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Phase diagram of the antiferromagneticXXZ model in the presence of an external magnetic field
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The anisotropics5
1
2 antiferromagnetic Heisenberg chain in the presence of an external magnetic field is

studied by using the standard quantum renormalization group~RG!. We obtain the critical line of the transition
from the partially magnetized~PM! phase to the saturated ferromagnetic phase. The crossover exponent
between the PM phase and antiferromagnetic Ising phase is evaluated. Our results show that the anisotropy (D)
term is relevant and causes crossover. These results indicate that the standard RG approach yields fairly good
values for the critical points and their exponents. The magnetization curve, correlation functions, and the
ground state energy per site are obtained and compared with the known exact results.
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I. INTRODUCTION

Systems near criticality are usually characterized by fl
tuations over many length scales. At the critical point itse
fluctuations exist over all scales. At moderate temperatu
quantum fluctuations are usually suppressed compared
thermal fluctuations. However, if the temperature is n
zero, the quantum fluctuations especially in the low-lyi
states dominate the thermal ones and strongly influence
critical behavior of the systems. The study of the grou
state and its energy is thus of centeral importance for un
standing the critical behavior of such systems.

The technique of the renormalization group~RG! has
been so devised to deal with these multiscale problems.1–4 In
the momentum space RG which is suitable for studying c
tinuous systems one iteratively integrates out small sc
fluctuations and renormalizes the Hamiltonian. In the r
space RG, which is usually performed on lattice syste
with discrete variables~i.e., quantum spin chains!, one di-
vides the lattice into blocks which are treated as sites of
new lattice.5 The Hamiltonian is divided into intrablock an
interblock parts, the latter being exactly diagonalized, an
number of low-lying energy eigenstates are kept to pro
the full Hamiltonian onto the new lattice. The accuracy
the method is determined by the number of states kept an
especially sensitive to the boundary conditions6–8 which are
considered for the block Hamiltonian. The detailed form
this projection in fact differentiates various versions of t
real space~RS! RG, ranging from the standard RG to th
recent density matrix RG~DMRG!.9 Each of these version
has its own advantages and disadvantages.

The Ising model in a transverse field~ITF! and aniso-
tropic XY model in a transverse field~AXYTF ! have been
studied in Refs. 10 and 11 using both standard RG
DMRG methods. There, it has been concluded that
DMRG gives accurate results for the ground state energy
correlation functions in both models, but the standard
method where the number of states kept is not low can g
better results in determining the location of critical poin
and critical exponents. In this direction we have been m
vated to study a more general model, the anisotropic Heis
PRB 580163-1829/98/58~21!/14467~9!/$15.00
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berg model in the presence of an external magnetic fi
(XXZ1H) by using the standard RG method to compare
results with the known exact ones. This RG study allows
to have analytic RG equations, which gives a better und
standing of the behavior of the real space RG method at
critical points. We have studied theXXZ1H model because
of its richness in the phase diagram where there are diffe
critical behaviors. In this study we have succeeded in obta
ing the critical line between the partially magnetized~PM!
and saturated ferromagnetic~SFM! phases, to good accurac
compared with the known results.12 We have also derived the
crossover between the PM phase~small anisotropy21,D
,1) and the antiferromagnetic Ising~AFI! phase~large an-
isotropy D@1) and calculated its exponent (f.0), which
verifies the relevance of anisotropy to the crossover phen
ena. These results which come out of an RSRG by keep
only two states in each block confirm that the RSRG is
good candidate to study at least the qualitative behavio
quantum lattice systems in the quantum critical region.

In this paper we have studied theXXZ1H model by the
RSRG method where the block length is 3 (nB53). In the
next section we will introduce theXXZ1H model and dis-
cuss its critical behavior as derived by other methods. In S
III we will discuss different types of constructing RG equ
tions and obtain the analytic RG equations for this mod
Using these equations we will describe the phase diagram
this model. We will discuss the critical behavior of th
XXZ1H model by RG equations in Sec. IV. In Sec. V w
will compare some of the results, i.e., ground state ene
and correlation functions, with the known exact results. T
paper ends with a conclusion.

II. MODEL

The anisotropic spin-1
2 antiferromagnetic Heisenber

model, orXXZ chain, is one of the most studied quantu
spin systems in statistical mechanics. It is also a classic
ample of one-dimensional integrable quantum s
systems.12–14 The XXZ chain gives us the first example of
critical line with critical exponents varying continuous
with the anisotropy. The model has also been studied
14 467 ©1998 The American Physical Society
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14 468 PRB 58A. LANGARI
using the conformal invariance idea,15 where the critical
fluctuations along the critical line are governed by a conf
mal field theory with central chargec51. A RG study of the
XXZ model has been performed by Rabin.16 At D50, even
in the presence of a magnetic field, the model can be map
by a Jordan-Wigner transformation to free fermions,17 which
is exactly solvable. This system has also been studied wi
the RG formalism.11

The Hamiltonian in the presence of an external magn
field is

H~J,D,h!5J(
i 51

N

~si
xsi 11

x 1si
ysi 11

y 1Dsi
zsi 11

z 1hsi
z!, ~1!

where J.0, D is the anisotropy parameter, which in th
antiferromagnetic region is taken to be greater than or eq
to 21, and h.0 is the strength of the external magne
field. The effect of a uniform magnetic field in the pha
diagram of theXXZchain is to extend the critical phase ov
a finite region which is partially magnetized and delimited
a critical line where the chain becomes satura
ferromagnetic.12,15 A uniform external magnetic field doe
not destroy the exact integrability of the quantum chain
the coupled integral equations for the spectral paramete
not have closed analytic solutions. Then the only results
numerical or perturbative ones.12,14,15

The HamiltonianH(J,D,h) is related by a canonica
transformation U5exp(ip(j51

N jsj
z) to H(J,2D,h), i.e.,

UH(J,D,h)U2152H(J,2D,h). This gives a relation be
tween the antiferromagnetic (J.0) and ferromagnetic (J
,0) cases. AtD51 andh50 the Hamiltonian exhibits an
su~2! symmetry. ForDÞ1, it exhibits a quantum symmetr
suq(2).18 If hÞ0, the only symmetry is U~1!. Let us now
begin the RG study of theXXZ1H model.

III. RENORMALIZATION GROUP EQUATIONS

The implementation of the RSRG is based on two imp
tant points, the size of blocks and the number of states k
in each step of the RG. Both of them would have signific
effects on the RG flow. Here we choose a three-site bl
(nB53) for the renormalization process. In this case the t
lowest-energy states of the block Hamiltonian preserve
symmetries of the Hamiltonian and lead to a self-simi
Hamiltonian. Moreover, at largeD andh the level crossing
of the ground state in the block occurs at a coupling cons
which is exactly its critical value~this will be explained
later; see also the Appendix!. Finally taking larger blocks
renders an analytic RG equation difficult to obtain.

After dividing the whole chain into three-site blocks, th
first step of the RSRG is to divide the Hamiltonian into tw
parts, the intrablock Hamiltonian (HB) and the interblock
Hamiltonian (HBB). There are several choices for doing th
decomposition. In our prescription we choose the decom
sition which is sketched in Fig. 1. In this case the blo
Hamiltonian is

Hm
B5J@s1

xs2
x1s2

xs3
x1s1

ys2
y1s2

ys3
y

1D~s1
zs2

z1s2
zs3

z!1h~s1
z1s2

z1s3
z!#, ~2!
-
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wherem represents the block number, i.e.,HB5(m51
N/3 Hm

B .
The block Hamiltonian is diagonalized exactly and then
two lowest-lying states are kept to span the truncated~or
effective! Hilbert space. Thus the embedding operator(T) is
constructed to be

T5ua&^1u1ub&^2u, ~3!

whereua& andub& represent the two low-lying eigenstates
HB and u1&,u2& are the renamed base kets for the effect
Hilbert space.

There is a level crossing ath5h0 @Eq. ~5!# in the spec-
trum of Hm

B , where the ground state changes from theSz

52 1
2 state to theSz52 3

2 state (Sz5s1
z1s2

z1s3
z). Note that

h0 comes from the finite size effects of a three-site block a
reaches the critical value of an external magnetic field (hc)
by increasing the block sizes (nB→`). In that case the
ground state changes from a PM state (mÞ0) to a SFM state
(umu50.5). Thus, in the absence of a magnetic field,
ground state of the block Hamiltonian is a spin-1

2 doublet. As
h is turned on weakly, we enter in a Zeeman regime and
doublet splits into two states. This is true as long ash,h0.
For strong magnetic fields, we are in a regime in which
ground state is a singlet with all spins down. This shou
correspond toh.h0. The results of this computation are a
follows: for h,h0,

ua&5bu112&1au121&1bu211&,

ub&52bu221&2au212&2bu122&, ~4!

where

h0~D!5
3D1AD218

4
,

a5
2x12

A6112x2
, b5

2x21

A6112x2
, ~5!

and

x5
2~D21!

81D13AD218
;

FIG. 1. Decomposition of the lattice into block and interblo
parts, and different types of intrablock (HB) and interblock (HBB)
interactions.
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PRB 58 14 469PHASE DIAGRAM OF THE ANTIFERROMAGNETICXXZ. . .
for h.h0,

ua&52bu221&2au212&2bu122&,
~6!

ub&5u222&.

Having the embedding operator at hand, the operators~ob-
servables! are renormalized as

O85T†OT. ~7!

By using the above equation one can obtain the renorma
tion of operators. Thus forh,h0 we obtain the following
relations (h,h0):

T†s1~3!
x T522abs8x, T†s2

xT522b2s8x,

T†s1~3!
y T52abs8y, T†s2

yT52b2s8y, ~8!

T†s1~3!
z T5a2s8z, T†s2

zT5~122a2!s8z.

We find the same renormalization fors1 and s3 because of
the symmetry in sites 1 and 3 in the block~1-2-3!. We will
obtain similar relations forh.h0:

T†s1~3!
x T52bs8x, T†s2

xT52as8x,

T†s1~3!
y T5bs8y, T†s2

yT5as8y,

T†s1~3!
z T52

a211

4
I 1

12a2

2
s8z,

T†s2
zT5

a221

2
I 1a2s8z. ~9!

In the above equationss8a is the effective operator in the
effective Hilbert space of the block~new sites in the renor
malized chain!. By considering the interaction betwee
blocks and using the above Eqs.~8! and ~9! we will obtain
the renormalization of coupling constants in the Ham
tonian: for uhu,h0(D),

J854a2b2J,

D85
a2

4b2
D,

h85
1

4a2b2
h; ~10!

for uhu.h0(D),

J85b2J,

D85b2D,

h85
1

b2S uhu2h01
a421

4
D D sgn~h!. ~11!
a-

-

The above RG equations show that the renormalized Ha
tonian is of the same form as the original one. The criti
behavior which can be obtained from these equations wil
discussed in the next section.

Let us consider an extreme case where bothh andD go to
infinity andJ goes to zero such thatJD, Jh, andh/D remain
finite. In this case the Hamiltonian reduces to a simple a
ferromagnetic Ising model in the presence of an exter
magnetic field, which shows a first-order transition from
classical antiferromagnetic~Néel! ordered phase@m50,sm
5 (1/N) ( i(21)isi

z50.5# to a saturated ferromagnetic pha
(umu50.5,sm50). We can write this Hamiltonian as

HAFI5k(
i

~si
zsi 11

z 1gsi
z!, ~12!

where

k5JD.0, g5
h

D
. ~13!

At large D (D@1) we haveh0.D, a→1, andb→0. Then
the RG equations reduce to the following equations: foruhu
,D,

J854b2J,

D85
1

4b2
D,

h85
1

4b2
h; ~14!

for uhu.D,

J85b2J,

D85b2D,

h85
1

b2
~ uhu2D!sgn~h!. ~15!

These RG equations give exactly the critical pointgc51 and
the ground state energy of the AFI model~see the Appen-
dix!, which will be discussed in the next section.

IV. CRITICAL BEHAVIOR

In this section we analyze the RG equations and th
critical behavior. The phase diagram of the obtained RG fl
@Eqs.~10! and~11!# is depicted in Fig. 2. This phase diagra
consists of three different phases, partially magnetized, c
sical antiferromagnetic, and saturated ferromagnetic pha

There are five fixed points in the phase diagram.
~i! XX represents a spin-1

2 XX model without an externa
field.

~ii ! XXTF is the critical point of theXX model in the
presence of a transverse field.

~iii ! IAFH represents the critical point of theXXZ model
in the absence of an external field.

~iv! AFI represents a classical antiferromagnetic Isi
model with a long-range Ne´el order.



he

av

s
va
e
R
g-

ia

G
en
t
Th
in

of

o

ck

of

er

al

ing

-

nti-
of

as-
fi-

a

sing

und

el.
en

se
ion

M
-

n
d
e

d

8

14 470 PRB 58A. LANGARI
~v! SFM represents a saturated ferromagnetic phase w
all spins align in the direction of the external field.

In the SFM phase the RG flow has a well-defined beh
ior and goes to the SFM fixed point for any value ofh
.hc(D). But whenh,hc(D) and21<D<1 the RG flow
represent a massless phase in whichJ(n)→0 andD (n)→0 in
the limit n→` (n is the number of RG steps!. The RG flow
in the PM phase has a cyclic nature, since it reflects a
quence of level crossings between states with different
ues of the totalSz induced by varying the magnetic field. Th
recurrence of this level crossing in the process of the
leads to the oscillatory behavior of the RG flow. If we ima
ine a three-dimensional RG flow, its projection onto theh-D
plane will have some closed paths. However, if the init
point is in the PM~or SFM! phase, it will go to the XX~or
SFM! fixed point finally. Therefore we conclude that the R
flow in the PM phase can be sketched as in Fig. 2. At the
of this region on theD50 line there exists a fixed point a
hc50.943 which separates the PM and SFM phases.
eigenvalues of RG flow at this critical point are given
Table I, which give a relevant direction on theD50 line and
an irrelevant direction along the critical linehc50.943D
10.943. This critical line is obtained from the behavior
the correlation functions. We have calculated^0usi

zsi 11
z u0&

and plotted it versush ~Fig. 5! which shows the entrance t
the SFM phase forh.hc(D) in the 21<D<1 region. It is

FIG. 2. Phase diagram of theXXZ model in the presence of a
external magnetic field (h). Solid circles are the fixed points an
arrows show the direction of flow. The solid line which pass
through the (D521,h50) and (D51,h51.886) points is the criti-
cal linehc50.943D10.943. The dotted line forD.1 shows quali-
tatively the crossover region. The double solid line atD5` is the
fixed line 0,g<1.

TABLE I. Eigenvalues and critical exponents at the XXTF fixe
point, both RSRG and exact results.

l1 l2 b n z a

RSRG 0.250 4.000 0.792 0.792 1.262 0.20
Exact - - 0.5 0.5 2 0.5
re

-

e-
l-

G

l

d

e

an interesting result which is obtained by a three-site blo
RG and can be compared with the exact resulthc5D11,12

although the obtained critical value forhc(D) has a slight
difference in the coefficients but preserves the linear form
the critical line. Our data for the ground state energy (e0)
show thathc(D) represents a critical line of a second-ord
transition in whiche0 andde0 /dh are continuous athc(D),
which is confirmed by the analytic results fore0(h) at D
50.17 Our results along theD50 andh50 lines recover the
results of Drzewinski and Dekeyser11 and Rabin,16 respec-
tively.

For the XXTF fixed point we have calculated the critic
exponents which have been written in Table I. IfR(h) rep-
resents the renormalization ofh along theD50 line, the
correlation length exponent (n) is given by n
5 ln(nB)/ ln@R8(h* )#. The dynamical exponent (z) is z
5 @ ln(J/J8)h* #/@ ln(nB)#. The critical exponenta connected
with the specific heat is calculated from the hyperscal
relation 22a5d* n,19 whered* 5d1z (d is the spatial di-
mension!. The critical exponentb, related to the magnetiza
tion, is given byb5 @ ln(m8/m)#/$ ln@R8(h* #%. These results
show good agreement with the exact ones.

The other phase in the phase diagram is a classical a
ferromagnetic phase. Let us first look at the exact solution
this model with the Hamiltonian as in Eq.~12!. By a simple
argument we can find that the ground state is a Ne´el ordered
state whose energy per site isE0 /kN5e052 1

4 for 0<g
<1 and is a saturated ferromagnetic state forg>1 where
e05(122g)/4 ~see the Appendix!. These values for the
ground state energy (e0) show a discontinuity ofde/dg at
g51, which means the phase transition at this point is cl
sified as a first-order transition. By using the previous de
nitions for g5 h/D, the RG equations~14! and ~15! give a
fixed point atg51 in the limit D→`, which is equal to the
exact critical point. The RG flow in Eqs.~14! and~15! shows
a fixed line atD→` for all g,1. This means that there is
unique ground state for any value of 0<g<1 and the dis-
tinction between two differentg values is only due to the
excited states of the Hamiltonian.

We have also calculated the ground state energy by u
the RG equations~14! and ~15! in a hierarchical way by
accumulating the energies of the blocks~see the Appendix!.
The obtained result is equal to the exact result for the gro
state energy:

e05H 2
1

4
, 0<g<1,

122g

4
, g>1.

~16!

Thus the limiting case of our RG equations ath,D@1 ex-
actly describes the classical antiferromagnetic Ising mod

There is an interesting point in the phase diagram. Wh
21<D<1 andh,hc(D), the model represents a PM pha
with 20.5,m<0 and undergoes a second-order transit
to the SFM phase (m520.5) athc(D) ~m is continuous at
the transition point!. But at h,D→`, h/D,1 when the
model represents a Ne´el ordered phase~AFI! with m50 and
sm50.5, it undergoes a first-order transition to the SF
phase (m520.5) athc5D ~m is discontinuous at the tran

s
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sition point!. We have examined the continuity of the grou
state energy and its derivatives up to third order numeric
at D51,hÞ0. Therefore there is a continuous change in
critical exponents by increasingD whenh,hc . This shows
a crossover between PM and AFI phases. This change in
universality class is due to the reduction in the number
components of the spin operator~i.e., three component
sx,sy,sz in the PM phase and effectively one componentsz in
the AFI phase!. The crossover exponentf5 yD /yh has been
calculated to be 0.63 which verifies that the couplingD is
relevant and causes crossover (l i5nB

yi , wherel i is the ei-
genvalue at IAFH fixed point!.

One can also retrieve the critical line 0,D,1 , h50
by the RSRG using the suq(2) symmetry20 of theXXZchain
which differs only at the ends and is not important in t
thermodynamic limit (N→`). However, it is not suitable for
the D.1 case and also in the presence of the external fi
(h) this RG prescription could not describe the critical li
hc(D).

V. ENERGY AND CORRELATION FUNCTIONS

In this section we describe some more results which h
been obtained by RG equations in Sec. III. In Fig. 3~a! we
have plotted the ground state energy per site (e0) of the XX
(D50) model versus external magnetic field (h). We have
also compared the RSRG results with the exact one.17 In the
PM phase@Fig. 3~a!# there is a discontinuity ine0 which is
due to the level crossing~finite size effects! of a three-site
block. This level crossing occurs ash0(D50) passes the
value 0.707. Thus we have not considered this point a
critical point. Figure 3~a! shows good agreement with th
exact results in the SFM phase (h.hc) with a slight differ-
ence in the PM phase. It has been shown6–8 that this differ-
ence is due to boundary conditions in an isolated blo
which neglects the remaining part of the chain. We ha
introduced a modified scheme to decrease this differenc
the h50 case.8 By using the RG equations of Sec. III th
ground state energy for different values ofD can be calcu-
lated which will show the same behavior as in Fig. 3. W
have plotted the ground state energy forD521, 20.5, 0.5,
1 cases in Fig. 3~b!. The ground state energy atD521 in
Fig. 3~b! confirms that the model represents the ferrom
netic Heisenberg model in the presence of an external m
netic field, where its ground state energy is proportiona
the strength of the external field.

We have plotted in Fig. 4~a!, the magnetization (m) ver-
sus external magnetic field (h) for D50. It has been com-
pared with the known exact result, which shows good agr
ment qualitatively. The step form of the RSRG results in t
figure is due to the cyclic nature of the RG equations in
PM phase. This is related to the nature of the antiferrom
netic problem. The magnetization curve reflects a continu
sequence of level crossings between states with different
ues of totalSz induced by varying the magnetic field. Th
variational ground state which is obtained here is, howe
owing to the highly degenerate energy level structure. T
recurrence of this level crossing in the process of RG lead
the oscillatory behavior of the RG flow. This oscillation
trapped by a metastable state which leads to a jump in
magnetization curve. Figure 4~a! confirms that forh,hc the
ly
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model is PM wheremÞ0 and reaches the SFM phase (m
520.5) ath5hc . We have also plotted the magnetizatio
versus external field in Fig. 4~b! for D520.5, 0.5 and in
Fig. 4~c! for D51.1, 1.5 which show a similar behavior as
the D50 case, but the critical point where the model b
comes SFM is different.

One of the important quantities which can be used
show the critical behavior is the z component of the sp
spin correlation function. We have plotted^0usi

zsi 11
z u0& ver-

sus external magnetic field (h) in Fig. 5 for different values
of the anisotropy parameterD. The transition from the PM
phase to the SFM phase occurs in two steps. The first jum
due to level crossing ath0(D) which is not the critical point
and does not terminate at the SFM phase. But the sec
jump, which achieves the SFM phase (^0usi

zsi 11
z u0&50.25),

corresponds to the critical point of the transition from t
PM to the SFM phases. The location of the critical point is
the same point in which the magnetization curves@Figs. 4~a!,
4~b!, and 4~c!# reaches the saturated value (m520.5). The
critical pointhc(D) for different values ofD which has been
obtained in Fig. 5 yields the linear relationhc(D)50.943D
10.943. This result shows that the RSRG is a good can
date to describe the critical behavior of quantum system11

FIG. 3. ~a! Ground state energy per site vs external field (h) for
D50, both RSRG and exact results.~b! Ground state energy pe
site vs external field (h) for D521, 20.5, 0.5, 1, which has been
obtained by the RSRG.
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14 472 PRB 58A. LANGARI
We have also calculated the magnetization~m! in the middle
rangeD.1 and found that the critical linehc(D)50.943D
10.943 is also valid in this region. Since the RSRG meth
is an approximate scheme, there is a small discrepancy

FIG. 4. ~a! Magnetization@m5 (1/N) ( i 51
N ^0usi

zu0&# vs external
field (h) for D50, both RSRG and exact results.~b! Magnetization
@m5 (1/N) ( i 51

N ^0usi
zu0&# vs external field (h) for D520.5, 0.5,

which has been obtained by the RSRG.~c! Magnetization @m
5 (1/N) ( i 51

N ^0usi
zu0&# vs external field (h) for D51.1, 1.5, which

has been obtained by the RSRG.
d
e-

tween the obtained critical line and the exact one (hc5D
11). This error is related to the small isolated blocks whi
are considered in this method. In other words the quan
fluctuations of a highly correlated system in a large latt
cannot be simulated by a small number of eigenkets of
isolated block. However, asD→` and the model becomes
classical one, exact results can be obtained by the RS
method~see the Appendix!. This describes the discrepanc
in the limit D→` of hc(D) which is gc5hc /D 50.943
1O(1/D) and gc51 which can be obtained by the RSR
method in the limitD→` of the initial model. We have also
calculated thez component of the spin-spin correlation fun
tion in terms of distance. In Fig. 6 we have plotte
^0usi

zsi 1r
z u0& at D51 for different values ofh below and

above its critical point (hc51.886). Whenh50, the corre-
lation length is small~in the order of the lattice spacing! and
the correlation function goes rapidly to zero after a few l
tice spacings. Ash increases to its critical value the correl

FIG. 5. z component of the spin-spin correlation function f
different values of the anisotropy parameter (D) vs external field
(h).

FIG. 6. z component of the spin-spin correlation function atD
51 vs distance~r ! for different values of the external field (h).
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tion function becomes nonzero for long distances and sh
exactly the SFM phase above the critical point (h.hc). The
same behavior has also been observed for other values o
anisotropy parameterD.

VI. CONCLUSION

We have considered the anisotropic antiferromagn
Heisenberg chain in the presence of an external magn
field by the RSRG. We have sketched the phase diagram
this model forD>21 andh.0 in Fig. 2, the phase diagram
for D>21, andh,0 is the mirror image of the previou
case. We have obtained three distinct phases in the p
diagram. The partially magnetized phase withmÞ0, the
saturated ferromagnetic phase withm520.5, and the Ne´el
ordered phase~AFI! wherem50. By computing the magne
tization and thez component of the spin-spin correlatio
function we have calculated the critical linehc(D)
50.943D10.943 between the PM and SFM phases wh
causes a second-order transition. But atD→` the transition
from AFI to SFM phases is first order at the critical poi
gc51. We have observed that forh,hc increasingD causes
a crossover between PM and AFI phases which changes
universality class of the model. The crossover exponent
been calculated to bef50.63 which confirms the relevanc
of the anisotropyD in the crossover phenomena.

By using analytical RG equations we have obtained
critical exponents at the XXTF fixed point. Although th
obtained critical exponents are not accurate compared
the exact results, they show good agreement with them.
ground state energy and correlation functions calculated
the PM phase show qualitatively good results, but some
crepancy due to the boundary conditions of the isola
block in the RG procedure is present. However, all the
sults in the SFM phase are completely accurate, becaus
ground state of the whole chain in this phase is a sim
juxtaposition of the ground state of the isolated blocks a
there are no boundary condition effects for an isolated bl
as in the PM phase. In the AFI fixed point when the mode
a classical one, the limiting form of our analytical RG equ
tions (D→`) gives the exact results for the ground sta
energy and the critical pointgc51. We have shown that th
critical line hc(D) is also valid in the middle rangeD.1.
Finally we conclude that the standard quantum RG~RSRG!
gives qualitatively good results for the critical behavior
the system. However, the quantitative results for the loca
of the critical point and critical exponents are much bet
than the results for the ground state energy and correla
functions with respect to the known exact results.
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APPENDIX: CLASSICAL ANTIFERROMAGNETIC ISING
MODEL IN AN EXTERNAL FIELD

1. Exact ground state

The classical antiferromagnetic Ising model in the pr
ence of an external magnetic field is given by Eq.~12!:

HAFI5k(
i 51

N

~si
zsi 11

z 1gsi
z!,

wherek5JD.0 andg5 h/D is the strength of the externa
magnetic field. We assume the periodic boundary condit
sN11

z 5s1
z . Let us write the Hamiltonian in terms of Pau

matrices,

HAFI5
k

4F(
i 51

N

~s i
zs i 11

z 21!12g(
i 51

N

s i
z1NG . ~A1!

The energy (E) of this chain is

E5
k

4
@22nf12gns1N#, ~A2!

wherens5np2nm , np is the number of up spins,nm is the
number of down spins (np1nm5N), andnf is the number
of boundary walls of flipped spins. The maximum value
nf is obtained by a Ne´el ordered state (np5nm5N/2 ,nf
5N), but for an arbitrary value ofns it can be written as

~nf !max5N2unsu. ~A3!

By using the definition ofns , (nf)max can be written in the
following form:

~nf !max5N2uN22nmu5H 2nm , nm<
N

2
,

2~N2nm!, nm>
N

2
.

~A4!

The minimum value ofE will be obtained ifns has its mini-
mum value andnf has its maximum value:

E05min~E!5
k

4
@N12g~N22nm!22~nf !max#. ~A5!

When nm< N/2, we have E0 /kN5e0521/4 which is
greater than all the energies in thenm> N/2 case. Therefore
we will investigateE0 in thenm> N/2 region by minimizing
E with respect tonm , which is

e05H 2
1

4
, g<1 S nm5

N

2 D ,

122g

4
g>1 ~nm5N!.

~A6!

It is obvious from Eq.~A6! that for any value ofg<1 the
ground state energy is due to a Ne´el ordered state (nm
5N/2 ,nf5N) and for g>1 the ground state is a saturate
ferromagnetic state (nm5N,nf50).
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2. Renormalization group equations

At large D(D→`), the renormalization group equation
~14! and ~15! can be written fork5JD.0 and g5 h/D
>0 in the following form: forg,1,

k85k,

g85g; ~A7!

for g.1,

k85b4k,

g85
1

b4
~g21!. ~A8!

The RG equations~A7! give no running of the coupling con
stants and lead to a fixed line 0<g<1. As far as the ground
state energy is concerned, there is no distinction between
arbitrary value of 0<g<1. But wheng.1 the only fixed
point is g* 51 which is at the end of the fixed line 0<g
<1. Thusg* 51 is the critical value ofg which separates
the g,1 andg.1 phases. To be more rigorous and defi
these phases we will calculate the magnetization (m) and
staggered magnetization (sm) in these regions. Equations~8!
and ~9! in the limit D→` (a→1,b→0) will be written as

g,1, T†s1~3!
z T5s8z, T†s2

zT52s8z,

g.1, T†s1~3!
z T5

2I

2
, T†s2

zT5s8z. ~A9!

The magnetization@m5 (1/N) ( i
N^0usi

zu0&# is

m5
1

N (
m51

N/3

^0u~s1m
z 1s2m

z 1s3m
z !u0&

5
1

N (
m51

N/3

^80uT†~s1m
z 1s2m

z 1s3m
z !Tu08&, ~A10!

where u08& is the ground state in the renormalized Hilbe
space (Tu08&5u0&). By using Eq.~A9!, the magnetization is
calculated to be

m5
1

3
m8, g,1,
n

g

.

ny

e

m5
21

3
1

1

3
m8, g.1, ~A11!

where m8 is the magnetization in the renormalized cha
with N/3 sites. However in the thermodynamic limit (N
→`), m andm8 will be equal. Thus Eq.~A11! gives

m50, g,1.

m520.5, g.1. ~A12!

Similarly, we can use the definition of staggered magnetiz
tion @sm5 (1/N) ( i

N^0u(21)isi
zu0&# and repeat the steps in

calculatingm; the staggered magnetization is obtained to

sm50.5, g,1

sm50, g.1. ~A13!

These results confirm the Ne´el ordered state in theg,1
region and the saturated ferromagnetic state in theg.1.
Note that these results are the same as the exact ones w
have been obtained in the last section. Had we taken e
size blocks for the renormalization procedure, we could n
obtain these values.

The calculation of the ground state energy is easily do
by accumulating the energy of blocks in a hierarchical wa
The renormalized Hamiltonian is

HN/38 ~k8,g8!5T†HN~k,g!T

5H k

4S 22N

3 D1k( i
N/3~si

z8si 11
z 81gsi

z8!, g,1,

kN~124g!

12
1k~g21!( i

N/3si
z8 , g.1.

~A14!

Therefore the ground state energy per site is calculated to

e05
E0

kN
5H 1

4S 2
2

3D S 11
1

3
1

1

9
¯ D5

21

4
, g,1,

124g

12
2

2~g21!

12
5

122g

4
, g.1,

~A15!

which is equal to the exact ground state energy. This res
cannot be obtained either by taking an even size block in
RG procedure.
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