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Phase diagram of the antiferromagneticXXZ model in the presence of an external magnetic field
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The anisotropi(s:% antiferromagnetic Heisenberg chain in the presence of an external magnetic field is
studied by using the standard quantum renormalization gfR@). We obtain the critical line of the transition
from the partially magnetizedPM) phase to the saturated ferromagnetic phase. The crossover exponent
between the PM phase and antiferromagnetic Ising phase is evaluated. Our results show that the arigotropy (
term is relevant and causes crossover. These results indicate that the standard RG approach yields fairly good
values for the critical points and their exponents. The magnetization curve, correlation functions, and the
ground state energy per site are obtained and compared with the known exact results.
[S0163-182698)09141-3

[. INTRODUCTION berg model in the presence of an external magnetic field
(XXZ+H) by using the standard RG method to compare its

Systems near criticality are usually characterized by flucresults with the known exact ones. This RG study allows us
tuations over many length scales. At the critical point itself,to have analytic RG equations, which gives a better under-
fluctuations exist over all scales. At moderate temperaturestanding of the behavior of the real space RG method at the
quantum fluctuations are usually suppressed compared wigfitical points. We have studied th€XZ+H model because
thermal fluctuations. However, if the temperature is neaff its richness in the phase diagram where there are different
zero, the quantum fluctuations especially in the low-lyingcritical behaviors. In this study we have succeeded in obtain-
states dominate the thermal ones and strongly influence tHeg the critical line between the partially magnetizév)
critical behavior of the systems. The study of the groundand saturated ferromagne(8FM) phases, to good accuracy,
state and its energy is thus of centeral importance for unde€ompared with the known resuftéWe have also derived the
standing the critical behavior of such systems. crossover between the PM phasenall anisotropy—1<A

The technique of the renormalization grodRG) has <1) and the antiferromagnetic Isif@Fl) phase(large an-
been so devised to deal with these multiscale probfethn  isotropy A>1) and calculated its exponeng¢0), which
the momentum space RG which is suitable for studying converifies the relevance of anisotropy to the crossover phenom-
tinuous systems one iteratively integrates out small scaléna. These results which come out of an RSRG by keeping
fluctuations and renormalizes the Hamiltonian. In the reabnly two states in each block confirm that the RSRG is a
space RG, which is usually performed on lattice systemgood candidate to study at least the qualitative behavior of
with discrete variablegi.e., quantum spin chaijsone di- quantum lattice systems in the quantum critical region.
vides the lattice into blocks which are treated as sites of the In this paper we have studied t¥XZ+H model by the
new lattice® The Hamiltonian is divided into intrablock and RSRG method where the block length is &€ 3). In the
interblock parts, the latter being exactly diagonalized, and aext section we will introduce thEXZ+H model and dis-
number of low-lying energy eigenstates are kept to projectuss its critical behavior as derived by other methods. In Sec.
the full Hamiltonian onto the new lattice. The accuracy oflll we will discuss different types of constructing RG equa-
the method is determined by the number of states kept and t#ons and obtain the analytic RG equations for this model.
especially sensitive to the boundary conditfbfisvhich are  Using these equations we will describe the phase diagram of
considered for the block Hamiltonian. The detailed form ofthis model. We will discuss the critical behavior of the
this projection in fact differentiates various versions of theXXZ+H model by RG equations in Sec. IV. In Sec. V we
real spaceRS) RG, ranging from the standard RG to the will compare some of the results, i.e., ground state energy
recent density matrix RGDMRG).® Each of these versions and correlation functions, with the known exact results. The
has its own advantages and disadvantages. paper ends with a conclusion.

The Ising model in a transverse fieltlTF) and aniso-
tropic XY model in a transverse fiel(AXYTF) have been
studied in Refs. 10 and 11 using both standard RG and
DMRG methods. There, it has been concluded that the The anisotropic spig- antiferromagnetic Heisenberg
DMRG gives accurate results for the ground state energy anchodel, orXXZ chain, is one of the most studied quantum
correlation functions in both models, but the standard RGspin systems in statistical mechanics. It is also a classic ex-
method where the number of states kept is not low can givample of one-dimensional integrable quantum spin
better results in determining the location of critical pointssystems?~'* The XXZ chain gives us the first example of a
and critical exponents. In this direction we have been moticritical line with critical exponents varying continuously
vated to study a more general model, the anisotropic Heiserwith the anisotropy. The model has also been studied by
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using the conformal invariance id&awhere the critical
H=HP+H® ol o o o & % ¢ ¢ W o ¢ ..

fluctuations along the critical line are governed by a confor-
mal field theory with central charge=1. A RG study of the
XXZ model has been performed by Rabimt A=0, even He o O_Q_O Q_Q_Q Q_O_O O_O_O ........
in the presence of a magnetic field, the model can be mappe ;s
by a Jordan-Wigner transformation to free fermidhshich
is exactly solvable. This system has also been studied withir
the RG formalisnt?!

The Hamiltonian in the presence of an external magnetic
field is O On-site interaction

N
H(J,Ah)= Jizl (S;‘S;(+l+ Siysiy+ 1+ ASiZSiZ+1+ hgz), (1) o—e Nearest neighbor interaction
FIG. 1. Decomposition of the lattice into block and interblock

where J>0, A is the anisotropy parameter, which in the Parts, and different types of intrablock B) and interblock HEB)
antiferromagnetic region is taken to be greater than or equdfteractions.

to —1, andh>0 is the strength of the external magnetic B <N LB
field. The effect of a uniform magnetic field in the phaseWnere u represents the block number, i.8'=2,=,H,.
diagram of thexXZ chain is to extend the critical phase over The block Ha_m|lton|an is diagonalized exactly and then the
a finite region which is partially magnetized and delimited byWo lowest-lying states are kept to span the truncated

a critical line where the chain becomes saturatecEffective Hilbert space. Thus the embedding opergfyris
ferromagneti¢2!5 A uniform external magnetic field does Cconstructed to be

not destroy the exact integrability of the quantum chain but

the coupled integral equations for the spectral parameter do T=la)(+|+|B) I, 3

not haye closed analy‘gic soluticiﬁé Then the only results arhere| ) and|B) represent the two low-lying eigenstates of
numerical or perturbative O”é%‘; ' . H® and|+),|—) are the renamed base kets for the effective
The HamiltonianH(J,A,h) is related by a canonical Hjpert space.
transformatio[11U=eprwE}“:1jst) to H(J,—4.h), ie, There is a level crossing &=h, [Eq. (5)] in the spec-
UH(J,A,MU"=—H(J,~A,h). This gives a relation be- trym of H?, where the ground state changes from 8fe
tween the antiferromagneticJ0) and ferromagnetic)  _— —1 state to thes’= — 2 state §¢=s%+s4+5%). Note that
<0) cases. Al =1 andh=0 the Hamiltonian exhibits an , ' comes from the finite size effects of a three-site block and
su2) symmetry. ForA#1, it exhibits a quantum symmetry reaches the critical value of an external magnetic fiig) (

18 H
St(2) " If h#0, the only symmetry is ). Let US NOW by increasing the block sizesng—). In that case the

begin the RG study of th&XZ+H model. ground state changes from a PM state40) to a SFM state
(Im/=0.5). Thus, in the absence of a magnetic field, the
Ill. RENORMALIZATION GROUP EQUATIONS ground state of the block Hamiltonian is a sgimoublet. As

. ) . . h is turned on weakly, we enter in a Zeeman regime and the

The implementation of the RSRG is based on two impor-yoplet splits into two states. This is true as lonchashy.
tant points, the size of blocks and the number of states kegiqr sirong magnetic fields, we are in a regime in which the
in each step of the RG. Both of them would have significanyroung state is a singlet with all spins down. This should

effects on the RG flow. Here we choose a three-site blockrespond td>h,. The results of this computation are as
(ng=23) for the renormalization process. In this case the tWo|10ws: for h<h,

lowest-energy states of the block Hamiltonian preserve the

symmetries of the Hamiltonian and lead to a self-similar |a)=b|++—)+a|+—+)+b|—++),
Hamiltonian. Moreover, at largA andh the level crossing
of the ground state in the block occurs at a coupling constant |B)=—b|——+)—a]—+—)—b|+——), (4)

which is exactly its critical valugthis will be explained
later; see also the AppendixFinally taking larger blocks Wwhere
renders an analytic RG equation difficult to obtain.

After dividing the whole chain into three-site blocks, the 3A+JA%+8
first step of the RSRG is to divide the Hamiltonian into two ho(A)= T
parts, the intrablock HamiltonianH®) and the interblock
Hamiltonian H®B). There are several choices for doing this
decomposition. In our prescription we choose the decompo- a= 2x+2 b= 2x—1
sition which is sketched in Fig. 1. In this case the block Je+12x2’ J6+12x2’
Hamiltonian is

®

and

B_ X X X X
H, =J[s]s;+ 5,53+ s1s)+ sys} 2(A-1)

+A(sis5+s555) +h(s{+s5+55)], 2 X 8T A+3JA’T 8
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for h>hy,

|@)=—bl =~ +)=al =+ =)=+~ -),
(6)
1B)=]———).
Having the embedding operator at hand, the operdtairs
servablesare renormalized as

o'=T'OT. (7)
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The above RG equations show that the renormalized Hamil-
tonian is of the same form as the original one. The critical
behavior which can be obtained from these equations will be
discussed in the next section.

Let us consider an extreme case where thoimdA go to
infinity andJ goes to zero such thdf\, Jh, andh/A remain
finite. In this case the Hamiltonian reduces to a simple anti-
ferromagnetic Ising model in the presence of an external
magnetic field, which shows a first-order transition from a
classical antiferromagnetidNeel) ordered phasém=0,sm

By using the above equation one can obtain the renormaliza= (1/N) =i(—1)'s/=0.5] to a saturated ferromagnetic phase

tion of operators. Thus foh<h, we obtain the following
relations fi<hg):
T's} 5 T=—2abs*, T'sjT=-2b%"%,

TTsyT=2b%s"Y, (8)

T's{ 5 T=2abs?,
T's] 5 T=a%'%, T'sfT=(1-2a%s'~
We find the same renormalization fey and s; because of
the symmetry in sites 1 and 3 in the blotk2-3). We will
obtain similar relations foh>hg:

T's}5T=—bs*, T'siT=-as”,
T's) 5 T=bs”?, T'sjT=as",

a’+1

4

taZ _
T 31(3)T——

2

| +a?s'Z,

T'3T= 9)

In the above equations’® is the effective operator in the
effective Hilbert space of the blodkew sites in the renor-
malized chaip By considering the interaction between
blocks and using the above Ed8) and (9) we will obtain
the renormalization of coupling constants in the Hamil-
tonian: for|h|<hg(A),

J' =4a%b?J,

a2
—A,

AI
4b?

1 h:
4a%p?

!

(10

for |h|>ho(A),

J'=b3J,

A'=Db?A,

4

A)sgr(h). (11

(Jm|=0.5,sm=0). We can write this Hamiltonian as

HAFI:kZi (sisf 1195, (12

where

h
k=JA>0, g=-. (13)

At large A (A>1) we havehy=A, a—1, andb—0. Then
the RG equations reduce to the following equations:|fidr

<A,
J'=4b2],
A= 1
42’
h'= ! h; (14)
42
for |h|>A,
J' =b?J,
’=b2A,
o1
h =E(|hI—A)sgr(h)- (15)

These RG equations give exactly the critical pgpt 1 and
the ground state energy of the AFl modske the Appen-
dix), which will be discussed in the next section.

IV. CRITICAL BEHAVIOR

In this section we analyze the RG equations and their
critical behavior. The phase diagram of the obtained RG flow
[Egs.(10) and(11)] is depicted in Fig. 2. This phase diagram
consists of three different phases, partially magnetized, clas-
sical antiferromagnetic, and saturated ferromagnetic phases.

There are five fixed points in the phase diagram.

(i) XX represents a spia-XX model without an external
field.

(i) XXTF is the critical point of theXX model in the
presence of a transverse field.

(iii) IAFH represents the critical point of théXZ model
in the absence of an external field.

(iv) AFI represents a classical antiferromagnetic Ising
model with a long-range N& order.
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A an interesting result which is obtained by a three-site block
AFI -2 {Fredlineg<1) RG and can be compared with the exact rebyi A + 1,12
although the obtained critical value ftw,(A) has a slight
////// difference in the coefficients but preserves the linear form of
(AFiphase) q the critical line. Our data for the ground state energy) (
N\

show thath.(A) represents a critical line of a second-order
transition in whichey anddey/dh are continuous at(A),
which is confirmed by the analytic results feg(h) at A
=0." Our results along thA =0 andh=0 lines recover the
results of Drzewinski and Dekeysérand Rabin'® respec-

............................................... —

crossover region

. \ tively. _ _ N
FY=TY L (SFMphase) For the XXTF fixed point we have calculated the critical
j> ) \ exponents which have been written in Table IRIfh) rep-
oJ A e .« h resents the renormalization &f along theA=0 line, the
= ® correlation length exponent v{ is given by v
XX| =y XXTF ! 4
% / / /'(sm,,hase) SFM = In(ng)/In[R’(h*)]. The dynamical exponentz) is z

...................................................................................................... =[In(3/J3")n+1/[In(ng)]. The critical exponen& connected

with the specific heat is calculated from the hyperscaling

_ _ relation 2— a=d* »,'® whered* =d+z (d is the spatial di-
FIG. 2. Phase diagram of théXZ model in the presence of an mension. The critical exponeng, related to the magnetiza-

external magnetic fieldh). Solid circles are the fixed points and tjgn, is given byB= [In(m’/m)]/{In[R’(h*]}. These results

arrows show the direction of flow. The solid line which passesghow good agreement with the exact ones.

through the A =—1h=0) and (A = 1h=1.886) points is the criti- The other phase in the phase diagram is a classical anti-

cal linen;=0.943\ +0.943. The dotted line foA>1 shows quali-  forromagnetic phase. Let us first look at the exact solution of

tatively the crossover region. The double solid lineat » is the this model with the Hamiltonian as in E(L2). By a simple

fixed line 0<g=1. argument we can find that the ground state is aledered

. state whose energy per site B /kN=eg,=—3 for 0<

(v) SFM represents a saturated ferromagnetic phase Wheg1 and is a satu?gté)d ferrorﬁgnetic sq[ate gferl whe?e

all spins align in the direction of the external field. P
In the SFM phase the RG flow has a well-defined behavfao_(l 29)/4 (see the Appendjx These values for the

. ! . ground state energyef) show a discontinuity ofie/dg at
grh "’zzd) géftsv\}ﬁeahf<i':(l\g)ﬂ;ﬁg _p(ljlztAfglat?é \é%uﬁor\?\f g=1, which means the phase transition at this point is clas-
C . C = =

represent a massless phase in wHith—0 andA(™—0 in sified as a first-order transition. By using the previous defi-

o X nitions forg= h/A, the RG equation$14) and (15) give a
fche limit n—ca (n is the numb_er of RG St?pSThe RG flow fixed point atg=1 in the limit A— o, which is equal to the
in the PM phase has a cyclic nature, since it reflects a S€5yact critical point. The RG flow in Eqél4) and(15) shows
guence of level crossings between states with different Valé fixed line atAHO.O for all a< 1. This means that there is a
ues of the totaB” induced by varying the magnetic field. The nique ground state for a%y vz;llue ok@=1 and the dis-
recurrence of this level cros_sing in the process of t_he RC%ilnction between two differeny values is only due to the
leads to the oscillatory behavior of the RG flow. If we imag-

ine a three-dimensional RG flow. its proiection onto ke excited states of the Hamiltonian.
€ alhree ensiona ow, IS projection ontoIh& We have also calculated the ground state energy by using
plane will have some closed paths. However, if the initial

point is in the PM(or SFM) phase, it will go to the XX(or the RG equation¢14) and (15) in a hierarchical way by

. S accumulating the energies of the blodkge the Appendjx
SFM) fixed point finally. Therefore we conclude that the RG ! :
flow in the PM phase can be sketched as in Fig. 2. At the en he obtained result is equal to the exact result for the ground

of this region on theA =0 line there exists a fixed point at tate energy:
h.=0.943 which separates the PM and SFM phases. The

eigenvalues of RG flow at this critical point are given in _E' 0=<g=<1,

Table I, which give a relevant direction on the=0 line and _ 4

an irrelevant direction along the critical linke,=0.943A €o= 1-2g (16)
+0.943. This critical line is obtained from the behavior of 2 g=1.

the correlation functions. We have calculat®s’s/, ,|0)
and plotted it versub (Fig. 5 which shows the entrance t0 Thys the limiting case of our RG equationshat\>1 ex-
the SFM phase foh>h.(A) in the —1<A<1 region. Itis  actly describes the classical antiferromagnetic Ising model.

There is an interesting point in the phase diagram. When

.TABLE I. Eigenvalues and critical exponents at the XXTF fixed _ 1<A <1 andh<h,(A), the model represents a PM phase
point, both RSRG and exact results. with —0.5<m=0 and undergoes a second-order transition
to the SFM phaseni= —0.5) ath.(A) (mis continuous at
the transition point But at h,A—o~, h/A<1 when the
RSRG 0.250 4.000 0.792 0.792 1.262 0.208 Mmodel represents a Mkordered phaséAFl) with m=0 and
Exact - - 05 05 2 05 sm=0.5, it undergoes a first-order transition to the SFM
phase (h=—0.5) ath.=A (m s discontinuous at the tran-

)\1 )\2 B 14 z a
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sition poin). We have examined the continuity of the ground R
state energy and its derivatives up to third order numerically i RSRG (4=0)
atA=1,h+#0. Therefore there is a continuous change in the
critical exponents by increasiny whenh<h,. This shows . -0s Exact i
a crossover between PM and AFI phases. This change in th s
universality class is due to the reduction in the number of
components of the spin operatdre., three components
s¥,s¥,s?in the PM phase and effectively one compon&rin
the AFI phasg The crossover exponemit= y, /y,, has been
calculated to be 0.63 which verifies that the couplihgs
relevant and causes Crossover = n‘g, where\; is the ei-
genvalue at IAFH fixed point

One can also retrieve the critical linecA<1 , h=0
by the RSRG using the (2) symmetry° of the XXZ chain
which differs only at the ends and is not important in the =~ 15 —=—— 'Ofs' — ‘110‘ — '1f5' — ‘210' TRy
thermodynamic limit N—o0). However, it is not suitable for )
the A>1 case and also in the presence of the external fielc> External Field (h)
(h) this RG prescription could not describe the critical line — T ———T
he(A).

Ground State Energ

-
o
1
|

V. ENERGY AND CORRELATION FUNCTIONS

In this section we describe some more results which have
been obtained by RG equations in Sec. lll. In Figg)3ve
have plotted the ground state energy per sitg Of the XX
(A=0) model versus external magnetic field) ( We have
also compared the RSRG results with the exact'ée the
PM phasdFig. 3(a)] there is a discontinuity i, which is
due to the level crossinfinite size effects of a three-site
block. This level crossing occurs dg(A=0) passes the - N
value 0.707. Thus we have not considered this pointas ¢ ,
critical point. Figure 8) shows good agreement with the )
exact results in the SFM phask>h;) with a slight differ-
ence in the PM phase. It has been shbWihat this differ- FIG. 3. (a) Ground state energy per site vs external figlyl for
ence is due to boundary conditions in an isolated blockA=0, both RSRG and exact result®) Ground state energy per
which neglects the remaining part of the chain. We havesite vs external field) for A=—1, —0.5, 0.5, 1, which has been
introduced a modified scheme to decrease this difference iobtained by the RSRG.
the h=0 casé By using the RG equations of Sec. Il the
ground state energy for different values dfcan be calcu- model is PM wherem#0 and reaches the SFM phasa (
lated which will show the same behavior as in Fig. 3. We= —0.5) ath=h;. We have also plotted the magnetization
have p|0tted the ground state energym;p -1, —-0.5, 0.5, versus external field in Flg(b) for A=—-0.5, 0.5 and in
1 cases in F|g (3)) The ground state energy At=—1 in Flg 4(C) for A=1.1, 1.5 which show a similar behavior as in
Fig. 3b) confirms that the model represents the ferromagthe A=0 case, but the critical point where the model be-
netic Heisenberg model in the presence of an external magomes SFM is different.
netic field, where its ground state energy is proportional to One of the important quantities which can be used to
the strength of the external field. show the critical behavior is the z component of the spin-

We have plotted in Fig. @), the magnetizationr) ver-  Spin correlation function. We have plott¢d|ss, ;|0) ver-
sus external magnetic fielch) for A=0. It has been com- sus external magnetic field) in Fig. 5 for different values
pared with the known exact result, which shows good agreeof the anisotropy parametex. The transition from the PM
ment qualitatively. The step form of the RSRG results in thisphase to the SFM phase occurs in two steps. The first jump is
figure is due to the cyclic nature of the RG equations in thedue to level crossing dty(A) which is not the critical point
PM phase. This is related to the nature of the antiferromagand does not terminate at the SFM phase. But the second
netic problem. The magnetization curve reflects a continuougimp, which achieves the SFM phas@|ss/, ,|0)=0.25),
sequence of level crossings between states with different vatorresponds to the critical point of the transition from the
ues of totalS* induced by varying the magnetic field. The PM to the SFM phases. The location of the critical point is at
variational ground state which is obtained here is, howeverthe same point in which the magnetization curiegs. 4a),
owing to the highly degenerate energy level structure. Thel(b), and 4c)] reaches the saturated valua< —0.5). The
recurrence of this level crossing in the process of RG leads toritical pointh (A) for different values ofA which has been
the oscillatory behavior of the RG flow. This oscillation is obtained in Fig. 5 yields the linear relatidn(A)=0.943\
trapped by a metastable state which leads to a jump in the-0.943. This result shows that the RSRG is a good candi-
magnetization curve. Figurga confirms that fom<h,the  date to describe the critical behavior of quantum systéms.

Ground State Energy

External Field (h)
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(A=0)

Magnetization (m)

Exact

PSR SR W IS T S Y AN SN SN W TN [N SN SO S A ST ST AN ST S W)
0.0 0.5 1.0 15 20 25 3.0

(a) External Field (h)

Magnetization (m)

N N S R N
0.0 0.5 10 1.5 2.0 25 3.0

(b) External Field (h)

Magnetization (m)

0.0 0.5 1.0 15 20 25 3.0

(c) External Field (h)

FIG. 4. (a) Magnetizatiorf m= (1/N) =N.,(0|s?0)] vs external
field (h) for A=0, both RSRG and exact results) Magnetization
[m= (1/N) =N .(0|s?0)] vs external field K) for A=—0.5, 0.5,
which has been obtained by the RSR@E) Magnetization[m
= (L) =N ,(0|s?0)] vs external field k) for A=1.1, 1.5, which
has been obtained by the RSRG.

We have also calculated the magnetizatiom in the middle
rangeA>1 and found that the critical linb (A)=0.943A
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0.3 r———————————————————

-0.1

ool o
0.0 0.5 1.0 15 2.0 25 3.0

External Field (h)

FIG. 5. z component of the spin-spin correlation function for
different values of the anisotropy parametér) (vs external field

(h).

tween the obtained critical line and the exact ohe={A
+1). This error is related to the small isolated blocks which
are considered in this method. In other words the quantum
fluctuations of a highly correlated system in a large lattice
cannot be simulated by a small number of eigenkets of an
isolated block. However, a&— o and the model becomes a
classical one, exact results can be obtained by the RSRG
method(see the Appendjx This describes the discrepancy
in the limit A—« of h,(A) which is g.=h./A =0.943
+0(1/A) andg.=1 which can be obtained by the RSRG
method in the limitA — oo of the initial model. We have also
calculated the component of the spin-spin correlation func-
tion in terms of distance. In Fig. 6 we have plotted
(0|sfs?,|0) at A=1 for different values ofh below and
above its critical point ij.=1.886). Wherh=0, the corre-
lation length is smallin the order of the lattice spacipgnd

the correlation function goes rapidly to zero after a few lat-
tice spacings. A$ increases to its critical value the correla-

W

< &%(i) S*(i+r) >

I S S R S S S S
5 10 15

Distance (r)

+0.943 is also valid in this region. Since the RSRG method FIG. 6. z component of the spin-spin correlation functionfat
is an approximate scheme, there is a small discrepancy be-1 vs distancdr) for different values of the external fieldh).
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tion function becomes nonzero for long distances and shows\PPENDIX: CLASSICAL ANTIFERROMAGNETIC ISING
exactly the SFM phase above the critical point=(h;). The MODEL IN AN EXTERNAL FIELD
same behavior has also been observed for other values of the

' 1. Exact ground state
anisotropy parametexk.

The classical antiferromagnetic Ising model in the pres-
ence of an external magnetic field is given by EL):

VI. CONCLUSION

N

We have considered the anisotropic antiferromagnetic HAFIZKE1 (sisf+1108),
Heisenberg chain in the presence of an external magnetic
field by the RSRG. We have sketched the phase diagram efherek=JA>0 andg= h/A is the strength of the external
this model forA=—1 andh>0 in Fig. 2, the phase diagram magnetic field. We assume the periodic boundary condition
for A=—1, andh<0 is the mirror image of the previous Sy+1=Si. Let us write the Hamiltonian in terms of Pauli
case. We have obtained three distinct phases in the phageatrices,
diagram. The partially magnetized phase with#0, the N
saturated ferromagnetic phase with= —0.5, and the Nel _k 7 7
ordered phaséAFl) wherem= 0. By computing the magne- Hari=7 ;1 (o701~
tization and thez component of the spin-spin correlation
function we have calculated the critical lind,(A)  The energy E) of this chain is
=0.943A +0.943 between the PM and SFM phases which
causes a second-order transition. Buf\at o the transition
from AFI to SFM phases is first order at the critical point
dg.=1. We have observed that forch. increasingA causes . . :

H&herensznp—nm, n, is the number of up spins, is the

a crossover between PM and AFI phases which changes t ber of d . =N dn. is th b
universality class of the model. The crossover exponent hadmper of down spinsr(, +np,=N), andn; is the number

been calculated to b¢=0.63 which confirms the relevance Of boundary walls of flipped spins. The maximum value of

of the anisotropyA in the crossover phenomena. Ny is obtained by a Nel ordered state r,=ny=N/2 Ny

. . . . =N), but for an arbitrary value ofis it can be written as
By using analytical RG equations we have obtained the ) y s

critical exponents at the XXTF fixed point. Although the
obtained critical exponents are not accurate compared with
the exact results, they show good agreement with them. ThBy using the definition ohg, (n¢)nmax C&N be written in the
ground state energy and correlation functions calculated ifollowing form:

the PM phase show qualitatively good results, but some dis-

N
1)+2g§1 o?+N|. (A1)

k
EZZ[—an+29nS+N], (A2)

(nf)max:N_lns|- (A3)

crepancy due to the boundary conditions of the isolated on N <E
block in the RG procedure is present. However, all the re- m m=2
sults in the SFM phase are completely accurate, because the (Nf)max= N—|N—2ngy|= N
ground state of the whole chain in this phase is a simple 2(N—ny,), nmzz—

juxtaposition of the ground state of the isolated blocks and (A4)
there are no boundary condition effects for an isolated block

as in the PM phase. In the AFI fixed point when the model isThe minimum value of will be obtained ifng has its mini-
a classical one, the limiting form of our analytical RG equa-mum value and; has its maximum value:

tions (A—o) gives the exact results for the ground state

energy and the critical poirg.= 1. We have shown that the ] k

critical line h(A) is also valid in the middle ranga>1. Eo=min(E)= Z[N+29(N_2nm)_2(nf)max]- (A5)
Finally we conclude that the standard quantum RSRG

gives qualitatively good results for the critical behavior of When n,,< N/2, we have Eq/kN=¢ey=—1/4 which is
the system. However, the quantitative results for the locatiomreater than all the energies in thg= N/2 case. Therefore
of the critical point and critical exponents are much betterwe will investigateE, in the n,,= N/2 region by minimizing
than the results for the ground state energy and correlatioB with respect ton,,, which is

functions with respect to the known exact results.

— E gsl (n :E)
4’ mo2)
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2. Renormalization group equations -1

At large A(A—x), the renormalization group equations m=-—3-+3zm.
(14) and (15) can be written fork=JA>0 andg= h/A

=0 in the following form: forg<<1,

g>1, (A11)
where m’ is the magnetization in the renormalized chain
with N/3 sites. However in the thermodynamic limil (
—o), mandm’ will be equal. Thus Eq(A11) gives

k' =k,
, m=0, g<l1.
9'=g; (A7)
for g>1, m=-0.5, g>1 (A12)

Similarly, we can use the definition of staggered magnetiza-

k' =b%, tion [sm= (1/N) =N(0|(—1)'s?/0)] and repeat the steps in
calculatingm; the staggered magnetization is obtained to be

1
9’=§(g—1). (A8) sm=0.5, g<l1

= >1,
The RG equation§A7) give no running of the coupling con- sm=0, g=1 (AL3)

stants and lead to a fixed linesGy<1. As far as the ground These results confirm the ‘Meordered state in thg<1
state energy is concerned, there is no distinction between ariggion and the saturated ferromagnetic state in ghel.

arbitrary value of Gsg=<1. But wheng>1 the only fixed Note that these results are the same as the exact ones which

point is g* =1 which is at the end of the fixed line<Og have been obtained in the last section. Had we taken even

<1. Thusg* =1 is the critical value ofy which separates Size blocks for the renormalization procedure, we could not
theg<1 andg>1 phases. To be more rigorous and defineobtain these values.

these phases we will calculate the magnetizatior) énd
staggered magnetizatios1f) in these regions. Equatioii8)
and(9) in the limit A—o (a—1b—0) will be written as

09<1, T's{;T=s? T'siT=-5'7,

-1
9>1, T'siyT=—, TisiT=s"2

2 L
The magnetizatiofim= (1/N) =N(0|s?0)] is

N/3
m= NZ& (0|(s],+s5,+55,)[0)

(A9)

N/3
:nﬂ; ('0|T'(s],+55,+53,)T|0"),  (A10)

where |0’} is the ground state in the renormalized Hilbert
space T|0’)=]0)). By using Eq.(A9), the magnetization is

calculated to be

_1 ! 1
m—§m, g<1,

The calculation of the ground state energy is easily done
by accumulating the energy of blocks in a hierarchical way.
The renormalized Hamiltonian is

HII\I/S(k,!g,):TTHN(k!g)T

k( —2N
Z( 3 )+k2iN’3(S%’S?+1’+g§’), 9<1,
"] kN(1-4g) ,
— 0 +k(g—1)=N3s7 | g>1.
(A14)
Therefore the ground state energy per site is calculated to be
1 2 1 1 1 -1 <1
E, | a7 3\tT3Te )T 90
e:—:
Y 1-4g9 2(g-1) 1-2g
- = 1 g>1'
12 12 4
(Al15)

which is equal to the exact ground state energy. This result
cannot be obtained either by taking an even size block in the
RG procedure.
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