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Electron energy-loss spectrum of nanowires

G. F. Bertsch
Institute of Nuclear Theory and Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195

H. Esbensen
Physics Division, Argonne National Laboratory, Argonne, lllinois 60439

B. W. Reed
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853
(Received 8 May 1998

The electronic properties of nanoscale-size fibers can be studied by electron energy-loss spectroscopy with
electron beams that pass near the fiber but do not penetrate it. We derive the formulas for the differential
energy spectrum assuming that the fiber can be treated as a dielectric cylinder. The formula can be evaluated
in closed form for a conducting wire; the spectrum displays the surface plasmon and a low-energy peak
associated with charge-conduction modes that diverges inversely as the energy0&68-182898)05239-4

I. INTRODUCTION the integral for the energy loss along the path of the electron,
leaving only an integral over the wave vector of the excita-
The study of needles and wires on the nanometer scaliéon along the axis of the fiber. Penetrating electrons can be
has been an active and growing area of research. An impotreated the same way, but then all the integrals must be done
tant problem is to characterize their electronic properties. Ifiumerically, and the interaction is more complicated because
principle, information about their electron response can b&@f the screening of the electron and the excitation of the bulk
obtained from electron energy-loss spectrosc@HLS), us- plasmon. We will also_ make a nonre_latlv_lsnc approximation
ing the same electron microscope optics as is used to imaﬁ%" the electromagnetic field, assuming it to be the same as
the needles. An experimental study of the plasmons in catn€ €lectric field of the electron in its rest frame.
bon nanotubes was reported in Ref. 1. The present article js AS @n application of the formula, we compute the energy-

motivated by an experimental study of the low-energy exciJ0Ss spectrum for a conducting wire. In this case the integral

tations of small silicon whiskersMore commonly, the high- ©Ver wave numbers can be done analytically to give a closed
energy loss spectrum associated with core excitation is usd@™ €xpression. The energy-loss spectrum exhibits two
to probe the chemical composition of the structdrésre- peaks: the ordinary surface plasmon and a diverging peak

view of EELS applied to small particles and interfaces istoward zero energy associated with charge conduction along

given by Ref. 4. In this work we present a general formalismine axis of the wire.

for calculating the electron energy-loss spectrum for elec-

trons passing close to a dielectric cylinder or tube without Il. EELS FOR NONPENETRATING ELECTRONS
penetrating it. We consider only the geometry where the

electron beam is perpendicular to the needle, and the main We begin with some definitions. We consider a cylinder
result is derived in the next section, Eq9) below. The case of radiusR located on thez axis of the coordinate system.

where the electron beam is parallel to the axis of a cylindefrhe trajectory of the electron is given by(t)=(b,vt,0)

has been given in Ref. 5. A general formula for solid cylin-\yhereb is the impact parameter on the cylinder axis anid

ders only is given in Ref. 6. The perpendicular geometry haghe velocity of the electron. We will use cylindrical coordi-

also been considered with the neglect of the modes parallglates p, ¢,2). The presence of the electron induces a charge

to the axis in Ref. 7. _ _ _ _ densityo5(p—R) on the surface of the cylinder, which in
A general formulation of the interaction of dielectric cyl- yyr produces an induced Coulomb potential and a force

mder_s with th? elegtroma}gngtlc field IS given in Ref. 8, €Xon the eIectromﬁ@s, wheree is the magnitude of the elec-
panding the fields in cylindrical functions. The mteractlontron,S charge

W'th external charg(_as is treated in a S'.m"a.r way, using clas- The energy loss of the electron is given by the integral
sical electromagnetism and an expansion in cylindrical func-
tions. The energy spectrum is then calculated classically, as
in the derivation of the formula for the plasmon excitation of o oL %
electrons passing through thin foflsSThe energy-loss spec- AE= —eJ dtv-Vdg(re,t)= —ef dtv
trum is intrinsically quantum mechanical, but in the deriva- - -
tion the quantum mechanics only enters by identifying the
energy loss with a frequency.

The derivation assumes that the electron travels on a To obtain the energy-loss spectrum from this integral, we
straight line with uniform velocity and passes by the fibermust use the Fourier representation of the time-dependent
without penetrating it. This allows an analytic integration of induced potential,

ID(Te,t)

ay
@

0163-1829/98/5@0)/140315)/$15.00 PRB 58 14 031 ©1998 The American Physical Society



14 032 G. F. BERTSCH, H. ESBENSEN, AND B. W. REED PRB 58

N © d _ o 2 C Rl — S
<Ds(r.t)=J z—wexr(—iwt)cbs(r,w)_ VG(r,r')=—4ms(r—r’).
i Expressed in terms of the cylindrical coordinatesd,z) it

0
Inserting this into Eq(1) together with the trajectory=pt ~ Nas the fornf
the energy loss becomes im(d— ')

N e
G(r,r=4m> —
m

w do , ad(r, ) 2w
AE=—eJ dyj —exp—iwylv) ——. (2
Cw 2 ay jw dk ik(z—2")
X —e*Z7 2 (lklp)Kn(|klps), (6)
Next we make a partial integration over and combine the —w 27 i [Klp<)Kn([Klp-

positive and negative frequen_cy do”.‘a'”.s into a single Irlte\'/vherelm andK,, are the usual Bessel functions of imaginary
gration over positive frequencies. This yields

argument. We represent the surface charge density in a cy-
lindrical expansion,

2€= [ dooglo)= | “doolg@)-g(-w)l, @)

2w o 4 .
T f d¢ f dze Ml Ko (¢,2) (7)
where 0 -
i and similarly for the potentials. We then obtain the following

e o . —~ N . . . . .
g(w)=— 5 f,oody exp —i wylv)Dy(r,w). (3 equation for the induced potential outside the cylinder

In Eq. (3) we changed the integration limits to positive fre- ‘Pszf f f p'dp'dp’'dZ' G(r,r")oy(¢',2')8(p' —R)
guencies. Converting the frequencies to energies \Eith

=fiw, the coefficient ofiw in the integrand may be inter- 1 im s <
preted as the energy-loss probability distributB/dE. It T %‘4 e dke“RIn([KIRKn([k[p) ok, (®)
is given by

which may also be represented as

daP 2 e o

—=—Reg(w):—|mJ’ dy 1 _ %0 .

dE #° h2mv e O(p,$2)= 72 D e'm¢f dkekzds (p),
m — o0

Xexp —iwylv)Py(r,w), (4) with

where we have useg(w)—g(— w)=2 Reg(w), which fol-

lows from causality. We will apply Eq(4) by relating the Pr(p) =47 RIn([K[R) K [K[ p) ©

induced potentiafb to the induced charge and the potential Obviously, the same relation holds between the Fourier

from the electron. . ~g ~ . .
When an external field polarizes a dielectric, the poIariza—tr"’meormed quantitiesy,, and ey, We now combine this

tion charge resides on the surface of the dielectric, irrespe(\i’%/q'éhcsl?ﬁéﬁ)c ;cl) r?elpl)Tégzaetatt?gnlri]sduced field. EquatidB) in
tive of its shape. The surface charge density¢,z) gives

rise to the induced potential. Two relations are required to 9 _

determine them in terms of the external fidiq,;. The first drmon,=—(1- 1/6){9— (Dt Do) p—r=—(1—1le)

is Gauss’s theorem relating the normal components of the P

electric field inside and outside the dielectric. Denoting the ~ E

normal components of the electric field just outside and just X | 4mkRIn(|KIR)K (k| p) ot 5 Do )
inside the cylinder by\E, andE_, respectively, we require P p=R
d7o,=E,—E_. The second relation is the dielectric for- Solving for the surface charge, we obtain

mulaE. =€eE_, wheree is the frequency-dependent dielec-

tric function and the tildes denote functions that have been ~ doe
Fourier transformed in time. Combining these equations 47Ta'mk=HmkW ; (10
. p=R
gives
where
PRt 5)
TOg=———— k. 1—€
e(o) (1) x=|klR (11

M= )

5 MK e+ (e— 1)XI (XK (X)
The normal electric field , is related to the potentials by ]
represents the frequency-dependent response of the wire. Us-

_ J - ing the Wronskian identityx !/ (x)Kpm(X) = X1 n(X) K/ (X)
E,=- %(CDSJr Deyp)- (5') =1, this can also be written as

To calculate the potentiatb and® ., we shall make use I (1=¢)

= ; : (11)
of the Green function which is a solution to "KL+ (6= 1)xI (XK (%)
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A. External field The required Fourier transform in time is

The external field from the moving electron is —4meb
Okp )= ———In([Klp)Frn(£kb),  (16)

® t(ﬁt) —e —41e f K
rt)y=———=
ex 76— ot| (2m)3 where
expLiky(x—b) +iky(y—vt) +ik,Z] w(, u>_f dwe"fw( — ) (JuT+wd)  (17)
X 2 . J1+w Kim
. : . . and
We are interested in the Fourier transform with respect to
time, é=bwlv.
. ‘ The parameteg is the well-known adiabaticity parameter in
b r,w)= ""y’”f f dk,dk the theory of Coulomb excitation. Comparing E¢k6) and
(17) with our previous expression fab <, Egs.(15)—(15"),
exd ik (x—b)+ik,z] we see that the integrél,, is analytic and given by
7.2 3 (12
ki+ks+(wlv) . e Vu 2+ ¢ \/Tgh_g an
. . . . ’u j— !
This integral can be performed in closed form to obtain m 2+ & M
—2e
DT, w)—T e'YvK ( VZ=+(x—=D) ) (13 B. Collecting all terms

Let us now collect all terms that are needed to calculate
the energy-loss spectrum from Ed). We first go from the
external potential to the induced charge by E{%), (11),
and (17). These combine to give

but this is not convenient for the cylindrical geometry of the
present problem. To transform to theak,p) representation
we note thak may be identified withk, in Eq. (12), and the
remainingk, integration can be done analytically to obtain

keb
_Hkal m(X)Fm(glkb)

(I)ext(p w)= —2me f d¢e imggioylv Tmk=
This is inserted into Eq(9) for the induced potential. We
exf —|b—x| VkZ+ (w/v)?] need the induced potential E@) evaluated at the electron
X , (14  position p,y,0). This is
VK (wlv)?
. . +
wherex=p cos¢ andy=p sin ¢. Remembering thgb<<b === 2 f b |y
for an external electron, we can rewrite Efj4) as
kleb
~(2m)% exd ~ bk’ + (w/0)] XRIm<x>Km<|k|p>Hmk||Tl;n(x>Fm<§,kb>,

ext —
mk(p!w) v \/m ka(pvw)v

(15)  wherep= JbZ+y2. Inserting the induced potential in E@)

we obtain
where
2r db W_ebs | akdr1no017,00
™ imdiwp sin(d)o JE- 272,2 X m(X
ka(P,w):Jo ze impgiwp sin(4)/ dE #h“v° 45 ) _» m m
b+iy
xexr[cos{¢)p\/k§+(w/v)2]. (15) XIm I F (€, kb)f dye"“’y’“( p )
The integral Eq(15') can be expressed in terms of thg
Bessel functioh as XKm([K[p). (18

The integral overy is just the complex conjugate of

co_ Vi + (wlv)?+ wlv ”‘l (Klp) 15) bF,(&,kb) defined in Eqs(16) and(17). We thus obtain as
mk K| milRle)- our final expression for the energy-loss probability distribu-
tion
Another expression fo ., may be derived from the 2?2

Green function, Eq(6). This gives directly the field of the d_P b z j dkxl_ ()17 (x)

electron as dE  7%h%? M m
ext b—ivt | XIm I dFrn(€,kb)[%,  x=|K|R. (19

Pmilp,t) =~ 4me JbZ+ (vt)2 Notice that the quantities on the left hand side are real except

for the needle respondé, so the required imaginary part in
X1 m([K| p) Kl [K| VDZ+ (v1)?]. Eqg. (4) comes entirely from IniL.
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FIG. 1. Electron energy-loss spectrum of a conducting wire for
representative conditionb:=35 A, R=35 A, and the electron en-
ergy is 100 keV. The dielectric function is given by EGO) with
w,=10 eV and#/7=0.25 eV.

FIG. 2. Electron energy-loss spectrum of a hollow conducting
tube having the same dielectric function as in Fig. 1, for 100 keV
electrons at an impact parameter ot 10 A. The geometric pa-
rameters of the tube aR;=5 A andR,=8.5 A, corresponding to

Equation (19) is just the structure that would be obtained the (10,10 monolayer graphitic carbo nanotube.

from a quantum mechanical derivation. Quantum mechaniThis dispersion of wire modes has been derived in Refs. 13
cally the probability would be calculated using time- and 14. We see that the frequency goes to zero as the wave-
dependent perturbation theory, which gives the rate as alngth gets large. Fom#0, the approximate Bessel func-
amplitude squared times a density of final states. [Fé  tions arel ,(x)~ (x/2)™m! and K (x)~(m—1)!(2/x)™/2.
provides the squared amplitude, and thellimis the density Equation(21) then yields the frequency
of wire excitations weighted by the squares of their transition
strengths. w2 :lwz m=0

Our derivation is nonrelativistic in that the electric field mk 2 e '

was taken to be the same as the field in the rest frame of they,is js exactly the surface plasmon formula, showing that

electron. The electron kinematics is already relativistic if they,q long-wavelength azimuthal modes have the same fre-

velocity is computed correctly. The Lorentz contraction quuency as the modes on a planar surface.

the electric field affects only the adiabaticity parameger To compute an energy-loss spectrum for the wire, we

which is decreased by a factgl— (v/c)? as a result. Other need the imaginary part of the response which can be ex-

relativistic effects associated with magnetic fields are not inpressed as

cluded in our treatment; to incorporate these the theory

would have to be generalized to magnetic excitations. Im = —
R X1/ (X)Kyn(X)]/dx

wherek,,,, is the value ok that satisfies Eq21) for given

In this section we apply the theory to the response of & andx=kp,R here. Inserting this in E¢(19), thek inte-
conducting wire. The dielectric function of a Drude conduc-9ration can be carried out to give an entirely analytic expres-

5(k_ kmu))v

Ill. WIRE RESPONSE

tor is given by sion for the energy-loss probability distribution,
4né? dP  e%b? XIm(X)1](X) ,
)= (o iin) @0 GETmh%R ¥ AXIL0Knoolax M EKnD

wheren is the electron density. The bulk plasmon frequency (22

2
wp, may be found from the zero ofe(w), thus wj 0.0005 . . . .

=4me?n/m. Similarly, the resonant modes in the wire can 0.00045 | )
be determined by requiring that the denominator vanish in 60004 | )
Ea. (117, 0.00035 | ]
1+(E—1)X|r’n(X)Km(X)=O. %\ 0.0003 +
This may be solved for the frequenay;,, of the mk mode, o 000025 -
=
/ & 0.0002
w%i= 02X (X) K n(X). (21) g 000015 |
This expression was derived in Ref. 12 as the frequency shift 0.0001 r
of optical phonons in a cylindrical dielectric. This formula 0.00005 +
has simple limits wherkR is small. Form=0, the Bessel 0 : . ' '
functions of small argument aré)(x)~x/2 and Ky(x) 0 5 10 15 20 25
~ —In(x). This gives the resonance condition E V)

’ FIG. 3. Electron energy-loss spectrum of(20,10 graphite
,(kR) 0 ( 1 ) nanotube, taking the empirical dielectric function of grapliRef.

2 _ 022 Inl =
@ok™ @pT5 kR 17). The other parameters are the same as in Fig. 2.
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For m#0, the modes will be the surface plasmons located IV. DIELECTRIC TUBES

nearw=w,/v2. The behavior at small energy loss is more  There is much interest in carbon nanotubes composed of
complicated. Only then=0 mode allows a solution fdt,,,  one or more graphite layers. We apply the dielectric theory
whenw is small. The ratio in Eq(22) varies asky,, /In(ky,) by treating the structure as a dielectric tube with a finite wall
in this limit. However, the electron integrl,(¢,k,b) var-  thickness. Indeed this approximation has been used to model
ies ask_®, provided the adiabaticity conditioa<1 is ful-  the electron response ofgand carbon nanotubéSLet us
filled DcFopping logarithmic factors, the probability varies as consider a d|¢lectrlc tube with inner and outer rayi and
A ) s U R,. There will now be two surface layers producing the

k,~ or ™" This behavior is seen in Fig. 1, where EB2)  jnquced field, at the inner and outer surfaces. The derivation
is plotted for typical conditions. One sees both the surfacef the response proceeds as before to obtain a formula simi-

plasmon at roughlyw,/v2 and the divergenm=0 excita- lar to Eq.(19). The tube response is conveniently expressed
tion going to small. in terms of a 22 matrix I, given by

—14+(e— D)X Kn(XDIm(X1) (6= )Xol [i(X))Kin(x2) | 71

Hmk:(l_e) ! ! ’
(6= D)X Kpy(X2) I m(X1) 1+ (6= Dxal n(X2)Kin(X2)

wherex; ,=kRy,. Then the produck! ,(x)I,(x)Im ILin sponse using an empirical dielectric function of graphite. In

Eq. (19 is replaced by principle, the dielectric function is anisotropic, which our
derivation does not take into account. The empirical dielec-
I m(X2) tric function'’ has a plateau in the imaginary part extending

(X1l m(X0),Xol m(x2))1M M I(X2) ] up to 5 eV, associated with-electron transitions. This gives

) i . i rise to the peak at 5 eV in Fig. 3. There is also a high-
The poles of this function give the eigenmodes of the tUbefrequency component associated witlelectrons, peaking at
This has been derived for the dielectric function of an ionicq g eV, which gives rise to the peak at slightly higher energy
insulator in Ref. 12 and for an ideal conductor in Ref. 16.;, Fig. 3. There is no indication of a low-frequency peak
The conducting tube shows three strong peaks in EELS;ggqciated with conduction modes. Thus from the point of
These are shown in Fig. 2, calculated with a geometry of gjq,y of EELS, graphite behaves more like an insulator than
typical carbon nanotube and the Drude dielectric functiong conqyctor. A similar spectrum was obtained from calculat-

Eq. (20). Instead of a single surface peak, =0 modes 4 the energy-loss rate for electrons going through carbon
split in two due to the interaction of the modes on the outef, nqlest®

and inner surfaces. In Fig. 2, one sees these two modes as the
peaks at 4.6 and 8.8 eV. In the limit of a thin-walled tube, the
upper mode goes to the bulk plasmon frequefdy eV in
the calculatiopand the lower mode goes to zero. Besides the
two surface modes, there is a low-frequemncy: 0 mode that We thank J. M. Chen, J. Rehr, and C. Colliex for discus-
corresponds to charge conduction along the wire. As in thesions on this topic. G.F.B. was supported by the Department
case of the solid conducting wire, the excitation probabilityof Energy under Grant No. DE-FG-06-90ER-40561; H.E.
goes to infinity as the frequency goes to zero. was supported by the Department of Energy under Contract
It is not realistic to use a conductor dielectric function for No. W-31-109-ENG-38; and B.R. was supported by DARPA
carbon, and in Fig. 3 we show the graphite nanotube reContract No. DABT63-95-C-0121.
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