the square vortex lattice has the largest region

stability in Fig 3. To further investigate the square vort
lattice the spatial variation of the magnetic field as given
Eq. ~16! is determined. This is shown in Fig. 4 forn50 and
for n50.2. The induced fieldhs has~in addition to a global
maximum and a global minimum! a local minimum and a
saddle point. Figure 5 shows the field distribution for the
two values ofn as determined from

P~h!5

E d2rd@h2h~r !#

E d2r

. ~18!

The peak inP(h) is due to the saddle point in the spati
dependence ofhs . As n increases the saddle point value
hs moves away from the minimum value ofhs resulting in a
larger ‘‘shoulder’’ in P(h) asn increases.

Now I turn to an application of these results to Sr2RuO4.
This requires a determination of the parametersn andk. The
value ofk as defined above is given by

FIG. 3. The vortex lattice phase diagram as a function of
Ginzburg-Landau ratiok and the square anisotropy parametern.
The phase diagram is the same forn,0. For n.0 (n,0) the
square vortex lattice is rotatedp/4 ~0! with respect to the underly-
ing crystal lattice.
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k5
eHH̃c2

A2H̃c

, ~19!

whereeH is given in Fig. 1 andH̃c (H̃c2
) correspond to the

measured critical~upper critical! field @note that the above
choice of k and j also impliesH̃c2

5F0 /(2eHpj2); also

note that in Fig. 1Hc2 is in dimensionless units#. In prin-
ciple, the values forH̃c2

andH̃c given in Ref. 19 can be use

to estimatek; however, the sample used had aTc50.9 K
which indicates that impurities cannot be neglected~since
Tc

max'1.5 K! so that the clean-limit approximation used he
is not valid. Until measurements on cleaner samples bec
available these measurements will be used to estimatek.
Using the values ofH̃c2

530 mT andH̃c517 mT given in

Ref. 19 yieldsk51.2eH,0.7. This implies that either the
square or the orthorhombic vortex lattices will occur depe
ing on the value ofn.

To determine the value ofn experimentally the anisotrop
of the upper critical field in the basal plane can be used,20,8

Hc2
~a!

Hc2
~a1b!

5A11n

12n
, ~20!

whereHc2
(a) @Hc2

(a1b)# is the upper critical field for the

field alonga @a1b# measured atTc . This anisotropy has no
yet been determined so that a microscopic model mus

FIG. 4. Contour plots of the induced magnetic fieldhs for a
square vortex lattice withn50 ~top! and n50.2 ~bottom!. The
contours from darkest to lightest correspond tokhs520.42→
20.042 in units 0.042.
e

-

e

used to estimaten. Local-density approximation band
structure calculations21,22 reveal that the density of state
near the Fermi surface is due mainly to the four Ru 4d elec-
trons in thet2g orbitals. There is a strong hybridization o
these orbitals with the O 2p orbitals giving rise to antibond-
ing p* bands. The resulting bands have three quasi-
Fermi surface sheets labeleda, b, andg ~see Ref. 23!. Thea
andb sheets consist of$xz,yz% Wannier functions and theg
sheet ofxy Wannier functions. In general,n is not given by
a simple average over all the sheets of the Fermi surface
knowledge of the pair scattering amplitude on each sheet
between the sheets is required to determinen.10,11It has been
shown that the pair scattering amplitude between theg and
the$a,b% sheets of the Fermi surface is expected to be sm
relative to the intrasheet pair scattering amplitudes
Sr2RuO4 is not an isotropics-wave superconductor.10 This
forms the basis for the model of orbital-dependent superc
ductivity in which, to account for the large residual dens
of states observed in the superconducting state, it has b
proposed that either thexy or the$xz,yz% Wannier functions
exhibit superconducting order. This model implies that th
are two possible values ofn; one for theg sheet (nxy) and
one for an average over the$a,b% sheets (nxz,yz). Using the
following tight-binding dispersions:

eg5eg
022tg~coskx1cosky!24 t̃ gcoskxcoskyea,b

5ea,b
0 22ta,b~coskx1cosky!

6A4ta,b
2 ~coskx2cosky!2116t̃ a,b

2 sin2kxsin2ky

~21!

and using the tight-binding values of Ref. 11 for th
g sheet (eg

0 ,tg , t̃ g)5(20.4,0.4,0.12) and the value

(ea,b
0 ,ta,b , t̃ a,b)5(20.3,0.25,0.075) for the$a,b% sheets

yields nxy520.6 andnxz,yz50.6. These values ofn seem
too large since they imply an anisotropy of a factor of 4
Hc2

(a)/Hc2
(a1b). However,n depends strongly upon th

FIG. 5. Field distributionP(h) near Hc2
for a square vortex

lattice with n50 andn50.2.
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tight-binding parameters used; for example, taki
(eg

0 ,tg , t̃ g)5(20.52,0.4,0.16) yields nxy520.08. The
qualitative result thatnxy,0 andnxz,yz.0 is robust. Physi-
cally nxy,0 because of the proximity of theg Fermi surface
sheet to a Van Hove singularity andnxz,yz.0 due to the
quasi-1D nature of the$a,b% surfaces.21,22 Assuming unu
,0.2 impliesk'0.7 @sinceeH50.55051O(n2)] in which
case there will be a square vortex lattice that is rotatedp/4
~0! with respect to the underlying crystal lattice if the pairin
occurs on the$a,b% (g) Fermi sheets. It is encouraging th
Riseman et al. have observed a square vortex lattice
Sr2RuO4.9 Further experimental studies of the vortex latti
should provide useful information as to the nature of
superconducting phase.

In conclusion, a Ginzburg-Landau theory for a tw
component order parameter representation of the tetrag
J.

Y.

.
v.

.

,
.

L
.
a-
e

al

point group has been examined with a magnetic field app
along thec axis. The vortex lattice phase diagram nearHc2

was found to be rich with a square vortex lattice occupy
most of the parameter space. The field distribution of
square vortex lattice was determined yielding predictions
mSR measurements. Finally, the application of this mode
Sr2RuO4 indicates that a square vortex lattice is expected
appear. The orientation of the square vortex lattice with
spect to the underlying crystal lattice yields information as
which of the Ru 4d orbitals are relevant to the supercondu
ing state.
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