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Electron transport in a quantum wire with realistic Coulomb interaction
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Electron transport in a quantum wire with leads is investigated with actual Coulomb interaction taken into
account. The latter includes both the direct interaction of electrons with each other and their interaction via the
image charges induced in the leads. Exact analytical solution of the problem is found with the use of the
bosonization technique for one-dimensional electrons and the three-dimensional Poisson equation for the
electric field. The Coulomb interaction is shown to change significantly the electron density distribution along
the wire as compared with the Luttinger-liquid model with short-range interactions. In dc and low-frequency
regimes, the Coulomb interaction causes the charge density to increase strongly in the vicinity of the contacts
with the leads. The quantum wire impedance shows an oscillating behavior versus the frequency caused by the
resonances of the charge waves. The Coulomb interaction produces a frequency-dependent renormalization of
the charge-wave velocity.@S0163-1829~98!04243-X#
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I. INTRODUCTION

The electron-electron interaction is generally recogniz
now to be fundamentally important in one-dimensional~1D!
structures. The interaction of 1D electrons turns out to be
significant that the Fermi liquid concept breaks down. Mo
adequate becomes the notion of a strongly correlated s
known as Luttinger liquid~LL ! with bosonlike excitations.1,2

The commonly used LL model treats the electron-elect
interaction as the short-range one. In this approach,
electron-electron interaction changes the electron liq
compressibility giving rise to a renormalization of charg
wave velocity. Generally speaking, the renormalization
rameterg is a function of the wave vectorp of boson exci-
tations. However, within the short-range interacti
approach the parameterg is supposed to be a constant. Pre
ently there is no unambiguous evidence that the LL rea
exists in quantum wires or those rejecting this concept. T
experiment of Taruchaet al.3 has shown that the dc condu
tance of a quantum wire structure is quantized by stand
stepse2/h. This result was explained in the frame of the L
model.4–6 More recently, Yacobyet al.7,8 have found a non-
universal conductance quantization by steps different fr
e2/h. One can therefore conclude that the experiments
quantum wires reveal more complex behavior of 1D cond
tion than the simple LL model predicts. Thus an importa
problem is to develop the theory for actual quantum w
structures. Application of the LL theory for this purpos
points out two problems.

First, the assumption that electrons interact with ea
other locally is evidently inadequate in the real situati
since the Coulomb interaction is essentially nonlocal. T
assumption is often justified9,10 by the screening effect of th
highly conducting gate electrode. In this case the gate cur
should be taken into account11 to provide the charge conse
vation and cause the theory to be gauge invariant.12 Hence
the screening effect of conducting electrodes~gates and
leads! should be thoroughly analyzed and taken into cons
eration in order to understand the experimental situation
reality, the screening by the electrodes consists in the app
ance of image charges of the electrons which are situ
PRB 580163-1829/98/58~20!/13847~9!/$15.00
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inside the quantum wire. Due to the image charges,
electron-electron interaction becomes dipolelike~or gener-
ally multipolelike! but the dependence ofg on p may be
essential for the structures realized experimentally.

Second, the conductance of the mesoscopic quantum
structure is known4,13 to be substantially determined by th
contacts of the wire with the leads. Besides, the conta
between the quantum wire and the leads cause reflectio
bosonlike excitations which determines the high-frequen
behavior of the admittance.6,14,15 Thus, the interaction of
electrons moving in the quantum wire with leads has to
taken into consideration.

The purpose of the paper is to obtain the actual form
the electron-electron interaction potential in quantum w
structures with leads and to investigate the phase-cohe
transport of electrons in both the dc and ac regimes. T
difficulty of this problem is caused by a nonlocal nature
the interaction and by the fact that in a quantum wire of fin
length the translational symmetry is broken and hence
electron-electron interaction potential depends separatel
the coordinatesx andx8 of interacting electrons rather tha
on the differenceux2x8u. We have found a situation in
which this problem is solved exactly in the frame of th
bosonization technique. It is realized when the lead surfa
may be approximated by planes perpendicular to the wir

It is worth noting that there is an alternative~contactless!
approach in studying the ac transport of electrons in quan
wires. In this case the quantum wire is not supplied w
leads. The ac transport is investigated by means of mea
ing the absorption or scattering of the electromagnetic ra
tion. This situation was recently considered by Cunibe
Sassetti, and Kramer16 for a homogeneous quantum wire o
infinite length. They have investigated ac conductance
fined via the absorption of electromagnetic radiation tak
into account the electron-electron interaction of finite ran
and an arbitrary distribution of the external electric fie
along the wire. It was found that both the interaction leng
and the electric field distribution affect significantly the
conductance. In the present paper we show that the le
produce an essential effect due to inhomogeneity of
electron-electron interaction in the wire. It manifests itself
13 847 ©1998 The American Physical Society
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the charge-density distribution along the wire and the f
quency dependence of the impedance.

The paper is organized as follows. In Sec. II the poten
of electron-electron interaction in a quantum wire struct
with leads is obtained for the electron interaction with t
charges induced on the leads taken into account. Sectio
describes the equation of motion for bosonized phase fi
with nonlocal interaction and gives its solution via expans
in terms of the eigenfunctions of the electron-electron int
action potential. In Sec. IV, charge-density distribution in t
structure is investigated for both the dc and ac regimes. S
tion V contains the calculation and analysis of the impeda
of the quantum wire structure.

II. ELECTRON-ELECTRON INTERACTION POTENTIAL

The mesoscopic structure under consideration consis
a quantum wire coupled to two bulky~2D or 3D! regions
~the electron reservoirs! which serve as leads. The electro
in the wire interact with each other both directly and via t
surface charges which are induced on the surface of
leads. The electron-electron interaction energyW is defined
by the product of the electron densityr~r ! at a pointr and
the potentialw i(r ,r 8) created at this point by the charge at
point r 8. This potential is determined by the Laplace equ
tion with boundary conditions corresponding to the giv
configuration of the leads. When calculatingw i(r ,r 8), it is
reasonable to consider the lead surfaces as equipote
ones. This is a natural assumption. As we are intere
mainly in the electron behavior in the quantum wire, we c
assume that the characteristic times of electron proce
~such as Maxwell relaxation and plasma waves! inside the
reservoirs are much shorter than the electron transit t
through the quantum wire. This will be the case if the res
voirs are perfectly conducting.

Distribution of the electron densityr~r ! in the channel can
be written in the form
ir
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r~r !5x~r'!r~x!, ~1!

wherex(r') is a normalized function of the radial coord
nate perpendicular to the channel andr(x) is a function of
the coordinate along the channel.

The potentialw i(r ,r 8) created by an electron density
expressed via the Green function of the Laplace equa
with zero boundary conditions at the lead surfaces.

The product ofr~r ! and w i(r ,r 8) can be integrated ove
the transverse coordinatesr' and r'8 to give the following
expression for the electron-electron interaction energy:17

W5
1

2 E E dxdx8r~x!r~x8!U~x,x8!. ~2!

An explicit form of U(x,x8) was found in Ref. 17 for a
realistic situation where the electrode surfaces are two pla
x52L/2 andx5L/2 perpendicular to the channel~Fig. 1!.
In this case

U~x,x8!5
e2

pe E d2quxqu2Gq~x,x8!, ~3!

e is the dielectric constant outside of the channel,xq is the
Fourier-Bessel transform of the radial functionx(r'), and

FIG. 1. Schematic view of a quantum wire structure with lea
a moving charge, and electric force lines.
Gq~x,x8!5
L

qL sinh~qL! H sinh@q~L/21x!#sinh@q~L/22x8!# if x,x8,

sinh@q~L/22x!#sinh@q~L/21x8!# if x.x8.
~4!
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,
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es,
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The interaction potential defined by Eqs.~3! and~4! is shown
in Fig. 2 as a function ofx for a variety ofx8, with V(x,x8)
being a normalized form ofU(x,x8):

V~x,x8!5U~x,x8!eL/e2.

When the interelectron distance is larger than the w
radius a (ux2x8u@a), the potential decreases asV;L/ux
2x8u. In the middle part of the quantum wireV(x5x8)
;L/a. Near the contacts (x,x8→6L/2), V goes to zero due
to the screening effect of the charges induced on the
surfaces. The behavior of this kind is quite general for
interaction potential regardless of the specific configurat
of the leads. The potential defined by Eqs.~3! and~4! will be
used below in getting an exactly solvable model of the int
acting electron transport.
e

d
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n

-

III. THE EQUATION OF MOTION

To study a linear response of the quantum wire struct
to an external voltageVa exp(2ivt) applied across the leads
we can restrict ourselves to the consideration of low-ene
excitations of the electron system. The most adequ
method for this purpose is the standard bosonizat
technique.1,2 We will use this technique assuming that th
electron density fluctuations are long-range ones.

When external voltage is applied across the electrod
the electric potentialw~r ! in the wire is determined by the
Poisson equation with the boundary conditions controlled
the applied voltage:w50 at the left reservoir andw5Va at
the right reservoir. It is convenient to present the elec
potential in the wire as a sum

w5wext1w i . ~5!
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Herewext is the potential which would be without the wire.
is determined by the Laplace equation with the same bou
ary conditions as the total potentialw. The potentialw i is
defined by the Poisson equation with zero boundary co
tions. The potentialw i is precisely the one used in Sec.
while calculating the electron-electron interaction ene
@see Eqs.~2! and ~3!#.

Thus the bosonized Hamiltonian2,18 of 1D spinless elec-
trons can be taken in the form

H5E dx

2p
vF@~11g1!p2P21~12g1!~]xF!2#

2eE dxr~x,t !wext~x,t !

1E E dxdx8

2p2
~]xF!U~x,x8!~]x8F!, ~6!

whereF(x,t) is the phase field related to the charge exc
tions,P(x,t) is the momentum density conjugate toF, vF is
the Fermi velocity, andg1 is the backscattering parameter18

By writing this Hamiltonian, we assume implicitly tha
the ground state is uniform. More careful investigation19

shows that really the ground state is nonuniform due to
factors:~i! charging of the quantum wire which occurs as
consequence of the electron transfer between the wire
the reservoirs during the process of the establishment of
equilibrium electrochemical potential and~ii ! Friedel oscilla-
tions near the contacts. The charge stored in the wire
pends on the wire radius and the background density of
positive charge. This charge may be both positive and ne
tive. Under certain conditions the wire remains neutral. T
charging effect will be investigated elsewhere. In the pres
paper the ground state is assumed to be neutral. The Fr
oscillations of the electron density have a characteri
length of the order of the Fermi wavelength. Since we
strict our consideration by the long-range variation of t
electron density, the ground state may be considered as
form.

The long wave component of the electron densityr is
related toF by

FIG. 2. Distance dependence of the electron-electron interac
potential for a variety ofx8. Dotted line is the envelope ofV(x,x)
maxima.
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From the Hamiltonian~6! we get the following equation
of motion for the phase fieldF:

] tS 1

vg̃
] tF D 2]xS v

g̃
]xF D

5]xFe wext1
1

p E
2L/2

L/2

dx8U~x,x8!]x8FG , ~7!

with

v5vFA12g1
2, g̃5A11g1

12g1
.

Following Refs. 4–6, we extend the one-dimensional E
~7! to the reservoirs assuming that the electron density ins
them is extremely high and their conductivity is ideal.
such a case,wext is a constant inside the reservoirs. Hence
first term on the right-hand side of Eq.~7! can be omitted.
The second term~appearing from the electron-electron inte
action energyW) is known to be small as compared with th
kinetic energy on the left-hand side of Eq.~7! when the
electron density is high. In this sense, the electrons in
reservoirs are noninteracting although the external field is
course ideally screened there. Thus, the right-hand sid
Eq. ~7! may be dropped in the reservoirs. The solution of t
bosonized equation in the reservoirs should satisfy the c
dition that the density wave be restricted atuxu→` when the
external voltage is turned on adiabatically. The bound
conditions at the contacts between the wire and the le
require the continuity ofF and the particle current. The latte
means that (v/g̃)]xF must be continuous there.

We find the exact solution of Eq.~7! with the electron-
electron interaction potentialU(x,x8) defined by Eqs.~3!
and ~4!. In terms of dimensionless variables,

j5
x

L
, u5

vF

eg̃LVa

, f 5
wext

Va
,

Eq. ~7! takes the form

d

dj Fdu

dj
1bV̂

du

dj
2 f ~j!G1V2u50. ~8!

Here

b5
e2g̃

pev
, V5

vL

v
,

the operatorV̂ is defined as

V̂c5E
21/2

1/2

dj8V~j,j8!c~j8!, ~9!

where

n
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V~j,j8!52E
0

` dy

sinh y
uxyu2H sinh@y~1/21j!#sinh@y~1/22j8!# if j,j8,

sinh@y~1/22j!#sinh@y~1/21j8!# if j.j8.
~10!
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The electron density in standard units is related touj by

r~j!52
2eg̃Va

hv
uj~j!. ~11!

After solving Eq.~8! in the reservoirs we use the cont
nuity of the electron flow and the phaseF at the contacts to
obtain the boundary conditions directly to Eq.~8! in the inner
region of the quantum wire,21/2<j<1/2,

uj6 iVg̃uuj571/250. ~12!

The integro-differential equation of the form Eq.~8! may
be solved via an expansion in terms of the eigenfunction
the operatorV̂. It is easy to verify that the functions

cn~j!5& sinFpnS j1
1

2D G , n51,2,3, . . . ,

are the eigenfunctions ofV̂ defined by Eqs.~9! and~10! with
the eigenvalues

ln52E
0

` ydy

y21~np!2
uxyu2. ~13!

For the geometry of the sample under consideration,
external potentialf (j) is a linear function which may be
expanded in terms ofcn(j) with evenn.

The exact solution of Eq.~8! with the boundary condi-
tions ~12! can be obtained via the expansion in terms
cn(j). As a result, we get the following expressions for t
dimensionless electron densityuj(j):

uj~j!5 (
n51

`

cnsin@2pn~j11/2!# ~14!

and the phase fieldu(j),

u~j!5A~V!2 (
n51

`
cn

2pn
cos@2pn~j11/2!#, ~15!

where

cn5B~V!
4pn

4p2n2~11bl2n!2V2
, ~16!

A~V!5
1

V

124i g̃VD~V!

2i g̃1V24i g̃V2D~V!
, ~17!

B~V!5
22i g̃

2i g̃1V24i g̃V2D~V!
, ~18!
of

e

f

D~V!5 (
n51

`
1

4p2n2~11bl2n!2V2
. ~19!

IV. ELECTRON DENSITY DISTRIBUTION

The purpose of this section is to clarify how the real Co
lomb interaction affects the value and the distribution of t
charge density in the quantum wire structure.

First of all, let us consider a limiting case of the sho
range interaction. In this case,V(x,x8)}d(x2x8) and hence
the eigenvalues are independent ofn and l2n5l. All the
sums are easily calculated, which results in the followi
expression for the normalized electron density:

uj~j!5
1

VA11bl

g* sin~V* j!

g* cos~V* /2!2 i sin~V* /2!
, ~20!

where renormalized valuesg* 5g̃/A11bl and V*
5V/A11bl are introduced. The densityr~j! calculated ac-
cording to Eq.~20! coincides exactly with that found in Ref
15 in the framework of the standard LL model with the i
teraction parameterg5g* .

In the limit of V→0, Eq. ~20! yields

uj~j!5
j

11bl
. ~21!

With increasing frequency, the charge waves appear wh
have resonances15 along the wire whenV52pnA11bl.

Another case will be useful in what follows as a referen
point to demonstrate the Coulomb interaction effect. It is
case of noninteracting electrons which corresponds tob50
in Eqs.~20! and ~21!.

For the case of the realistic interaction, the electron d
sity distribution given by Eq.~14! is generally more compli-
cated. However, simple results are obtained for the regi
near the contacts and in the middle part of the wire, tak
into account the specific behavior ofln versusn. It is deter-
mined by the fact that the radial functionx(r') is located in
the region of radiusa which is much shorter than the wir
length L, i.e., a5a/L is a small parameter. The resul
which will be given below are qualitatively valid for an
localized functionx(r'). To be specific, we will use the
Gaussian form forx(r') when it is necessary to bring th
calculations to final form. One obtains thatln varies slowly
with n for pan!1 andln decreases asn22 for pan@1.

In the vicinity of the contacts, the main contribution to th
sum in Eq.~14! is due to the large-n terms for which an
asymptotic expression ofln;n22 can be used. Thus th
following expression for the normalized electron density
obtained in the vicinity of the left electrode@(1/21j)!1#:

uj~j!'2
B~V!

2

sinh~jA2b/a22V2!

sinh~A2b/a22V2/2!
, ~22!
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with B(V) being defined by Eq.~18!. Equation~22! shows
that ~i! uj decreases with the distance from the contact
sinh(x/l), with characteristic length being

l 5
a

A2b2a2V2
,

~ii ! at V50, the boundary value ofuj is equal to 1/2 and is
independent of the interaction.17

In the middle part of the wire, Eq.~14! may be simplified
when a is exponentially small, i.e.,2 ln a@1. In this case
the sum in Eq.~14! may by estimated assuming

ln'l0[2 ln~2p2a2!2g,

g'0.577 21 . . . being Euler’s constant. This calculation r
sults in the same equation as Eq.~20! for the short-range
interacting electron gas, wherel should be replaced byl0 .
This is equivalent to introducing an effective interaction p
rameter

geff'
g̃

A11bl0

into the LL model.
For the sake of simplicity, we supposeg̃51 below.
The effect of the Coulomb interaction on the electron d

sity distribution in the quantum wire is demonstrated by F
3 for the dc condition when a positive potential is applied
the left electrode with respect to the right one. Under
action of the external electric field, the electron system in
quantum wire is polarized: the electron liquid is compres
in the left part of the wire and decompressed in the right o
Respectively, at the left end of the quantum wire the exc
sive electrons appear while at the right end the electron d
sity is decreased. If the electron-electron interaction is om
ted@see the dotted line in Fig. 3 and Eq.~21! with b50], the
electron density decreases linearly with the distance, with
boundary value of the normalized density being equal
61/2. When the short-range interaction with the effect

FIG. 3. Distribution of the dc electron densityr ~thick solid
line! and the potentialw ~thin solid line! along the wire for long-
range Coulomb interaction. The dashed line is the density distr
tion according to the LL model withgeff , the dotted line is that for
noninteracting electrons. The parameters used are the Fermi e
«F55 meV anda50.02. The interaction parameterb was calcu-
lated to be 0.35.
s
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-
.

e
e
d
e.
s-
n-
t-

e
o

interaction parametergeff is turned on, the density distribu
tion remains linear~dashed line!. But the slope goes down a
a result of a decrease in the electron liquid compressibil
Note that the boundary value of the electron density a
decreases.

When the actual Coulomb interaction is turned on, t
electron density distribution is changed qualitatively~thick
line in Fig. 3!. As compared with the noninteracting case, t
charge density in the middle part of the wire decreas
which may be interpreted as neutralization of the nega
and positive charges due to their mutual attraction. Towa
the contacts the charge density increases reaching61/2 at
the boundaries. This behavior may be understood from
fact that near the contacts the charges in the wire are n
tralized by the image charges in the electrodes.

On the other hand, if we compare the Coulomb interact
case with the short-range interaction model, we find that
actual Coulomb interaction leads to an increase of the e
tron density fluctuation near the contacts. This fact may
interpreted as a result of the decrease in the interaction
rameterg due to screening the electron-electron interact
by the electrode.

At finite frequency, this near-contact effect of the Co
lomb interaction is preserved up to a characteristic freque
Vw5A2b/a, above which the exponentially decreasing p
of r(x) disappears.

The electric potentialw is easily calculated using Eq.~5!,
Green function~4!, and the electron densityr~r ! found
above. Distribution ofw~j! along the quantum wire is show
in Fig. 3. A good proportionality is found betweenr andw
for dc conditions whena/L!1:

r~j!'const1
g̃

pv
ew~j!,

The main effect observed when the frequency grows
the appearance of the traveling charge waves. This is il
trated by Fig. 4, where the real part of the normalized el
tron density is shown as a function of the distance fo
number of frequencies. The curves shown in Fig. 4 w
obtained by numerical calculation of Eq.~8!.20 The fre-
quency is given in a normalized form

u-

rgy

FIG. 4. Electron density distribution along the wire for a set
frequencies. The curves are labeled by the normalized frequencn.
The parameters used in the calculations are the same as in Fi
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n5
vL

2pvF

as labels to the curves.
Our analytical solution given by Eqs.~14! and~16! shows

that there is a set of characteristic frequenciesVn which are
determined by the poles ofD(V):

Vn52pnA11bl2n. ~23!

For V5Vn , the electron density is a standing wave w
zeros at the contacts,n being the wave number:

S du

dj D
n

}
sin@2pn~j11/2!#

4pn~11bl2n!
.

It is noteworthy that the electron flow turns to zero at t
contacts simultaneously with the electron density. ThusVn
is the resonant frequencies of the charge waves in the q
tum wire. Under the resonant condition the electron den
perturbation is locked inside the wire.

Equation~23! shows that the frequencyVn depends on
the wave number 2pn/L in a nonlinear manner due to th
dependence ofln uponn. Forn→`, the resonant frequenc
is proportional to the wave number which corresponds to
soundlike dispersion. For low wave numbers@n
<(pa)21#, Vn is noticeably higher than one expects fro
the soundlike dispersion.

It is instructive to compare Eq.~23! with the dispersion
equation for charge waves in an infinite quantum wire wh
was found by Schulz18 using the bosonization technique,

V~p!5pA11bVp, ~24!

wherep is the wave vector normalized by 2p/L and Vp is
the Fourier transform of the interaction potential, which
approximated by the modified Bessel functionK0(ap). A
similar dispersion law was obtained by Das Sarma a
Hwang21 for 1D plasmons in the long-wavelength limit i
the frame of the random-phase approximation taking i
consideration the more general form of the interaction pot
tial. Equation~24! differs from Eq.~23! in the replacemen
l2n by Vp . A reasonable approximation forl2n is

l2n'exp~2p2a2n2!E1~2p2a2n2!, ~25!

whereE1(z) is the exponential integral. It is worth notin
that in the limit L→`, Eq. ~25! is the same as the Fourie
transform of the interaction potential used in Ref. 16 wh
the screening length is much larger than the quantum w
diameter. On settingp52pn and comparing the expression
~23! and ~24!, one can see that they are close whenpan
!1 and differ significantly in the opposite case.

One can say that Eq.~23! is a discrete version of the
dispersion relation for 1D electrons which takes correc
into account the electron-electron interaction in a finite
system. It will be shown below that the discrete characte
the resonant frequenciesVn of finite quantum wire results in
strong peculiarities of the frequency dependence of ad
tance.
n-
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V. THE IMPEDANCE

The electron current in a quantum wire is determined
the time derivative of the phase field.2 In the terms of the
normalized phaseu, the current is

j ~x,v!52
2ive2g̃L

hv
u~x,v!Va . ~26!

The current calculated in such a way depends on the coo
nate x along the wire. However, the electric currentj meas
which is detected by a measuring device is obviously in
pendent ofx. This current is defined as a charge flo
through the leads. Its formation process is analyzed in A
pendix A as applied to the specific quantum wire struct
considered here. The measured current is the sum of a tr
capacitance current and the current caused by the quan
wire presence. According to the Shockley theorem,22 the lat-
ter is

j v5
1

L E
2L/2

L/2

dx j~x,v!.

Due to Eqs.~15! and ~26!, the currentj v becomes

j v5 i
e2

h
2g̃A~V!Va ,

with A(V) being defined by Eq.~17!. This results in the
following expression for the quantum wire structure impe
ance:

Z~V!5
h

e2 F 1

124i g̃VD~V!
2

iV

2g̃
G . ~27!

In what follows, the impedance is analyzed rather than
admittance which is usually considered, because the
quency dependence of the impedance shows more
nounced features caused by the charge waves. The rea
of Z is

Re Z5
h

e2

1

11@4g̃VD~V!#2
. ~28!

WhenV→0, the impedance is equal toh/e2 and is indepen-
dent of the interaction parameterb. The frequency depen
dence of ReZ is mainly governed by that ofD(V). The
resonant frequenciesVn are by definition the poles ofD(V).
Between the neighboring poles, there is a zero numbe
D(V). Equation~28! shows that ReZ50 whenuDu→` and
ReZ5h/e2 when D→0. Thus with increasing frequency
ReZ oscillates between zero~which occurs at the resonan
frequencies! andh/e2, these limiting values being indepen
dent of the interaction. The frequency dependence of ReZ is
illustrated by Fig. 5, where three cases are compared: no
teracting electrons, the LL model with short-range intera
tion, and the electrons with actual Coulomb interaction.

An interesting result is that ReZ50 for the resonant fre-
quencies. Under resonant condition the time-dependent
lution of the electron density is essentially oscillations b
tween the two ends of the wire, and electrons are not emit
absorbed by the contacts. As a consequence, the ele
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current component in-phase with the applied voltage v
ishes, and the real part of both the admittance and the
pedance turns to zero. However, in reality there is a fin
dissipation which was not taken into account. The inclus
of the dissipation into calculations should restrict the mi
mum of ReZ by some low value.

The resonances of ReZ occur when the frequency is
multiple of the inverse time of flight of electron excitation
along the quantum wire. This conclusion was confirmed
both the noninteracting23,24 electrons and the short-range i
teracting electrons in the LL model.15 The fact that in the
case of the Coulomb interaction the impedance oscillati
are nonperiodic may be interpreted as a result of
frequency-dependent renormalization of the charge-wave
locity due to the Coulomb interaction. At low frequency, t
velocity renormalized by the Coulomb interaction is ess
tially larger thanvF . The resonance frequency spectru
shows that the velocity decreases with frequency. It is wo
while to note that the phase velocity is important since
resonant conditions are obviously related to the wave in
ference.

The imaginary part of the impedance may be presente
the form

Im Z52vLeff1
h

e2

4g̃VD~V!

11@4g̃VD~V!#2
, ~29!

where

Leff5
hL

2e2vF

.

The frequency dependence of ImZ consists in the linear
decrease caused by the first term in the brackets and os
tions around this dependence due to the second term.
behavior is illustrated by Fig. 6. The linear dependence
the ImZ on the frequency is obviously dominating, whic
allows one to interpretLeff as a frequency-independe
inductance.15

When the frequency is small, the second term on
right-hand side of Eq.~29! is comparable with the first one
In this case we can expand Eq.~29!,

FIG. 5. Real part of the impedance versus the normalized
quencyn for true long-range interaction~—!, LL approach withg
50.63 ~---!, and noninteracting electrons~¯!.
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-
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f

e

Im Z5
h

e2

V

2g̃
F211

2g̃ 2

p2 (
n51

`
1

n2~11bl2n!
G ,

to estimate the second term. If the electron-electron inte
tion is omitted (b50, g̃51), the second term is equal to 1/
Upon increasingb, the second term decreases and ImZ re-
mains negative in spite of the fact that the backscatter
parameterg̃ slightly increases when the interaction is turn
on. Thus the reactive part of the impedance is always ind
tive if the electron-electron interaction is repulsive indepe
dent of the interaction strength.

The behavior of the impedance we have obtained h
correlates with that found for the case of both the short-ra
interaction15 and noninteracting electrons.24 Somewhat dif-
ferent behavior of the impedance was found recently in R
16 for a quantum wire without leads based on a rather g
eral approach, which allows one to consider an arbitrary d
tribution of the external electric field along the quantu
wire. In this case the impedance was shown to include b
the inductive and capacitive components. This differen
originates from the different experimental situation whi
was considered. In Ref. 16, a homogeneous wire of infin
length with a continuous spectrum of eigensolutions was
amined which results in a dispersion relationv5v(k). The
resonant feature of the impedance is caused by the inflec
point of v(k) where the group velocity reaches a minimum
with the characteristic wavelength of the charge waves be
of the order of the wire radius. In the present paper,
consider a more specific situation of a finite wire restrict
by leads with a discrete spectrum of eigenfunctions. T
resonances we have found are attributed to the finite len
of the wire. They appear when the characteristic wavelen
of the charge waves is of the order of the wire length, i.e.,
frequency is much lower than the resonant frequency wh
appears in Ref. 16.

The total admittance of the quantum wire structure
formed by both the quantum wire impedanceZ defined by
Eq. ~27! and the interelectrode capacitanceC0 which is nec-
essarily present there. Using Eq.~A3! one obtains

Ytot~v!5
1

Z
2 ivC05

Re Z2 i ~ Im Z1vC0uZu2!

uZu2
. ~30!

- FIG. 6. Imaginary part of the impedance versus the normali
frequencyn.
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It is of interest to find the eigenfrequencies of the adm
tance ~the impedance! which describe the behavior of th
system under consideration as an element of an electric
cuit. They are known to be determined by the poles a
zeros of the admittance~the impedance!. The admittance ze
ros characterize the system when the external circuit is o
while the poles correspond to the short-circuit case.

Equation~30! shows that the poles ofYtot coincide with
the zeros ofZ ~or the poles of the quantum wire admittance!.
It follows from Eqs.~27! and ~19! that there is only one se
of eigenfrequencies which are complex with a negat
imaginary part corresponding to decaying fluctuations. S
eral authors have found two sets of the eigenfrequencie
the case of short-range interacting electrons for a th
terminal structure11 or using another way for the calculatio
of the observed current.14 Both sets of eigenfunctions als
describe the decaying fluctuations.

Of more interest, in our opinion, are the zeros ofYtot(V).
We show that in this case the conditions can be found un
which the eigenfrequencies are real and charge-wave ex
tions are very slowly decaying. According to Eq.~30!, Ytot
50 when two equations are satisfied simultaneously:

Re Z~V!50, ~31!

Im Z~V!1
VvC0

L
uZ~V!u250. ~32!

The first equation is obviously satisfied by the set of r
frequenciesVn defined by Eq.~23!. The second equation ca
also be satisfied at one of frequenciesVn if the capacitance
C0 is appropriately fitted, for instance, via changing the le
areas. The resonant value ofC0 is estimated as

C0'
e2L

2p2hvF

.

Physically, Eq.~31! means the absence of dissipation wh
Eq. ~32! is a resonant condition for the circuit which consis
of the quantum wire inductance and the interelectrode
pacitance. Under this condition, the resonant frequency
the charge waves in the wire coincides with that of theLeffC0
circuit, which results in a strong increase of the charge-w
amplitude.

VI. CONCLUSION

In this paper we have investigated the linear transpor
interacting electrons in a quantum wire of mesoscopic len
with massive leads. The key point is the full enough acco
of the actual Coulomb interaction inside the wire and
three-dimensional electric field in the surrounding med
The Coulomb interaction in a mesoscopic quantum wire
cludes both the direct interaction of electrons with each ot
and their interaction via the image charges induced on
leads. We have found an exact analytical solution of
problem. This has become possible due to~i! use of the
bosonization technique which is well suited to consider
low-energy excitation of 1D interacting electrons, and~ii !
solving the equation of motion for the bosonic phase field
expansion in terms of the eigenfunctions of the electr
electron interaction operator, which have been found fo
-

ir-
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model case where the electrodes are plates perpendicul
the wire.

We have found that the actual Coulomb interaction affe
strongly the electron density distribution along the wire
comparison with that in the case of short-range interact
electrons in the conventional LL model. The nonlocal Co
lomb interaction manifests itself first of all in the noticeab
increase of the charge density in the vicinity of the conta
with leads. Here the electron density perturbation decrea
exponentially with the distance from the contact. This effe
is essential when the frequency is not too high (V
,a21A2b).

Another effect of the Coulomb interaction is the reno
malization of the charge-wave velocity. Namely, in contra
with the short-range LL model the long-range Coulomb
teraction causes the frequency-dependent renormalizatio
the charge-wave velocity. This effect manifests itself in t
frequency dependence of the real part of the impedan
With increasing frequency ReZ oscillates between two lim-
iting values which are independent of the interaction. Th
are zero andh/e2. The fact that ReZ becomes zero is relate
to the resonances of the charge waves along the wire len
Such resonances occur also when there is no long-rang
teraction. The Coulomb interaction causes the resonance
be nonequidistant in frequency, which means that the cha
wave velocity is frequency-dependent. At low frequency t
charge-wave velocity is essentially larger than the Fermi
locity. With increasing frequency, the charge-wave veloc
decreases and tends asymptotically to the Fermi velocity
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APPENDIX: THE CURRENT BEING MEASURED

The currentj measbeing detected by the measuring devi
in the external circuit is equal to the charge flow in the lea
Since the currents in the left and right leads are obviou
equal to each other, let us consider the current in the
electrode. It is equal to the sum of the charge flow throu
the wire j (x52L/2) and the charge stored at the lead s
face per unit time:

j meas5 j ux52L/21
dQs

dt
. ~A1!

The chargeQs consists of two components. One is the e
ternal charge caused by the applied voltage if the wire
absent,Qext5C0Va , with C0 being the mutual capacity o
the electrodes. The other component is the chargeQind in-
duced by the charges located within the wire. The latte
determined as

Qind5E
S
dss,

where
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s52
e

4p

]w~r !

]n
,

w is the potential of the charge distributed along the wi
andn is the outward normal to the lead surface. The pot
tial w is expressed in terms of the charge densityr~r ! via the
Green functionG(r ,r 8) of the Laplace equation with zer
boundary conditions at the lead surfaces.

Direct calculation results in

Qind52eE
2L/2

L/2

dx8r~x8,t !
]Gq~x,x8!

]x U
x52L/2,q50

.

Using Eq.~4! and the continuity equation

]r

]t
52

] j

]x
,

we obtain the induced current

dQind

dt
52 j S 2

L

2
,t D1

1

L E
2L/2

L/2

dx8 j ~x8,t !, ~A2!

where j (x,t) is the particle current in the wire.
Combining Eqs.~A1! with ~A2! one obtains

j meas5
1

L E
2L/2

L/2

dx8 j ~x8,t !1C0

dVa

dt
. ~A3!

The first term in Eq.~A3! is a current induced by electron
moving in the wire, while the second one is a trivial capa
tance current. Equation~A3! is a particular case of the gen
,
-

-

eral Shockley theorem.22 For arbitrary form and configura
tion of the leads the Shockley theorem is presented
follows:

j meas5
1

Va
E

2L/2

L/2

dx8 j ~x8,t !F~x8!1C0

dVa

dt
, ~A4!

whereVa is the potential difference between the leads a
F(x) is the electric field along the electron trajectory due
Va . According to the original derivation,22 the field F(x)
appears here as a result of using the reciprocity theo
when calculating the charge induced in the leads by
charges moving along the wire. Thus,F(x) has a sense o
the external electric field which does not include the pol
ization of the 1D electron system.

Recently25,26 a question was discussed regarding wh
electric field determines the measured electric current in
quantum wire—the external field or the internal one—whi
depends on the polarization of 1D electrons. In this conn
tion we note that in our case the current calculated accord
to Eq. ~A4! does not depend on what electric field is use
The internal electric field is defined by the right-hand side
Eq. ~7!, where the first term is the external fieldFext and the
second one is the induced fieldF ind . It is easy to see using
Eqs. ~26!, ~14!, and ~15! that the integral of the produc
j (x)F ind(x) is zero:

E E
2L/2

L/2

dxdx8 j ~x,t !
]V~x,x8!

]x

]F~x8!

]x8
50.

Since in our caseFext is independent ofx, the measured
current can be found from Eq.~A3!.
.
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