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Young’s modulus of single-walled nanotubes
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We estimate the stiffness of single-walled carbon nanotubes by observing their freestanding room-
temperature vibrations in a transmission electron microscope. The nanotube dimensions and vibration ampli-
tude are measured from electron micrographs, and it is assumed that the vibration modes are driven stochas-
tically and are those of a clamped cantilever. Micrographs of 27 nanotubes in the diameter range 1.0–1.5 nm
were measured to yield an average Young’s modulus of^Y&51.25 TPa. This value is consistent with previous
measurements for multiwalled nanotubes, and is higher than the currently accepted value of the in-plane
modulus of graphite.@S0163-1829~98!00144-1#
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I. INTRODUCTION

Carbon fibers are widely used to reinforce other mater
because of their mechanical properties and their
density.1 It is known that the strength of the fibers increas
with graphitization along the fiber axis. Therefore, carb
nanotubes, which are formed of seamless cylindri
graphene layers, represent the ideal carbon fiber and sh
presumably exhibit the best mechanical properties. This
ture is probably the most promising for applications of nan
tubes given the importance of extremely strong light-wei
composites. Theoretical calculations have predicted a w
range of Young’s moduliY for very small single shell nano
tubes @0.5–5.5 TPa~Refs. 2–4!#.19 The reference point in
these studies is theY of graphite for which the best exper
mental estimate is 1.02 TPa.5 The earliest experimental mea
surement of Young’s modulus of multishell nanotubes ga
a value 1.860.9 TPa obtained by measuring thermal vibr
tions using transmission electron microscopy~TEM!.6 Later,
a slightly smaller value of 1.3 TPa was obtained by atom
force microscopy.7 The measurement of single-shell nan
tubes is even more difficult due to their small diamet
~;1.4 nm! and because they tend to form bundles.

Here we have applied the technique of Treacyet al.6 to
measure Young’s modulus of many isolated single-sh
tubes. We also describe a least-squares optimization pr
dure for extracting accurately the nanotube dimensions
vibration amplitude directly from digital images. This proc
dure assumes only that the vibration profile is that o
clamped cantilever. We find an average value of^Y&51.25
20.35/10.45 TPa, which is consistent with the results f
multishell tubes. We discuss the implications of this resul
terms of earlier work and the acceptedY value of graphite.
PRB 580163-1829/98/58~20!/14013~7!/$15.00
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II. STOCHASTICALLY DRIVEN OSCILLATOR

The relationship between Young’s modulusY, length L,
inner and outer tube radiib anda, and the standard deviatio
s of the vibration amplitude at the tip of a nanotube at te
peratureT was presented without derivation in a previo
report.6 For completeness we present the derivation here

In the limit of small amplitudes, it is well known that th
motion of a vibrating rod is governed by the fourth-ord
wave equation

]2y

]t2
1

YI

rA

]4y

]x4
50 ~1!

which has solutions of the type

y5cos~ca2t !@B cosax1C sinax

1D coshax1E sinhax# ~2!

with

c25
YI

rA
. ~3!

a is the wave number,Y is Young’s modulus,I is the second
moment of the cross-sectional areaA, andr is the density of
the rod material. For a clamped cantilever of lengthL, the
boundary conditions are

yx5050;
]y

]x U
x50

50;
]2y

]x2U
x5L

50;
]3y

]x3U
x5L

50;

~4!

yielding the solution for thenth harmonic
14 013 ©1998 The American Physical Society
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yn~x,t !5
un

2
cos~can

2t !Fcosanx2coshanx

1
sinanL2sinhanL

cosanL1coshanL
~sinanx2sinhanx!G .

~5!

un is the amplitude of thenth harmonic at the tip,x5L. The
constraints on possible values ofan are

cosanLcoshanL521. ~6!

The total energyEn contained in the vibration moden can
be found either by calculating the kinetic energy at the
stant that cos(can

2t)50, when the deflection is everywher
zero, or by calculating the elastic energy at the instant
maximum deflection when the cantilever is momentarily s
tionary, cos(can

2t)51,

En
kinetic5FrA

2 E
0

LS ]yn

]t D 2

dxG
t5p/ca

n
2

,

~7!

En
elastic5FYI

2 E
0

LS ]2yn

]x2 D 2

dxG
t50

,

which, after substitution foryn(x,t) from Eq. ~5! and inte-
gration, both give

En5
YILun

2an
4

8
. ~8!

The kinetic energy integral ignores the small angular m
mentum component that comes from the slight rotatio
motion of the rod about the fixed end, and the elastic ene
integral assumes that the local radius of curvatureR is given
by 1/R5]2y/]x2. Both of these assumptions are valid in t
limit of small deflections.

For a cylindrical rod of lengthL and outer and inner radi
a and b, respectively, the second moment of area isI
5p(a42b4)/4. For convenience, we substitute

bn5anL ~9!

to get

En5
pbn

4

32 FY~a42b4!

L3 Gun
2 . ~10!

For simplicity, we rewrite Eq.~10! in the form

En5
1

2
cnun

2 , ~11!

where the effective spring constant for moden is cn

5pbn
4Y(a42b4)/16L3.

The values of bn are the solutions to the equatio
cosbncoshbn521. b0'1.875 104 07 for the fundamenta
mode, and b1'4.694 091 13, b2'7.854 757 44, b3
'10.995 540 73, andb4'14.137 168 39 for the first fou
overtones. Asn increases,bn'(n11/2)p.
-

f
-

-
l
y

For the next step, we need to calculate the form of
vibration profile of the tip. For a classical simple harmon
oscillator of amplitudeun , the oscillator positiony at time t
is given by

y5unsin~vt !, ~12!

where, as before,un is the amplitude which depends on th
energy of the oscillator, andv52p/ f , with f being the fre-
quency. In the intervaly to y1dy, the oscillator spends a
time dt, which is found by taking the derivative of Eq.~12!,

dy5unv cos~vt !dt ~13!

or

dt5
dy

vAun
22y2

; 2un<y<un . ~14!

The probabilityP(un ,y)dy of finding the oscillator between
y andy1dy when the amplitude isun is proportional to the
time spent in this interval,dt. After normalization, we find

P~un ,y!5H 1/pAun
22y2, uyu<un

0, uyu.un .
~15!

P(un ,y) is peaked at the extrema,y56un , and has a mini-
mum aty50. However, the energy of the system, and hen
the amplitudeun , is changing in a stochastic manner wi
time. Therefore, we need also to average over all the poss
values ofun that the system can adopt. Further, we must a
average over all of the activated modes.

Nanotube vibrations are essentially elastically relax
phonons which are in equilibrium with the ambient at te
peratureT. The probability that the system is in the statem of
energyEn5m\vn is given by the Boltzmann factor

W~m!5
exp~2m\vn /kT!

(
p50

`

exp~2p\vn /kT!

5exp~2m\vn /kT!@12exp~2\vn /kT!#. ~16!

The frequencyvn of mode n of a vibrating nanotube of
densityr is given by

vn52p f n5
bn

2

2L2
AY~a21b2!

r
. ~17!

The energy in moden is therefore quantized in units of\vn .
For typical nanotubes, we estimate thatv0 is typically in the
1 MHz–10 GHz range, thus typically\vn /kT!1 for the
first 1000 or so modes. Thus, to a very good approximat

W~m!'
\vn

kT
exp~2m\vn /kT!. ~18!

If we setEn5m\vn anddEn[\vn , then in the continuum
limit we get the probabilityW(En)dEn , that at any instant
there is betweenEn andEn1dEn of energy in the moden, to
be
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W~En!dEn'
1

kT
exp~2En /kT!dEn . ~19!

This result is expected when the thermal average numbe
phonons,kT/\vn , is high. The average energy iŝEn&
5kT, half of which comes from the kinetic energy degree
freedom, and the other half from the elastic energy degre
freedom.

The stochastically averaged probability amplitude
therefore

^P~y!&5E
0

`

P~un ,y!W~En!dEn , ~20!

which from Eqs.~15! and ~19! is

^P~y!&5
1

pkTE0

`exp~2En /kT!

Aun
22y2

dEn ; y2<un
2 . ~21!

From Eq.~8!,

un
252En /cn5

32

pbn
4

L3

Y~a42b4!
En , ~22!

therefore

^P~y!&5
1

pkTEcny2/2

` exp~2En /kT!

A2En /cn2y2
dEn . ~23!

The substitution

En5cny2~11x2!/2; dEn5cny2xdx ~24!

ensures that the conditionEn>cny2/2 is met. Thus,

^P~y!&5
cn

pkT
exp~2cny2/2kT!E

0

`

x exp~2cny2x2/2kT!dx.

~25!

The integral is easily worked out to give the Gaussian fo

^P~y!&5A cn

2pkT
expS 2

cny2

2kTD . ~26!

Using Eq.~22!, the standard deviation is

sn
25

kT

cn
5

16

pbn
4

L3kT

Y~a42b4!
. ~27!

Since all the modes are independent, their contributi
add incoherently. To average incoherently over all the mo
n, we simply add the variancessn

2 to get another Gaussia
distribution with a resultant standard deviation given by

s25 (
n50

`

sn
25

L3kT

Y~a42b4!

16

p (
n50

`

bn
2450.4243

L3kT

Y~a42b4!
.

~28!

The constant is dominated by then50 fundamental mode
which contributes 97% of its value.
of

f
of

s
s

This result is equivalent to that stated in Eq.~22! for a
single mode oscillation, except that we have replacedun with
the rms amplitudes and setE5kT/2 for the average elastic
energy in each mode.

Remarkably, the resultant rms vibration profile along t
length of the nanotube is found to be closely similar to th
for a cantilever that is displaced by a lateral forceF
5kT/s applied at the tip. The rms displacementux as a
function of positionx is given accurately by the simple form

ux5
3s

L3 S Lx2

2
2

x3

6 D , ~29!

wheres is the rms displacement at the tip.
In the case of a single-walled nanotube, because the

only one graphene layer, experimentally we measure o
the nanotube widthW. This raises the issue of how to sele
suitable values fora and b. Plausibly, we could assigna
2b5G, whereG is the graphite interlayer spacing of 0.3
nm, anda5W/21gG and b5W/22gG. g allows for the
asymmetry in the electron density of the graphenep bonds
on either side of the curved tube, but is expected to be c
to g51/2.8

Assumingg50.5, Eq.~28! can be rewritten in terms o
the single-walled tube diameterW as

s250.8486
L3kT

YWG~W21G2!
. ~30!

III. EXPERIMENT

Nanotubes prepared by the laser evaporation method9–11

were dispersed in 99.9% purity ethanol using a probe ul
sonicator. A 300 mesh holey carbon grid was dipped into
suspension and allowed to dry in air. By this method,
were usually able to find isolated single-walled nanotub
which had one free end extended over a hole in the car
support.

The samples were observed in a Hitachi H9000 NA
TEM operated at 100 kV. The lower accelerating volta
was used to increase contrast and reduce beam dam
Bright field images were collected using a Gatan model 6
slow-scan CCD camera and Digital Micrograp
v2.5 software. Samples were surveyed at a magnifi
tion of 3180 000 using an electron dose of;800 elec-
trons sec21

nm22. All measurements were done at room tem
perature. The microscope magnification was calibrated
imaging graphite lattice fringes at the eucentric specim
position, and assuming that the spacing was 0.340 nm.
actual magnification is found to be sensitive to the object
lens current. Consequently, during experiments, coarse
age focusing was accomplished by raising and lowering
specimen, and fine focusing by adjusting the objective l
current. Efforts were made to maintain the objective le
current within one part in 104 of the calibration current in
order to minimize errors in the calibration. We estimate th
the absolute image magnification is accurate to better t
61%.

We selected nanotubes that were free of large piece
debris. It is rare to find isolated single nanotubes withou
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least some trace of amorphous carbonaceous material o
exterior surface, so we tolerated some contamination p
vided at least 90% of the tube length is clean. Long na
tubes (.100 nm! tended to have excessive motion at t
tips, and would frequently develop kinks. Such nanotu
were avoided in this study.

Once a satisfactorily clean nanotube was located, it w
then ‘‘stress-tested’’ by increasing the beam current inten
by a factor of about 10 for a fraction of a second. Insecur
anchored nanotubes would twitch, shift, or even disapp
These were rejected. Bright-field images of nanotubes
did not visibly flinch under these conditions were record
on the slow-scan camera. Typically, nanotubes with f
ends in the length range 7–50 nm passed this stress te
this length range, the entire nanotube free end could be
tured on one image frame. Note that in every case the
length of the nanotube is much longer than the project
end segment that we measure. It is assumed that the
projecting over the hole is anchored by some observa
specimen feature.

The exposure time on the CCD was selected so a
acquire at least 500 counts per pixel in the hole area. F
quently, a second or third image of the same nanotube wo
be recorded to check for any undesirable variations in
image with time, such as drift or a tilting of the nanotub
We did not observe any degradation of the nanotubes u
the beam for the total doses used to record data, which w
typically <20 000 electron nm22 at 100 kV.

In almost all instances, the base of the nanotube un
observation, near the presumed anchoring point, could
brought into reasonably sharp focus. The tip, however, w
always slightly blurred and could not be brought into sha
focus. Occasionally, the nanotube base would also
blurred, indicating that the nanotube is not securely ancho
near this point. Such images were rejected.

Once all the image data had been collected, nanot
lengths and vibration amplitudes were estimated by t
methods. In method 1, images were blurred by applyin
Gaussian convolution perpendicular to the nanotube axis
ing Digital Micrograph macros. The blurred image of th
base was compared visually with the unblurred image of
tip. The Gaussian standard deviation that produced the
visual match gives an estimate of the tip vibration amplitu
s. Nanotube dimensions were estimated by direct meas
ment of the digital images. The nanotube length is estima
by measuring the distance from the tip to the presumed
choring point, a step that requires some subjective judgm

To help avert any systematic subconscious bias, the m
surements were made ‘‘blind,’’ in the sense that the cor
sponding values for Young’s modulus were computedafter
all the measurements were committed. Furthermore, e
mates were made independently by two of us~A.K. and
M.M.J.T.! to help reduce systematic biases.

In method 2, independent estimates of the nanot
length and tip vibration amplitude were obtained from im
ages of the cleanest nanotubes by a least-squares minim
tion procedure. First the digital micrographs were expan
by a factor of 4 and rotated by bilinear interpolation, so th
the nanotube images were precisely horizontal. The
aligned images were then reduced back to their original s
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The image expansion step helps minimize information l
incurred in the rotation step.

The nanotube images have now been aligned so that
length is parallel tox. The image can now be considered
comprise a series of intensity line tracesI x(y) alongy, per-
pendicular tox. In the absence of vibration and shot nois
for a perfectly horizontal nanotube, the line traces would
constant, regardless ofx. In practice, the traces will differ
because of shot noise which depends on the statistics o
illuminating electron beam. Further, since the nanotubes
vibrating, we would expect the line trace near the tip to b
blurred version of the trace near the anchoring point. Giv
the tip vibration amplitudes and the nanotube lengthL, the
change in vibration amplitude as a function of positionx is
known from the equations given in Sec. II. To a very go
approximation, the vibration amplitudeu(x) varies accord-
ing to the form given in Eq.~29!. Thus, if we know the
function I 0(y), the profileI x(y) of the whole nanotube can
be computed by convolutingI 0(y) with a Gaussian

I x~y!5
1

A2pux
E I 0~y82y!exp~2y82/2ux

2!dy8. ~31!

The nanotube lengthL and tip vibration amplitudes are
treated as unknown. In each image, we select a sectio
lengthL image that is clean of any debris or support materi
We assume that there is a missing lengthL0 to the anchor
point. Furthermore, since the nanotube tip usually has a
ferent structure to the shaft, we exclude a lengthL tip from the
analysis. Thus, the true lengthL is

L5L01L image1L tip , ~32!

whereL0 is unknown.
A least-squares fit to the image data was then carried

for the regionL0<x<L01L image, by making initial guesses
for L0 , s, and the form ofI 0(y). A good starting guess fo
I 0(y) is found by taking the average of the tracesI x(y).
Using Powell’s quadratically convergent minimizatio
procedure,12 the optimum form ofI 0(y) is found by first
generating the image corresponding to the parametersL0 , s,
and I 0(y) using Eqs.~31! and ~32!. The computed image is
subtracted from the data image that we are trying to ma
and the sum of the squares of the result is computed. P
ell’s algorithm computes an optimized profileI 0(y) that
minimizes this squared residual for a givenL0 ands. This
process is then repeated for a grid of (L0 ,s) values. The pair
of values (L0 ,s) that yields the smallest residual is used
compute Young’s modulus.

An attraction of this least-squares method is that no
tailed knowledge of the nanotube structure, microscope
focus, spherical aberration, astigmatism, or linear specim
drift is required, since these factors affect all image poi
equally. The only important assumption is that the nanotu
is uniform along its length. Thus, this method works best
the straightest, cleanest nanotube images.

IV. RESULTS AND DISCUSSION

Figure 1 shows three TEM bright field images of sing
walled nanotubes protruding over the edge of a hole i
holey carbon support film. The images have been rotated
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that the nanotubes are anchored at the left, and the fre
brating tips are to the right. The simulated full-length imag
corresponding to the best fit according to our least-squ
optimization~method 2! are shown inset in each image. Th
best fits correspond to Young’s moduli of 1.3360.2, 1.20
60.2, and 1.0260.3 TPa, respectively. When we indepe
dently estimated the length and vibration amplitude by e
using method 1, the values 1.22, 1.3, and 0.69 TPa w
obtained for these three nanotubes. This is in good ag
ment with the values obtained by the least-squares optim
tion.

The length and vibration amplitudes of a further 24 nan
tubes were estimated by method 1. The nanotube diame
were in the range 1.0–1.5 nm. These nanotubes were in
ficiently pristine to be reliably optimized by method 2. Mo
of these latter sets of nanotubes had slight visible conta
nation. Such contaminating particles will affect the vibrati
frequency by raising the moment of inertia, but will have
insignificant affect on the vibration amplitude since they
not form an extended coating. Figure 2 is a histogram sh
ing the spread in the estimatedY values for the 27 nanotubes
The mean value iŝY&51.320.4/10.6 TPa, and the media
value is a little lower, 1.1 TPa. This mean value is consist
with the three values obtained by method 2. The distribut
is not symmetrical about the mean, displaying a tail exte
ing to the higher values. To understand the significance
this spread, and the reliability of the mean value,^Y&, it is
important to discuss the experimental errors in more det

An important experimental parameter is the image m
nification. The equation forY @Eq. ~28!# depends on length

FIG. 1. TEM bright field micrographs of vibrating single-walle
nanotubes. Inserted with each micrograph is the simulated im
corresponding to the best least-squares fit after adjusting for n
tube free lengthL and tip vibration amplitudes using measuremen
method 2. The tick marks on each micrograph indicate the sec
of the nanotube shank that was fitted. The nanotube parame
including nanotube diameterW, with corresponding estimate o
Young’s modulusY, are~a! L536.8 nm,s50.33 nm,W51.50 nm,
Y51.3360.2 TPa;~b! L524.3 nm,s50.18 nm,W51.52 nm,Y
51.2060.2 TPa; and~c! L523.4 nm,s50.30 nm,W51.12 nm,
Y51.0260.3 TPa.
vi-
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measurements asa4s2/L3, which therefore depends on mag
nification M asM 23. Systematic errors inM introduce rela-
tive errors inY as DY/Y53DM /M . We estimate that our
magnification calibration is accurate to within 1%, whic
contributes a 3% error inY.

The length of each tube,L, was estimated by measurin
the projected length from the tip to the perceived anc
point, the latter usually being the entry point into a thi
clump of carbonaceous material near the edge of the h
Not all nanotubes are expected to be perfectly horizon
thus our length measurements,L8, will tend to be underesti-
mated according toL85Lcosu for a nanotube at an angleu
to the horizontal. It is quite plausible that the nanotubes
measured had an angular spread of up to about630° to the
horizontal, giving rise to a spread inL83of (0.65–1.0)3L3.
Thus, from projection errors alone, we may be systematic
underestimatingL3 by an average of about 20%. A furthe
source of error inL arises when the true anchor point lie
deeper within the carbonaceous clump than the perce
point of entry. By comparing the threeL values that were
obtained by both methods 1 and 2, we estimate the erro
locating the anchor point to be aroundDL/L'10%.

The depth of focusDF was estimated by simulating
focal series for a typical 1.4-nm-diam nanotube using
MACTEMPAS multislice program,13 and was found to be ap
proximately DF5610 nm. This is larger than the unce
tainty in the tip elevation relative to the base, which is67
nm for anL550 nm tilted at 30°. It is therefore reasonab
to ignore the contribution to the tip blurring of focal grad
ents along a tilted nanotube.

The standard deviation of the tip motion,s, was typically
in the range 1–3 nm. However, the typical image contr
across a single-walled carbon nanotube of diameter 1.41
is about 3%. In a typical image with around 1000 counts
pixel, the shot noise is also at the 3% level. Because of
low signal-to-noise, and the subjective nature of measu
ments made by method 1, two of us~A.K. and M.M.J.T.!
independently assessed the standard deviation, and th

ge
o-

n
rs,

FIG. 2. Histogram of Young’s modulus valuesY obtained from
27 nanotubes. The nanotube lengthsL and tip vibration amplitudes
s were estimated directly from the digital micrographs usi
method 1, as described in the text. The mean value is^Y&51.3
20.4/10.6 TPa.
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sults were found to be consistent with each other to wit
620%. Because of thes2 dependence, this contributes a
error of approximately640% in Y.

The nanotube widthW was estimated by taking the ave
age of several measurements near the base. Nanotubes
consistently uniform along their length. The image featu
to measure, in order to obtain accurate physical diame
were determined by simulating images of nanotubes by u
the MACTEMPAS13 multislice program. The measured acc
racy ofW for each nanotube is conservatively estimated to
about65%, contributing an error of615% in Y @see Eq.
~30!#.

Nanotubes were assumed to be at room tempera
14–16 °C, as measured by a thermocouple near the sam
From previous experiments,6 it is known that the electron
beam contributes a small amount of heating which is dep
dent on the beam intensity. This is estimated to be aro
20–40 °C. This correction will tend to increase the avera
value of Y. No adjustment was made for this temperatu
correction in the data of Fig. 2.

It is assumed in this analysis that the extraneous carb
aceous material that frequently litters the nanotubes ha
negligible impact on the stiffness. It is expected that the
ditional mass will decrease the resonant vibration freque
of the nanotubes, but not the vibration amplitude. Howev
we need to be mindful that extraneous particles may ten
deform nanotube walls locally, which may in turn lower th
stiffness because of an enhanced tendency to buckle. Fo
reason, bent and heavily contaminated nanotubes w
avoided.

It is clear from the above discussion that the expec
accuracy ofY for any individual nanotube, as estimated
method 1, will be no better than about660%. However,
when averaged over a large number of nanotubes, the a
age value will be less susceptible to random measurem
errors. We have identified two systematic errors, namely
length estimate and the temperature estimate. We have
gued that the length is systematically underestimated s
that, on average, the measured quantityL3 is only 80% of the
true value. Furthermore, the actual temperature is about
(;30 K! higher than the nominal value of 300 K. Thus th
ratio L3T may be systematically underestimated by a fac
of about 25%. The data of Fig. 2 have not been correcte
compensate for this factor.

From methods 1 and 2, we get a weighted average v
of ^Y&51.25 TPa. It is clear that we are inferring values f
the bending modulus that appear to be systematically hig
than the in-plane elastic modulus 1/S11 reported for graphite.
However, we should bear in mind that we are comparing
strongly curved, seamless, graphene sheet of the nano
with bulk planar graphite. Furthermore, we are assuming
we can assign an inner and outer radius to a single-wa
nanotube based on the graphite interlayer spacing. Given
strong (a42b4) dependence ofY on the inner and outer rad
b anda, respectively, small adjustments tob anda can have
a potentially large affect on the derived value ofY.

The accepted values for graphite have a large spread
pending on the sample and the measurement process. V
tion studies done on as-is and neutron-irradiated sin
crystal graphite14 yielded a mean value forG (51/S44, shear
modulus parallel to the basal planes! of 0.1 GPa. On neutron
n
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irradiation ~flux: 431019 neutrons/cm2!, it is believed that
the modulus is dominated byE(51/S11, Young’s modulus
parallel to the basal planes!, and the value is quoted as 36
660 GPa. However, measurements on samples with a le
to thickness ratiol /t.50 yielded higher values forE and the
true value is given as 6006200 GPa. Other workers repo
resonant bar tests that yield an average value of 895 GP
1/S11 before neutron irradiation and 940 GPa after irrad
tion. Static tests give 878 GPa and 912 GPa before and a
irradiation for 1/S11.15 Measurements on vapor-grown ca
bon fibers using a vibrating-reed technique gave an ave
value of 695 GPa with a maximum value of 1017 GPa.16 It is
worth noting that the oft-quoted 1.02 TPa value for t
modulus of graphite is actually obtained from measureme
on compression-annealed pyrolytic graphite~CAPG!.5 In
these samples, thec axes are all parallel to each other but t
a axes are arbitrarily rotated with respect to each other
the sample is not a true single crystal of graphite. Reson
bar tests on CAPG yielded an average 1/S11 of 943 GPa.
Static tests gave a similar value of 9206120 GPa. The maxi-
mum value of the in-plane 1/S11 is 1.0260.03 TPa and the
in-plane shear modulus (1/S44) ranged from 0.18 to 0.31
GPa. Clearly, the true value of the in-plane modulus
graphite is not known with certainty. The values of the oth
elastic constants for graphite are summarized elsewhe5

and they also show a significant spread in values. Theore
calculations give a value for the in-plane modulus of a 1-n
diam tube ranging from 0.5 TPa~Ref. 17! to about 5.5
TPa.4,2 Also, different trends have been predicted for t
dependence of Young’s modulus on the radius of
tube.18,17,3 However, significant changes are only predict
for tubes much smaller than those in our samples. Toge
with the narrow range of diameters in our sample and unc
tainty in the individual measurements, it is not surprising th
we cannot confirm any of these trends. Measurements
multiwalled nanotubes6 using a technique similar to that de
scribed here yielded an average value for Young’s modu
of 1.8 TPa, with an order of magnitude spread between
dividual nanotubes. This spread is probably due in part to
presence of structural imperfections in the nanotubes, suc
the nesting of cylinders which can create a joint
‘‘knuckle’’ thereby weakening the tube, and in part to e
perimental uncertainties, such as the estimation of the f
standing length and the tip vibration amplitude. Given t
experimental uncertainties in this work, and in the previo
work on multiwalled nanotubes,6 no firm conclusions can be
made about the relative average stiffness of single-wa
nanotubes versus multiwalled nanotubes. However, there
persistent indications that both have a higher Young’s mo
lus than graphite.

The observation of consistently higher values for Youn
modulus of nanotubes as compared with bulk graphite
mean one of two things. Either the particular cylindric
structure of the graphene sheet results in increased stre
or the accepted value for graphite is underestimated.
latter is a serious possibility considering the nature of
samples used in the measurement. Further studies are n
sary to resolve this issue.
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