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Square vortex lattices for two-component superconducting order parameters

D. F. Agterberg
Theoretische Physik, Eidgesgiche Technische Hochschuléddgerberg, 8093 Zich, Switzerland
(Received 25 June 1998

| investigate the vortex lattice structure of the Ginzburg-Landau free energy for a two component order
parameter in the weak-coupling clean limit when the field is along the high-symmetry axis in a tetragonal
crystal. It is shown that the vortex-lattice phase diagram as a function of the Ginzburg-Landau free-energy
parameters includes phases with a hexagonal, centered rectangular, rectangular, and square unit cells. It is also
shown that the square vortex lattice has the largest region of stability. The field distribution of the square vortex
lattice nearH, is determined and the application of this model tgR&0, is discussed.
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The oxide SJRuQ, has a structure similar to highs ma- N BV >4 *
terials and we?s! diséovered to be superconductiggcwmg a f a1+ Balnl 12 Bl mama
=1.35K by Maenoet al. in 19941 It has been established _ _ _
that this superconductor is not a conventiosalave super- + B3l 71|% 2|+ k1(|Dyma |2+ Dy 12| + ko(|Dy 74|
conductor: NQR measurements show no indication of a
Hebel-Slichter peak in T,T,% T, is strongly suppressed by
nonmagnetic impuritied,and tunneling experiments are in-
consistent withswave pairing® More recently there have _ _ ~
been two experimental results that shed more light on the  X(Dy7,)* +H.c.]+ k4[(Dyn1)(Dyn)* +H.c]
nature of the superconducting state. Tt&R experiments of
Luke et al. indicate that the superconducting stdteeaks +h?/(8m), 1)
time reversal symmetry, which implies that the supercon-
ducting order parameter must have more than onevhere a=ay(T—T,), f)J:VJ-—(Zie/ﬁc)Aj , h=VXA,
component. Of the possible representatioieepy of the  and A is the vector potential. To simplify the analysis the
Dy, point group, the two-dimensiongD) I's, representa-  Ginzburg-Landau coefficients are determined within a weak-
tion (rep) is the most likely state that exhibits this property. coupling approximation in the clean limit. The measure-
The order parameter in this case has two componentments of Mackenzieet al. of T, as a function of impurity
(71,7,) that share the same rotation-inversion symmetryconcentration show that the ratio of the mean free path to the
properties ask,,k ) The broken7 state would then corre- zero-temperature coherence lengthi8 for T.> 1.3 K (Ref.
spond to 74, 72) = (1 i). Theoretical arguments supporting a 3) indicating that the clean limit should be a reasonable ap-
triplet pairing state have been given in Ref. 7. Given that thigoroximation for SsRuQ,. Without an experimental knowl-
material may well be described by such an order parametegdge of the characteristic frequency of the boson responsible
it is of interest to explore further consequences of a two<for the pairing(presumably ferromagnetic spin fluctuatipns
component order parameter. In an earlier work it was showiit cannot be determined that the weak-coupling limit is ap-
that a consequence of the low-temperature broken time repropriate for SyRuQ,. Note that the spin fluctuation theory
versal symmetry state is that the mean-field vortex latticeof Mazin and Singh indicates thai,/Tp~10"2, whereTp
phase diagram will exhibit two vortex lattice phases whenis the characteristic paramagnon frequetic¥his estimate
the field is along a high-symmetry direction in the basalin conjunction withT./Tg~10 * indicates that the weak-
plane® Another important experimental development is thecoupling approximation is reasonable for,BuQ,, but fur-
observation of a square vortex lattice in,BuQ, by Rise-  ther experiments are required to ensure this. Taking for the
man et al? Within the context of the orbital-dependent su- I's, rep the gap function described by the pseudo spin-
perconductivity model for SRuQ, the orientation of the pairing gap matnx(note that this choice is not unlq)JeA
square vortex lattice relative to the underlying ionic Iattlce_l[nlv 1((v2)) Y2+ vy I((v2))* 2]<rztry where the brack-

dictates ~ which “of the = Ru orbitals exhibits ets() denote an average over the Fermi surface andre
superconductivity:'® This work focuses on the magnetic- : : 9¢ i n
the Pauli matrices, writingy, =(71+i7,)/\N2, 7_=(n

field distribution and the structure of the vortex lattice for the

— 217 )?12

+|Dy 72l + ks5(|D 71 |>+ D172l + w3l (D)

field along thec axis for this two-component model. —in)\2, and rotating Dx.D,) by an angle about thez
The free energy for th€'s, representation of the tetrago- axis to obtain Dx,Dj), the following dimensionless free
nal point group is given By energy is found:
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f=—(n: 12+ 91D+ (| 9+ 9= |H12+ 2| 9|2 912+ v[ (9 9%) 2+ (¥ 14) 2112+ |Dyns |+ |Dyn-|*+|Dxn-|?
+|Dy 7 |2+ (€274 ve 29[ (Dy7. ) (Dxn-)* —(Dyn4 ) (Dyn_)* 112+ (e '2%+ ve'?)[ (Dxn-)(Dx74)* — (Dyn-)

X(Dy7.)*1/2+1 (e 20— ve'?))[(D57-) (D37 )* +(Dyn-)(Dxn.)* 12— 1 (%' — ve ) [(D57,)(Dyn-)*

+(Dy7:)(D57-)* 12+ ks(|D, 7+ [*+ D7 |2 +h?, 2
|
whereh=VxA, D,=V,/k—iA,, fis in units BZ/(4m), The form of the eigenstate of thél., solution is
lengths are in unitsA=[#%c?B,/(32e°k,am)]*?, ks found to be 7. (r)==,=08sm+20Panr2(r), and n_(r)
=2ks5/ K12, K= K1+ Kko=4K1(3+ V), y:(<v§> =23 =0un®Pan(r), wherep,(r) are the harmonic oscillator

—3(v§v§))/((v‘x‘)+<va§)), h is in units 2B, Wwave functions(Landau levels As is well known, these
=d,/(27\L) (here B, has been chosen to represent thewave functions have a large degeneracy, and the form of the
thermodynamic  critical  field a=ao(T—T,), ¢ vortexlatticeisfound by including the nonlinear terms of the
= (k12a)2 and k=\/¢. The parameter (note|v|<1) Ginzburg-Landau equations perturbatively to break this de-
gives a measure of the square anisotropy of the Fermi sugéneracy. Following the procedure of Abrikosov, the average
face. For a cylindrical Fermi surface=0 and for a square Gibbs free-energy density is found to (zederivation of this
Fermi surfacelv|=1. It is easy to verify that in zero field Fesult for unconventional superconductors can be found in
(71,72)% (1) is the stable ground state for|<1. Ref. 12 and for a mixed- and s-wave order parameter in

For the magnetic field along theaxis the ground state is Ref. 13
found by settingD,=0. Writing I, = \/x(iD3+ D5)/+2H

_ 2
and H,=\/;(iD;—D§,)/\/2H, minimizing the quadratic T= —H2— (ch H) @)
portion of Eq. 2 with respect tgy, and 5_ yields - (2k2=1)Ba’
(7]+> 1+ 2N e 212 + 212 where
=H ) )
“\ e? 112 + ve~ 29112 1+2N Y
Ba=—=, (5)
n 2
X +), (3) (hs)
777 —
. ~2 f4
where N=TI_II_. The maximum value of the externally 2k°==, (6)
applied fieldH that allows a nonzero solution fom( ,7_) hs

yields _thef upper critical ﬁ(_ald_|°2' _At H:_H°2 the vector f, is the fourth-order homogeneous free energy,is the

potential is that for a spatially uniform field=(0,Hx,0).  fie|d (along thec axis) induced by the supercurrent, and the

E;S?Q\?(IETSU%+IC’)7I7\I) g; taer:r;?j i(:;E)hneaﬁzl?:gnfr:it?Zstrlt(ihgnr;’na overbar denotes a spatial average. The form of the vortex

trix yields the result foe,= K/HC2 shown as a function of Iritljlscte blz E%t%%béymm:m:rzw:rz]ﬁ]égthe l()SiBnAz.bJ%-?_(;rEZESSfree

in Fig. 1. energy with respect to the vector potential the following re-
lation is found forhy:

ghg  dhg

J+=

0.50 W X
= ﬂi(H—ﬂ+)+ (Il )* + 77’:(1_[—77—)

+y (I )*+e2 [ p* (Il n.) + 7. (I p_)*]

0.40

o 0% i20r % *
+ve [yt (g )+ 7 (I1_5,)*]
0.20
. dhg dhg o
0.10 J—EWJFI(?—X:m(H—m) + 7 (Il ny)
0.00 . . . +_(_p )+ (Il ) +e [y (I, n,)*
-1.0 -0.5 0.0 0.5 1.0 26 N
\ +pi(M_p)]+ve 9, (M p )*+ 79~ (I1_7n,)]

FIG. 1. ey=«/H,, as a function ofy. (7)
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Near H, the field hg is found by substituting the vector [r/2] [s/2]

potential for the homogeneous field and the order parameter ~ Cr s= ;O ZO (—1)t+P
solution neaH ¢ into the right-hand side of Eq7). Writing P

the left-hand side of EqQ. 7 d$=2, m(ii)nm®ndr, and writ- o (r+s—21—2p)12-'-prrts)i
ing hg=2, nhy mdndm yields (see Ref. 1% (r=2D!(s=2p)!!p![(r+s)2—1—p]!"’
» (12)
h = j /[yn+1, 8 .
=2 (ednaal 0 ® 4,1, = VAlla+i(l-pl)\o], and

hip=[ V(G )i—1p= VPG5 11 (p=1),  1#p.

The form of 8, andx will therefore be determined by terms

of the typed,(r) dm(r) dp(r) &7 (r). To evaluate such terms
| make the assumption that the vortex lattice unit cell con-The following relation is also useful:
tains one flux quantum. The shape of the unit cell is kept
arbitrary and the convention introduced by Saint-James (o). 1.=[N221. 1.1 ol (14)
; : : : I I Iy
et al® to describe the unit cell is used. The lattice geometry PTO /Mt 12 o/t
is depicted in Fig. 2. The relationg11)—(14) are straightforward to implement nu-
The lattice vectors are a;=a(1,00 and a, merically.
=b(cosa,sina), with the single flux quantum constraint | the analysis of the form of the vortex lattice the param-
absina=2m, wherea andb are in unitsl,;= yA&é/H. This  eter, was considered to lowest order in perturbation theory
assumption allows the functiong, to be written a¥’ (recall that|v|<1 so thaty provides a natural expansion
N2 Uy 12 parameter The limit v=0 was considered by Zhitomirsky
$n(r)=2""a = (nl) who analytically found the ground-state eigenvector near

A ol 2 HCZ.16 The solution of the order parameter to first ordewin
X 2 ce!27M UBNRe (M  (y —y ), is

ei 7T(|1+|2+|1|2)e* wali/Zef 7T(|2*|1p)2/20'.

<|¢0|2>|1,|2:

bsina
(13

© (9 ,m-)=[dotbave*"d,,—e?(epytbgre ' ¢g)],
where ¢ ,=e'™ti=0) vy =(n—1/2)\27o, o (15
=(b{a)sma, p=(b/a)cosa, anQHn are the Hermite poly- where e=\3—\2~0.31784, b,=23e(10+ J6)/(36
nomials. To evaluatgs, and « it is useful to express the | 16,/6)~0.182 30, andbs= \/30b,/(10+ /6)~0.080 203.

spatial averages in terms of a sum over the reciprocal latticgpstituting this solution for the eigenstate nir into Eq.
of the vortex lattice. The reciprocal lattice is given B (7) yields the coefficients 2

=l.ky+15k, where k;=(2n/asina)(sina,—cosa) Kk,

=(2m/bsina)(1,0). The general form becomes .
( )1.0) J P (j+)oa=1—12e,

n,mE,p,I an,m,p,llgz (i, 1 Dpdl ) -1y -1, (j +)os=€"?v(\/Bb,— \6bs),
AT i 12 )

2 an{|énl?o0 (j+)12=V2€*— e,
' ' (10

. . (i+)16=€*gr(y2e~1),
where the coefficienta, ., ,; anda, are determined by,, I+)1e ®

hs, and the form of the eigenfunction neai‘éz, (Fhi,
=(absina) 1, & '¢"f(r), and uc denotes the unit cell.
The following relation makes this formulation for determin-

ing B, and x useful (found using the addition theorem for
Hermite polynomials

(j+)2,3: \/562,
(Je)o7= e4\[7ebgv,

(j+)30=€"*"v(2b,— V3e),

. vp!m!
<¢p¢m>ll,|2: W<|¢0|2>|1,|2 (j 1 )a1= efi40vb4(l— \/Ee),
P Cr,sprr[_le,lz]Hmfs[Zikl,lz] (j+)s =€ *ev(\/6bg—\5b,),
szo 520 (p—r)!'(m—s)! '

(11) (j1)es=€ “’bgv/3e.

where Application of Eq.(8) yields
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FIG. 2. The vortex lattice unit cell. 0.02 ¢
he= —heo[ (1 —3/\2e+2€%)| |2+ (262 — €l \[2)| 4 |? 001 |
+ €| ¢o|°+ v (\10eb,/4— Bbe/4) (€' b b
: . 0.00 . . .
+e "k 1)+ (/30eb,/4— ebg— 2bg/4) (€473 b 00 05 10 15 20
—i40 4% _ 140 1%
+e "5 ¢2)+(‘/§€/2 bs)(e™"d3 o FIG. 3. The vortex lattice phase diagram as a function of the
+efi40¢* 2] (16) Ginzburg-Landau ratioc and the square anisotropy parameter
057470 The phase diagram is the same fex0. For v>0 (v<0) the
where square vortex lattice is rotated/4 (0) with respect to the underly-

ing crystal lattice.
hoo b sina Heo—H
0 Jm(1-2\2e+4€?) (2k%—1)Bn

(A7 % is smaller for this phase than for both the square and hex-
agonal lattices. For a cylindrically symmetric Fermi surface

Using this expression fan,, (2%%—1)8, should be mini- (v=0) and«<0.75 the hexagonal vor~tex lattice is no longer
mized with respect t@ aS,andp to find the form of the the stable structure. This arises becadss in a local maxi-

. ~,  mum for the hexagonal lattice.
vo;t)eg liglrfebeltrﬁﬁl?m?;egr?ovrzrl erlze?ggogyi?))r EE’B The type-I to type-Il transition can also be determined and
—1)B4 = =0). =0,

(2k?—1)B, is independent ofg. This is to be expected it is not given byx=1/\2 but b)_/HCz:HC (which corre-
since v=0 corresponds to a cylindrically symmetric Fermi SPONdS t0x=€y3/2 up to corrections that are second order

surface. It is also found that varies weakly €0.01) for the  in »). For a conventional superconducier 1/y2 andH,,
different vortex lattice structures studied in this pafgich  =H. are equivalent. Here it is found that thefor which
behavior is also present for mixed- and sswave order ‘x=1/\2 is less thanc= e+/3/2 for all lattice structures stud-
parameterS). While this variation is small it determines the jed. An analysis of the Gibbs energies indicates that the
form of the vortex lattice in the region of~1/\/2 and at Meissner state is the stable phase IfbmearHCZ when «
small « the vortex lattice phase diagram becomes quite rich< ¢,/3/2.

The form of the vortex lattice found in the largelimit Clearly, the square vortex lattice has the largest region of
agrees with that found under more restrictive assumptions igtability in Fig 3. To further investigate the square vortex
Ref. 8. In this limit the lattice structure depends uporiThe  |attice the spatial variation of the magnetic field as given by
behavior of the vortex lattice as a function ofis similar to  Eq. (16) is determined. This is shown in Fig. 4 for=0 and
the behavior as a function of temperature found forfor ,=0.2. The induced fielths has(in addition to a global
borocarbidé’ and d-wave'®*® superconductors. Far=0 a  maximum and a global minimuima local minimum and a

hexagonal lattice is found. Aly| increases the lattice de- saddle point. Figure 5 shows the field distribution for these
forms continuously until »|=0.0114. For 6<|»|<0.0114  two values ofv as determined from

the vortex lattice is a centered rectangular lattice as shown in
Fig. 3 (which can be described W= 7/4— «, p=cosa, and

o=sina where w/3<a<mw/2, a=w/3 corresponds to the 5

hexagonal lattice and= /2 to the square lattige For | v| f d*rofh=h(r)]

=0.0114 the vortex lattice is square.£0.0114 the vortex P(h)= : (18)
lattice is rotateds/4 with respect to the underlying crystal f d?r

lattice while for v<—0.0114 the vortex lattice is aligned
with the underlying crystal lattice.

As mentioned above wher becomes sufficiently small The peak inP(h) is due to the saddle point in the spatial
the vortex lattice phase diagram becomes richer. Figure 8ependence dfs. As v increases the saddle point value of
shows the region of stability for the three vortex lattice statedis moves away from the minimum value bf resulting in a
that were found to be stable. In addition to the two phasefarger “shoulder” in P(h) asv increases.
described above, a third phase appears for smallhe vor- Now | turn to an application of these results tgRu0,.
tex lattice for this phase has a rectangular unit cell and i§his requires a determination of the parametesd«. The
described by =0 ando=b/a. This phase is stable because value of k as defined above is given by



14 488 D. F. AGTERBERG PRB 58

25 T

\)VK_JUL |

.y

i:'%w - ov=0—> .

Ama |
v=0.2

JUQUL %5 o1

hih,,

FIG. 5. Field distributionP(h) nearH. for a square vortex

lattice with =0 and»=0.2. ’
used to estimater. Local-density approximation band-

structure calculatiori$®? reveal that the density of states
near the Fermi surface is due mainly to the four Ruedec-
’)/\( ’/\(‘ trons in thet,y orbitals. There is a strong hybridization of
[\ ﬂ these orbitals with the Of2orbitals giving rise to antibond-
ing = bands. The resulting bands have three quasi-2D
Fermi surface sheets labelegdB, andy (see Ref. 2B The«
and g sheets consist dixz,yz} Wannier functions and the
sheet ofxy Wannier functions. In general, is not given by
a simple average over all the sheets of the Fermi surface. A
~ knowledge of the pair scattering amplitude on each sheet and
eqHe, between the sheets is required to determirt®*!it has been
K= \/E—H (19 shown that the pair scattering amplitude between-ttend
¢ the{a, 8} sheets of the Fermi surface is expected to be small

wheree,, is given in Fig. 1 andd, (ch) correspond to the relative to the intrasheet pair scattering amplitudes if

measured criticalupper critical field [note that the above SpRUQ, is not an Isotropics-wave s_uperconduct&P. This
. L~ o forms the basis for the model of orbital-dependent supercon-
choice of k and ¢ also impliesH.,=®,/(2e4m¢7); also

ductivity in which, to account for the large residual density
note that in Fig. 1H., is in dimensionless unitsin prin-  of states observed in the superconducting state, it has been
ciple, the values foH, andH, given in Ref. 19 can be used proposed that either they or the{xzyz} Wannier functions

to estimatex; however, the sample used hadTg=0.9 K  exhibit superconducting order. This model implies that there

which indicates that impurities cannot be neglectsiice are two possible values of, one for they sheet ¢,,) and
TM2%< 1 5 K) so that the clean-limit approximation used hereOne for an average over te, 8} sheets ¢y,,,). Using the

is not valid. Until measurements on cleaner samples beconf@!lowing tight-binding dispersions:

available these measurements will be used to estimate

Using the values of.,=30mT andH.=17mT given in €,= €3—2t (cosk,+cosky) — 4t cosk,coskye, 5
Ref. 19 yieldsk=1.2e;<<0.7. This implies that either the
square or the orthorhombic vortex lattices will occur depend-

FIG. 4. Contour plots of the induced magnetic fidld for a
square vortex lattice withv=0 (top) and »=0.2 (bottom). The
contours from darkest to lightest correspond #bs=—0.42—
—0.042 in units 0.042.

= €0, 5~ 2t,, 5(COSK,+Cosky)

ing on the value ofv. + /a2 ky— cosky)2+ 16(2 ,sirPk r12k
To determine the value of experimentally the anisotropy N \/ a,p( COSK— COSKy) SIS
of the upper critical field in the basal plane can be 8éd, (21
He (@) 1+ and using the tight-binding values of Ref. 11 for the
He(atb) V1—v (200 sheet _€,.1,,1,)=(-04,04,0.12) and the values

(e aﬁ,taﬁ, «p)=(—0.3,0.25,0.075) for thda,B} sheets
whereH, (a) [He (a+ b)] is the upper critical field for the yields v,,= —0.6 andv,,,,=0.6. These values of seem
field alonga[a+ b] measured af ;. This anisotropy has not too large since they imply an anisotropy of a factor of 4 in
yet been determined so that a microscopic model must bblcz(a)/HCZ(a+ b). However,v depends strongly upon the
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tight-binding parameters used; for example,
(e3.t,,1,)=(-0.52,0.4,0.16) yields v,,=—0.08. The
qualitative result thav,,<0 andw,,,,>0 is robust. Physi-
cally »,,<<0 because of the proximity of thg Fermi surface
sheet to a Van Hove singularity ang,,,>0 due to the
quasi-1D nature of thda, 8} surfaces?2 Assuming|v|
<0.2 implies k~0.7 [since e, = 0.5505+ O(»?)] in which
case there will be a square vortex lattice that is rotatétl
(0) with respect to the underlying crystal lattice if the pairing
occurs on thd «, 8} () Fermi sheets. It is encouraging that

Risemanet al. have observed a square vortex lattice in
Sr,RuQ,.° Further experimental studies of the vortex lattice
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takingpoint group has been examined with a magnetic field applied

along thec axis. The vortex lattice phase diagram negy

was found to be rich with a square vortex lattice occupying
most of the parameter space. The field distribution of the
square vortex lattice was determined yielding predictions for
1SR measurements. Finally, the application of this model to
Sr,RuQ, indicates that a square vortex lattice is expected to
appear. The orientation of the square vortex lattice with re-
spect to the underlying crystal lattice yields information as to
which of the Ru 4 orbitals are relevant to the superconduct-
ing state.
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