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Coherent versus incoherentc-axis Josephson tunneling between layered superconductors
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We calculatd .(T) andR, for both coherent and incoherent electron tunneling acrasaxas break junction
between two=s,d,2_ 2-wave layered superconducting half spaces, eachedikis bandwidth 2. Coherent
quasiparticle tunneling only occurs for voltagés<2J/e, leading to difficulties in measuring,, for under-
doped samples. The coherent partl gf0) is independent oh ,(0) for J/A,(0)<<1, and can be large. Our
results are discussed with regard to recent experimg®fd.63-18208)01745-1

It is presently possible to prepare high qualitaxis Jo- by j=1,... N, with j=1 being the layer in each half space
sephson junctions of BBr,CaCuyOg, s (BSCCO.1® The adjacent to the break juncton. We allow
standard measure of Josephson junction quality is the prodﬁwyo(k)[wlyw(k)] to annihilate [creatd a quasiparticle
uct I R, of the critical current times the normal resistance atwith spin o= +1 and two-dimensional2D) wave vectork
the temperaturd@ =0, for which Ambegaokar-BaratotAB)  on thejth layer within theuth layered half space. Within
gavel R,=mA(0)/2e, whereA(T) is the superconducting each layer in thexth half space, the quasiparticles propagate
order parametefOP) amplitude? Real Josephson junctions with energy dispersiong,o(k) = €,0(k) — Eg relative to the
almost never exceed this value. Early thin film atomic layer-Fermi energyE [for free particlesg ,o(k) = k2/(2m#)], and
by-layer(ALL ) molecular beam epitaxfMBE) preparations interact with intralayer BCS-like pairing interaction
of trilayer junctions of BSCCO separated by a thin layer of\ ,(k,k')=X\,,0¢,(¢) ¢.(bk:), Wherev=s,d, o4(¢y) =1
Dy-doped BSCCO were found to haVvgR, values consis-  and ¢4(¢y) = \/Ecos(zzsk) are the eigenfunctions fas and
tently about 0.5 mV, withi; and R, varying greatly: Re- d,2_,2-wave intralayer pairing, respectively. We only con-
cently, they prepared a single Josephson junction within &ider here the purelg-wave andd-wave cases %\ ,'qo
single unit cell of underdoped BSCCO, and reporteR, =0 andA ,40# \ ,/o=0. Between neighboring layers in the
~5-10 mV.' Also, a blunt point contact tip pressed onto a ,th half space, the quasiparticles tunnel with matrix element
BSCCO surface often resulted in an appareiaixis break JM/2_5 The c-axis resistivity p.(T) above T, suggests the
junction’ Overdoped junctions typically hadl.R, Jimits J,/Te>1 andJ, /T.<1 apply to overdopedmetal-
~2.4 mV, well below the weak couplinpA(0)=1.76T¢]  Jic) and underdoped (poorly metallig materials,
AB result of 15-20 mV forT values of 62—-83 K, where, respectively’
is the transition temperature. However, two underdoped |n addition, we take the single particle tunneling Hamil-

break junction samples hagR,~15-25 mV, apparently in tonjanH.- across the break junction to be
exces®f the weak coupling AB result. Furthermore, exceed-

ingly cleanc-axis break junctions were prepared by cleavage 1 t ,

and subsequent refusion of BSCCO, with or without a twist Hfﬁ 2 Tk hun oK1,k +H.C., @)
about thec axis®> We expectl(T)R, data to be available kkho

shortly!~3 which transfers a quasiparticle from the 1 layer in the/

We consider tunneling across an untwisteexis break half space to thg =1 layer in theu half space, and vice
(or single intrinsic Josephspiunction which is much less versa;ﬂ,k;?’:, - We seth=c=kg=1.
conductive than the bulk, intrinsic jUnCtionS between neigh- For genera"ty, we assume both coherent and incoherent
boring CuQ layer pairs. For underdoped samples, standargyreak junction tunneling. Thepatially constant coherent
measurements d®, at voltagesv>2A(0)/e can be unreli-  tunneling preserves the intralayer wave vectdrsk’, al-
able, since they do not fully measure the coherent process@swing for both s- and d-wave Josephson tunneling. How-
that can dominate af=0. Hence, the large values &fR,  ever, purespatially random incoherertunneling assumels
reported for underdoped samples could be question@ble. andk’ areindependenof each othef, which allows nod-

We assume a-axis break junction between two untwisted wave incoherent Josephson tunneling. Hence, to allow for a
half spaces of cross-sectional arkaeach consisting oN  finite (albeit extremely smallamount ofd-wave incoherent

>1 identical clean superconducting layers separated a digosephson tunneling, we assume to second ord@ jn, "
tances apart. We label the uppdu) and lower ¢) half ’

spaces byu=u,/, and index the layers in each half space (T Ter 1y = A8y sl | To|*AS i + Find(k—K') 1, (2)
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where 1o = O raitopace] |
1 [ 1 2co§2(d— )] N NG
find K—=K')=5——A—+ k 2, s 08f \ Z 02 \ 1
27Nop(0)[ 7.6 Tid S g ]
©) 0 06 S ]
- M-l e —
17, 4<1l7, s, and Nyp(0)=[N,p,(0)N,p,(0)]¥? is the 5 \ I
. - . i 04} N\ 1
geometric mean 2D density of st:l:lltzes, for free particles, = s-wave bulk W\ o T T 30
Nop(0)=m/(27), wherem=(m,m,)~% In Eq. (2), (- --) N s-wave half-space \»\, eV/2J

02 \“\‘-.\\

denotes a 2D spatial average. ———d-wave bulk

For intralayer pairing in a half space with one conducting [ -~ d-wave half-space
layer per unit cell, the regular and anomalous temperature B T Y Y, BT
Green’s functionss, j(k,w) andF , ;(k,®), wherew rep- T/ A0)
resents the Matsubara frequencies, for propagation within
layer j in the uth half space, explicitly depend upgry:*° FIG. 1. 12Y3,0)/1°0,0) andI &, (3,0)/1%°" (J,0) are plotted

However, the OPAM is independent o]j_9 Nevertheless, versus logdJ/A ,(0)] for v=s,d. Inset: Plot ofRy/R,(V), where
A (d)=A,,(T) ¢, (¢ implicitly depends upor=s,d.™ Ro=J/[872e?N,(0)|T|?], and its bulk space approximation ver-

For purelys-wave incoherent tunneling between 3D su-Sus eV/2J. For clarity, the curves calculated with the half-space
perconductors| R, is independent of the properties of the (bulk) states have/[472|T,|?7, ] values of 0.1 and 0.£0.05 and
junction* However, in our model these quantities must be0-19, respectively.
evaluated separatelfR, is found from the quasiparticle cur- _ _
rentlq, to leading order irfy . ,* Q(y) is replaced by (3/8(k)/(1+]y]), which leads to a

spurious, non—%hmic I dependence of REM asV—0.
_ 4de N Although1£%(V) is Ohmic forV—0, it is non-Ohmic for
qu_mg, (1T >f_md6[f(€“)_f(€/)] finite V, andvanishesor leV|=2J. Thus, forleV|=2J, the
' only quasiparticle tunneling process allowedinsoherent
XIM[Gy 1(k, —i€)]IM[G, 1(k",—~i€,)], (4  This result arises mainly from the geometry: the half spaces

wheref(x) is the Fermi functione,=e, ¢,=e+eV, and arelayered each with bandwidth 2<E¢ along thec axis.

the G, ,(k,—i€,) are obtained fronG, ,(k,®) by the ana- For bulk(??D) syster_ns with Iar.ge. ba_ndwidth&l~h Er a_long
lytic continuations w— —ie. . Since the tunneling takes the tunneling direction, such limitations upd)gﬁ) are irrel-
place between thg=1 in thg two half spaces, the only rel- evant. In addition, this limitation is only exact for very clean
evant wave vectors are 2D. Hence ' we S, layers with intralayer scattering rater}/<J, as assumed
— AN,p(0)[”..d¢ oig”d¢k/(2w) here. For 14> J, Ig%“(V) is a Lorentzian ireV with a width
Z.dE, . )
We consider separately the coherent and incoherent pr6’—‘c 1. . . )
cesses, and separately Be ,(k,») as evaluated exactly for Thus, the inguacsgﬁ)arncle current  consists  of two
the layered half spaces, and @sproximatedusing the bulk ~ Parts,Iqp(V) =lgp+1qp (V) =V/R,(V). In the inset of Fig.
layered states. In the bulk-space treatment, we assurde We have plotted Ro/Rq(V), ~where Ro=J/
G, 1(K,©)=~G, (k)= [Z(dZ m)/[iw— {0~ cos7], or BT NZD(O2)|TO| 1, as a function okV/2J, for fixed val-
G (K.o)=1R (i h R = (7— 2_ 2912 ues ofd/|Ty|*7, . Note that one requires the break junction
,u,b( vw) ,u(lw)v where ,u(z) [(Z g,u,O) ‘JM]
depends upolk only throughé&,o(k).5 However, when one conductance to be much less than the conductance across
properly takes account of tﬁLe surface at th,e weak breageighboring I:;\yers in each h_alf space. This in;plies that both
junction® G, ;= [T(2d 2 m)sirzllio—&,o—J cosz], o 1/7, s and|7,|“/J are small with respect thTH. However,
G, ,(k _ =t HeTH this does not restrict the relative magnitudes’.fﬁja andllc.
wilk,w)=E  (iw), where , ap
In the superconducting statk, for Josephson tunneling
E(2)=2[z—&,0+R,(2)]. (5) across the break junction between arbitrary layered half

) _ . _ spaces is given to lowest order i ., by’
Using either the bulk or half-space states and the identity '

7. de[f(e)—f(e+eV)]=eV, the incoherent quasiparticle deT
c-axis break junction tunneling current is Ohmic, 1(T)= — 2 <|7T<,kf|2>Fu,1(k.w)FT/,1(k',w), ®)
kK’

lge=V/IRy®=26?VNyp(0)/ 7, . (6)
where uite enerally F,=—A ImI" /D,
For the coherent quasiparticteaxis break junction tun- =[equ?<+s)—ex?)4k s)]/({] )lgrﬁd D E"E&)|z+ (f)‘z]l/’é‘g
i i i H i M - M M M )
nellng- Curre.nt, W_e orﬂy consider tunneh_ng between identica he quantities exjK.s) are obtained from the equation
materials withd ,=J,=J, etc., and obtain J,LCOS((:S):_EMo(k)iiDM.g which leads to T,
cohy\ /)y — \//RCON\ 7y — 2 =E,(D,), whereE ,(2) is given by Eq.(5). In the bulk
lop (V) =VIRy 1V)=64C/(3m) 8 (1= ¥*)Q(»). (7 state approximation foF , ;, T, is replaced b)R;l(iDM).
where C=2€|7,|?N,p(0), Q(y)=(1+|y))[(1+y*)E(k)  Note that as),—0, the half space and bulk expressions both
=2|y|K(K)], k=(1—-|¥])/(1+]y]), y=eVI(2]), K(z), reduce to the familiar 2D form.
E(z) are standard complete elliptic integrals, @) is the The incoherent part of the break junctibpbetween ar-
Heaviside step function. In the bulk state approximationbitrary layered superconductors with=s,d is
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. cwave ] 4C (2r  [1+8B8 In
0ol .h-"‘-._{ S-wave | ICOh(J O) f d¢k ZB_ _f (11)
0s | half-space | 0 248 a
S For the bulk stated™",(3,0) is obtalned from 23,0 by
=) 06 B _
~ osl replacing the integrand by @ !sinh le. In Fig. 1, we
e ol — g XN plotted 1 $°/(3,0)/15°(0,0) and1%(3,0)/15,(0,0) versus
~ 03l ———10 \"@\“x 1 IoglO[J/AV(O)] for s or d-wave OP’s. The most surprising
02|  ---- Ambegaokar-Baratoff Ny, point is that for small J/A,(0), Y,0)=1, so that
o1 ] 18°(3,0)—C, independenof A ,(0)."
0 0T 07 03 04 05 05 07 08 05 1.0 From Fig. 1,Ic(§‘(J 0) is slightly more sensitive td than

is 15%(3,0). Also, for J/A,(0)~1, thes- and d-wave bulk
curves closely approximate the respective half-space curves

FIG. 2. Plots ofl(J,T)/1%(J,0) for J/A,(0)=0,2,10 and of Obtained by reducing/A,(0) by the constant factor {2.
I0S(T)/10%(0) (AB) versusT/T,, for tunneling between identical ForJ/A,(0)>1, however, the bulk and half-space curves are

T/ T,

swave half-space superconductors. distinctly different. Whereas the corred®=CY,[J/
A,(0)]—16CA,(0)B,/(3J), where Bs=1, and By
2eN2D(0 )T 2rd A 0, =22/m, spuriously 13 ,(J, 0)—>CBV[AV(O)/J]In[2J/

10Ty = ———— > H

% iuJo 2aD, (9 D,A,(0)], whereDy=1, D4=0.5203.

It is interesting to compare the coherent and incoherent
results for identical half spaces. AT=0, the V=0
I°°h(0)/l'“°oc|T0|27-lS/J whereas forT>T,, J/T, distin-
gwshes overdoped from underdoped beha‘?/loﬁlnce

A(0)~T,, for JT.<1, I$I,00N05(0)*|To|?7, ,/Te.
For J/T;>1, 193,00 and 176(0) both =A,(0), but
197(3,0)/1"°(0)e¢ | To| 27, , /J. These resuilts lead to the cu-
rious conclusions that fod/T.<1, the underdoped normal
state tunneling is mcoherent thie=0 quasiparticle break
junction tunneling could be either coherent or incoherent, but
d-wave break junction pair tunneling would be mainly coher-
ent. On the other hand, fal/T;>1, the overdoped normal
state half-space tunneling would be coherent, butTtked
quasiparticle break junction tunneling and thevave break
junction pair tunneling could be incoherent.
con , [7dzX(2) In the limitsJ,,— 0, one can evaluate tlle=0, T=0 limit
(3, T)= —E f depy/Al f W2’ (10" of the coherent part of(T) from Eq. (8) as a function of
r=A,/A,, obtainingl$\(0,0)=2Cr In(r)/(r>~1), whereC
where W(z)=[1+J23inzz/D2]1’2, X(z)=sirfz—sirtzZ[1 s given following Eq.(7). In the limitr—1, 15°0,0)—C.
+W(2)], and C=2e|7To|?N,p5(0). Using the bulk states, For either twos-wave or twod-wave superconductors,is
1" (J,T) is obtained from Eq(10) by replacingX(z) by ~ independent ofpy.

Note thatA ,(¢y) implicitly depends upom. Equation(9) is
obtained using either the bulk or half-space states. g-or
wave pamng I'“C(T)R'nC equals the AB resuft. For A,
=A,= I'”C(O) meNyp(0)A ,(0)A, /7, ,, whereAs= 1
and Ag= 0865 so that '“3(0)/|'”§(0) 0.744r /7 4<1.
I'”C(T)/I'”C(O) andl'”C(T)/I'”C(O) are plotted in Figs. 2 and
3, respectlvely

For coherentc-axis break junction Josephson tunneling ;
between identical materials, we drop the subscriptsoting
thatA(¢y) =A(T) ¢, (i), etc. WritingI” in F4 in integral
form as above Eq5), and performing two integrals analyti-
cally, we have

SiZ8. In  the limit T—0, we set a(dy) In Fig. 2, we plotted $%(J,T)/1$%(J,0), as a function of
=]|J/A (), (b)), B(by)= 2(1+[1+a2]1/2), and T/T., for tunneling between two layeresiwave supercon-
|C°h(J 0)=CY,[J/A ,(0)] reduces to ductors. Typical curves witll/A4(0)=0,2,10 are shown,
along with the AB curve, Eq(9). For J/A,(0)=100, the
11 - — curve is almost identical to the AB curve. Using the bulk
1.0 [<crmmsss dowave states does not change these curves very much, except for
09| ' half-space ] large J/A4(0). Clearly, | (J,T)/I. 4(J,0) is rather indistin-
s o8 1 guishable from that of AB, independent of the microscopic
=, 077 details.
e | In Fig. 3, we plotted $(J,T)/1$%(J,0), as a function of
& g'i: """" 0.5 T/T.. Typical curves withd/A(0)=0,0.5,2,10 are shown
- sl .Tfifi% along with thed-wave analog of AB, '”g(T)/ ne(0). Note
02} ———100 AR that the magnitude df{'(T) is very small, due to the factor
115 [ S— 1ncoherent A of 1/r 4. Unlike the swave curves in Fig. 2, the
0 07 03 02 05 06 07 08 09 1.0 Ig?(;‘(_J,T)/I_g?J'(J,O) curves with small values al/A4(0) are
T/T, distinctly linear at lowT, and are thus distinguishable from

the AB curve in Fig. 2. However, forJ/A4(0)>1,

FIG. 3. Plots oft (3, T)/1<%(J,0) for J/A4(0)=0,05,25,100 1¢4(J. T)/1E%4(3,0) and IZ§(T)/I5(0) are nearly indistin-
and of 1 5(T)/ '”3(0) versusT/T,, for tunneling between identical gwshable from the AB curve.
d-wave half-space superconductors. Summarizing our results, we have fors,d,
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w[Z,A,(0)+3J7Y,/16] the coherent part of which cannot be seen from measure-
2615 7] . (12 ments witheV/2A,(0)>1, unlessJ>A ,(0), which corre-
sponds to overdoped samples. For underdoped sanhghgs,
where Z,=A,7, /7., 7=32To%r ¢/(37J), and Y, values tend to be overestimated. The approximate bulk elec-
=1%NJ,0)/C. Sincel, is measured a¥=0, one requires tronic states lead to correct incoherent, but incorrect coher-
Rn((’)). Foroverdoped samples/T.>1, andl ,(J,0)R,(0)  €nt, tunneling results. Incoheretkvave pair tunneling leads
reduces towA (0)[Z,+ 7B,]/{2e[1+ 7]} For both »  Only to very smalll R, values. For coherent pair tunneling,
—s,d, this is proportional ta\,(0), andnearly independent both sswave andd-wave pair tunneling are large in magni-
of the break junction properties ferave superconductors. (Ude for smallJ/A,(0), andcross over to the AB form for

- large JJA (0). The T dependence of coheredtwave tun-
For d-wave superconductors, one requires a substarﬁﬁ?;ll N )
in order to obtgin a non-negligileRq However. for un- N€ling is distinctly different from that for AB for small
n- ’

derdoped sampled/T <1, the situation is far more compli- J/AV(O).Thus, accuratg measuremen';s of _ﬁhdependen(_:e
cated. First, one cannot measuRg(0) in the usual way, f’:md magn!tude Of.cR” n such break Junctions could give
since the coherent contribution, which can be largevat important information regarding the questions of th_e order
—0, essentially vanishes foreVi2A (0)>1. Second, parameter symmetry and of the coherence of the pair tunnel-
l¢,(J,0) is dominated by coherent tunneling and indepen—mg'
dent of A,(0) for |To|?>wA,A,(0)/27,,, which is espe- The authors thank K. Gray, Q. Li, and J. F. Zasadzinski
cially likely for d-wave superconductors. for useful discussions. This work was supported by the U.S.

In conclusion, we found that foc-axis break junction DOE-BES through Contract No. W-31-109-ENG-38, by
tunneling between two layered superconductors, a crossov&fATO through Collaborative Research Grant No. 960102,
from incoherent quasiparticle to coherent pair tunneling carand by the DFG through the Graduiertenkolleg “Physik
occur. This greatly complicates the determinatiorRgf0),  nanostrukturierter Festkoer.”
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