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Fourier approach to the electric field and the nonlinear susceptibility for a periodic composite
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By using series expressions of space-dependent electrical field in a periodic composite, which are obtained
by a simple Fourier approach, the frequency dependence of the effective third-order nonlinear susceptibilityxe

of the metal-insulator composites with simple cubic arrays of coated spheres has been exactly calculated. The
results show that the frequency-dependent nonlinear response of the composites has two sharp peaks when the
metal phase forms a shell structure. The strengths of the peaks are very sensitive to the relaxation time of the
metal. The dependences of both the shapes and strengths of the peaks on the radii of the cores of the coated
spheres are also studied.@S0163-1829~98!01642-7#
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The nonlinear susceptibilities of composite materials m
be strongly enhanced relative to bulk samples of the sa
materials.1 Such an enhancement can be attributed to pu
classical effect,2,3 namely, the electric field within the par
ticles is greatly increased at optical frequencies because
composite is inhomogeneous.3 In the past 10 years, a variet
of approaches have been proposed to this problem.1–10In this
Brief Report, we present our exact calculations of t
frequency-dependent cubic nonlinear susceptibility of p
odic composite. Our calculations are based on a genera
pression ofxe for a composite material, which has been o
tained by Stroud and Hui:2

xe5(
i

pix i^~E•E* !~E•E!& i , lin /E0
4, ~1!

where x i and pi are the cubic nonlinear susceptibility an
volume fraction of thei th component,E0 is the applied elec-
tric field, ^ & i , lin denotes a volume average over the volu
of the i th component in the linear limit wherex i50. We first
calculate the space-dependent electrical fieldE(r ) in a com-
posite, then exactly evaluatexe from using Eq.~1!. In this
work, we only consider the simplest case, that is, a perio
composite consists of two kinds of isotropic components
the composite has cubic symmetry. The procedure prese
in the following can be easily extended to more gene
cases.

The method used for calculating the electrical field in t
work has close relation to the well-known Bergman-Milto
PRB 580163-1829/98/58~21!/14127~4!/$15.00
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theory of the effective dielectric function«eff of the
composite1,11 and the Fourier approaches to the«eff of the
periodic composite.12–15

In a periodic composite, the space-dependent electr
field can be expressed as

E~r !5(
k

Ekexp~ ik•r !,

wherek is the reciprocal vector of the periodic structure. B
substituting the expression of the Fourier coefficients of
electrical fieldEk presented in Ref. 12 into the above equ
tion, we obtain a series expression ofE(r ):

E~r !5E0H ê1(
l 51

`

~1/w! lCl~r !J ,

~2!

w5
p1«11p2«2

«22«1
,

where« i is the dielectric constant of thei th component.E0
5u^E&u is the module of the volume average of the elect
field, ê is the unit vector in the direction of^E&. We assume
that the composite is the filler of a parallel plate, for th
condition,^E& is equivalent to the applied electrical fieldE0 ,
and ê is in the direction of the applied field. In addition,
14 127 ©1998 The American Physical Society
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Cl~r !5(
k1

8
¯(

kl

8k̂1exp~ ik1•r !~ k̂1• k̂2!u~k12k2!¯

3~ k̂ l 21• k̂ l !u~k l 212k l !~ k̂ l•ê!u~k l !, ~3!

where ‘‘(kl
8 ’’ means that the summation is overk l excluding

the cases fork l50 andk l5k l 21 , k̂ is the unit vector in the
k direction. u~k! is the Fourier coefficient of the indicato
function of the first component:15

u~k!5
1

V E
V1

exp~2 ik•r !dr , ~4!

whereV5a3 is the volume of the unit cell,a is the linear
size of the cell.V1 is the volume of the first component in
unit cell.

Another useful expression ofE~r !, whose form is analo-
gous to that of the expression of«eff for periodic composite
obtained by Bergman and Dunn15 is

E~r !5(
k

Ekexp~ ik•r !5E0H ê1(
l 51

`

~1/s! lCl
F~r !J ,

~5!

s5
«2

«22«1
.

The expression ofCi
F(r ) is slightly different from Eq.~3!.

Whereas the terms fork l5k l 21 are excluded inCl(r ), these
terms are included in the summation inCl

F(r ). The relation
betweenCl(r ) andCl

F(r ) is
q
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a
ith
h
cy
Cl
F~r !5 (

q50

l 21

cl 21
q p1

qCl 2q~r !,

~6!

cl
q5

l !

q! ~ l 2q!!
.

An alternative and very useful approach to the calculat
of E~r ! is to calculateD~r ! first, then calculateE~r ! from
using the relation

E~r !5
1

«~r !
D~r !. ~7!

D~r ! is expressed as

D~r !5D0S d̂1(
l 51

`

~1/u! lCl
D~r !D ,

~8!

u5
p2«11p1«2

«12«2
.

Or

D~r !5D0S d̂1(
l 51

`

~1/t !nCl
H~r !D ,

~9!

t5
«1

«12«2
,

whereD0d̂5^D(r )&, d̂ is the unit vector in the direction o
^D~r !&. In addition,
Cl
D~r !5(

k1

8
¯(

kl

8@ êk1x
exp~ ik1•r ! êk1y

exp~ ik1•r !#u~k1!S êk1x
•êk2x

êk1y
•êk2x

êk1x
•êk2y

êk1y
•êk2y

D u~k12k2!¯

3S êk~ l 21!x
•êklx

êk~ l 21!y
•êklx

êk~ l 21!x
•êkly

êk~ l 21!y
•êkly

D u~k l 212k l !S d̂•êklx

d̂•êkly

D u~k l !, ~10!
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where êkx
,êky

are unit vectors,êkx
,êky

, and k̂ form an or-
thogonal triad. Equations~8!–~10! are obtained by using a
procedure analogous to that used in the derivation of E
~2!–~5!.

The relation betweenCl
D(r ) andCl

H(r ) is similar to that
betweenCl(r ) andCl

F(r ), that is, the terms fork l5k l 21 are
included in the summation inCl

H(r ), whereas these terms a
excluded inCl

D(r ). We also have

Cl
H~r !5 (

q50

l 51

cl 21
q p1

qCl
D~r !.

Composites made of coated spheres or of coated cylin
are of particular interest.5–7,16–18In this paper, we consider
composite composed of coated spheres, each of them w
core made of linear insulator and a concentric spherical s
made of nonlinear metal. The insulator has frequen
s.

rs

a
ell
-

independent dielectric constant«251. The nonlinear meta
has a Drude dielectric function:

«1l512
vp

2t2

11v2t2 1 i
vp

2t

v~11v2t2!
,

wherevp denotes the plasmon frequency,t is a characteris-
tic relaxation time. The third-order nonlinear susceptibil
of the metal is taken as a unit. We further assume that
host and the core are composed of same material and
coated spheres are embedded in the host with th
dimensional simple-cubic structure. For this system theu~k!
can be expressed as

u~k!5u0~k,R1!2u0~k,R2!, ~11!

u0~k,Ra!53p~a!
1

Xa
3 ~sin Xa2XacosXa!, ~12!
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where k5(2p/a)(nx ,ny ,nz), nx ,ny ,nz5 integers, R1 and
R2 are the outer and inner radii of the shells.p(a)
54pRa

3/3V, Xa5kRa (a51,2), k is the modular ofk.
First, E~r ! @or D~r !# is calculated. Because of the simila

ity between the expressions ofE~r ! @or D~r !# obtained in this
work and that of«eff presented in Ref. 15, a procedure ana
gous to that used in Ref. 15 for the calculation of«eff is used
in this work. The expansion coefficients of series~2!, ~5!, ~8!,
and ~9! are calculated for a reciprocal lattice of sizeN, that

FIG. 1. Schematic drawing of the mesh used in the calculat
is, the truncated lattice involving allk vectors withnx , ny ,
andnz running from2N to 1N in all directions; thenE~r !
or D~r ! is calculated by using Pade´ analysis19 usingL terms
of one of these series. In the calculation, the symmetry
imposed to reduce the volume used in the calculation to1

16 of
the unit-cell volume. A mesh is generated and is schem
cally shown in Fig. 1. The electrical field at the center
each division of the mesh is calculated. In this work, mes
with different numbers of calculated points ranging fro
2300 to 3400 in the1

16 unit cell are adopted.
By substitutingE~r ! obtained in Eq.~1!, the cubic nonlin-

ear susceptibilityxe(v) of the composite is calculated. Th
results, which are obtained from using series~8! for N530
andL518 are present in Figs. 2 and 3.

Figure 2 shows the real part of the effective nonline
susceptibility of the composite Re(xe) as a function of fre-
quency for several values ofR2 /R2c ranging from 0 up to 1,
with the volume fraction of metalpmetal@5p(1)2p(2)# and
relaxation time of the metal fixed~pmetal50.1, vpt510!,
whereR2c is a particular value of the inner radii of the she
at which the metal phase forms an infinite cluster in t
composite. WhenR250, i.e., the shape of the metal
spheres, not shells, there is one enhancement peak in
xe(v) curve that occurs atv'0.6vp , the frequency deter-
mined approximately by the plasmon resonance condition
an uncoated sphere4 @see Fig. 2~a!#. When the metal phase

.

e
ing the
FIG. 2. Re(xe) vs v for several values ofR2 /R2c . ~R2 /R2c50.0, 0.25, 0.5, 1.0.! The volume fraction of the metal is 0.1, th
relaxation time of the metal isvpt510. The solid lines are the exact results, the dotted lines are the results calculated from us
decoupling approximation.
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forms the shell structure, there are two enhancement pea
eachxe(v) curve. The first one still appears atv'0.6vp ,
the second one appears atv'0.9vp , the frequency deter
mined approximately by that of the coated sphere4 @see Figs.
2~b! and 2~c!#. Whereas the height of the second peak
creases with an increase ofR2 , the first one decreases wit
an increase ofR2 and disappears whenR2 /R2c>0.75. In
Fig. 2~d!, we present the Re(xe)2v curve forR2 /R2c51.0.
The shapes of the Re(xe)2v curve for R2 /R2c50.75 and
that for R2 /R2c51.0 are the same. The height of the e
hancement peaks forR2 /R2c50.75 is about 10% lower than
that for R2 /R2c51.0.

We have also calculated the cubic nonlinear susceptib
xe(v) by using the decoupling approximation3

xe5(
i

x i

pi
U]«eff

]« i
U ]«eff

]« i
,

«eff5
^«~r !E~r !&

^E~r !&
.

FIG. 3. Re(xe) vs v with vpt520, pmetal50.1, andR2 /R2c

50.25,1. The solid line is the result forR2 /R2c50.25, the dotted
line is the result forR2 /R2c51.
e

in

-

-

y

for the same composites. The results are also shown in
2. We can see that the Re@xe(v)#2v curves obtained from
using the two approaches present analogous features, bu
peaks calculated by using decoupling approximation
lower than the corresponding ones calculated exactly.

Our calculations show that the enhancement ofxe sensi-
tively depends on the relaxation timet of the metal. The
results of Re@xe(v)# for pmetal50.1, vpt520, andR2 /R2c
50.25, 1 are presented in Fig. 3. Comparing Fig. 3 to Fi
2~b! and 2~c!, we can see that whenvpt changes from 10 to
20, the shape of the first enhancement peaks changes
that for the second enhancement peaks remains unchan
We can also see that with an increase ofvpt the heights of
the peaks increases. It shows that an extremely large
hancement of the nonlinear susceptibility can be obtained
the composites that contain very small quantities of non
ear material if the shell structure of the nonlinear mate
forms.

In brief summary, we have proposed a Fourier appro
to calculate the electric field in periodic composites. Th
method is simple and straightforward, and valid to any pe
odic microgeometry. In the series expressions ofE(r ), r
appears only in the last fold of each term of the summatio
If the calculated point increases by one time, the calculat
work only increases a little. For the two-compounds comp
ite, the effect of the geometric structure and the effect of
electric properties on the local field can be dealt with se
rately. Where the frequency-dependent properties are c
cerned, the geometric part need not be calculated repeat

As an application of this method, the frequency depe
dence of bulk effective third-order nonlinear response
simple cubic arrays of nonlinear coated spheres embedde
a linear host has been calculated. The calculation is base
the Stroud-Hui expression of the bulk effective third-ord
susceptibility of a composite,2 and the results are exact.

Our method can be generated to the multicomponent
riodic composites. However, in the general cases, when
number of the components is greater than 2, the geome
information cannot be separated from the material inform
tion.
tate
,
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