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A generalized two-dimensional semiclassical Holstein model with a realistic on-site potential that contains
anharmonicity is studied. More precisely, the lattice subsystem of anharmonic on-site oscillators is supposed to
have a restricting core. The core plays the role of an effective saturation nonlinearity for the pskifen
trapped solutions. We apply the “logarithmic” potential approximation which allows us to use effectively a
variational approach, on one hand, and to study the realistic situation of the potential core and saturation
nonlinearity, on the other hand. Analytical estimates suggest the existence of wide polarons, contrary to the
case with harmonic on-site potential. Numerical simulations confirm these estimates and show stability of such
polaron solutions. We develop a numerical technique which allows us to obtain the profile of exteovdad
polarons. Simulations show that these polarons can propagate for long distances on the plane retaining their
shape and velocity. Collision effects of the two-dimensional polarons are also investigated.
[S0163-182698)02645-9

[. INTRODUCTION pure self-trapped states, essentially in higher dimensions,
continues at an accelerating pace.

It is more than 60 years since Landauresented the idea An explosion of interest irmovablepolarons has arisen
about self-localization or self-trapping of an excess electrobeginning from the pioneering paper by Davydov and
in a polarized field created by itself. Later, on the basis ofKislukha after which the polarongboth acoustic and opti-
this idea, Pekarintroduced the notion of g@olaron as an  cal) were often called solitons as mobile objects that main-
extra electron or a hole localized within a potential well thattain dynamical integrity by balancing the effects of nonlin-
it creates by displacing the atortiens) that surround it. The earity (electron-phonon or exciton-phonon coupliragainst
polaron concept is ubiquitous in physics and a lot of studieshose of dispersioexchange or resonance intersite interac-
have been performed during the past half-century, includingion) during their uniform propagation. However, all these
the contributions by Fidich?® Holstein® Toyozawa  studies, except for the recent paper by La Maghal,®
Rashbd, Emin and Holsteir;® Davydov and Kislukhd, were carried out only in one dimension. On the other hand,
Scott® and many other&-14 the generalizations of the lattice models to higher

In general, the polaron theory applies to any quantundimension&®~1°are necessary because of natural interest to
particle or a quasiparticle interacting with relatively massivereal two- and three-dimensional crystalline systems. In par-
atoms(groups of atoms or even moleculesurrounding it.  ticular, it is appealing to investigate the polaron dynamics in
For example, replacing the electron or hole with an excitonmultidimensional lattices interacting with extra electrons.
one obtains the theory of the formation and motion of self-Emin and Holsteif using scaling arguments in the con-
trapped exciton$? Therefore the term “polaron” is used to tinuum limit and Kalosakast al*° applying a discrete varia-
denote a wide variety of excitations beirsglf-localized tional approach, analyzed the Holstein model with the short-
through interactions with opticat'®1*and/or acoustt®!® range (local) electron-lattice interactidrl within the
phonons of a lattice. However, it should be noticed that ionsadiabatic theory. They have shown that in one dimension the
in real materials are damped and subject to finite temperaturtanding polaron is always a ground state of the electron-
(stochastic forcing As a rule, disorder and different defects lattice system, so that there is a continuous transition from
are also present in real crystals. Obviously, all these factorthe small-polaron regime obtained for strong electron-
destroy any coherent polaron transport. Moreover, when thphonon coupling to the large-polaron regime at weak cou-
electron-phonon coupling is sufficiently strong compared topling. In the former case the width of the self-trapped state
the intersite exchange interaction, the pure polaron stateghe electron wave function and the accompanied lattice de-
have small size and they appear to be pinned to the lattice. lformation is of few lattice sites only while in the latter one
this case there is no coherent polaron motion as well anthe polaron state extends to lengths significantly larger than
only the small-polaron hopping mechanism occurs due tdhe lattice spacing. The similar situation takes place for
temperatur& Nevertheless, the research on the dynamics oDavydov's solitort*'? in general, for the one-dimensional
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acoustic polarof® In higher dimensions these results drasti- 0.1
cally change: for sufficiently strong electron-lattice coupling
small (quite narrow polarons exist, but when the coupling
decreases, the polaron disapp&arSince the small polaron 0.075
is pinned to the lattice, it cannot propagate. However, as
shown in the present paper, whesaturableanharmonicity
is taken into account for the on-site oscillators in the Hol- 0.05
stein model, the polaron width can be extended significantly,
resulting in theuniform polaron propagation on the two-
dimensional or three-dimensional lattice. The saturation ef-
fect means that the motion of ions ®unded e.g., while
displacing from equilibria, the ions have a finite amplitude
including the case of strong electron-phonon coupling. Such !
a limited ion motion can happen if the potential for ions has _05 20.25 0 0.25 05
some core, so that when an ion approaches the core, its en-
ergy tends to infinity. The saturation of the igatom) dis-
placements causes the saturation of the nonlinearity of the FIG. 1. The shape of the (12,6) LJ potenfialirve 3 and of its
electron-lattice interaction. Note that the saturable nonlineartwo approximations: harmoni@urve 2 and logarithmidcurve 3.
ity has recently been used to describe successfully the propa-
gation of radially symmetric self-focused light beaffis’® This is the issue of the standard semiclassical Holstein
The present paper aims at studying both analytically angnodef with local electron-phonon coupling when the anhar-
numerically the propagation of the polaron on the two-monicity of the lattice subsystem is included. In the adiabatic
dimensional square lattice in the framework of the semiclastimit the Lagrangian function of such a lattice interacting
sical Holstein model. The on-site potential of the model iswith an excess electron can be written in the form
generalized to have a restricting core that does not allow the
lattice ions(atoms to displace at any distance as in the har-
monic version of the model. The core plays the role of the L:E ¢§1n[iﬁ¢mn—(Eo+Xan)¢//mn
saturable nonlinearity for the formation of self-trapped m.n
states. We apply a “logarithmic” approximation for the on-
site potential that still has a core being close to the realistic
situation, on one hand, and allows us to use effectively a 1 ., 5
variational approach, on the other hand. Analytical estimates +5MQumn— MawgV(Qmn/a) |, (1)
suggest the existence of the polarons with large width, con-
trary to the case with the harmonic on-site poterfiaiu-
merical simulations confirm these estimates and show stabi
ity of such polaron solutions. We develop a numerical
f{;gi?svimh:g? Z"g\,\tls l:S_IE?] ob_talnl tft1_e prof]:ltehmbwng[ta_o- f’;lbility amplitude to find the electron at then(n)th lattice
. ge extent. The simulations of the equations (.)site, so that it must be normalized to unity:
motion show that these polarons can propagate for long dis-
tances on the lattice retaining their shape and velocity.
The paper is organized as follows. In the next section we
derive the equations of motion that describe the coupled sys-
tem: an excess electron interacting with classical oscillators

on a two-dimensiondPD) lattice. In Sec. Ill we study stand- The constand> 0 is the exchangéverlapping integral that
ing polaron solutions analytically, using variational approxi- describes the probability of the electron hopping from one
mations, and numerically. Moving polaron solutions are ob4attice site to any of its nearest-neighbor ongs, is the
tained and studied numerically in Sec. IV. The polarongn.site electron energy when the lattice is undistorted, i.e.,
collision is also investigated in this section. Finally, someyhen the particles of the lattice are found in their equilibria
concluding remarks are given in Sec. V. and x>0 is the coupling constant of the electron-lattice in-
teraction. The states of the lattice subsystem are described by
the real-valued lattice fiel®,,,(t), each ofQ,,, being the
displacement of thenj,n)th lattice particle from its equilib-
We consider a square lattice of noninteracting particles ofium position. The dimensionless on-site potentgl) is
massM, the equilibria of which are situated at the sites la-normalized by the relationg(0)=0 andV”(0)=1, so that
beled by the 2D vectorng,n) with m andn running over all  the constaniy,= yK/M, with K being the elastic constant, is
the integers. Each of these particles is subjected to an anhdhe characteristic frequency of each on-site oscilldtbe
monic on-site potentiaV of the realistic shape shown in Fig. eigenfrequency of small-amplitude oscillations of lattice par-
1 (see curve ], forming the on-site classical nonlinear oscil- ticles). We consider the realistic form of the potentiAlu)
lator. When an external electrdpr, in general, a quantum with a core which prevents the nearest-neighbor lattice par-
guasiparticlg is added to such a 2D lattice, each of the os-ticles from approaching each other on very close distances. It
cillators is supposed to interact with this electron locally.could be the standard (12,6) Lennard-JofieB potential

Viu

0.025¢

I Um-1nt ¥mn-1t miint Pmni1)]

]/_vhere the dots denote differentiation with respect to time
and the complex-valued lattice fielf,,(t) (the coefficient
functions of the one-electron state vegtdescribes the prob-

mZn | Yme(D)|?=1. @)

Il. THE MODEL AND BASIC EQUATIONS



PRB 58 POLARON DYNAMICS IN A TWO-DIMENSIONAL . .. 14 307

1 L d
V(U):7_2[(1+u)_6_1]2, —1<u<wo, 3 L:j:E d’:wn (i/0)$+¢m+l,n+¢m,n+l
m,n T

shown in Fig. 1 by curve 1. However, any potential that has — 4t bm-1nt b nl_aumnd’mn}
two cores, one fou<0 and the other fou>0, seems to be ' '
even more realistic. Sincg>0, the total energy of the sys- al 1/ du\2
tem goes dowrsee the Lagrangian functiofd)], if all or +— _< ﬂ‘) —V(Upp) } (7)
some of Q,,, become negative. Therefore only theft B2\ dr

branch of the potentidl(u) is of interest when self-trapped ith the three characteristic dimensionless parameters
states are considered. The distance between the core and the

equilibrium position is normalized to unity, so that the par- xa Y Y J

ticle displacements from the equilibria are measured in the a=—, fB= VMawl Ka' " hon (8
units of the constard being the maximally possible negative @o 0

displacement of the lattice particlehe characteristic Then the corresponding Euler-Lagrange equations are writ-
length. This constant should be significantly less than theen as follows:

lattice spacind.

The form of the potential3) is very inconvenient for ~ domn
analytical studies and therefore its harmonic approximation (1o)==~ (@meant dmnr1~4bmn
shown in Fig. 1 by curve 2 is commonly used in the polaron
theory*"2°Here we introduce another approximation which +ém-1nt dmn-1)+ AUnndmn, (9
keeps the main feature of any realistic potential, namely, the
presence of a core, and allows us to perform some analytical d2u,,,
studies, at least, for the static polaron solutions. This ap- > =—V'(Unn) — Bl bmnl?, (10
proximation is chosen in the following form: dr

and the normalization conditiof2) becomes
v=u-in1ru=3 @
u)y=u—In u)= -
= 2 [ fmr(7)[?=1. (1)

with the expansion series being valid in the interval <u Each of the parameters, 3, and o defined by Eqgs(8)

<1. We call the potential4) the “logarithmic” approxima-  nas the definite physical meaning. Thus, according to the
tion illustrated in Fig. 1 by curve 3. The first term of the jinear Schidinger equation9), in which the displacement
series(4) is the harmonic approximation. From the compari-fie|q y - forms a potential well caused by the lattice defor-
son of the shapes of the three potentials depicted in Fig. }ation, the parameterr measures the depth of this well
one can conclude that the logarithmic approximation is mucy{given by the electron-phonon coupling constant com-
better than the harmonic one, particularly, in the region ofy5req t0'its widthgiven by the electron dispersion constant
negative values of the variable Note that the polarofself- 3y Therefore the parameterdescribes the magnitude of the
trapped states are formed with only negative displacementsyjeciron trapping by lattice deformation. In contrast, the pa-
Qmn, so that the polaron theory deals only with this region ameterg measures the response of the electron on the lat-
of the lattice displacements. , _ tice. According to the linear lattice equatigh0) with the
There are two convenient ways to rewrite the Lagrangianorce created by the electron, the param@tdescribes the
(1) or the corresponding equations of motion in dimensionynagnitude of the source that distorts the lattice, i.e., “digs”
less form. One of these is to use the characteristic time Scaﬁpotential well for itself. The third parameteris a dynami-
in the electron subsystem, namely, to introduce the scaledy) gne: it disappears in the static theory and measures the

time as7=Jt/#. In this paper we use the characteristic time 345 of characteristic time scales of both the subsystems
scale for the lattice subsystem and therefore define the Scal?glectron and lattice

(dimensionlesstime by Let us now evaluate the possible values of the parameters

a, B, ando which are reasonable from the physical point of
7= wot. (5)  view. Using some data described by Stbis well as other
data from the references therein, we may choose the follow-
Then it is convenient to introduce the nddimensionless N characteristic valuesa=0.1 A J=5 Cm_l’ M=m,
lattice fields where m, is the proton masswy=10" s™*, and yx
=(2-6)x10 ! Newtons. If we take, for instance;=2
i o () X 10~ ! Newtons, then the dimensionless constamtsg,
_ e _ ¥mn and o calculated according Eq98) take the valuesa
‘ﬁm”(”_wm”(t)ex%ﬁ('zo 43“} Umn(7)= =5 —2.0, B=12.0, ando=0.94. These values or a little bit
(6) bigger will be used below in our numerical calculations.
Note that the increase of the exchange interacfido the
and to rewrite the Lagrangian functida) in the following  values more reasonable for crystals leads to increasing the
(dimensionlessform: polaron size and therefore to higher polaron movability.
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We need to have also the general expression for the aL

Hamiltonian function(the total energy of our system. To
write it, we define the following conjugate momenta:

aL

i
—  —
Mmn= Ndpnaldr) o Pmn:

dd’mn
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_ dup,
d(dugp,/dr)  dr
where the Lagrangian function is given by Eq.(7). Then

the dimensionless Hamiltonian functidim units of J) takes
the form

Pmn= (12

dunn

H:H{Hmnrd’mn;Pmnaumn}‘:z Hmn d +P
m,n T

= %1 ¢;m[ _(¢m+1,n+ ¢m,n+l_4¢mn+ ¢mfl,n+ d’m,n—l) + a'umn(bmn] + -

We look for the solutions of the equations of motit9)

and(10) in the form of a modulated plane wave propagating
in any direction on the 2D lattice given by the wave vector

k=(kq,k5). Therefore we substitute the ansatz

Dmn(7) = @mn( T)eXp{i[mkl+ nk2—0'(80+8)7']},
(14

where

£0=2(2—cosk;—cosky) (15

mnodr

L

all/du

2
E(W) +V(Unp)

] . (13

B

H=2

m,n

[ COSkl(QDer in— (Pmn)z

2
+ COSkZ(‘Pm,nJrl_ (Pmn)2+ AUmn@mn

1<dumn

a

B

2
5|5 ) V(U } e

respectively.
The dimensionless energy<0 of binding the electron to
a lattice deformation is the spectral parameter of the station-

is the free-electron energy band, into the basic equations prery 2D Schrdinger equation(16). This parameter is to be

sented above. Thus, the equations of mo{®nand(10) are
reduced to the three equations:

- COSkl(‘Pm+ in— 2¢0mnt ¢m- 1,n)

- COSkZ(‘Pm,n+1_ 2¢mnTt (Pm,n—l) T aUmp®@mn= € Pmn>

(16)
de .
dTmn =—gf[sin kl(‘Pm+l,n_ (mel,n)
+Sink2(¢m,n+1_¢m,nfl)]! (17)
d?u
d—r:n:_vl(umn)_B(PZmn' (18
T

Using next the normalization conditidsee Eqs(11) and

(19)]

(19

the Lagrangian and Hamiltonian functiofid) and (13) are
transformed to

L=-2

m,n

1 COSkl( Pm+1n— (Pmn)z

2 2 2
+ COSkZ(‘Pm,n+1_ ©mn) + aUmn®mn— €Pmn

1(dumn

a

B

2

2
- ) V(U ] (20)

found together with the lattice deformation field. However, it
can be expressed in terms of both the lattice fields and
Umn, as follows. Indeed, multiplying both sides of E46) by
©mn, SUMMIing them over allm,n)’s and using the normal-
ization condition(19), we obtain

e= E [COSkl(‘Pm+ in_ (Pmn)z

(22

On the other hand, the total energyof the electron-phonon
systemi.e., the Hamiltonian functiof21)] can be expressed
in terms of the binding energy as

2
+ COSkZ(‘Pm,nJrl_ (Pmn)2+ aumn‘Pmn]-

2

1/du
Py +V(umn)

L E mn
E=H=¢gg+e+ %[2(—(17_ , (23

whereg is given by Eq(15). Therefore the total enerdyis

split into the two parts: the electron and lattice ones, each of

these consisting of both the kinetic and potential energies.
To conclude this section, we consider the limiting case

when the lattice is undistortedu,=0). In this limit the

binding energys —0 and, according to the linear dispersion

law (15), the group velocity in the electron subsystem is

JI ﬁgo 2J|
V= —0 —=

" Ik —T(S|nkl,smkz)

(24)

with | being the lattice spacing. Therefore we may define the
dimensionless velocity

s=V/lwg=20(sinky,sinks), (25
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which describes the propagation velocity of thear waves
of electron probability if the lattice is undistorted.

Ill. STANDING 2D POLARON SOLUTIONS

First we consider the particular case of standistatig
solutions for the logarithmic potentia(4). Using that
d?u,/d7?=0, from Eq.(18) [see also Eq(10)] we obtain

_ B|¢mn|2 __ Bﬁoﬁwn
1+B|¢mn|2 1+B‘P?nn

Inserting this expression into the Lagrangié0) or the
Hamiltonian(21) and using thak,; =k, =0 for the static case
[see Eq(17)], we find that the energy of the system can be
written in the form

mn—

(26)

E

—L= E [(‘Pm+1,n_ ‘Pmn)z
m.n

+(Pmnr1— emn) 2~ (al BV(Bea)] (27

where the potentiaV/ is given by Eq.(4) and the term with
the spectral parametébinding energy ¢ has been omitted
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To study analytically the polaron solutions to Eq§6)
and (18) with the constraint(19), we use a variational ap-
proach, using both a discrete trial function defined on the 2D
lattice and a 2D continuous trial function. Each of these
functions is chosen to have only one variational parameter
describing the size of localization. Substituting a discrete
trial function into the expression for the ener(@7) or a
continuous trial function into the continuum version of this
energy, we shall obtain a corresponding function with re-
spect to the variational parameter which can be minimized
and its optimal value can be calculated.

A. Discrete variational approximation

In this subsection we use the discrete variational ap-
proach, assuming the exponentially decreasing behavior of a
trial 2D lattice function for the fieldp,, normalized by the
condition(19). From the symmetric point of view the follow-
ing two “opposite” positions of the polaron center should be
considered(i) the polaron is located exactly at a lattice site
and (i) at the middle point between the four nearest-
neighbor lattice sitegthe central point of the lattice cell
Intuitively, the on-site positior{i) seems to have lower en-

because it is constant due to the normalization conditior$"9Y- However, this should be checked. For this first case we

(19). Next, substituting the solutio26) into Eq. (16), we
get the discrete nonlinear Schiinger (DNLS) equation of
the form

Cm+intT mn+1— 4omnt em- 1nt @mn-1

+9¢ad(1+ Bet) +e@mn=0, (28)

where the parameteks and 8 in the nonlinear term appear
in the form of the product which we denote by
g=aB=x*IMw;. (29
When the constan8— 0, Eq.(28) is reduced to the stan-
dard DNLS equation with cubic nonlinearity which corre-
sponds to thénarmonicHolstein model. In this limit both the
parameters are “sticked” together, forming ordypecharac-
teristic parameteg, which can be referred to as the self-

trapping coupling constant. Indeed, it describes both the ef-

fects in the self-trapping mechanisrti) the capture of an
electron by the potential well of the lattice deformation field
(a) and(ii) the creation of the potential well by the electron
acting as an external forceg]. However, in the anharmonic
case, this mutual proportionality is broken because the influ
ence of the electron on the lattice becomes nonlinear as se
from the equation of motioKl8).

In the opposite limit3—oo, the nonlinear term in the
DNLS equation(28) is transformed to the linear one, so that
the nonlinearity in this equation disappears and, as a resu
the localization effect should diminish. In other words, the

consider the discrete normalized trial functidn

1-¢?

— Aqlml+In| - =
emn=Ad , A=A(Q) [ (30)

with the variational parametey, 0<q<1, which determines
how strongly the polaron is localized. The substitution of this
trial function into the expressiof27) yields

(1-0q)?
E=4"Trq7

[

In(1+ BA2)+4 >, In(1+ BAZG2")
n=1

|

For the polaron states centered in the middle of the lattice
cell we consider the second ansatz as follows:

—a[l—ﬂl

+4 >

m,n=

(31)

|n(1+,8A2q2m+2”)
1

1
en emn=5 D(A)(L—g?)glm* 1", (32

where 9(q)=q 2 if m=1 andn=1, 9(q)=q ! if m=0
fandn=1 or m=1 andn=<0, andd(q)=1 if m=<0 andn
<0. Substituting this ansatz into EQ7), we obtain the

nonlinearity is saturated and one should expect that widéecond expression for the variational eneky

(extendedl polaron solutions can exist as well, contrary to

the harmonic Holstein model which admits either very nar-

row polaron solutions or completely extend@tklocalized

states’® Therefore, the core anharmonicity leads to the

DNLS equation with thesaturationnonlinearity. It follows
from Fig. 1 that realistic potentials should reveal the satura
tion effect even more.

E=2(1-9)°—«a

|

1-4p71

2~2m+2n—4

B
1+ 7(1-0%)%

X > In

m,n=1

” (33
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-4

0.5 0.75

q

FIG. 2. The total energf(q) given by Eq.(31) and plotted as
a function of the variational parametgfor the following three sets
of parameter valuesy=7 and8=6 (curve 1, a=3 and =10
(curve 2, anda=1, B=20 (curve 3.

We find the optimal valug=q, from the condition that the
energyE attains a minimum at this value. As a result, we
have found that the energidl) is lower than the energy
(33). Therefore, in what follows we shall use only the trial
function (30). In the harmonic limit the energy31l) is re-
duced to the expression

(1+9%?

c_41-9® g
- (1+9%°

1+g2 2

|20

(1-g%)? (34)
obtained by Kalosakast al“=" Note that in the limit of ex-
tended stateg— 1 and for this case the trial ansd&0) is
transformed to the explicit form which should be written for
any finite square domain consisting Nf lattice sites. The
normalized functionp,,,, for the uniformly extended states is
emn=N"1, so that the energ{81) for this square becomes

En=a[(N%B)In(1+ BIN?)—1]. (35

In the Ilimit of the infinite square domain we have
lim, _En=0. Therefore, for localized states there should

be a certain valug=qg at which the variational energ31)
takes its minimalnegative value.

The variational energy of the systefngiven by Eq.(31)
is plotted in Fig. 2 as a function of the parameteifor
different values of the characteristic parametesnd 3. Let
g=0qo=0o(a,B) be the minimum of each cunE=E(Qq).
Contrary to the results for the harmonic approximafibthe
polaron width, which depends drastically on the parameter:
a and B, can be quite large. Indeed, we hayg=0.242 for
a=7 andB=12 (curve 1 which corresponds to the narrow
solution, butgy=0.562 fora=3 andB= 10 (curve 3 which
is the intermediate case, and evg§=0.841 ata=1 and
B=20 (curve 3. The latter set of the parameter values dor

and g provides a fairly extended profile. The cross section of

the 2D profile| ¢mnl = ¢mn @t m=0 calculated according to
the ansat430) for these three solutiong=q, is plotted in

Fig. 3. Therefore, we have shown, at least, within the loga-
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1
0.75}
e
(=]
=
0.5
0.25}
7 RS A MY ST A a7
n

FIG. 3. Them=0 section of the polaron profile for the normal-
ized lattice function| g, =¢on at a=7, =6 (curve 3, a=3,
B=10 (curve 2, anda=1, =20 (curve 3.

the whole spectrum of polaron widths, contrary to the case of
the harmonic approximatiéhwhere only narrow localized
states can exist.

Now let us analyze the role of the parameterand g in
the polaron formation more precisely. We have calculated
the two dependences of the solutigr gy on « for 8 fixed
and, vice versag for « fixed. The solutiormgy=q(«@) as a
function of « is presented in Fig. 4 for three values of the
parameter: =3 (curve 1, 8=5 (curve 2, and =10
(curve 3. The important result is that the polaron state does
not exist for all values ofr, but only for « greater than a
critical value a.= a.(B). At a= «a the optimal variational
parameteiq, attains its maximum value that corresponds to
the broad polaron solution and it decreases gradually with
the increase ofx. This means that the polaron is getting
more and more narrow when the nonlinear term in )
increases, but the saturation paramegtés constant. Figure
4 also demonstrates how the critical valgdepends on the
parameter: it decreases whep increases. This behavior
can be explained by the form of the nonlinear term in Eq.
(28): the decrease af and the increase at the same time of

0.75r

S

0.25r

o

FIG. 4. Optimal valuef, of the variational parameter as a

rithmic approximation, the existence of the 2D polaron solu-function of « at the three values oB: 8=10 (curve 1, B=5

tions admitting, in dependence of the parameterand 3,

(curve 2, andB=3 (curve 3.
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FIG. 5. Optimal valuegqq, of the parameteq as a function of3 o
at the three values at: =10 (curve 1, a=5 (curve 2, and o
=1 (curve 3. FIG. 6. Existence diagram,; the curve splits the ) plane into

the two regions: the existenc¢dark area and nonexistencéelow

B, keeping their produdti.e., the self-trapping parametgy, the curvg of polaron solutions.

enlarges the saturation effect of the nonlinearity, resulting in
broadening the existence area of polaron solutions. On the E:f [(Ve)2—(al BV(Be?)]dX, . . .dXq,
other hand, if3 is large enough, we do not observe signifi-

cant changes in the dependence of the solutjgron the
parameterx.

Similarly to the results illustrated by Fig. 4, for each value prom the point of view of analytical calculations it is conve-

of the parametew a certain critical valug.= B.(«) can be  pjent to use the following continuous normalized trial func-
found, starting from which g>g8.;) the solution qq tjgn:

=(o(B) exists(see Fig. 5. Again, with the decrease af,

the critical valueB, decreases. The polaron becomes nar- d

rower because the nonlinear term in the DNLS equat2) e=0(Xq, ... Xg)=(u/2)¥[] sectiux) (37
is getting larger if the self-trapping parametgikeeps the =1

same value, but the saturation paramefedecreases. For jth the variational parameter. Using the series expansion

large values ofg the nonlinearity reaches saturation and(4) and the trial function(37), by straightforward calcula-
therefore the shape of the polaron solution does not changgns we obtain

when g tends to infinity. Having found both the dependences

a.=a(B) and B.=B:(a), we can plot a diagram curve d * cd _

which separates, on the plane,(3), the areas of existence E(n)= §M2+ aX, >[—B(ul2)"P 1, (39
and nonexistence of the polaron solutions. Such a curve is =2

plotted in Fig. 6. Nearby this curve the polaron profiles beingwhere the constants’s are defined by

in the existence region are very extended and while crossing

this curve, they continuously run to completely delocalized J. (2j—2)N

states. Those polaron states which are far away from the ¢i=3 j sectl zd¢= 2j-nn- (39)
existence diagram are quite narrow.

V=(d,0 - -y (36)

Since all the coefficients; are bounded from above, say,

beginning fromj =4, we havec;<48/105<1/2, the series in
B. A variational approach in the continuum limit the energy (38) is well-defined in the interval €u
b§2(23*1)1’d. Therefore for sufficiently small solutiong

The discrete approximation described in the previous su iwhen the continuum limit indeed can be applieat can get

section is supposed to work well for narrow solutions while

for broad polarons this approach seems to be crude. In ord pme rgas_on_able_ res_ults. I_Dartlculgarly, we can conS|de_r the
to check this, it is reasonable to treat our system in the conaarmonic limit which is easily obtained from the expansion

tinuum limit, using an appropriate 2D continuous trial func- (38) if only the term withj =2 is kept. Consequently, taking

tion. To compare the results for the 2D case with those fofnto gcco?ntt;]hat:fztﬁ, c:ne can \.N”:ﬁ ﬂ;]e folloywr;g ?X
other dimensions and since the calculations can be easi@/ess'on or the variational energy In the harmonic imit:

performed for any dimensioth, we consider here the general E(w)=(d/3) 2= (a/2)( w/3)¢ 40
case. Thus, in the continuum limit we substitute ttie (W)= (AR "= (92) (wF3)". 40
dimensional lattice vectorng, ...,ng) by the continuous Similarly, rewriting Eq.(22) in the continuum limit, one can
vector (4, ... Xq), Settingx;=nq, ... Xg=hy4. Then the calculate the binding energy in the harmonic approxima-

discrete expressiof27) is transformed to tion:
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e(p)=(dB)u—g(u/3)". (41) 05

The total variational energi(w) given by Eq.(40) has a
nontrivial minimum only in the 1D case. This minimum is
attained atuy=g/4, so that the variational solution for the
1D Holstein model:

o(x)=(g/8)Y%secligx/4), s=-g%16 (42 025/
coincides with the exact solutiofin the harmonic limi} of
the corresponding continuum version of the DNLS equation
[see Eq(28)]
¢"+ge’+ep=0, (43 0 , , ‘
10 20 30 40 50

where the functionp(x) satisfies the continuum version of

the normalization conditiof19). It is important to note that B

this solution is valid for sufficiently small values of the cou-

pling parametelg (g<1) when the continuum approxima-  FIG. 7. AmplitudeA of the ¢, lattice field against the satura-

tion is applied. tion parameterg obtained at the valuee=1 within the discrete
As for the 2D case, the minimum of the ener@p) is variational approackdotted curvg in the continuum limit(dashed

indefinite, but it occurs only at the fixed value of the cou-curve), and by minimization(solid curve.

pling constantg=1/12; it takes the zero value, the same as

for the delocalized state. There are no minima in higher ditwo inequalitiesda/de <0 and dB/de<<0 is in correspon-

mensions. However, if any anharmonicity is involved, adence with the stability criterion proved analytically by

minimum may appear in the two dimensions. Indeed, let ugaedkeet al®® and confirmed numerically by Christiansen

consider the next term in the series expangi®® whend et al*° for the 2D DNLS equation.

=2. Then we obtain the expression

C. Results obtained by minimization

2 9
E(u)= §M2 1-35+ 559:3#2 - (44) In the previous two subsections we have studied the sys-

tem of Egs.(16) and(18) under the various approximations

For the continuum limit to be applled we need the Variationalin order to have an idea about its genera| features. Now we
parametelu to be as small as possible.t<1). One can see want to establish how good our variational approximations
from expressiori44) that this happens if the coupling param- are and also whether the polaron solutions are stable or not.
eterg exceeds 12, so that the sum of the first two terms isxact standing polaron solutions to the problem can be found
negative and it is close to 1 while the secdpdsitive) term  numerically by minimization of the energ{27) under the
should increase as much as possible. This can be achievednstraint(19). This constraint means that the polaron solu-
for large values of3. The minimum of the energy44) oc-  tions (more precisely, thep,,,, profile) have to be found on

curs at the multidimensional spher@9). This conditional minimi-
zation problem was solved by using the conjugate-gradients
=E E _ E method. The results of the discrete variational approximation
2B V12 « were used as initial conditions for the minimization proce-

dure. For narrow polaron solutions they appeared to be quite

good approximations. The comparison of the exact results

2D polaron solutions can exist only if the inequalify- 12 is obta}med_by minimization with both the variational approxI-

approximately satisfied. Below this will be confirmed nu- mations is given in Fig. 7. Here we have plotted the ampli-
' tude A= max ¢, =maxey,, found by these three different

merically by exact results. Therefore, it should be empha: . i ; :
sized that the range of the system parameters for which Welf_echn!ques. the dotted curve was obtamed.by the discrete
ariational procedure and calculated according to @4),

fin laron solutions exist criticall n n i ! . v
defined polaron solutions exist critically depends on spatia he dashed curve was found using the continuous variational

dimensionality. approach and calculated by summing the sef@83s with d

Similarly, one can also calculate the binding energy ! . . ! .
adding the next term in the series expansion to the harmoniEz' and the solid curve is the numerical solution obtained

approximation(41). Using then the solutio45), we obtain oy minimization. Each of thesg solutions dgmonstrates the
the dependence ' nonexistence of localized solutions for sufficiently small

<. As illustrated by the dashed and solid curves, near the
25/ 11 5 4 critical value 8., where the polaron solutions are extended,
4—( ) (46)  the results obtained by minimization and the continuous
B S . o

variational method practically coincide. On the other hand,
This energy is negative for ali>12 and it decreases linearly far away from the poing3;, when the polaron solutions be-
(approximately with the increase of the parametemat fixed  come narrow, the discrete variational solution is close to that
values of3. It also decreases with the growth of the param-obtained by minimization(compare the dotted and solid
eter 8 at fixed values ofx. This behavior described by the curves.

Thus, contrary to the 1D cagwhere the inequalitg<<1 is
required for the existence of wide polaron profjléke broad

e=e(a,f)=~— 1249757 3
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FIG. 8. Narrow profile of the@) | ¢mn?= @2, and (b) —umn
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FIG. 10. Broad profile of thea) | ¢mn 2= 02, and (b) —Umn

polaron components obtained by minimization for the parameteP°laron components obtained by minimization fer=1 and 8

valuesa=7 andB=3.

The 2D profiles of the ¢n = ¢mn @and Uy, components

=15.

tional method for the case in Fig. 8. The agreement of the

which were obtained by minimization are shown in Fig. 8. Inresults is excellent for both the polaron components. Simi-
Fig. 9 we show a direct comparison between the numericalljarly, we examined the continuous variational method. The
obtained solution and the one obtained by the discrete varigwo-component polaron profile shown in Fig. 10 is quite

1

t
o 075 (a)
5
=2
0.5
0.25}
Q¢+ - ———0—0—0—0—4
15 20 25 30 35
n
-0.25¢ (b)
o
=)
3
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-0.75}
-1 L . +
15 20 25 30 35
n

FIG. 9. Them=0 section of the polaron profiles obtained
within the discrete variational approagdashed lingsand by mini-
mization (solid lines: the (a) | ¢on|>= @3, and (b) ug, lattice func-

tions; a=7 andB=3.

wide and therefore it is reasonable to compare it with the
corresponding results obtained within the continuous varia-
tional approach. Such a comparison is presented in Fig. 11
for them=0 section of both the polaron components. Again,
the agreement is quite satisfactory. Finally, the polaron pro-
files obtained by minimization were used as initial data for
the simulations of the basic equations of moti®@hand(10),
using the fourth-order Runge-Kutta method. The solutions
were found to be real stationary; the initial profile did not
change during the time evolution of 1000 periods
=2/ oe of carrier oscillations.

Using the minimization procedure, we have also calcu-
lated the dependence of the binding enesggn the system
parametersy and 8, using the expressidrsee Egs(22) and

(26)]

8:% [(‘Pm+1,n_ (:Dmn)2+(§°m,n+1_ (Pmn)z

—gomd (1+BeE 0] (47)

Particularly, the solid curve in Fig. 12 describes the behavior
of ¢ as a function of the saturation paramegeiat a fixed
value of «. The dashed line in this figure illustrates the ap-
proximate dependencé6) which approaches the exact
curve for small values oB, as expected due to taking into
account only the cubic term in the series expansion. As men-
tioned above, the dependenee-e(«,B) is in correspon-
dence with the stability criterion obtained previo#SiP in

the case of the 2D DNLS equation. Also, the full numerical
solutions with the polaron as an initial condition indicate
stability.
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;'3 FIG. 12. Binding electron energy as a function of the satura-
tion paramete calculated by minimizatiorisolid line) and in the
5 continuum limit when only the quadratic and cubic terms in the
0. series expansiot¥) are kept,a=1.
the wave vectok= (k4 ,k,). We setm=x andn=y and for
-03 . . traveling-wave solutions one can write
20 40 60
n emn(T)=@(X=S17,Y=S7),  Upn(7) =U(X—8$17,Y = S,p7).

(48)
FIG. 11. Them=0 section of the polaron profiles obtained . " . . .
within the continuum variational approadtashed linesand by Therefore, using the definition of the dimensionless time

minimization (solid lines: the (@) | dos| 2= ¢2, and (b) ug, lattice given by Eq.(5), we find that the velocitys is measured in

fields; a=1, B=15, andu,=0.278 . ur_lits of lwy wherel is the lattice spaging, so thatv/vg
with vo=lwg [the same as for the linear waves, see Eq.
IV. MOVING 2D POLARONS (25)]. Moreover, Eq.(17) implies the same one-to-one cor-

respondence between the vecterand k as given by Eg.

In this section we are interested in the motion of the 2D(25). Indeed, in the continuum limit one can write the fol-
polarons. Since the polarons with narrow profile are pinnedowing discretization:
to the lattice, we expect to get their motion when the polaron
width is sufficiently large, i.e., in the continuum limit. In d‘l’mn:_(S ot $,0,)
fact, we need to have some numerical procedure which dr 10X T =20y) @
would allow us to find for each velocitgtationary polaron
profiles. Next, whether or not these profiles are stationary,
could be checked by direct simulations of the basic equations
of motion (9) and (10).

In order to find soliton solutions of large extent in the 1D +S2(@mn+1= mn-1)]- (49
case which aresmoothlattice fields, the numerical procedure Comparing Eqs(17) and (49) gives the same relatio(25)
is quite simple’! However, it becomes much more sophisti- valid also for the linear waves of the probability amplitude
cated in higher dimensions. Below we develop this approackor the free electron.
by using appropriate discretizations of spatial partial deriva- For seeking localized solutions of a sufficiently extended
tives. profile we use the following representation of the time de-

Let us consider the propagation of some stationary profilgivative d?u,,,/d7? in Eq. (18) by symmetrized 2D second-
with a constant velocitg= (s;,S,) in the direction given by order spatial difference derivatives:

1
= E[Sl((Pm-#l,n_ ‘Pm—l,n)

2un

dr?

= (S595+ 251Sdxdy+S505) @

2
231(§Dm+1,n_ 20mnt @mfl,n) + 5152(Um+1,n+ Unn+1— 2Upmn— Un+in—1"Um—1n+1t Umn-1

+um—l,n)+sg(¢m,n+l_2¢’mn+ SDm,n—l)- (50

Then the difference equatioi$6) and(18), with the left-hand side replaced by the right-hand side of (B), are obtained
as extremum conditionslL/d¢,,=0 anddL/du,,,=0 of the discretized Lagrangian function
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FIG. 13. Nonuniform motion of the narrow polaron accompanied by emission of small-amplitude waves due to its pinning to the lattice
for the parameter values=4, =5, ando=0.2: initial (8) | pmn(0)|?= ¢2(0), () —Um,(0) and final(c) | pm(300)%= ¢2,(300), (d)
—Umn(300) polaron profiles. The direction of polaron propagation and its velocity are given by the vé&etd7,0.5) ands
=(0.258,0.192).

_ ) 2
= L{‘Pmn ) umn}: - E C05k1(90m+1,n_ ‘Pmn)2+ C05k2(¢m,n+1_ (Pmn)2+ AUmn®@mn

m,n

- E[Sl(uerl,n_ umn) + 52(“m,n+1_ umn)]2+v(umn) . (51)

Note that this procedure is applied only for sufficiently wide mization of the function- L. By an appropriate choice of the
polaron profiles. _ . . system parameters, these profiles were chosen to be suffi-
Similarly to the previous section, we found the profile of cienty narrow, in order to demonstrate braking the polaron
moving polaron solutions by minimization. This minimiza- §,e 10 its pinning to the lattice, and extended, to get uniform
tion procedure was performed using the conjugate-gradlenﬁmaron motion. The fina(at 7=300) polaron profiles are
method. presented in the second pan&sd) of these figures. Figure
13 shows that at the beginning of the motion the polaron
loses some part of its velocity, it became wider, and after-
wards its motion was stabilized with less velocity and with-
The numerical results that describe the motion of a singleut emission of small-amplitude waves. This part of the po-
2D polaron are presented in the set of Figs. 13 and 14. Thu&ron kinetic energy was transformed to some breatherlike
the first panelga,b of Figs. 13 and 14 represent the initial lattice oscillations that were left at the initial position of the
(at 7=0) two-component polaron profiles found by the mini- polaron. This indicates that if one forces the narrow state to

A. Single-polaron motion
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FIG. 14. Uniform motion of the extended polaron in the lattice with 1, =12, ando=0.2: initial (a) |mn(0)|?= ¢Z,(0), (b)
—Umn(0) and final(c) | dmn(300)|2= <p,2nn(300), (d) —unn(300) polaron profiles. The direction of polaron propagation and its velocity are
given by the vector&=(0.6,0.5) ands=(0.226,0.192).

move, it tends to transform into a broader stable state whicjalues a=1, g=14, and 0=0.2 we have foundM,
then moves almost uniformly without changing its form. On =12 36, while the effective electron mass in the band is

the other hand, as illustrated in Fig. 14, the wide polarormozlz_so_ Therefore, we have obtained that the polaron

propagates free_ly With the constapt velocity, reltaining its ass is less than the band electron mass. This occurs because
shape and the direction of propagation. The effective mass %he energy level22) goes down with increasing the polaron

a polaron(i.e., the 2D solitoln M 3 moving uniformly on the . — .
2D lattice along some direction given by the wave vedtor veIocﬁy s._The valueM(=12.36 ha§ been obtalnec_j for the
two directions of polaron propagation: along timeaxis and

=(kq,k,) can be calculated numerically according to the ; _
for(mlulaZ) Y g the lattice diagonal.

2J  E(s)—E(0) J — i . .
M°=|2w2 im 2 Mo, (52) B. Two-polaron interactions

2
0s—0 I“wg

Now we are interested in the interaction of two polarons

. ; on the square lattice. We assume the two electrons to be
WheE the energf(s) is calculated according to E¢23) noninteracting particles, so that we can work in the frame-

andM, is the dimensionless polaron mass. Here the effectivgyork of the model described in Sec. Il. However, the physi-
polaron mas$/, has been defined from the expansion of theca| meaning of the wave functiop,,, becomes a bit differ-
total energy of a moving polaron into the series with respecgnt namely, now we assuné,, |2 to be the probability of

to the velocityv and finding Fhe coefficien_t at/2, similarly two electrons to be found on the sitenfn). Therefore the

to the procedure of calculat|ngz:che2eﬁept|ve mass of an elecygrmalization conditior(2) should hold in our simulations.
tronm in the band(15: my=#/21"J with | being the lat-  pespite the electrons are assumed to be noninteracting par-
tice spacing constant. In the_umtsb‘ﬂzwo the (dimension-  ticles, an effective attractive interaction between them ap-
les9 effective electron mass is,= 1/20%. For the parameter pears due to the lattice deformation forming a stable bipo-
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FIG. 15. Interaction of two extended polarons in the lattice with1l, 8= 14, ando= 0.2 shown by profile contours for thg,, polaron
component at the time instants) 7= 200, (b) =250, (c) 7=275, and(d) 7= 325. The direction of polaron propagation and their velocities
are given by the vectors=(0.5,0.5) ands=(0.192,0.192).

laronic state. Thus, the simple analytical argumé&ritsthe  follows. At low velocities the time of the polaron interaction
harmonic approximation for 1D standing polarons show thais quite long, resulting in strong effective perturbation of
the binding energy per one electron is four times larger in theach polaron. Since the minimum of the variational energy
bipolaronic state than in the polaronic state with one electroii31) for extended polarons is very shalldsee Fig. 2, it is
(it is much easier for two electrons to dig a potential well quite easy to “kick out” a polaron from this ground state. It
when they are together than separated by a long distancemay be possible that during long time the polaron will come
However, in the case of moving polarons, such a bound statieack to this ground state, but it is difficult to observe this in
will not be formed if the relative velocity of two polarons is numerical experiments due to long integration time and large
too high, when the kinetic energy of the polarons exceeds thhattice size. However, if we choose the parameter values that
energy of their binding. correspond to narrower polarons, their collision with these
We collide the two moving polarons, the profiles of which small velocities was observed to be nearly elastic. The results
are obtained by the minimization techniques describeaf the two-polaron collision with higher velocities are pre-
above. In order to find their initial profiles correctly, we no- sented in Fig. 15. The polarons were started to move towards
tice that the probability of each electron localized separatelgach other not along the same line, but parallelly with a
on the lattice is 1/2 instead of 1. Therefore the normalizatiorsufficiently small distance between the lines of their motion.
condition (19) in the minimization procedure should be This distance was less than the width of the polaron, see Fig.
changed accordingly, i.e., 1 should be replaced by 1/2 fol5. As illustrated by this figure, the interaction of the po-
both the electrons which are sufficiently separated. We simuarons is close to being elastic. Note that the time intervals at
lated the collision on the 200200 square lattice and found which the collision contours are shown in this figure are not
that the polarons interact practically elastically for all initial equidistant. Finally, we would like to mention that the de-
velocities, except for very small ones when the duration ofailed interaction is really very complex and depends on sev-
their interaction is very large. In the latter case, the collisioneral parameters. This is the subject for future studies and it is
was observed to be destructive. This can be explained deyond the scope of the present paper.
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V. CONCLUSIONS stable moving polarons of a certain extent are indeed pos-
sible. We have also obtained the diagram on the plane of
system parameters which shows the areas of existence and
nonexistence of the 2D polaron solutions.

We have also found that the presence of an anharmonicity

In this paper we have studied the polaron problem, i.e.
the interaction of an extra electrdigenerally, a quantum
quasiparticlg with the two-dimensiona(2D) square lattice
within the well-known Holstein model with local electron- ssplits” the electron-lattice coupling parameterg

lattice coupling. This is the simplest model in the polaron:XZ/Jng [see Eqs(8) and (29)], commonly used in the

theory and its solution is known when the on-site potential is _ _
olaron theory, into the two parametersand 8 describing

harmonic. The results known for one dimension drasticallyph ff The f d ibes the depth of
differ from those in two or three dimensions. Thus, while for € two efiects. The former parameter describes the depth o

the 1D model the localizepolaron solutions exist for any a potential vyell(compared to its width.that traps an external
values of system parameters and there is the continuous tra lectron while the latter one determines the source strength

sition from the small-polaron regime to the large one, in two'©" the lattice distortion created by the electron. In the har-
or three dimensions the polaron solutions are known to exi onic Img;t both thﬁ i[ar?uatl%nts of _mot|0(9) ar_wl;i (t?) _ared
only for sufficiently strong electron-lattice coupling. More- inear and, as result, the sell-irapping consta obtaine

over, these self-trapped states appear to be quite narrow, | -SE b)t/htrletrr]nuIt|p||c|;at|on_tof t?etie cor;stat{&ee tl)E|q.(29)].
calized mainly at one lattice site. If the electron-lattice inter- ote that the nonlin€arity of the polaron problem comes

action is not strong enough, only completely delocalizedfrom this product. However, in the general case, these con-

solutions are possible. On the other hand, one could expet’?f"’mts are sepa_rated and such a splitting should be generic in
that if the displacement of the lattice particles from equilibria@" @nharmonic” polaron theory. Note also that the anhar-

is somehow restricted, say, by a core, then a 2D polaromonicw has its own parameter which differs framand .
profile would become more extended. Therefore our goal inally, it should be mentioned that the results on the polaron

was to consider the realistic situation when the on-site osciloPility obtained in this paper are relevant to problems of

lators areanharmonic containing a restricting core. In order €/ECtron transport in condensed-matter systems.
to treat the model with such a potential, we have introduced
a “logarithmic” approximation which, on one hand, still has
the core as realistic potentials and, on the other hand, allows Y.Z. wishes to acknowledge the financial support from
us to apply variational approximations for analytical investi-the Danish Research Academy, and would like to express his
gations of the problem. As a result, we have shown that, inhanks for the hospitality of the MIDIT Center and the De-
dependence on the system parameters, the self-trapped stapestment of Mathematical Modelling of the Technical Uni-
with extendedrofiles can also exist. Such extended polaronssersity of Denmark. Part of this work was supported by the
have been shown to propagateiformly on the 2D lattice. Danish Natural Sciences Foundati@®NP. Stimulating and

We have developed the numerical procedure to calculataseful discussions with Yu. B. Gaididei, A. V. Savin, and J.
moving polaron profiles. We have used these as initial dat&chjtdt-Eriksen as well as their suggestions about the pro-
for simulations of the equations of motion showing thatcess of this investigation, are gratefully acknowledged.
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