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Fourier approach to the electric field and the nonlinear susceptibility for a periodic composite
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By using series expressions of space-dependent electrical field in a periodic composite, which are obtained
by a simple Fourier approach, the frequency dependence of the effective third-order nonlinear suscgptibility
of the metal-insulator composites with simple cubic arrays of coated spheres has been exactly calculated. The
results show that the frequency-dependent nonlinear response of the composites has two sharp peaks when the
metal phase forms a shell structure. The strengths of the peaks are very sensitive to the relaxation time of the
metal. The dependences of both the shapes and strengths of the peaks on the radii of the cores of the coated
spheres are also studig0163-18208)01642-7

The nonlinear susceptibilities of composite materials maytheory of the effective dielectric functioree; of the

be strongly enhanced relative to bulk samples of the samgomposité'! and the Fourier approaches to thg; of the

materialst Such an enhancement can be attributed to purelyperiodic composité?~1°

classical effect?® namely, the electric field within the par- In a periodic composite, the space-dependent electrical

ticles is greatly increased at optical frequencies because theld can be expressed as

composite is inhomogeneoti$n the past 10 years, a variety

of approaches have been proposed to this probtéfiin this

Brief Report, we present our exact calculations of the

frequency-dependent cubic nonlinear susceptibility of peri- E(r)=2 Eexplik-r),

odic composite. Our calculations are based on a general ex- K

pression ofy, for a composite material, which has been ob-

tained by Stroud and Hdi: wherek is the reciprocal vector of the periodic structure. By
substituting the expression of the Fourier coefficients of the
electrical fieldE, presented in Ref. 12 into the above equa-

Xezzi pixi{ (E-E*)(E- E)>i,|in/E4a (1) tion, we obtain a series expressionkir):
where y; and p; are the cubic nonlinear susceptibility and E(r)=E0{ e+ 21 (1/W)'C|(f)],

volume fraction of theth componentk, is the applied elec-

tric field,  ); i, denotes a volume average over the volume )
of theith component in the linear limit whepg = 0. We first P1e1+ Poey
calculate the space-dependent electrical figld) in a com- W=——"""",

278

posite, then exactly evaluapg, from using Eq.(1). In this
work, we only consider the simplest case, that is, a periodic
composite consists of two kinds of isotropic components andvhereg; is the dielectric constant of thieh componentE,
the composite has cubic symmetry. The procedure presented|(E)| is the module of the volume average of the electric
in the following can be easily extended to more generafield, e is the unit vector in the direction ¢E). We assume
cases. that the composite is the filler of a parallel plate, for this
The method used for calculating the electrical field in thiscondition,(E) is equivalent to the applied electrical field,
work has close relation to the well-known Bergman-Milton ande is in the direction of the applied field. In addition,
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cl(r>:k2’---;’I21exp<ik1~r)(lil-ﬁz)e(kl—kz)---
1 |

X (K _1-kp) Bk, 1~ k) (ki - &) 6(K)), )

where “E’ ” means that the summation is oviker excluding
the cases fok, 0 andk,=k;_4, k is the unit vector in the
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Cl(n=2, ¢l 1piCi—(r),

I (6)

ql(l=at”

An alternative and very useful approach to the calculation

cyl=

k direction. lg(k) is the Fourier coefficient of the indicator of E(r) is to Ca]cu|ateD(r) first, then Ca|cu|at£(r) from

function of the first componenr®

0(k)=%jv exp(—ik-r)dr, 4)

whereV=a? is the volume of the unit cella is the linear

size of the cellV, is the volume of the first component in a

unit cell.

Another useful expression &(r), whose form is analo-
gous to that of the expression ef; for periodic composite
obtained by Bergman and Duftris

E(r)z}k) Ekexp(ik-r)=EO[é+|Zl (1/s)'C|F(r)J,
(5

€2

s= .
€27¢&1

The expression o€ (r) is slightly different from Eq.(3).

Whereas the terms fd, =k, _, are excluded irC(r), these

terms are included in the summation(D’,f(r). The relation

betweenC,(r) andCf(r) is

WhereeK qy are unit vectorsa( qy andk form an or-

using the relation

1
E(r)=—= () D(r). (7)
D(r) is expressed as
D(r)=D, a+|21 (1/u)'cP(r)),
8
_ P2e1tpie; ®
N €17 &7 '
Or
D(r)=D, a+|z (1/t)”c:*(r)),
=1
. 9
t=——,
€17 &2

whereDOEi:(D(r)), d is the unit vector in the direction of
(D(r)). In addition,

e
o ;iv

)0(k1 kp) -
y

ly 2

(10

independent dielectric constan}=1. The nonlinear metal

thogonal triad. Equationé8)— (10) are obtained by using a has a Drude dielectric function:
procedure analogous to that used in the derivation of Egs.

(2)-(5).
The relation betweeﬂ:D(r) andCl'(r) is similar to that
betweenC(r) andCI (r), that is, the terms fok,=k,_, are

wSTz wgr
ey=1- 72 ti 27
1+ 0T o(1+ wT)

included in the summation i6'(r), whereas these terms are Wheréw, denotes the plasmon frequenayis a characteris-

excluded mCD(r) We also have

C| (r) :E

PTC|

Composites made of coated spheres or of coated cylinders
are of particular interest.”16-28|n this paper, we consider a
composite composed of coated spheres, each of them with a
core made of linear insulator and a concentric spherical shell

made of nonlinear metal.

tic relaxation time. The third-order nonlinear susceptibility
of the metal is taken as a unit. We further assume that the
host and the core are composed of same material and the
coated spheres are embedded in the host with three-
dimensional simple-cubic structure. For this systematie

can be expressed as

ao(k!Rl) - ao(klRZ)a

(k)= (11

1
°(k,R,)=3p(a) @ (sin X,—X,cosX,), (12

The insulator has frequency- @
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is, the truncated lattice involving @i vectors withn,, n,,
andn, running from—N to +N in all directions; therE(r)
or D(r) is calculated by using Padmalysis® usingL terms
of one of these series. In the calculation, the symmetry is
imposed to reduce the volume used in the calculatiof tf
the unit-cell volume. A mesh is generated and is schemati-
— cally shown in Fig. 1. The electrical field at the center of
each division of the mesh is calculated. In this work, meshes
with different numbers of calculated points ranging from
2300 to 3400 in thek unit cell are adopted.
! By substitutingE(r) obtained in Eq(1), the cubic nonlin-
ear susceptibilityy.(w) of the composite is calculated. The
results, which are obtained from using seri8sfor N=30
andL =18 are present in Figs. 2 and 3.
Figure 2 shows the real part of the effective nonlinear
FIG. 1. Schematic drawing of the mesh used in the calculationsusceptibility of the composite Rel as a function of fre-
quency for several values &, /R, ranging from O up to 1,
where k=(27/a)(ny,ny,n,), ny,n,,n,=integers,R; and  with the volume fraction of metgb e[ =p(1)—p(2)] and
R, are the outer and inner radii of the shellp(«) relaxation time of the metal fixe@pmea=0.1, w,7=10),
=477R§/3V, X,=kR, («=1,2), k is the modular ok. whereR,. is a particular value of the inner radii of the shells
First, E(r) [or D(r)] is calculated. Because of the similar- at which the metal phase forms an infinite cluster in the
ity between the expressions Bfr) [or D(r)] obtained in this composite. WhenR,=0, i.e., the shape of the metal is
work and that ok presented in Ref. 15, a procedure analospheres, not shells, there is one enhancement peak in the
gous to that used in Ref. 15 for the calculatioregf is used  x(w) curve that occurs ab~0.6w,, the frequency deter-
in this work. The expansion coefficients of seri@s (5), (8), mined approximately by the plasmon resonance condition for
and (9) are calculated for a reciprocal lattice of si¥ethat  an uncoated sphet¢see Fig. 2a)]. When the metal phase
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FIG. 2. Ref.) vs w for several values oR,/R,.. (R,/R,.=0.0, 0.25, 0.5, 1.0. The volume fraction of the metal is 0.1, the
relaxation time of the metal i®,7=10. The solid lines are the exact results, the dotted lines are the results calculated from using the
decoupling approximation.
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for the same composites. The results are also shown in Fig.
400 ©1=20 17200 2. We can see that the Bg(w)]—w curves obtained from
N PO using the two approaches present analogous features, but the
200k — i— peaks calculated by using decoupling approximation are
i Jaoo lower than the corresponding ones calculated exactly.
Our calculations show that the enhancemeng ofensi-
0 ] 0 tively depends on the relaxation timeof the metal. The
n {[ V results of Rgye(w)] for pmewa=0.1, w,7=20, andR;, /Ry,
o00l 17400 =0.25, 1 are presented in Fig. 3. Comparing Fig. 3 to Figs.
: 2(b) and Zc), we can see that whan,7 changes from 10 to

20, the shape of the first enhancement peaks changes, but
{1200 that for the second enhancement peaks remains unchanged.
We can also see that with an increaseawsfr the heights of
the peaks increases. It shows that an extremely large en-
hancement of the nonlinear susceptibility can be obtained for
the composites that contain very small quantities of nonlin-
ear material if the shell structure of the nonlinear material
forms.

In brief summary, we have proposed a Fourier approach
ER calculate the electric field in periodic composites. This
method is simple and straightforward, and valid to any peri-
odic microgeometry. In the series expressionsggf), r

Re(x, )

——R/R, =025 1{-800

ool R/R,=1.0
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FIG. 3. Ref) vs o with w,7=20, Pme=0.1, andR, /Ry
=0.25,1. The solid line is the result f&,/R,.=0.25, the dotted
line is the result folR, /R,.=1.

forms the shell structure, there are two enhancement peaks
eachye(w) curve. The first one still appears at=0.6w,,

the second one appears @t-0.9w,, the frequency deter- appears only in the last fold of each term of the summations
mined approximately by that of the coated spA¢see Figs. PP y S . L

: . If the calculated point increases by one time, the calculating
2(b) and Zc)]. Whereas the height of the second peak in- X .

. . ) .. work only increases a little. For the two-compounds compos-
creases with an increase Bf, the first one decreases with . he eff fth . d the eff £ th
an increase oR, and disappears wheR,/R,.=0.75. In Ite, the efiect of the geometric structure and the efiect of the
Fig. 2(d), we rezsent the Re)—w curve fzorch/R '_i 0 electric properties on the local field can be dealt with sepa-
Tr?é sha{pes gf the Re) wgcurse for Ru/R 20 02% aina rately. Where the frequency-dependent properties are con-

- 2 2c— Y- i
that for R,/R,,=1.0 are the same. The height of the en_cerned, the geometric part need not be calculated repeatedly.

= . As an application of this method, the frequency depen-
hancement peaks &, /R,:=0.75 is about 10% lower than dence of bulk effective third-order nonlinear response of
that forR,/R,.=1.0.

. . ... Simple cubic arrays of nonlinear coated spheres embedded in
We have _also calculated _the cubic n_onI|r_1ear suscept|b|||t3é linear host has been calculated. The calculation is based on
Xe(®) by using the decoupling approximatibn the Stroud-Hui expression of the bulk effective third-order
susceptibility of a compositeand the results are exact.

Xe= 2 Xi | doet aseﬁ, Our method can be generated to the multicomponent pe-
T Pi| dei| o riodic composites. However, in the general cases, when the
number of the components is greater than 2, the geometric
. :<8(V)E(r)> information cannot be separated from the material informa-

e (E(r)) tion.
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