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Electron energy-loss spectrum of nanowires
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The electronic properties of nanoscale-size fibers can be studied by electron energy-loss spectroscopy with
electron beams that pass near the fiber but do not penetrate it. We derive the formulas for the differential
energy spectrum assuming that the fiber can be treated as a dielectric cylinder. The formula can be evaluated
in closed form for a conducting wire; the spectrum displays the surface plasmon and a low-energy peak
associated with charge-conduction modes that diverges inversely as the energy loss.@S0163-1829~98!05239-4#
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I. INTRODUCTION

The study of needles and wires on the nanometer s
has been an active and growing area of research. An im
tant problem is to characterize their electronic properties
principle, information about their electron response can
obtained from electron energy-loss spectroscopy~EELS!, us-
ing the same electron microscope optics as is used to im
the needles. An experimental study of the plasmons in
bon nanotubes was reported in Ref. 1. The present artic
motivated by an experimental study of the low-energy ex
tations of small silicon whiskers.2 More commonly, the high-
energy loss spectrum associated with core excitation is u
to probe the chemical composition of the structures.3 A re-
view of EELS applied to small particles and interfaces
given by Ref. 4. In this work we present a general formali
for calculating the electron energy-loss spectrum for el
trons passing close to a dielectric cylinder or tube with
penetrating it. We consider only the geometry where
electron beam is perpendicular to the needle, and the m
result is derived in the next section, Eq.~19! below. The case
where the electron beam is parallel to the axis of a cylin
has been given in Ref. 5. A general formula for solid cyl
ders only is given in Ref. 6. The perpendicular geometry
also been considered with the neglect of the modes par
to the axis in Ref. 7.

A general formulation of the interaction of dielectric cy
inders with the electromagnetic field is given in Ref. 8, e
panding the fields in cylindrical functions. The interactio
with external charges is treated in a similar way, using cl
sical electromagnetism and an expansion in cylindrical fu
tions. The energy spectrum is then calculated classically
in the derivation of the formula for the plasmon excitation
electrons passing through thin foils.9 The energy-loss spec
trum is intrinsically quantum mechanical, but in the deriv
tion the quantum mechanics only enters by identifying
energy loss with a frequency.

The derivation assumes that the electron travels o
straight line with uniform velocity and passes by the fib
without penetrating it. This allows an analytic integration
PRB 580163-1829/98/58~20!/14031~5!/$15.00
le
r-
n
e

ge
r-
is

i-

ed

-
t
e
in

r

s
lel

-

-
-

as
f

-
e

a
r
f

the integral for the energy loss along the path of the electr
leaving only an integral over the wave vector of the exci
tion along the axis of the fiber. Penetrating electrons can
treated the same way, but then all the integrals must be d
numerically, and the interaction is more complicated beca
of the screening of the electron and the excitation of the b
plasmon. We will also make a nonrelativistic approximati
on the electromagnetic field, assuming it to be the same
the electric field of the electron in its rest frame.

As an application of the formula, we compute the energ
loss spectrum for a conducting wire. In this case the integ
over wave numbers can be done analytically to give a clo
form expression. The energy-loss spectrum exhibits t
peaks: the ordinary surface plasmon and a diverging p
toward zero energy associated with charge conduction a
the axis of the wire.

II. EELS FOR NONPENETRATING ELECTRONS

We begin with some definitions. We consider a cylind
of radiusR located on thez axis of the coordinate system
The trajectory of the electron is given byrWe(t)5(b,vt,0)
whereb is the impact parameter on the cylinder axis andv is
the velocity of the electron. We will use cylindrical coord
nates (r,f,z). The presence of the electron induces a cha
densityssd(r2R) on the surface of the cylinder, which i
turn produces an induced Coulomb potentialFs and a force
on the electrone¹W Fs , wheree is the magnitude of the elec
tron’s charge.

The energy loss of the electron is given by the integra

DE52eE
2`

`

dtvW •¹W Fs~rWe ,t !52eE
2`

`

dtv
]Fs~rWe ,t !

]y
.

~1!

To obtain the energy-loss spectrum from this integral,
must use the Fourier representation of the time-depen
induced potential,
14 031 ©1998 The American Physical Society
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Fs~rW,t !5E
2`

` dv

2p
exp~2 ivt !F̃s~rW,v!.

Inserting this into Eq.~1! together with the trajectoryy5vt
the energy loss becomes

DE52eE
2`

`

dyE dv

2p
exp~2 ivy/v !

]F̃s~rW,v!

]y
. ~2!

Next we make a partial integration overy, and combine the
positive and negative frequency domains into a single in
gration over positive frequencies. This yields

DE5E
2`

`

dvvg~v!5E
0

`

dvv@g~v!2g~2v!#, ~3!

where

g~v!52
ie

2pv E
2`

`

dy exp~2 ivy/v !F̃s~rW,v!. ~38!

In Eq. ~3! we changed the integration limits to positive fr
quencies. Converting the frequencies to energies withE
5\v, the coefficient of\v in the integrand may be inter
preted as the energy-loss probability distributiondP/dE. It
is given by

dP

dE
5

2

\2 Re g~v!5
e

\2pv
Im E

2`

`

dy

3exp~2 ivy/v !F̃s~rW,v!, ~4!

where we have usedg(v)2g(2v)52 Reg(v), which fol-
lows from causality. We will apply Eq.~4! by relating the
induced potentialFs to the induced charge and the potent
from the electron.

When an external field polarizes a dielectric, the polari
tion charge resides on the surface of the dielectric, irresp
tive of its shape. The surface charge densityss(f,z) gives
rise to the induced potential. Two relations are required
determine them in terms of the external fieldFext. The first
is Gauss’s theorem relating the normal components of
electric field inside and outside the dielectric. Denoting
normal components of the electric field just outside and
inside the cylinder byE1 andE2 , respectively, we require
4pss5E12E2 . The second relation is the dielectric fo
mula Ẽ15eẼ2 , wheree is the frequency-dependent diele
tric function and the tildes denote functions that have b
Fourier transformed in time. Combining these equatio
gives

4ps̃s5
e~v!21

e~v!
Ẽ1 . ~5!

The normal electric fieldẼ1 is related to the potentials by

Ẽ152
]

]r
~F̃s1F̃ext!. ~58!

To calculate the potentialsFs andFext we shall make use
of the Green function which is a solution to
-
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¹2G~rW,rW8!524pd~rW2rW8!.

Expressed in terms of the cylindrical coordinates (r,f,z) it
has the form10

G~rW,rW8!54p(
m

eim~f2f8!

2p

3E
2`

` dk

2p
eik~z2z8!I m~ ukur,!Km~ ukur.!, ~6!

whereI m andKm are the usual Bessel functions of imagina
argument. We represent the surface charge density in a
lindrical expansion,

smk
s 5E

0

2p

dfE
2`

`

dze2 imfe2 ikzss~f,z! ~7!

and similarly for the potentials. We then obtain the followin
equation for the induced potential outside the cylinder

Fs5E E E r8dr8df8dz8G~rW,rW8!ss~f8,z8!d~r82R!

5
1

p (
m

eimfE dkeikzRIm~ ukuR!Km~ ukur!smk
s , ~8!

which may also be represented as

Fs~r,f,z!5
1

4p2 (
m

eimfE
2`

`

dkeikzFmk
s ~r!,

with

Fmk
s ~r!54pRIm~ ukuR!Km~ ukur!smk

s . ~9!

Obviously, the same relation holds between the Fou
transformed quantitiess̃mk

s andF̃mk
s . We now combine this

with Eq. ~5! to eliminate the induced field. Equation~5! in
the cylindrical representation is

4ps̃mk
s 52~121/e!

]

]r
~F̃mk

s 1F̃mk
ext!r5R52~121/e!

3S 4pkRIm~ ukuR!Km8 ~ ukur!s̃mk
s 1

]

]r
F̃mk

extU
r5R

D .

Solving for the surface charge, we obtain

4ps̃mk
s 5Pmk

dF̃mk
ext

dr
U

r5R

, ~10!

where

Pmk5
~12e!

e1~e21!xIm~x!Km8 ~x!
, x5ukuR ~11!

represents the frequency-dependent response of the wire
ing the Wronskian identityxIm8 (x)Km(x)2xIm(x)Km8 (x)
51, this can also be written as

Pmk5
~12e!

11~e21!xIm8 ~x!Km~x!
. ~118!
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A. External field

The external field from the moving electron is

Fext~rW,t !5
2e

urW2bW 2vW tu
5

24pe

~2p!3 E d3k

3
exp@ ikx~x2b!1 iky~y2vt !1 ikzz#

k2
.

We are interested in the Fourier transform with respec
time,

F̃ext~rW,v!5
24pe

v~2p!2 eivy/vE E dkxdkz

3
exp@ ikx~x2b!1 ikzz#

kx
21kz

21~v/v !2 . ~12!

This integral can be performed in closed form to obtain

F̃ext~rW,v!5
22e

v
eivy/vK0S v

v
Az21~x2b!2D ~13!

but this is not convenient for the cylindrical geometry of t
present problem. To transform to the (m,k,r) representation
we note thatk may be identified withkz in Eq. ~12!, and the
remainingkx integration can be done analytically to obtai

F̃mk
ext~r,v!5

22pe

v E
0

2p

dfe2 imfeivy/v

3
exp@2ub2xuAk21~v/v !2#

Ak21~v/v !2
, ~14!

wherex5r cosf and y5r sinf. Remembering thatr,b
for an external electron, we can rewrite Eq.~14! as

Fmk
ext~r,v!5

2~2p!2e

v
exp@2bAk21~v/v !2#

Ak21~v/v !2
Cmk~r,v!,

~15!

where

Cmk~r,v!5E
0

2p df

2p
e2 imfeivr sin~f!/v

3exp@cos~f!rAk21~v/v !2#. ~158!

The integral Eq.~158! can be expressed in terms of theI m
Bessel function11 as

Cmk5SAk21~v/v !21v/v
uku D m

I m~ ukur!. ~159!

Another expression forFmk may be derived from the
Green function, Eq.~6!. This gives directly the field of the
electron as

Fmk
ext~r,t !524peS b2 ivt

Ab21~vt !2D m

3I m~ ukur!Km@ ukuAb21~vt !2#.
o

The required Fourier transform in time is

F̃mk
ext~r,v!5

24peb

v
I m~ ukur!Fm~j,kb!, ~16!

where

Fm~j,u!5E
2`

`

dwei jwS 12 iw

A11w2D m

Km~ uuuA11w2! ~17!

and

j5bv/v.

The parameterj is the well-known adiabaticity parameter i
the theory of Coulomb excitation. Comparing Eqs.~16! and
~17! with our previous expression forFmk

ext , Eqs.~15!–~159!,
we see that the integralFm is analytic and given by

Fm~j,u!5
pe2Au21j2

Au21j2 SAu21j21j

uuu D m

. ~178!

B. Collecting all terms

Let us now collect all terms that are needed to calcul
the energy-loss spectrum from Eq.~4!. We first go from the
external potential to the induced charge by Eqs.~10!, ~11!,
and ~17!. These combine to give

s̃mk
s 52Pmk

keb

v
I m8 ~x!Fm~j,kb!.

This is inserted into Eq.~9! for the induced potential. We
need the induced potential Eq.~8! evaluated at the electro
position (b,y,0). This is

F̃s52
1

p (
m

E
2`

`

dkS b1 iy

r D m

3RIm~x!Km~ ukur!Pmk

ukueb

v
I m8 ~x!Fm~j,kb!,

wherer5Ab21y2. Inserting the induced potential in Eq.~4!
we obtain

dP

dE
5

e2b

p2\2v2 (
m

E
2`

`

dkukuRIm~x!I m8 ~x!

3Im PmkFm~j,kb!E
2`

`

dye2 ivy/vS b1 iy

r D m

3Km~ ukur!. ~18!

The integral overy is just the complex conjugate o
bFm(j,kb) defined in Eqs.~16! and~17!. We thus obtain as
our final expression for the energy-loss probability distrib
tion

dP

dE
5

e2b2

p2\2v2 (
m

E
2`

`

dkxIm~x!I m8 ~x!

3Im PmkuFm~j,kb!u2, x5ukuR. ~19!

Notice that the quantities on the left hand side are real exc
for the needle responseP, so the required imaginary part i
Eq. ~4! comes entirely from ImP.
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Equation ~19! is just the structure that would be obtaine
from a quantum mechanical derivation. Quantum mecha
cally the probability would be calculated using tim
dependent perturbation theory, which gives the rate as
amplitude squared times a density of final states. TheuFu2

provides the squared amplitude, and the ImP is the density
of wire excitations weighted by the squares of their transit
strengths.

Our derivation is nonrelativistic in that the electric fie
was taken to be the same as the field in the rest frame o
electron. The electron kinematics is already relativistic if t
velocity is computed correctly. The Lorentz contraction
the electric field affects only the adiabaticity parameterj,
which is decreased by a factorA12(v/c)2 as a result. Other
relativistic effects associated with magnetic fields are not
cluded in our treatment; to incorporate these the the
would have to be generalized to magnetic excitations.

III. WIRE RESPONSE

In this section we apply the theory to the response o
conducting wire. The dielectric function of a Drude condu
tor is given by

e~v!512
4pne2

mv~v1 i /t!
, ~20!

wheren is the electron density. The bulk plasmon frequen
vp may be found from the zero ofe~v!, thus vp

2

54pe2n/m. Similarly, the resonant modes in the wire c
be determined by requiring that the denominator vanish
Eq. ~118!,

11~e21!xIm8 ~x!Km~x!50.
This may be solved for the frequencyvmk of the mk mode,

vmk
2 5vp

2xIm8 ~x!Km~x!. ~21!

This expression was derived in Ref. 12 as the frequency s
of optical phonons in a cylindrical dielectric. This formu
has simple limits whenkR is small. Form50, the Bessel
functions of small argument areI 08(x)'x/2 and K0(x)
'2 ln(x). This gives the resonance condition

v0k
2 5vp

2~kR!2

2
ln S 1

kRD .

FIG. 1. Electron energy-loss spectrum of a conducting wire
representative conditions:b535 Å, R535 Å, and the electron en
ergy is 100 keV. The dielectric function is given by Eq.~20! with
vp510 eV and\/t50.25 eV.
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This dispersion of wire modes has been derived in Refs.
and 14. We see that the frequency goes to zero as the w
length gets large. FormÞ0, the approximate Bessel func
tions areI m(x)'(x/2)m/m! and Km(x)'(m21)!(2/x)m/2.
Equation~21! then yields the frequency

vmk
2 5

1

2
vp

2 , mÞ0.

This is exactly the surface plasmon formula, showing t
the long-wavelength azimuthal modes have the same
quency as the modes on a planar surface.

To compute an energy-loss spectrum for the wire,
need the imaginary part of the response which can be
pressed as

Im P52
p

Rd@xIm8 ~x!Km~x!#/dx
d~k2kmv!,

wherekmv is the value ofk that satisfies Eq.~21! for given
v, andx5kmvR here. Inserting this in Eq.~19!, the k inte-
gration can be carried out to give an entirely analytic expr
sion for the energy-loss probability distribution,

dP

dE
5

e2b2

p\2v2R (
m

xIm~x!I m8 ~x!

d@xIm8 ~x!Km~x!#/dx
uFm~j,kmvb!u2.

~22!

r
FIG. 2. Electron energy-loss spectrum of a hollow conduct

tube having the same dielectric function as in Fig. 1, for 100 k
electrons at an impact parameter ofb510 Å. The geometric pa-
rameters of the tube areR155 Å andR258.5 Å, corresponding to
the ~10,10! monolayer graphitic carbo nanotube.

FIG. 3. Electron energy-loss spectrum of a~10,10! graphite
nanotube, taking the empirical dielectric function of graphite~Ref.
17!. The other parameters are the same as in Fig. 2.
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For mÞ0, the modes will be the surface plasmons loca
nearv5vp /&. The behavior at small energy loss is mo
complicated. Only them50 mode allows a solution forkmv

whenv is small. The ratio in Eq.~22! varies ask0v / ln(k0v)
in this limit. However, the electron integralFm(j,kvb) var-
ies askv

21 , provided the adiabaticity conditionj!1 is ful-
filled. Dropping logarithmic factors, the probability varies
kv

21 or v21. This behavior is seen in Fig. 1, where Eq.~22!
is plotted for typical conditions. One sees both the surf
plasmon at roughlyvp /& and the divergentm50 excita-
tion going to smallv.
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IV. DIELECTRIC TUBES

There is much interest in carbon nanotubes compose
one or more graphite layers. We apply the dielectric the
by treating the structure as a dielectric tube with a finite w
thickness. Indeed this approximation has been used to m
the electron response of C60 and carbon nanotubes.15 Let us
consider a dielectric tube with inner and outer radiiR1 and
R2 . There will now be two surface layers producing th
induced field, at the inner and outer surfaces. The deriva
of the response proceeds as before to obtain a formula s
lar to Eq.~19!. The tube response is conveniently express
in terms of a 232 matrix Pmk given by
Pmk5~12e!S 211~e21!x1Km8 ~x1!I m~x1! ~e21!x2I m8 ~x1!Km~x2!

~e21!x1Km8 ~x2!I m~x1! 11~e21!x2I m8 ~x2!Km~x2!
D 21

,
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s
h-

t
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ent
E.
ract
A

wherex1,25kR1,2. Then the productxIm(x)I m8 (x)Im Pmk in
Eq. ~19! is replaced by

„x1I m~x1!,x2I m~x2!…Im PmkS I m8 ~x1!

I m8 ~x2! D .

The poles of this function give the eigenmodes of the tu
This has been derived for the dielectric function of an io
insulator in Ref. 12 and for an ideal conductor in Ref. 1
The conducting tube shows three strong peaks in EE
These are shown in Fig. 2, calculated with a geometry o
typical carbon nanotube and the Drude dielectric functi
Eq. ~20!. Instead of a single surface peak, themÞ0 modes
split in two due to the interaction of the modes on the ou
and inner surfaces. In Fig. 2, one sees these two modes a
peaks at 4.6 and 8.8 eV. In the limit of a thin-walled tube,
upper mode goes to the bulk plasmon frequency~10 eV in
the calculation! and the lower mode goes to zero. Besides
two surface modes, there is a low-frequencym50 mode that
corresponds to charge conduction along the wire. As in
case of the solid conducting wire, the excitation probabi
goes to infinity as the frequency goes to zero.

It is not realistic to use a conductor dielectric function f
carbon, and in Fig. 3 we show the graphite nanotube
.

.
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a
,

r
the
e

e

e
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sponse using an empirical dielectric function of graphite.
principle, the dielectric function is anisotropic, which o
derivation does not take into account. The empirical diel
tric function17 has a plateau in the imaginary part extendi
up to 5 eV, associated withp-electron transitions. This give
rise to the peak at 5 eV in Fig. 3. There is also a hig
frequency component associated withs electrons, peaking a
15 eV, which gives rise to the peak at slightly higher ener
in Fig. 3. There is no indication of a low-frequency pe
associated with conduction modes. Thus from the point
view of EELS, graphite behaves more like an insulator th
a conductor. A similar spectrum was obtained from calcu
ing the energy-loss rate for electrons going through car
bundles.18
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