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Polaron dynamics in a two-dimensional anharmonic Holstein model
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A generalized two-dimensional semiclassical Holstein model with a realistic on-site potential that contains
anharmonicity is studied. More precisely, the lattice subsystem of anharmonic on-site oscillators is supposed to
have a restricting core. The core plays the role of an effective saturation nonlinearity for the polaron~self-
trapped! solutions. We apply the ‘‘logarithmic’’ potential approximation which allows us to use effectively a
variational approach, on one hand, and to study the realistic situation of the potential core and saturation
nonlinearity, on the other hand. Analytical estimates suggest the existence of wide polarons, contrary to the
case with harmonic on-site potential. Numerical simulations confirm these estimates and show stability of such
polaron solutions. We develop a numerical technique which allows us to obtain the profile of extendedmoving
polarons. Simulations show that these polarons can propagate for long distances on the plane retaining their
shape and velocity. Collision effects of the two-dimensional polarons are also investigated.
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I. INTRODUCTION

It is more than 60 years since Landau1 presented the idea
about self-localization or self-trapping of an excess elect
in a polarized field created by itself. Later, on the basis
this idea, Pekar2 introduced the notion of apolaron as an
extra electron or a hole localized within a potential well th
it creates by displacing the atoms~ions! that surround it. The
polaron concept is ubiquitous in physics and a lot of stud
have been performed during the past half-century, includ
the contributions by Fro¨hlich,3 Holstein,4 Toyozawa,5

Rashba,6 Emin and Holstein,7,8 Davydov and Kislukha,9

Scott10 and many others.12–14

In general, the polaron theory applies to any quant
particle or a quasiparticle interacting with relatively mass
atoms~groups of atoms or even molecules! surrounding it.
For example, replacing the electron or hole with an excit
one obtains the theory of the formation and motion of se
trapped excitons.9,10 Therefore the term ‘‘polaron’’ is used to
denote a wide variety of excitations beingself-localized
through interactions with optical2,4,13,14 and/or acoustic5,9,10

phonons of a lattice. However, it should be noticed that io
in real materials are damped and subject to finite tempera
~stochastic forcing!. As a rule, disorder and different defec
are also present in real crystals. Obviously, all these fac
destroy any coherent polaron transport. Moreover, when
electron-phonon coupling is sufficiently strong compared
the intersite exchange interaction, the pure polaron st
have small size and they appear to be pinned to the lattic
this case there is no coherent polaron motion as well
only the small-polaron hopping mechanism occurs due
temperature.8 Nevertheless, the research on the dynamics
PRB 580163-1829/98/58~21!/14305~15!/$15.00
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pure self-trapped states, essentially in higher dimensio
continues at an accelerating pace.

An explosion of interest inmovablepolarons has arisen
beginning from the pioneering paper by Davydov a
Kislukha9 after which the polarons~both acoustic and opti-
cal! were often called solitons as mobile objects that ma
tain dynamical integrity by balancing the effects of nonli
earity ~electron-phonon or exciton-phonon coupling! against
those of dispersion~exchange or resonance intersite intera
tion! during their uniform propagation. However, all thes
studies, except for the recent paper by La Magnaet al.,15

were carried out only in one dimension. On the other ha
the generalizations of the lattice models to high
dimensions16–19 are necessary because of natural interes
real two- and three-dimensional crystalline systems. In p
ticular, it is appealing to investigate the polaron dynamics
multidimensional lattices interacting with extra electron
Emin and Holstein7 using scaling arguments in the con
tinuum limit and Kalosakaset al.20 applying a discrete varia
tional approach, analyzed the Holstein model with the sh
range ~local! electron-lattice interaction4,7 within the
adiabatic theory. They have shown that in one dimension
standing polaron is always a ground state of the electr
lattice system, so that there is a continuous transition fr
the small-polaron regime obtained for strong electro
phonon coupling to the large-polaron regime at weak c
pling. In the former case the width of the self-trapped st
~the electron wave function and the accompanied lattice
formation! is of few lattice sites only while in the latter on
the polaron state extends to lengths significantly larger t
the lattice spacing. The similar situation takes place
Davydov’s soliton,11,12 in general, for the one-dimensiona
14 305 ©1998 The American Physical Society
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acoustic polaron.21 In higher dimensions these results dras
cally change: for sufficiently strong electron-lattice coupli
small ~quite narrow! polarons exist, but when the couplin
decreases, the polaron disappears.20 Since the small polaron
is pinned to the lattice, it cannot propagate. However,
shown in the present paper, when asaturableanharmonicity
is taken into account for the on-site oscillators in the H
stein model, the polaron width can be extended significan
resulting in theuniform polaron propagation on the two
dimensional or three-dimensional lattice. The saturation
fect means that the motion of ions isbounded, e.g., while
displacing from equilibria, the ions have a finite amplitu
including the case of strong electron-phonon coupling. S
a limited ion motion can happen if the potential for ions h
some core, so that when an ion approaches the core, its
ergy tends to infinity. The saturation of the ion~atom! dis-
placements causes the saturation of the nonlinearity of
electron-lattice interaction. Note that the saturable nonline
ity has recently been used to describe successfully the pr
gation of radially symmetric self-focused light beams.22–28

The present paper aims at studying both analytically
numerically the propagation of the polaron on the tw
dimensional square lattice in the framework of the semic
sical Holstein model. The on-site potential of the model
generalized to have a restricting core that does not allow
lattice ions~atoms! to displace at any distance as in the h
monic version of the model. The core plays the role of
saturable nonlinearity for the formation of self-trapp
states. We apply a ‘‘logarithmic’’ approximation for the on
site potential that still has a core being close to the reali
situation, on one hand, and allows us to use effectivel
variational approach, on the other hand. Analytical estima
suggest the existence of the polarons with large width, c
trary to the case with the harmonic on-site potential.20 Nu-
merical simulations confirm these estimates and show sta
ity of such polaron solutions. We develop a numeric
scheme which allows us to obtain the profile ofmovingpo-
larons with large extent. The simulations of the equations
motion show that these polarons can propagate for long
tances on the lattice retaining their shape and velocity.

The paper is organized as follows. In the next section
derive the equations of motion that describe the coupled
tem: an excess electron interacting with classical oscilla
on a two-dimensional~2D! lattice. In Sec. III we study stand
ing polaron solutions analytically, using variational appro
mations, and numerically. Moving polaron solutions are o
tained and studied numerically in Sec. IV. The polar
collision is also investigated in this section. Finally, som
concluding remarks are given in Sec. V.

II. THE MODEL AND BASIC EQUATIONS

We consider a square lattice of noninteracting particles
massM , the equilibria of which are situated at the sites
beled by the 2D vector (m,n) with m andn running over all
the integers. Each of these particles is subjected to an an
monic on-site potentialV of the realistic shape shown in Fig
1 ~see curve 1!, forming the on-site classical nonlinear osc
lator. When an external electron~or, in general, a quantum
quasiparticle! is added to such a 2D lattice, each of the o
cillators is supposed to interact with this electron local
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This is the issue of the standard semiclassical Hols
model4 with local electron-phonon coupling when the anha
monicity of the lattice subsystem is included. In the adiaba
limit the Lagrangian function of such a lattice interactin
with an excess electron can be written in the form

L5(
m,n

H cmn* [ i\ċmn2~E01xQmn!cmn

1J~cm21,n1cm,n211cm11,n1cm,n11!]

1
1

2
MQ̇mn

2 2Ma2v0
2V~Qmn /a!J , ~1!

where the dots denote differentiation with respect to timt
and the complex-valued lattice fieldcmn(t) ~the coefficient
functions of the one-electron state vector! describes the prob
ability amplitude to find the electron at the (m,n)th lattice
site, so that it must be normalized to unity:

(
m,n

ucmn~ t !u251. ~2!

The constantJ.0 is the exchange~overlapping! integral that
describes the probability of the electron hopping from o
lattice site to any of its nearest-neighbor ones,E0 is the
on-site electron energy when the lattice is undistorted,
when the particles of the lattice are found in their equilib
andx.0 is the coupling constant of the electron-lattice i
teraction. The states of the lattice subsystem are describe
the real-valued lattice fieldQmn(t), each ofQmn being the
displacement of the (m,n)th lattice particle from its equilib-
rium position. The dimensionless on-site potentialV(u) is
normalized by the relationsV(0)50 andV9(0)51, so that
the constantv05AK/M , with K being the elastic constant, i
the characteristic frequency of each on-site oscillator~the
eigenfrequency of small-amplitude oscillations of lattice p
ticles!. We consider the realistic form of the potentialV(u)
with a core which prevents the nearest-neighbor lattice p
ticles from approaching each other on very close distance
could be the standard (12,6) Lennard-Jones~LJ! potential

FIG. 1. The shape of the (12,6) LJ potential~curve 1! and of its
two approximations: harmonic~curve 2! and logarithmic~curve 3!.
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V~u!5
1

72
@~11u!2621#2, 21,u,`, ~3!

shown in Fig. 1 by curve 1. However, any potential that h
two cores, one foru,0 and the other foru.0, seems to be
even more realistic. Sincex.0, the total energy of the sys
tem goes down@see the Lagrangian function~1!#, if all or
some of Qmn become negative. Therefore only theleft
branch of the potentialV(u) is of interest when self-trappe
states are considered. The distance between the core an
equilibrium position is normalized to unity, so that the pa
ticle displacements from the equilibria are measured in
units of the constanta being the maximally possible negativ
displacement of the lattice particles~the characteristic
length!. This constant should be significantly less than
lattice spacingl .

The form of the potential~3! is very inconvenient for
analytical studies and therefore its harmonic approxima
shown in Fig. 1 by curve 2 is commonly used in the polar
theory.4,7,20Here we introduce another approximation whi
keeps the main feature of any realistic potential, namely,
presence of a core, and allows us to perform some analy
studies, at least, for the static polaron solutions. This
proximation is chosen in the following form:

V~u!5u2 ln~11u!5(
j 52

`
~2u! j

j
~4!

with the expansion series being valid in the interval21,u
<1. We call the potential~4! the ‘‘logarithmic’’ approxima-
tion illustrated in Fig. 1 by curve 3. The first term of th
series~4! is the harmonic approximation. From the compa
son of the shapes of the three potentials depicted in Fi
one can conclude that the logarithmic approximation is m
better than the harmonic one, particularly, in the region
negative values of the variableu. Note that the polaron~self-
trapped! states are formed with only negative displaceme
Qmn , so that the polaron theory deals only with this regi
of the lattice displacements.

There are two convenient ways to rewrite the Lagrang
~1! or the corresponding equations of motion in dimensio
less form. One of these is to use the characteristic time s
in the electron subsystem, namely, to introduce the sc
time ast5Jt/\. In this paper we use the characteristic tim
scale for the lattice subsystem and therefore define the sc
~dimensionless! time by

t5v0t. ~5!

Then it is convenient to introduce the new~dimensionless!
lattice fields

fmn~t!5cmn~ t !expF i

\
~E024J!t G , umn~t!5

Qmn~ t !

a
~6!

and to rewrite the Lagrangian function~1! in the following
~dimensionless! form:
s
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L5
L
J

5(
m,n

H fmn* F ~ i /s!
dfmn

dt
1fm11,n1fm,n11

24fmn1fm21,n1fm,n212aumnfmnG
1

a

bF1

2S dumn

dt D 2

2V~umn!G J ~7!

with the three characteristic dimensionless parameters

a5
xa

J
, b5

x

Mav0
2 5

x

Ka
, s5

J

\v0
. ~8!

Then the corresponding Euler-Lagrange equations are w
ten as follows:

~ i /s!
dfmn

dt
52~fm11,n1fm,n1124fmn

1fm21,n1fm,n21!1aumnfmn , ~9!

d2umn

dt2
52V8~umn!2bufmnu2, ~10!

and the normalization condition~2! becomes

(
m,n

ufmn~t!u251. ~11!

Each of the parametersa, b, ands defined by Eqs.~8!
has the definite physical meaning. Thus, according to
linear Schro¨dinger equation~9!, in which the displacemen
field umn forms a potential well caused by the lattice defo
mation, the parametera measures the depth of this we
~given by the electron-phonon coupling constantx) com-
pared to its width~given by the electron dispersion consta
J). Therefore the parametera describes the magnitude of th
electron trapping by lattice deformation. In contrast, the
rameterb measures the response of the electron on the
tice. According to the linear lattice equation~10! with the
source created by the electron, the parameterb describes the
magnitude of the source that distorts the lattice, i.e., ‘‘dig
a potential well for itself. The third parameters is a dynami-
cal one; it disappears in the static theory and measures
ratio of characteristic time scales of both the subsyste
~electron and lattice!.

Let us now evaluate the possible values of the parame
a, b, ands which are reasonable from the physical point
view. Using some data described by Scott10 as well as other
data from the references therein, we may choose the foll
ing characteristic values:a50.1 Å, J55 cm21, M5mp
where mp is the proton mass,v051013 s21, and x
5(2 – 6)310211 Newtons. If we take, for instance,x52
310211 Newtons, then the dimensionless constantsa, b,
and s calculated according Eqs.~8! take the values:a
52.0, b512.0, ands50.94. These values or a little b
bigger will be used below in our numerical calculation
Note that the increase of the exchange interactionJ to the
values more reasonable for crystals leads to increasing
polaron size and therefore to higher polaron movability.
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We need to have also the general expression for
Hamiltonian function~the total energy! of our system. To
write it, we define the following conjugate momenta:

Pmn5
]L

]~dfmn /dt!
5

i

s
fmn* ,
ng
to

p

e
Pmn5

]L

]~dumn /dt!
5

dumn

dt
, ~12!

where the Lagrangian functionL is given by Eq.~7!. Then
the dimensionless Hamiltonian function~in units of J) takes
the form
H5H$Pmn ,fmn ;Pmn ,umn%5(
m,n

S Pmn

dfmn

dt
1Pmn

dumn

dt D2L

5(
m,n

H fmn* @2~fm11,n1fm,n1124fmn1fm21,n1fm,n21!1aumnfmn#1
a

bF1

2S dumn

dt D 2

1V~umn!G J . ~13!
ion-

, it

of
s.
se

n

the
We look for the solutions of the equations of motion~9!
and~10! in the form of a modulated plane wave propagati
in any direction on the 2D lattice given by the wave vec
k5(k1 ,k2). Therefore we substitute the ansatz

fmn~t!5wmn~t!exp$ i @mk11nk22s~«01«!t#%,
~14!

where

«052~22cosk12cosk2! ~15!

is the free-electron energy band, into the basic equations
sented above. Thus, the equations of motion~9! and~10! are
reduced to the three equations:

2cosk1~wm11,n22wmn1wm21,n!

2cosk2~wm,n1122wmn1wm,n21!1aumnwmn5«wmn ,

~16!

dwmn

dt
52s@sink1~wm11,n2wm21,n!

1sink2~wm,n112wm,n21!#, ~17!

d2umn

dt2
52V8~umn!2bwmn

2 . ~18!

Using next the normalization condition@see Eqs.~11! and
~14!#

(
m,n

wmn
2 51, ~19!

the Lagrangian and Hamiltonian functions~7! and ~13! are
transformed to

L52(
m,n

H cosk1~wm11,n2wmn!
2

1cosk2~wm,n112wmn!
21aumnwmn

2 2«wmn
2

2
a

bF1

2S dumn

dt D 2

2V~umn!G J , ~20!
r

re-

H5(
m,n

H cosk1~wm11,n2wmn!
2

1cosk2~wm,n112wmn!
21aumnwmn

2

1
a

bF1

2S dumn

dt D 2

1V~umn!G J , ~21!

respectively.
The dimensionless energy«,0 of binding the electron to

a lattice deformation is the spectral parameter of the stat
ary 2D Schro¨dinger equation~16!. This parameter is to be
found together with the lattice deformation field. However
can be expressed in terms of both the lattice fieldswmn and
umn as follows. Indeed, multiplying both sides of Eq.~16! by
wmn , summing them over all (m,n)’s and using the normal-
ization condition~19!, we obtain

«5(
m,n

@cosk1~wm11,n2wmn!
2

1cosk2~wm,n112wmn!
21aumnwmn

2 #. ~22!

On the other hand, the total energyE of the electron-phonon
system@i.e., the Hamiltonian function~21!# can be expressed
in terms of the binding energy« as

E5H5«01«1
a

b (
m,n

F1

2S dumn

dt D 2

1V~umn!G , ~23!

where«0 is given by Eq.~15!. Therefore the total energyE is
split into the two parts: the electron and lattice ones, each
these consisting of both the kinetic and potential energie

To conclude this section, we consider the limiting ca
when the lattice is undistorted (umn[0). In this limit the
binding energy«→0 and, according to the linear dispersio
law ~15!, the group velocity in the electron subsystem is

v5
Jl

\

]«0

]k
5

2Jl

\
~sink1 ,sink2! ~24!

with l being the lattice spacing. Therefore we may define
dimensionless velocity

s5v/ lv052s~sink1 ,sink2!, ~25!
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which describes the propagation velocity of thelinear waves
of electron probability if the lattice is undistorted.

III. STANDING 2D POLARON SOLUTIONS

First we consider the particular case of standing~static!
solutions for the logarithmic potential~4!. Using that
d2un /dt250, from Eq.~18! @see also Eq.~10!# we obtain

umn52
bufmnu2

11bufmnu2
52

bwmn
2

11bwmn
2

. ~26!

Inserting this expression into the Lagrangian~20! or the
Hamiltonian~21! and using thatk15k250 for the static case
@see Eq.~17!#, we find that the energy of the system can
written in the form

E52L5(
m,n

@~wm11,n2wmn!
2

1~wm,n112wmn!
22~a/b!V~bwmn

2 !# ~27!

where the potentialV is given by Eq.~4! and the term with
the spectral parameter~binding energy! « has been omitted
because it is constant due to the normalization condi
~19!. Next, substituting the solution~26! into Eq. ~16!, we
get the discrete nonlinear Schro¨dinger ~DNLS! equation of
the form

wm11,n1wm,n1124wmn1wm21,n1wm,n21

1gwmn
3 /~11bwmn

2 !1«wmn50, ~28!

where the parametersa andb in the nonlinear term appea
in the form of the product which we denote by

g5ab5x2/JMv0
2 . ~29!

When the constantb→0, Eq.~28! is reduced to the stan
dard DNLS equation with cubic nonlinearity which corr
sponds to theharmonicHolstein model. In this limit both the
parameters are ‘‘sticked’’ together, forming onlyonecharac-
teristic parameterg, which can be referred to as the se
trapping coupling constant. Indeed, it describes both the
fects in the self-trapping mechanism:~i! the capture of an
electron by the potential well of the lattice deformation fie
(a) and~ii ! the creation of the potential well by the electro
acting as an external force (b). However, in the anharmoni
case, this mutual proportionality is broken because the in
ence of the electron on the lattice becomes nonlinear as
from the equation of motion~18!.

In the opposite limitb→`, the nonlinear term in the
DNLS equation~28! is transformed to the linear one, so th
the nonlinearity in this equation disappears and, as a re
the localization effect should diminish. In other words, t
nonlinearity is saturated and one should expect that w
~extended! polaron solutions can exist as well, contrary
the harmonic Holstein model which admits either very n
row polaron solutions or completely extended~delocalized!
states.20 Therefore, the core anharmonicity leads to t
DNLS equation with thesaturationnonlinearity. It follows
from Fig. 1 that realistic potentials should reveal the satu
tion effect even more.
n

f-

-
en

lt,

e

-

-

To study analytically the polaron solutions to Eqs.~16!
and ~18! with the constraint~19!, we use a variational ap
proach, using both a discrete trial function defined on the
lattice and a 2D continuous trial function. Each of the
functions is chosen to have only one variational parame
describing the size of localization. Substituting a discr
trial function into the expression for the energy~27! or a
continuous trial function into the continuum version of th
energy, we shall obtain a corresponding function with
spect to the variational parameter which can be minimiz
and its optimal value can be calculated.

A. Discrete variational approximation

In this subsection we use the discrete variational
proach, assuming the exponentially decreasing behavior
trial 2D lattice function for the fieldwmn normalized by the
condition~19!. From the symmetric point of view the follow
ing two ‘‘opposite’’ positions of the polaron center should b
considered:~i! the polaron is located exactly at a lattice s
and ~ii ! at the middle point between the four neare
neighbor lattice sites~the central point of the lattice cell!.
Intuitively, the on-site position~i! seems to have lower en
ergy. However, this should be checked. For this first case
consider the discrete normalized trial function20

wmn5Aqumu1unu, A5A~q!5
12q2

11q2 , ~30!

with the variational parameterq, 0,q,1, which determines
how strongly the polaron is localized. The substitution of th
trial function into the expression~27! yields

E54
~12q!2

11q2

2aH 12b21F ln~11bA2!14(
n51

`

ln~11bA2q2n!

14 (
m,n51

`

ln~11bA2q2m12n!G J . ~31!

For the polaron states centered in the middle of the lat
cell we consider the second ansatz as follows:

wmn5
1

2
q~q!~12q2!qumu1unu, ~32!

whereq(q)5q22 if m>1 andn>1, q(q)5q21 if m<0
and n>1 or m>1 andn<0, andq(q)51 if m<0 andn
<0. Substituting this ansatz into Eq.~27!, we obtain the
second expression for the variational energyE:

E52~12q!22aF124b21

3 (
m,n51

`

lnS 11
b

4
~12q2!2q2m12n24D G . ~33!
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We find the optimal valueq5q0 from the condition that the
energyE attains a minimum at this value. As a result, w
have found that the energy~31! is lower than the energy
~33!. Therefore, in what follows we shall use only the tri
function ~30!. In the harmonic limit the energy~31! is re-
duced to the expression

E5
4~12q!2

11q2 2
g

2
~12q2!2

~11q4!2

~11q2!6 ~34!

obtained by Kalosakaset al.20 Note that in the limit of ex-
tended statesq→1 and for this case the trial ansatz~30! is
transformed to the explicit form which should be written f
any finite square domain consisting ofN2 lattice sites. The
normalized functionwmn for the uniformly extended states
wmn5N21, so that the energy~31! for this square becomes

EN5a@~N2/b!ln~11b/N2!21#. ~35!

In the limit of the infinite square domain we hav
lim

N→`
EN50. Therefore, for localized states there shou

be a certain valueq5q0 at which the variational energy~31!
takes its minimal~negative! value.

The variational energy of the systemE given by Eq.~31!
is plotted in Fig. 2 as a function of the parameterq for
different values of the characteristic parametersa andb. Let
q5q05q0(a,b) be the minimum of each curveE5E(q).
Contrary to the results for the harmonic approximation,20 the
polaron width, which depends drastically on the parame
a andb, can be quite large. Indeed, we haveq050.242 for
a57 andb512 ~curve 1! which corresponds to the narro
solution, butq050.562 fora53 andb510 ~curve 2! which
is the intermediate case, and evenq050.841 ata51 and
b520 ~curve 3!. The latter set of the parameter values fora
andb provides a fairly extended profile. The cross section
the 2D profileufmnu5wmn at m50 calculated according to
the ansatz~30! for these three solutionsq5q0 is plotted in
Fig. 3. Therefore, we have shown, at least, within the lo
rithmic approximation, the existence of the 2D polaron so
tions admitting, in dependence of the parametersa and b,

FIG. 2. The total energyE(q) given by Eq.~31! and plotted as
a function of the variational parameterq for the following three sets
of parameter values:a57 andb56 ~curve 1!, a53 andb510
~curve 2!, anda51, b520 ~curve 3!.
rs

f
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the whole spectrum of polaron widths, contrary to the case
the harmonic approximation20 where only narrow localized
states can exist.

Now let us analyze the role of the parametersa andb in
the polaron formation more precisely. We have calcula
the two dependences of the solutionq5q0 on a for b fixed
and, vice versa,b for a fixed. The solutionq05q0(a) as a
function of a is presented in Fig. 4 for three values of th
parameterb: b53 ~curve 1!, b55 ~curve 2!, and b510
~curve 3!. The important result is that the polaron state do
not exist for all values ofa, but only for a greater than a
critical valueac5ac(b). At a5ac the optimal variational
parameterq0 attains its maximum value that corresponds
the broad polaron solution and it decreases gradually w
the increase ofa. This means that the polaron is gettin
more and more narrow when the nonlinear term in Eq.~28!
increases, but the saturation parameterb is constant. Figure
4 also demonstrates how the critical valueac depends on the
parameterb: it decreases whenb increases. This behavio
can be explained by the form of the nonlinear term in E
~28!: the decrease ofa and the increase at the same time

FIG. 3. Them50 section of the polaron profile for the norma
ized lattice functionuf0nu5w0n at a57, b56 ~curve 1!, a53,
b510 ~curve 2!, anda51, b520 ~curve 3!.

FIG. 4. Optimal value,q0, of the variational parameterq as a
function of a at the three values ofb: b510 ~curve 1!, b55
~curve 2!, andb53 ~curve 3!.
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b, keeping their product~i.e., the self-trapping parameterg),
enlarges the saturation effect of the nonlinearity, resulting
broadening the existence area of polaron solutions. On
other hand, ifb is large enough, we do not observe signi
cant changes in the dependence of the solutionq0 on the
parametera.

Similarly to the results illustrated by Fig. 4, for each val
of the parametera a certain critical valuebc5bc(a) can be
found, starting from which (b.bc) the solution q0
5q0(b) exists~see Fig. 5!. Again, with the decrease ofa,
the critical valuebc decreases. The polaron becomes n
rower because the nonlinear term in the DNLS equation~28!
is getting larger if the self-trapping parameterg keeps the
same value, but the saturation parameterb decreases. Fo
large values ofb the nonlinearity reaches saturation a
therefore the shape of the polaron solution does not cha
whenb tends to infinity. Having found both the dependenc
ac5ac(b) and bc5bc(a), we can plot a diagram curv
which separates, on the plane (a,b), the areas of existenc
and nonexistence of the polaron solutions. Such a curv
plotted in Fig. 6. Nearby this curve the polaron profiles be
in the existence region are very extended and while cros
this curve, they continuously run to completely delocaliz
states. Those polaron states which are far away from
existence diagram are quite narrow.

B. A variational approach in the continuum limit

The discrete approximation described in the previous s
section is supposed to work well for narrow solutions wh
for broad polarons this approach seems to be crude. In o
to check this, it is reasonable to treat our system in the c
tinuum limit, using an appropriate 2D continuous trial fun
tion. To compare the results for the 2D case with those
other dimensions and since the calculations can be ea
performed for any dimensiond, we consider here the gener
case. Thus, in the continuum limit we substitute thed-
dimensional lattice vector (n1 , . . . ,nd) by the continuous
vector (x1 , . . . ,xd), settingx15n1 , . . . ,xd5nd . Then the
discrete expression~27! is transformed to

FIG. 5. Optimal value,q0, of the parameterq as a function ofb
at the three values ofa: a510 ~curve 1!, a55 ~curve 2!, anda
51 ~curve 3!.
n
he

r-

ge
s

is
g
g

d
e

b-

er
n-

r
ily

E5E @~¹w!22~a/b!V~bw2!#dx1 . . . dxd ,

¹5~]x1
, . . . ,]xd

!. ~36!

From the point of view of analytical calculations it is conv
nient to use the following continuous normalized trial fun
tion:

w5w~x1 , . . . ,xd!5~m/2!d/2)
i 51

d

sech~mxi ! ~37!

with the variational parameterm. Using the series expansio
~4! and the trial function~37!, by straightforward calcula-
tions we obtain

E~m!5
d

3
m21a(

j 52

` cj
d

j
@2b~m/2!d# j 21, ~38!

where the constantscj ’s are defined by

cj5
1

2E sech2 jzdz5
~2 j 22!!!

~2 j 21!!!
. ~39!

Since all the coefficientscj are bounded from above, sa
beginning fromj >4, we havecj<48/105,1/2, the series in
the energy ~38! is well-defined in the interval 0,m
<2(2b21)1/d. Therefore for sufficiently small solutionsm
~when the continuum limit indeed can be applied! we can get
some reasonable results. Particularly, we can consider
harmonic limit which is easily obtained from the expansi
~38! if only the term with j 52 is kept. Consequently, takin
into account thatc252/3, one can write the following ex
pression for the variational energy in the harmonic limit:

E~m!5~d/3!m22~g/2!~m/3!d. ~40!

Similarly, rewriting Eq.~22! in the continuum limit, one can
calculate the binding energy« in the harmonic approxima
tion:

FIG. 6. Existence diagram; the curve splits the (a,b) plane into
the two regions: the existence~dark area! and nonexistence~below
the curve! of polaron solutions.
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«~m!5~d/3!m22g~m/3!d. ~41!

The total variational energyE(m) given by Eq.~40! has a
nontrivial minimum only in the 1D case. This minimum
attained atm05g/4, so that the variational solution for th
1D Holstein model:

w~x!5~g/8!1/2sech~gx/4!, «52g2/16 ~42!

coincides with the exact solution~in the harmonic limit! of
the corresponding continuum version of the DNLS equat
@see Eq.~28!#

w91gw31«w50, ~43!

where the functionw(x) satisfies the continuum version o
the normalization condition~19!. It is important to note that
this solution is valid for sufficiently small values of the co
pling parameterg (g!1) when the continuum approxima
tion is applied.

As for the 2D case, the minimum of the energy~40! is
indefinite, but it occurs only at the fixed value of the co
pling constant:g51/12; it takes the zero value, the same
for the delocalized state. There are no minima in higher
mensions. However, if any anharmonicity is involved,
minimum may appear in the two dimensions. Indeed, let
consider the next term in the series expansion~38! when d
52. Then we obtain the expression

E~m!5
2

3
m2S 12

g

12
1

2

225
gbm2D . ~44!

For the continuum limit to be applied we need the variatio
parameterm to be as small as possible (m!1). One can see
from expression~44! that this happens if the coupling param
eter g exceeds 12, so that the sum of the first two terms
negative and it is close to 1 while the second~positive! term
should increase as much as possible. This can be achi
for large values ofb. The minimum of the energy~44! oc-
curs at

m05
15

2b
Ab

12
2

1

a
. ~45!

Thus, contrary to the 1D case~where the inequalityg!1 is
required for the existence of wide polaron profiles!, the broad
2D polaron solutions can exist only if the inequalityg.12 is
approximately satisfied. Below this will be confirmed n
merically by exact results. Therefore, it should be emp
sized that the range of the system parameters for which w
defined polaron solutions exist critically depends on spa
dimensionality.

Similarly, one can also calculate the binding energy«
adding the next term in the series expansion to the harm
approximation~41!. Using then the solution~45!, we obtain
the dependence

«5«~a,b!52
25

4bS 11

144
g1

5

g
2

4

3D . ~46!

This energy is negative for allg.12 and it decreases linearl
~approximately! with the increase of the parametera at fixed
values ofb. It also decreases with the growth of the para
eter b at fixed values ofa. This behavior described by th
n
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two inequalities]a/]«,0 and ]b/]«,0 is in correspon-
dence with the stability criterion proved analytically b
Laedkeet al.29 and confirmed numerically by Christianse
et al.30 for the 2D DNLS equation.

C. Results obtained by minimization

In the previous two subsections we have studied the s
tem of Eqs.~16! and ~18! under the various approximation
in order to have an idea about its general features. Now
want to establish how good our variational approximatio
are and also whether the polaron solutions are stable or
Exact standing polaron solutions to the problem can be fo
numerically by minimization of the energy~27! under the
constraint~19!. This constraint means that the polaron so
tions ~more precisely, thewmn profile! have to be found on
the multidimensional sphere~19!. This conditional minimi-
zation problem was solved by using the conjugate-gradie
method. The results of the discrete variational approximat
were used as initial conditions for the minimization proc
dure. For narrow polaron solutions they appeared to be q
good approximations. The comparison of the exact res
obtained by minimization with both the variational approx
mations is given in Fig. 7. Here we have plotted the amp
tude A5maxufmnu5maxwmn found by these three differen
techniques: the dotted curve was obtained by the disc
variational procedure and calculated according to Eq.~31!,
the dashed curve was found using the continuous variatio
approach and calculated by summing the series~38! with d
52, and the solid curve is the numerical solution obtain
by minimization. Each of these solutions demonstrates
nonexistence of localized solutions for sufficiently smallb
,bc . As illustrated by the dashed and solid curves, near
critical valuebc , where the polaron solutions are extende
the results obtained by minimization and the continuo
variational method practically coincide. On the other ha
far away from the pointbc , when the polaron solutions be
come narrow, the discrete variational solution is close to t
obtained by minimization~compare the dotted and soli
curves!.

FIG. 7. AmplitudeA of the wmn lattice field against the satura
tion parameterb obtained at the valuea51 within the discrete
variational approach~dotted curve!, in the continuum limit~dashed
curve!, and by minimization~solid curve!.
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The 2D profiles of theufmnu5wmn andumn components
which were obtained by minimization are shown in Fig. 8.
Fig. 9 we show a direct comparison between the numeric
obtained solution and the one obtained by the discrete va

FIG. 8. Narrow profile of the~a! ufmnu25wmn
2 and ~b! 2umn

polaron components obtained by minimization for the param
valuesa57 andb53.

FIG. 9. The m50 section of the polaron profiles obtaine
within the discrete variational approach~dashed lines! and by mini-
mization~solid lines!: the ~a! uf0nu25w0n

2 and~b! u0n lattice func-
tions; a57 andb53.
ly
ia-

tional method for the case in Fig. 8. The agreement of
results is excellent for both the polaron components. Si
larly, we examined the continuous variational method. T
two-component polaron profile shown in Fig. 10 is qu
wide and therefore it is reasonable to compare it with
corresponding results obtained within the continuous va
tional approach. Such a comparison is presented in Fig
for them50 section of both the polaron components. Aga
the agreement is quite satisfactory. Finally, the polaron p
files obtained by minimization were used as initial data
the simulations of the basic equations of motion~9! and~10!,
using the fourth-order Runge-Kutta method. The solutio
were found to be real stationary; the initial profile did n
change during the time evolution of 1000 periodsT
52p/se of carrier oscillations.

Using the minimization procedure, we have also calc
lated the dependence of the binding energy« on the system
parametersa andb, using the expression@see Eqs.~22! and
~26!#

«5(
m,n

@~wm11,n2wmn!
21~wm,n112wmn!

2

2gwmn
4 /~11bwmn

2 !#. ~47!

Particularly, the solid curve in Fig. 12 describes the behav
of « as a function of the saturation parameterb at a fixed
value ofa. The dashed line in this figure illustrates the a
proximate dependence~46! which approaches the exac
curve for small values ofb, as expected due to taking int
account only the cubic term in the series expansion. As m
tioned above, the dependence«5«(a,b) is in correspon-
dence with the stability criterion obtained previously29,30 in
the case of the 2D DNLS equation. Also, the full numeric
solutions with the polaron as an initial condition indica
stability.

r

FIG. 10. Broad profile of the~a! ufmnu25wmn
2 and ~b! 2umn

polaron components obtained by minimization fora51 and b
515.
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IV. MOVING 2D POLARONS

In this section we are interested in the motion of the
polarons. Since the polarons with narrow profile are pinn
to the lattice, we expect to get their motion when the pola
width is sufficiently large, i.e., in the continuum limit. I
fact, we need to have some numerical procedure wh
would allow us to find for each velocitystationarypolaron
profiles. Next, whether or not these profiles are stationa
could be checked by direct simulations of the basic equat
of motion ~9! and ~10!.

In order to find soliton solutions of large extent in the 1
case which aresmoothlattice fields, the numerical procedur
is quite simple.31 However, it becomes much more sophis
cated in higher dimensions. Below we develop this appro
by using appropriate discretizations of spatial partial deri
tives.

Let us consider the propagation of some stationary pro
with a constant velocitys5(s1 ,s2) in the direction given by

FIG. 11. Them50 section of the polaron profiles obtaine
within the continuum variational approach~dashed lines! and by
minimization ~solid lines!: the ~a! uf0nu25w0n

2 and ~b! u0n lattice
fields; a51, b515, andm050.278 .
d
n

h

y,
ns

h
-

le

the wave vectork5(k1 ,k2). We setm5x andn5y and for
traveling-wave solutions one can write

wmn~t!5w~x2s1t,y2s2t!, umn~t!5u~x2s1t,y2s2t!.
~48!

Therefore, using the definition of the dimensionless timet
given by Eq.~5!, we find that the velocitys is measured in
units of lv0 where l is the lattice spacing, so thats5v/v0
with v05 lv0 @the same as for the linear waves, see E
~25!#. Moreover, Eq.~17! implies the same one-to-one co
respondence between the vectorss and k as given by Eq.
~25!. Indeed, in the continuum limit one can write the fo
lowing discretization:

dwmn

dt
52~s1]x1s2]y!w

.2
1

2
@s1~wm11,n2wm21,n!

1s2~wm,n112wm,n21!#. ~49!

Comparing Eqs.~17! and ~49! gives the same relation~25!
valid also for the linear waves of the probability amplitud
for the free electron.

For seeking localized solutions of a sufficiently extend
profile we use the following representation of the time d
rivative d2umn /dt2 in Eq. ~18! by symmetrized 2D second
order spatial difference derivatives:

FIG. 12. Binding electron energy« as a function of the satura
tion parameterb calculated by minimization~solid line! and in the
continuum limit when only the quadratic and cubic terms in t
series expansion~4! are kept,a51.
d2un

dt2 5~s1
2]x

212s1s2]x]y1s2
2]y

2!w

.s1
2~wm11,n22wmn1wm21,n!1s1s2~um11,n1um,n1122umn2um11,n212um21,n111um,n21

1um21,n!1s2
2~wm,n1122wmn1wm,n21!. ~50!

Then the difference equations~16! and~18!, with the left-hand side replaced by the right-hand side of Eq.~50!, are obtained

as extremum conditions]L̄/]wmn50 and]L̄/]umn50 of the discretized Lagrangian function
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L̄5L̄$wmn ;umn%52(
m,n

H cosk1~wm11,n2wmn!
21cosk2~wm,n112wmn!

21aumnwmn
2

2
1

2
@s1~um11,n2umn!1s2~um,n112umn!#

21V~umn!J . ~51!

FIG. 13. Nonuniform motion of the narrow polaron accompanied by emission of small-amplitude waves due to its pinning to th
for the parameter valuesa54, b55, ands50.2: initial ~a! ufmn(0)u25wmn

2 (0), ~b! 2umn(0) and final~c! ufmn(300)u25wmn
2 (300), ~d!

2umn(300) polaron profiles. The direction of polaron propagation and its velocity are given by the vectorsk5(0.7,0.5) ands
5(0.258,0.192).
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Note that this procedure is applied only for sufficiently wi
polaron profiles.

Similarly to the previous section, we found the profile
moving polaron solutions by minimization. This minimiza
tion procedure was performed using the conjugate-gradi
method.

A. Single-polaron motion

The numerical results that describe the motion of a sin
2D polaron are presented in the set of Figs. 13 and 14. T
the first panels~a,b! of Figs. 13 and 14 represent the initi
~at t50) two-component polaron profiles found by the min
ts

le
s,

mization of the function2L̄. By an appropriate choice of th
system parameters, these profiles were chosen to be s
ciently narrow, in order to demonstrate braking the polar
due to its pinning to the lattice, and extended, to get unifo
polaron motion. The final~at t5300) polaron profiles are
presented in the second panels~c,d! of these figures. Figure
13 shows that at the beginning of the motion the pola
loses some part of its velocity, it became wider, and aft
wards its motion was stabilized with less velocity and wit
out emission of small-amplitude waves. This part of the p
laron kinetic energy was transformed to some breather
lattice oscillations that were left at the initial position of th
polaron. This indicates that if one forces the narrow state
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FIG. 14. Uniform motion of the extended polaron in the lattice witha51, b512, ands50.2: initial ~a! ufmn(0)u25wmn
2 (0), ~b!

2umn(0) and final~c! ufmn(300)u25wmn
2 (300), ~d! 2umn(300) polaron profiles. The direction of polaron propagation and its velocity

given by the vectorsk5(0.6,0.5) ands5(0.226,0.192).
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move, it tends to transform into a broader stable state wh
then moves almost uniformly without changing its form. O
the other hand, as illustrated in Fig. 14, the wide pola
propagates freely with the constant velocity, retaining
shape and the direction of propagation. The effective mas
a polaron~i.e., the 2D soliton! M0 moving uniformly on the
2D lattice along some direction given by the wave vectok
5(k1 ,k2) can be calculated numerically according to t
formula

M05
2J

l 2v0
2 lim

s→0

E~s!2E~0!

s2
[

J

l 2v0
2M̄0 , ~52!

where the energyE(s) is calculated according to Eq.~23!

andM̄ 0 is the dimensionless polaron mass. Here the effec
polaron massM0 has been defined from the expansion of t
total energy of a moving polaron into the series with resp
to the velocityv and finding the coefficient atv2/2, similarly
to the procedure of calculating the effective mass of an e
tron m0 in the band~15!: m05\2/2l 2J with l being the lat-
tice spacing constant. In the units ofJ/ l 2v0

2 the ~dimension-

less! effective electron mass ism̄051/2s2. For the paramete
h

n
s
of

e

t

c-

values a51, b514, and s50.2 we have foundM̄0
512.36, while the effective electron mass in the band
m̄0512.50. Therefore, we have obtained that the pola
mass is less than the band electron mass. This occurs bec
the energy level~22! goes down with increasing the polaro
velocity s. The valueM̄0512.36 has been obtained for th
two directions of polaron propagation: along them axis and
the lattice diagonal.

B. Two-polaron interactions

Now we are interested in the interaction of two polaro
on the square lattice. We assume the two electrons to
noninteracting particles, so that we can work in the fram
work of the model described in Sec. II. However, the phy
cal meaning of the wave functioncmn becomes a bit differ-
ent, namely, now we assumeucmnu2 to be the probability of
two electrons to be found on the site (m,n). Therefore the
normalization condition~2! should hold in our simulations
Despite the electrons are assumed to be noninteracting
ticles, an effective attractive interaction between them
pears due to the lattice deformation forming a stable bi
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FIG. 15. Interaction of two extended polarons in the lattice witha51, b514, ands50.2 shown by profile contours for theumn polaron
component at the time instants:~a! t5200,~b! t5250,~c! t5275, and~d! t5325. The direction of polaron propagation and their velocit
are given by the vectorsk5(0.5,0.5) ands5(0.192,0.192).
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laronic state. Thus, the simple analytical arguments32 in the
harmonic approximation for 1D standing polarons show t
the binding energy per one electron is four times larger in
bipolaronic state than in the polaronic state with one elect
~it is much easier for two electrons to dig a potential w
when they are together than separated by a long distan!.
However, in the case of moving polarons, such a bound s
will not be formed if the relative velocity of two polarons
too high, when the kinetic energy of the polarons exceeds
energy of their binding.

We collide the two moving polarons, the profiles of whic
are obtained by the minimization techniques describ
above. In order to find their initial profiles correctly, we n
tice that the probability of each electron localized separa
on the lattice is 1/2 instead of 1. Therefore the normalizat
condition ~19! in the minimization procedure should b
changed accordingly, i.e., 1 should be replaced by 1/2
both the electrons which are sufficiently separated. We si
lated the collision on the 2003200 square lattice and foun
that the polarons interact practically elastically for all initi
velocities, except for very small ones when the duration
their interaction is very large. In the latter case, the collis
was observed to be destructive. This can be explained
t
e
n
l
e
te

e

d

ly
n

r
u-

f
n
as

follows. At low velocities the time of the polaron interactio
is quite long, resulting in strong effective perturbation
each polaron. Since the minimum of the variational ene
~31! for extended polarons is very shallow~see Fig. 2!, it is
quite easy to ‘‘kick out’’ a polaron from this ground state.
may be possible that during long time the polaron will com
back to this ground state, but it is difficult to observe this
numerical experiments due to long integration time and la
lattice size. However, if we choose the parameter values
correspond to narrower polarons, their collision with the
small velocities was observed to be nearly elastic. The res
of the two-polaron collision with higher velocities are pr
sented in Fig. 15. The polarons were started to move towa
each other not along the same line, but parallelly with
sufficiently small distance between the lines of their motio
This distance was less than the width of the polaron, see
15. As illustrated by this figure, the interaction of the p
larons is close to being elastic. Note that the time interval
which the collision contours are shown in this figure are n
equidistant. Finally, we would like to mention that the d
tailed interaction is really very complex and depends on s
eral parameters. This is the subject for future studies and
beyond the scope of the present paper.
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V. CONCLUSIONS

In this paper we have studied the polaron problem, i
the interaction of an extra electron~generally, a quantum
quasiparticle! with the two-dimensional~2D! square lattice
within the well-known Holstein model with local electron
lattice coupling. This is the simplest model in the polar
theory and its solution is known when the on-site potentia
harmonic. The results known for one dimension drastica
differ from those in two or three dimensions. Thus, while f
the 1D model the localized~polaron! solutions exist for any
values of system parameters and there is the continuous
sition from the small-polaron regime to the large one, in t
or three dimensions the polaron solutions are known to e
only for sufficiently strong electron-lattice coupling. More
over, these self-trapped states appear to be quite narrow
calized mainly at one lattice site. If the electron-lattice int
action is not strong enough, only completely delocaliz
solutions are possible. On the other hand, one could ex
that if the displacement of the lattice particles from equilib
is somehow restricted, say, by a core, then a 2D pola
profile would become more extended. Therefore our g
was to consider the realistic situation when the on-site os
lators areanharmonic, containing a restricting core. In orde
to treat the model with such a potential, we have introdu
a ‘‘logarithmic’’ approximation which, on one hand, still ha
the core as realistic potentials and, on the other hand, all
us to apply variational approximations for analytical inves
gations of the problem. As a result, we have shown that
dependence on the system parameters, the self-trapped
with extendedprofiles can also exist. Such extended polaro
have been shown to propagateuniformly on the 2D lattice.
We have developed the numerical procedure to calcu
moving polaron profiles. We have used these as initial d
for simulations of the equations of motion showing th
d
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stable moving polarons of a certain extent are indeed p
sible. We have also obtained the diagram on the plane
system parameters which shows the areas of existence
nonexistence of the 2D polaron solutions.

We have also found that the presence of an anharmon
‘‘splits’’ the electron-lattice coupling parameterg
5x2/JMv0

2 @see Eqs.~8! and ~29!#, commonly used in the
polaron theory, into the two parametersa andb describing
the two effects. The former parameter describes the dept
a potential well~compared to its width! that traps an externa
electron while the latter one determines the source stren
for the lattice distortion created by the electron. In the h
monic limit both the equations of motion~9! and ~10! are
linear and, as result, the self-trapping constantg is obtained
just by the multiplication of these constants@see Eq.~29!#.
Note that the nonlinearity of the polaron problem com
from this product. However, in the general case, these c
stants are separated and such a splitting should be gene
any ‘‘anharmonic’’ polaron theory. Note also that the anh
monicity has its own parameter which differs froma andb.
Finally, it should be mentioned that the results on the pola
mobility obtained in this paper are relevant to problems
electron transport in condensed-matter systems.
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