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Electron transport in a quantum wire with realistic Coulomb interaction
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Electron transport in a quantum wire with leads is investigated with actual Coulomb interaction taken into
account. The latter includes both the direct interaction of electrons with each other and their interaction via the
image charges induced in the leads. Exact analytical solution of the problem is found with the use of the
bosonization technique for one-dimensional electrons and the three-dimensional Poisson equation for the
electric field. The Coulomb interaction is shown to change significantly the electron density distribution along
the wire as compared with the Luttinger-liquid model with short-range interactions. In dc and low-frequency
regimes, the Coulomb interaction causes the charge density to increase strongly in the vicinity of the contacts
with the leads. The quantum wire impedance shows an oscillating behavior versus the frequency caused by the
resonances of the charge waves. The Coulomb interaction produces a frequency-dependent renormalization of
the charge-wave velocityS0163-18208)04243-X

[. INTRODUCTION inside the quantum wire. Due to the image charges, the
electron-electron interaction becomes dipolelike gener-
The electron-electron interaction is generally recognizedally multipolelike) but the dependence @ on p may be
now to be fundamentally important in one-dimensiofid))  essential for the structures realized experimentally.
structures. The interaction of 1D electrons turns out to be so Second, the conductance of the mesoscopic quantum wire
significant that the Fermi liquid concept breaks down. Morestructure is knowh'® to be substantially determined by the
adequate becomes the notion of a strongly correlated statontacts of the wire with the leads. Besides, the contacts
known as Luttinger liquidLL) with bosonlike excitations?  between the quantum wire and the leads cause reflection of
The commonly used LL model treats the electron-electrorbosonlike excitations which determines the high-frequency
interaction as the short-range one. In this approach, thbehavior of the admittandet*!® Thus, the interaction of
electron-electron interaction changes the electron liquicklectrons moving in the quantum wire with leads has to be
compressibility giving rise to a renormalization of charge-taken into consideration.
wave velocity. Generally speaking, the renormalization pa- The purpose of the paper is to obtain the actual form of
rameterg is a function of the wave vectqr of boson exci- the electron-electron interaction potential in quantum wire
tations. However, within the short-range interactionstructures with leads and to investigate the phase-coherent
approach the parametgris supposed to be a constant. Pres-transport of electrons in both the dc and ac regimes. The
ently there is no unambiguous evidence that the LL reallydifficulty of this problem is caused by a nonlocal nature of
exists in quantum wires or those rejecting this concept. Théhe interaction and by the fact that in a quantum wire of finite
experiment of Taruchat al3 has shown that the dc conduc- length the translational symmetry is broken and hence the
tance of a quantum wire structure is quantized by standardlectron-electron interaction potential depends separately on
stepse?/h. This result was explained in the frame of the LL the coordinates andx’ of interacting electrons rather than
model?~® More recently, Yacobt al.”® have found a non- on the differencelx—x’|. We have found a situation in
universal conductance quantization by steps different fromwhich this problem is solved exactly in the frame of the
e’/h. One can therefore conclude that the experiments obosonization technique. It is realized when the lead surfaces
guantum wires reveal more complex behavior of 1D conducimay be approximated by planes perpendicular to the wire.
tion than the simple LL model predicts. Thus an important It is worth noting that there is an alternativeontactlesk
problem is to develop the theory for actual quantum wireapproach in studying the ac transport of electrons in quantum
structures. Application of the LL theory for this purpose wires. In this case the quantum wire is not supplied with
points out two problems. leads. The ac transport is investigated by means of measur-
First, the assumption that electrons interact with eachng the absorption or scattering of the electromagnetic radia-
other locally is evidently inadequate in the real situationtion. This situation was recently considered by Cuniberti,
since the Coulomb interaction is essentially nonlocal. ThisSassetti, and KramErfor a homogeneous quantum wire of
assumption is often justifid® by the screening effect of the infinite length. They have investigated ac conductance de-
highly conducting gate electrode. In this case the gate currefiined via the absorption of electromagnetic radiation taking
should be taken into accodhto provide the charge conser- into account the electron-electron interaction of finite range
vation and cause the theory to be gauge invafiahtence and an arbitrary distribution of the external electric field
the screening effect of conducting electrodgmtes and along the wire. It was found that both the interaction length
leads should be thoroughly analyzed and taken into considand the electric field distribution affect significantly the ac
eration in order to understand the experimental situation. Itonductance. In the present paper we show that the leads
reality, the screening by the electrodes consists in the appegrroduce an essential effect due to inhomogeneity of the
ance of image charges of the electrons which are situateelectron-electron interaction in the wire. It manifests itself in
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the charge-density distribution along the wire and the fre-
guency dependence of the impedance.

The paper is organized as follows. In Sec. Il the potential
of electron-electron interaction in a quantum wire structure
with leads is obtained for the electron interaction with the
charges induced on the leads taken into account. Section Ill
describes the equation of motion for bosonized phase field
with nonlocal interaction and gives its solution via expansion
in terms of the eigenfunctions of the electron-electron inter-
action potential. In Sec. IV, charge-density distribution in the
structure is investigated for both the dc and ac regimes. Sec-

tion V contains the calculation and analysis of the impedance F!G. 1. Schematic view of a quantum wire structure with leads,
of the quantum wire structure. a moving charge, and electric force lines.

p(r)=x(r )p(x), 1)
where x(r,) is a normalized function of the radial coordi-
The mesoscopic structure under consideration consists @fate perpendicular to the channel anck) is a function of
a quantum wire coupled to two bulki2D or 3D) regions the coordinate along the channel.
(the electron reservoiravhich serve as leads. The electrons  The potentialg;(r,r’) created by an electron density is
in the wire interact with each other both directly and via theexpressed via the Green function of the Laplace equation
surface charges which are induced on the surface of thaith zero boundary conditions at the lead surfaces.
leads. The electron-electron interaction enevgys defined The product ofp(r) and ¢;(r,r’) can be integrated over
by the product of the electron densityr) at a pointr and  the transverse coordinates andr| to give the following

the potentiaky;(r,r") created at this point by the charge at a expression for the electron-electron interaction enéfgy:
pointr’. This potential is determined by the Laplace equa-

tion with boundary conditions corresponding to the given
configuration of the leads. When calculatigg(r,r'), it is
reasonable to consider the lead surfaces as equipotential . , i
ones. This is a natural assumption. As we are interested AN explicit form of U(x,x") was found in Ref. 17 for a
mainly in the electron behavior in the quantum wire, we canrealistic situation where the e!ectrode surfaces are_two planes
assume that the characteristic times of electron processés™ —L/2 andx=L/2 perpendicular to the channgig. 1).
(such as Maxwell relaxation and plasma wavieside the N this case
reservoirs are much shorter than the electron transit time g2
through the quantum wire. This will be the case if the reser- Ux,x")=— J d2q xq|2Gq(X,X"), ©)
voirs are perfectly conducting. me

Distribution of the electron densigy(r) in the channel can € is the dielectric constant outside of the channgl,is the
be written in the form Fourier-Bessel transform of the radial functig(r,), and

Il. ELECTRON-ELECTRON INTERACTION POTENTIAL

1 ! ! ’
W=§ f f dxdX p(x)p(x")U(x,x"). 2

L sinf g(L/2+x)]sinf q(L/2—x")] if x<x',

o X) = G siniaD) | sinf{a(Li2—x)JsinTa(Li2+x)] if x=x'.

(4)

The interaction potential defined by E¢8) and(4) is shown lll. THE EQUATION OF MOTION
in Fig. 2 as a function ok for a variety ofx’, with V(x,x")

. . T linear r n f th ntum wir r r
being a normalized form o (x,x'): o study a linear response of the quantu e structure

to an external voltag¥, exp(—iwt) applied across the leads,
we can restrict ourselves to the consideration of low-energy
excitations of the electron system. The most adequate
method for this purpose is the standard bosonization
Sechnique-? We will use this technique assuming that the
electron density fluctuations are long-range ones.

V(x,x")=U(x,x")eL/e.

When the interelectron distance is larger than the wir
radius a (]x—x’|>a), the potential decreases &s~L/|x

—x'|. In the middle part of thf quantum wiré(x=x") When external voltage is applied across the electrodes,
~L/a. Near the contacts(x’ — = L/2),V goes to zero dué e electric potentialp(r) in the wire is determined by the

to the screening effect of the charges induced on the leaisson equation with the boundary conditions controlled by
surfaces. The behavior of this kind is quite general for thethe applied voltagep=0 at the left reservoir ang=V,, at
a

interaction potential regardless of the specific configuratior{he fi : : . :
. i X ght reservoir. It is convenient to present the electric
of the leads. The potential defined by E¢®.and(4) will be potential in the wire as a sum

used below in getting an exactly solvable model of the inter-
acting electron transport. ©= Qexit ;. (5)
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From the Hamiltoniar(6) we get the following equation
of motion for the phase fiel®:

?
\;/ 1 v
(9t _""'(?tq) _(?X :ﬁxq)
vg g
1 (LR
=4,/ e cpext+—J dX'U(X,x")de® |, (7)
04 0.2 0.0 0.2 0.4 mJ-Lr2

distance, x/L .
with
FIG. 2. Distance dependence of the electron-electron interaction
potential for a variety ok’. Dotted line is the envelope &(x,x)
maxima.

g:

1+9,
v=v|:\/1—gi, \/ .
1-9;
Here ¢y is the potential which would be without the wire. It
is determined by the Laplace equation with the same boun
ary conditions as the total potential The potentialy; is

defined by the Poisson equation with zero boundary condi* . L 4
tions. The potentialy; is precisely the one used in Sec. Il such a casep., is a constant inside the reservoirs. Hence the

while calculating the electron-electron interaction energyfIrSt term on the rlght-hand side of E() can be omltt_ed.
[see Eqs(2) and (3)]. Th(_e second terrf_appearlng from the eIectron-eIectron_ inter-
Thus the bosonized Hamiltonitf of 1D spinless elec- 2ction energyw) is known to be small as compared with the
trons can be taken in the form kinetic energy on the left-hand side of Ef/) when the
electron density is high. In this sense, the electrons in the
reservoirs are noninteracting although the external field is of
course ideally screened there. Thus, the right-hand side of
Eq. (7) may be dropped in the reservoirs. The solution of the
bosonized equation in the reservoirs should satisfy the con-
dition that the density wave be restricteddt—c when the
external voltage is turned on adiabatically. The boundary
conditions at the contacts between the wire and the leads
require the continuity of and the particle current. The latter

_eJ.dWKXJ)¢mKXJ)
means that«/g),® must be continuous there.
We find the exact solution of Ed7) with the electron-

/]
where® (x,t) is the phase field related to the charge excita-elec’[ron interaction potential (x,x") defined by Eqs(3)

tions, II(x,1) is the momentum density conjugate®o v is and(4). In terms of dimensionless variables,
the Fermi velocity, andj, is the backscattering parametér.
By writing this Hamiltonian, we assume implicitly that
the ground state is uniform. More careful investigation
shows that really the ground state is nonuniform due to two
factors: (i) charging of the quantum wire which occurs as aEd. (7) takes the form
consequence of the electron transfer between the wire and
the reservoirs during the process of the establishment of the
equilibrium electrochemical potential afid) Friedel oscilla-
tions near the contacts. The charge stored in the wire de-
pends on the wire radius and the background density of thelere
positive charge. This charge may be both positive and nega-
tive. Under certain conditions the wire remains neutral. The
charging effect will be investigated elsewhere. In the present
paper the ground state is assumed to be neutral. The Friedel
oscillations of the electron density have a characteristic ~ i
length of the order of the Fermi wavelength. Since we reN€ operatolV is defined as
strict our consideration by the long-range variation of the

d- Following Refs. 4-6, we extend the one-dimensional Eq.
(7) to the reservoirs assuming that the electron density inside
them is extremely high and their conductivity is ideal. In

d
H= f %UF[(]-"—91)72H2+(1_gl)(‘9x®)2]

dxdx

xd
—Z(QXCD)U(X,X’)MX,(I)), (6)
2

vd
U= — ,
egLV,

Pext
f= v,

d

u vdu ; 02U
df d_f+ﬁ d_f_ (f) + u=0. (8)

electron density, the ground state may be considered as uni-
form.
The long wave component of the electron dengitys

related tod by where

N 1/2
Viy= J d¢’
-1/2

V(&E)U(E), (€)



13 850 V. A. SABLIKOV AND B. S. SHCHAMKHALOVA PRB 58
’ = dy ,| SNy (1/2+ §)]siniy(1/2= )] if £<¢',
V(§,§ ):ZJ’ —|Xy| . . : ' : ’ (10)
o sinhy sinHy(1/2—¢)]sinHy(1/2+¢")] if &>¢'.
|
The electron density in standard units is related tdoy > 1
D(Q)=2 (19)

2eqV,
hv

p(§)=— ug(é). 11

After solving Eq.(8) in the reservoirs we use the conti-
nuity of the electron flow and the phadeat the contacts to
obtain the boundary conditions directly to Ef) in the inner
region of the quantum wire; 1/2<¢<1/2,

UgiiQ§U|§:;l/2:0. (12)

The integro-differential equation of the form E&) may

A=1 472n2(1+ Bh,y) — Q2

IV. ELECTRON DENSITY DISTRIBUTION

The purpose of this section is to clarify how the real Cou-
lomb interaction affects the value and the distribution of the
charge density in the quantum wire structure.

First of all, let us consider a limiting case of the short-
range interaction. In this cas€(x,x")e« §(x—x") and hence
the eigenvalues are independentrofind A,,=\. All the
sums are easily calculated, which results in the following
expression for the normalized electron density:

be solved via an expansion in terms of the eigenfunctions of

the operatoV/. It is easy to verify that the functions

Un(€)=V2 sin , n=123...,

mn

L2
&t3

are the eigenfunctions of defined by Eqs(9) and(10) with
the eigenvalues
o d
A, =2 J’ yay
0

V() "~

|Xy|2-

g*sin(Q* ¢§)
Q1+ BN g*cogQ*/2)—i sin(Q*/2)

where renormalized valuesg*=g/\1+B\x and Q*
=Q0/{1+ B\ are introduced. The densip(é) calculated ac-
cording to Eq.(20) coincides exactly with that found in Ref.
15 in the framework of the standard LL model with the in-
teraction parameteg=g*.

In the limit of Q— 0, Eqg.(20) yields

ug(é)= (20)

ug(é)= (21)

1+B\°

For the geometry of the sample under consideration, the

external potentialf(£) is a linear function which may be
expanded in terms af,(£) with evenn.
The exact solution of Eq(8) with the boundary condi-

With increasing frequency, the charge waves appear which
have resonanc&salong the wire wherf)=27n\1+ B\.
Another case will be useful in what follows as a reference

tions (12) can be obtained via the expansion in terms ofpoint to demonstrate the Coulomb interaction effect. It is the
Un(€). As a result, we get the following expressions for thecase of noninteracting electrons which correspond8=+®

dimensionless electron density(£):

(€)= 21 cosi2mn(é+1/2)] (14)
and the phase field(¢),
-
u(§)=A(Q)—nZl 5o cog2an(é+1/2)], (19
where
~B(O Amn (16)
cn=B( )4w2n2(1+/3>\2n)—92’
A 1 1-4igQD(Q) n
=9 2ig+Q-4ig02D(Q)’
B(Q) —219 (18

T 2ig+0-4ig02D(Q)

in Egs.(20) and(21).

For the case of the realistic interaction, the electron den-
sity distribution given by Eq(14) is generally more compli-
cated. However, simple results are obtained for the regions
near the contacts and in the middle part of the wire, taking
into account the specific behavior ®f versusn. It is deter-
mined by the fact that the radial functigs{r ) is located in
the region of radiusa which is much shorter than the wire
length L, i.e., a=al/L is a small parameter. The results
which will be given below are qualitatively valid for any
localized functiony(r,). To be specific, we will use the
Gaussian form fory(r,) when it is necessary to bring the
calculations to final form. One obtains that varies slowly
with n for 7an<1 and\, decreases as 2 for ran>1.

In the vicinity of the contacts, the main contribution to the
sum in Eq.(14) is due to the larger terms for which an
asymptotic expression of,~n~? can be used. Thus the
following expression for the normalized electron density is
obtained in the vicinity of the left electrod€1/2+ &) <1]:

B(Q) sinh(év28/a?—0?)
2 sinh(\28/a2-Q%2)’

ug(é)~— (22
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FIG. 3. Distribution of the dc electron densify (thick solid FIG. 4. Electron density distribution along the wire for a set of

line) and the potential (thin solid ling along the wire for long- frequencies. The curves are labeled _by the normalized frequen_cy
range Coulomb interaction. The dashed line is the density distribul '€ Parameters used in the calculations are the same as in Fig. 3.
tion according to the LL model with., the dotted line is that for

noninteracting electrons. The parameters used are the Fermi enerfiteraction parametey« is turned on, the density distribu-
sp=5meV anda=0.02. The interaction parametgrwas calcu-  tjon remains lineatdashed ling But the slope goes down as
lated to be 0.35. a result of a decrease in the electron liquid compressibility.

. ] . ) Note that the boundary value of the electron density also
with B({2) being defined by Eq(18). Equation(22) shows  gecreases.

that (i) u; decreases with the distance from the contact as \when the actual Coulomb interaction is turned on, the
sinh(/l), with characteristic length being electron density distribution is changed qualitativéllyick
line in Fig. 3. As compared with the noninteracting case, the
charge density in the middle part of the wire decreases,
\/m’ which may be interpreted as neutralization of the negative
and positive charges due to their mutual attraction. Towards
(i) at =0, the boundary value af, is equal to 1/2 and is  the contacts the charge density increases reachif(p at
independent of the interactidn. the boundaries. This behavior may be understood from the
In the middle part of the wire, Eq14) may be simplified  fact that near the contacts the charges in the wire are neu-
when « is exponentially small, i.e.;-In «>1. In this case tralized by the image charges in the electrodes.
the sum in Eq(14) may by estimated assuming On the other hand, if we compare the Coulomb interaction
_ > case with the short-range interaction model, we find that the
M=No=—In(27%a%) —y, actual Coulomb interaction leads to an increase of the elec-
y~0.577 2 . .. being Euler's constant. This calculation re- tron density fluctuation near the contacts. This fact may be
sults in the same equation as HO) for the short-range interpreted as a result of the decrease in the interaction pa-

a
| =

interacting electron gas, whekeshould be replaced by,.  rameterg due to screening the electron-electron interaction
This is equivalent to introducing an effective interaction pa-by the electrode.
rameter At finite frequency, this near-contact effect of the Cou-
lomb interaction is preserved up to a characteristic frequency
9 Q,,= 2B/ «, above which the exponentially decreasing part
Qett ™~ ——— of p(x) disappears.
1+ BN %ua) eIectFr)iE potentiap is easily calculated using E¢),
into the LL model. Green function(4), and the electron density(r) found
For the sake of simplicity, we suppoge=1 below. above. Distribution ofp(¢) along the quantum wire is shown

The effect of the Coulomb interaction on the electron dendn Fig. 3. A good proportionality is found betwegnand ¢
sity distribution in the quantum wire is demonstrated by Fig.for dc conditions wher/L <1:
3 for the dc condition when a positive potential is applied to
the left electrode with respect to the right one. Under the 9
action of the external electric field, the electron system in the p(&)~const —ep(§),
guantum wire is polarized: the electron liquid is compressed m
in the left part of the wire and decompressed in the right one.
Respectively, at the left end of the quantum wire the exces- The main effect observed when the frequency grows is
sive electrons appear while at the right end the electron denthe appearance of the traveling charge waves. This is illus-
sity is decreased. If the electron-electron interaction is omittrated by Fig. 4, where the real part of the normalized elec-
ted[see the dotted line in Fig. 3 and E&1) with 3=0], the  tron density is shown as a function of the distance for a
electron density decreases linearly with the distance, with theaumber of frequencies. The curves shown in Fig. 4 were
boundary value of the normalized density being equal tabtained by numerical calculation of E@8).2° The fre-
+1/2. When the short-range interaction with the effectivequency is given in a normalized form
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ol V. THE IMPEDANCE
. 2muE The electron current in a quantum wire is determined by
the time derivative of the phase fildn the terms of the
as labels to the curves. normalized phase, the current is
Our analytical solution given by Eqél4) and(16) shows
that there is a set of characteristic frequenékswhich are 2i weZgl
determined by the poles & (€2): j(X,w)=— Tu(x,w)va. (26)
Q=21+ BNy (23)  The current calculated in such a way depends on the coordi-

nate x along the wire. However, the electric currefieas
For Q=0 the electron density is a standing wave with Which is detected by a measuring device is obviously inde-

zeros at the contacts, being the wave number: pendent ofx. This current is defined as a charge flow
through the leads. Its formation process is analyzed in Ap-
(du sif2mn(é+1/2)] pendix A as applied to the specific quantum wire structure
-] o . considered here. The measured current is the sum of a trivial
dé 47n(1+ Bhyy,)

n capacitance current and the current caused by the quantum

) wire presence. According to the Shockley theorérthe lat-
It is noteworthy that the electron flow turns to zero at thei, ig

contacts simultaneously with the electron density. Thuys

is the resonant frequencies of the charge waves in the quan- 1 (L2
tum wire. Under the resonant condition the electron density jw_E f
perturbation is locked inside the wire.

Equation(23) shows that the frequenc§),, depends on
the wave number 2n/L in a nonlinear manner due to the
dependence of, uponn. Forn—c, the resonant frequency e? _
is proportional to the wave number which corresponds to the Jo=177 29A(Q)Va,
soundlike dispersion. For low wave numberfn
<(wa) 1], Q, is noticeably higher than one expects from with A(Q2) being defined by Eq(17). This results in the
the soundlike dispersion. following expression for the quantum wire structure imped-

It is instructive to compare Eq23) with the dispersion ance:
equation for charge waves in an infinite quantum wire which )
was found by Schul? using the bosonization technique, 7(Q)= ﬂz 1 iQ 27)

€| 1-4igap(Q) 23/

dXj(X,w).
—L/2

Due to Egs(15) and(26), the currentj,, becomes

Q(p)=pV1+BVy, (24) _ _

In what follows, the impedance is analyzed rather than the
wherep is the wave vector normalized bynZL andV, is  admittance which is usually considered, because the fre-
the Fourier transform of the interaction potential, which isquency dependence of the impedance shows more pro-
approximated by the modified Bessel functiig(ap). A  nounced features caused by the charge waves. The real part
similar dispersion law was obtained by Das Sarma and®f Z is
Hwang! for 1D plasmons in the long-wavelength limit in
the frame of the random-phase approximation taking into h 1
consideration the more general form of the interaction poten- ReZ= g 1+[490D(Q) ]2 (28)
tial. Equation(24) differs from Eq.(23) in the replacement
N2 by V. A reasonable approximation far,, is When— 0, the impedance is equal kde? and is indepen-

dent of the interaction parametg The frequency depen-
Non~exp(2ma’n?)E (2w a’n?), (25) dence of R& is mainly governed by that ob(Q). The
resonant frequencidg?,, are by definition the poles @((2).
where E;(2) is the exponential integral. It is worth noting Between the neighboring poles, there is a zero number of
that in the limitL—o, Eq.(25) is the same as the Fourier D({)). Equation(28) shows that R&=0 when|D|— and
transform of the interaction potential used in Ref. 16 whenReZ=h/e’ when D—0. Thus with increasing frequency,
the screening length is much larger than the quantum wir&keZ oscillates between zer@vhich occurs at the resonant
diameter. On setting=27n and comparing the expressions frequencies andh/e?, these limiting values being indepen-
(23) and (24), one can see that they are close whean dent of the interaction. The frequency dependence of Re
<1 and differ significantly in the opposite case. illustrated by Fig. 5, where three cases are compared: nonin-
One can say that Eq23) is a discrete version of the teracting electrons, the LL model with short-range interac-
dispersion relation for 1D electrons which takes correctlytion, and the electrons with actual Coulomb interaction.
into account the electron-electron interaction in a finite 1D  An interesting result is that R&=0 for the resonant fre-
system. It will be shown below that the discrete character ofjuencies. Under resonant condition the time-dependent evo-
the resonant frequencié, of finite quantum wire results in lution of the electron density is essentially oscillations be-
strong peculiarities of the frequency dependence of admittween the two ends of the wire, and electrons are not emitted/
tance. absorbed by the contacts. As a consequence, the electric
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FIG. 5. Real part of the impedance versus the normalized fre-

guencyv for true long-range interactioG—), LL approach withg

FIG. 6. Imaginary part of the impedance versus the normalized
=0.63(---), and noninteracting electroris -).

frequencyw.

~y

current component in-phase with the applied voltage van- Im Z= E& 1+ zi - ,
ishes, and the real part of both the admittance and the im- e’ 29 w2 7=1 n?(1+ Bhyy)
pedance turns to zero. However, in reality there is a finite

dissipation which was not taken into account. The inclusiorto estimate the second term. If the electron-electron interac-

of the dissipation into calculations should restrict the mini-tion is omitted (3:0,52 1), the second term is equal to 1/3.
mum of ReZ by some low value.

Upon increasings, the second term decreases andZme-
The resonances of Reoccur when the frequency is a mains negative in spite of the fact that the backscattering
multiple of the inverse time of flight of electron excitations aramete@ slightly increases when the interaction is turned
along the quantum \{vire2.4This conclusion was confirmed fo'}c))n. Thus the reactive part of the impedance is always induc-
both the noninteractirfg™* electrons and the short-range in- iy if the electron-electron interaction is repulsive indepen-
teracting electrons in the LL mod&l.The fact that in the d

. : : = dent of the interaction strength.
case of the Coulomb interaction the impedance oscillations The pehavior of the impedance we have obtained here

are nonperiodic may be interpreted as a result of thegrejates with that found for the case of both the short-range
frequency-dependent renormalization of the charge-wave V&xeractiort® and noninteracting electrod.Somewhat dif-

locity due to the Coulomb interaction. At low frequency, the forent hehavior of the impedance was found recently in Ref.
velocity renormalized by the Coulomb interaction is essen- g or 5 quantum wire without leads based on a rather gen-

tially larger thanvg. The resonance frequency SpectruMery| anproach, which allows one to consider an arbitrary dis-
shows that the velocity decreases with frequency. Itis worthginution of the external electric field along the quantum

while to note th_at the phasg velocity is important sincg theyire. In this case the impedance was shown to include both
resonant conditions are obviously related to the wave intefgye inductive and capacitive components. This difference
ference.

: . . originates from the different experimental situation which

The imaginary part of the impedance may be presented iyas considered. In Ref. 16, a homogeneous wire of infinite

the form length with a continuous spectrum of eigensolutions was ex-
_ amined which results in a dispersion relatior w(k). The

h 490QD(Q)

resonant feature of the impedance is caused by the inflection
g 1+[4§QD(Q)]Z’ (29 pqint of w(k) wher_e _the group velocity reaches a minimum,
with the characteristic wavelength of the charge waves being
where of the order of the wire radius. In the present paper, we
consider a more specific situation of a finite wire restricted
hL by leads with a discrete spectrum of eigenfunctions. The
T resonances we have found are attributed to the finite length
2€“vE of the wire. They appear when the characteristic wavelength
of the charge waves is of the order of the wire length, i.e., the
The frequency dependence of Erconsists in the linear frequency is much lower than the resonant frequency which
decrease caused by the first term in the brackets and oscillappears in Ref. 16.

tions around this dependence due to the second term. This The total admittance of the quantum wire structure is

behavior is illustrated by Fig. 6. The linear dependence oformed by both the quantum wire impedargedefined by
the ImZ on the frequency is obviously dominating, which Eq. (27) and the interelectrode capacitar@g which is nec-
allows one to interpretL.; as a frequency-independent essarily present there. Using Eé3) one obtains
inductance?

Im Z= —wLeff—i-

Ler=

When the frequency is small, the second term on the

—i 2
right-hand side of Eq(29) is comparable with the first one. Yo @)= l—iwC(): ReZ—-i(Im Z+wColZ[%
In this case we can expand EQ9), Z

FE . (30
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It is of interest to find the eigenfrequencies of the admit-model case where the electrodes are plates perpendicular to
tance (the impedancewhich describe the behavior of the the wire.
system under consideration as an element of an electric cir- We have found that the actual Coulomb interaction affects
cuit. They are known to be determined by the poles andgtrongly the electron density distribution along the wire in
zeros of the admittanoghe impedance The admittance ze- comparison with that in the case of short-range interacting
ros characterize the system when the external circuit is opeelectrons in the conventional LL model. The nonlocal Cou-
while the poles correspond to the short-circuit case. lomb interaction manifests itself first of all in the noticeable

Equation(30) shows that the poles of,,; coincide with  increase of the charge density in the vicinity of the contacts
the zeros o (or the poles of the quantum wire admittance with leads. Here the electron density perturbation decreases
It follows from Egs.(27) and(19) that there is only one set exponentially with the distance from the contact. This effect
of eigenfrequencies which are complex with a negativeds essential when the frequency is not too high (
imaginary part corresponding to decaying fluctuations. Sev<a~1\23).
eral authors have found two sets of the eigenfrequencies in Another effect of the Coulomb interaction is the renor-
the case of short-range interacting electrons for a threemalization of the charge-wave velocity. Namely, in contrast
terminal structurE' or using another way for the calculation with the short-range LL model the long-range Coulomb in-
of the observed currenf. Both sets of eigenfunctions also teraction causes the frequency-dependent renormalization of
describe the decaying fluctuations. the charge-wave velocity. This effect manifests itself in the

Of more interest, in our opinion, are the zerosYgf((2).  frequency dependence of the real part of the impedance.
We show that in this case the conditions can be found undewith increasing frequency R oscillates between two lim-
which the eigenfrequencies are real and charge-wave excititing values which are independent of the interaction. These
tions are very slowly decaying. According to E0), Y,  are zero andh/e?. The fact that R& becomes zero is related

=0 when two equations are satisfied simultaneously: to the resonances of the charge waves along the wire length.
Such resonances occur also when there is no long-range in-
ReZ(Q)=0, 31 teraction. The Coulomb interaction causes the resonances to
be nonequidistant in frequency, which means that the charge-
Im Z(Q)+ QuvCy 1Z(Q)|2=0. (32 Wwave velocity is fre'qugncy—dep_endent. At low frequency. the
L charge-wave velocity is essentially larger than the Fermi ve-

IIocity. With increasing frequency, the charge-wave velocity

The first equation is obviously satisfied by the set of readecreases and tends asymptotically to the Fermi velocity.

frequencieg) , defined by Eq(23). The second equation can
also be satisfied at one of frequencieg if the capacitance
C, is appropriately fitted, for instance, via changing the lead ACKNOWLEDGMENTS
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Physically, Eq.(31) means the absence of dissipation while

Eq. (32) is a resonant condition for the circuit which consists
of the quantum wire inductance and the interelectrode ca-
pacitance. Under this condition, the resonant frequency of The currentj .,sbeing detected by the measuring device
the charge waves in the wire coincides with that ofithgC,  in the external circuit is equal to the charge flow in the leads.
circuit, which results in a strong increase of the charge-wav&ince the currents in the left and right leads are obviously
amplitude. equal to each other, let us consider the current in the left
electrode. It is equal to the sum of the charge flow through

VI. CONCLUSION the wire j(x=—L/2) and the charge stored at the lead sur-

. . . . face per unit time:
In this paper we have investigated the linear transport of

interacting electrons in a quantum wire of mesoscopic length dQs

with massive leads. The key point is the full enough account jmeas i lx=—L2t at (A1)

of the actual Coulomb interaction inside the wire and of

three-dimensional electric field in the surrounding mediaThe chargeQ, consists of two components. One is the ex-
The Coulomb interaction in a mesoscopic quantum wire internal charge caused by the applied voltage if the wire is
cludes both the direct interaction of electrons with each otheabsent,Q,,.=C,V,, with C, being the mutual capacity of
and their interaction via the image charges induced on theéhe electrodes. The other component is the ch&)gg in-
leads. We have found an exact analytical solution of thejuced by the charges located within the wire. The latter is
problem. This has become possible due(ifouse of the determined as

bosonization technique which is well suited to consider the

low-energy excitation of 1D interacting electrons, afiid

solving the equation of motion for the bosonic phase field by Qina= Lds"’

expansion in terms of the eigenfunctions of the electron-

electron interaction operator, which have been found for avhere

Co

APPENDIX: THE CURRENT BEING MEASURED
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€ do(r) eral Shockley theorertt. For arbitrary form and configura-
o= Ay an tion of the leads the Shockley theorem is presented as
follows:
¢ is the potential of the charge distributed along the wire, 1 (L2 dv
andn is the outward normal to the lead surface. The poten- i meac o f dx'j(x' H)F(x')+Cy ——,
tial ¢ is expressed in terms of the charge dengity via the Va J-Le dt
Green functionG(r,r’) of the Laplace equation with zero \ynareyv
boundary conditions at the lead surfaces.
Direct calculation results in

(A4)

a is the potential difference between the leads and
F(x) is the electric field along the electron trajectory due to
V,. According to the original derivatiof?, the field F(x)
appears here as a result of using the reciprocity theorem
when calculating the charge induced in the leads by the
charges moving along the wire. Thus(x) has a sense of
the external electric field which does not include the polar-
ization of the 1D electron system.

ap i Recently>?® a question was discussed regarding which
= electric field determines the measured electric current in the
ot X quantum wire—the external field or the internal one—which
depends on the polarization of 1D electrons. In this connec-
tion we note that in our case the current calculated according

dG4(X,x")

fLQ
ing=—¢€ dx’ p(x’,t
de L P( ) X

x=fL/2,q=O.
Using Eq.(4) and the continuity equation

we obtain the induced current

dQing . L 1 (LR _ to Eq. (A4) does not depend on what electric field is used.
at —J< BT R J’,L/de,j(X,’t)' (A2)  The internal electric field is defined by the right-hand side of
Eq. (7), where the first term is the external fiefd,; and the
wherej(x,t) is the particle current in the wire. second one is the induced fielt, 4. It is easy to see using
Combining Egs(A1) with (A2) one obtains Egs. (26), (14), and (15 that the integral of the product
J(X)Fing(x) is zero:
_ 1 (LR _ YA
Jmeas:E J dx’j(x',t)+Cq T (A3)
~Li2

f fl_/zl dxdx (1) IV(X,X") 9P (X ):O
—L/2

oX '
The first term in Eq(A3) is a current induced by electrons X

moving in the wire, while the second one is a trivial capaci-Since in our casd-.; is independent ok, the measured
tance current. EquatiofA3) is a particular case of the gen- current can be found from E@A3).
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