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Observability of counterpropagating modes at fractional quantum Hall edges
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When the bulk filling factor isn5121/m with m odd, at least one counterpropagating chiral collective
mode occurs simultaneously with magnetoplasmons at the edge of fractional quantum Hall samples. Initial
experimental searches for an additional mode were unsuccessful. In this paper, we address conditions under
which its observation should be expected in experiments where the electronic system is excited and probed by
capacitive coupling. We derive realistic expressions for the velocity of the slow counterpropagating mode,
starting from a microscopic calculation which is simplified by a Landau-Silin-like separation between long-
range Hartree and residual interactions. The microscopic calculation determines the stiffness of the edge to
long-wavelength neutral excitations, which fixes the slow-mode velocity, and the effective width of the edge
region, which influences the magnetoplasmon dispersion.@S0163-1829~98!02243-7#
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I. INTRODUCTION

A two-dimensional~2D! electron system in a strong tran
verse magnetic field can exhibit the quantum Hall~QH!
effect.1,2 This effect occurs when the electron fluid becom
incompressible3 at magnetic-field-dependent densities. T
physical origin of the incompressibility, i.e., of an ener
gap for the excitation of unbound particle-hole pairs, is qu
different for the integer and fractional QH effects. In th
integer case, the incompressibility arises from Landau qu
tization of the kinetic energy of a charged 2D particle in
transverse magnetic field, while in the fractional case it i
consequence of electron-electron interactions. In both ca
however, the only low-lying excitations are localized at t
boundary of the QH sample. In a magnetic field, collect
modes, known as edge magnetoplasmons4 ~EMP!, occur at
the edge of a 2D electron system even when the bulk
compressible. Outside of the QH regime, however, th
modes have a finite lifetime4 for decay into incoheren
particle-hole excitations and are most aptly described usin
hydrodynamic picture. In the QH regime, provided that t
edge of the 2D electron system is sufficiently sharp,5 the
microscopic physics simplifies and there is no particle-h
continuum into which the modes can decay. Generalizati
of models familiar from the study of one-dimensional~1D!
electron systems6 can then be used to provide a fully micro
scopic description of integer7 and fractional8,9 QH edges. In
these models, EMP appear as free Bose particles in
bosonized description of a chiral 1D electron gas.

In this work, we consider the edge of a 2D electron s
tem in the regime where the fractional QH effect occurs, i
for filling factors n,1 and n equal to one of the filling
factors at which the bulk of the 2D system is incompressib
The fractional quantum Hall effect is most easily understo
for n51/m, wherem51,3,5, . . . . For these values ofn and
for a confining potential that is sharp enough to prevent e
reconstruction,10,11 a single branch of bosonized excitatio
occurs.12,8 These are EMP modes, which, in this case, ha
PRB 580163-1829/98/58~20!/13778~15!/$15.00
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an especially simple microscopic description. Since the m
netic field breaks time-reversal symmetry, EMP mod
propagate along the edge in one direction only; they are
ral. In general, however, the edge can support more than
branch of chiral edge excitations, and some of these
propagate in the opposite direction. For example, coun
propagating modes can occur even at integer filling fact
when an edge reconstruction takes place.11 Here we study in
detail the case of bulk filling factorsn5121/m for which
both12,8 microscopic theory and phenomenological consid
ations suggest that, even when the edge is sharp, at leas
counterpropagating mode exists in addition to the EM
mode. For short-range electron-electron interactions, the
collective modes consist of an outer mode similar to then
51 chiral edge mode, and an inner mode which propaga
in the opposite direction and has hole character, but is o
erwise similar to the chiral mode which occurs at the edge
a n51/m QH system.~See Fig. 1.! Long-range interactions
change the character of the collective modes. In the limit
strong coupling by long-range Coulomb interactions, t
normal modes that emerge are9,13 a high-velocity mode as-
sociated with fluctuations in the total electron charge in
grated perpendicularly to the edge, and a lower-veloc
mode associated with fluctuations in the distribution of
fixed charge at a particular position along the edge. The
modes propagate in opposite directions. The higher-velo
mode is the microscopic realization of the EMP mode fo
sharpn5121/m edge.

The occurrence of a counterpropagating mode with low
velocity is, perhaps, counterintuitive. No such modes occ
for example, in hydrodynamic theories of edge normal-mo
structure. Anticipation of a single lower-velocity long-live
counterpropagating collective mode in the case of sh
edges is grounded on fundamental notions of the mic
scopic theory of the fractional QH effect, and on fundame
tal notions of the phenomenology used to describe its ed
Experimental verification for their existence would provide
powerful confirmation of the predictive power of these the
13 778 ©1998 The American Physical Society
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ries. However, time-domain studies14 of the propagation of
edge excitations at filling factorn52/3 have turned up no
evidence for this mode.

The main focus of the work presented here is to addr
properties of the sharpn5121/m edge, with the objective
of guiding future attempts to verify its normal-mode stru
ture. In Sec. II we discuss the excitation, propagation,
detection of edge collective modes at an5121/m edge. The
discussion in this section is phenomenological, and st
from the assumption that the edge charge is compose
contributions from two coupled chiral Luttinger liquids wit
opposite chirality. Such a model can be regarded as a ge
alization of the Tomonaga-Luttinger~TL! model15 that is
used to describe conventional 1D systems such as qua
wires or 1D organic conductors. The parameters of the g
eralized TL model Hamiltonian, which fix the velocities o
the normal modes and the way in which they are excited
detected, are derived from a microscopic treatment of
underlying 2D electron system. This calculation require
careful separation of long-range Coulomb and residual c
tributions to the TL model parameters, explained in Sec.
The philosophy of this calculation is similar to that
Landau-Silin theory16 in which long-range Coulomb and re
sidual interactions between quasiparticles in metallic Fe
liquids are carefully separated. We find that two characte
tics of the edge structure are most important in determin
the dispersions of the EMP mode and the counterpropaga

FIG. 1. Schematic electron-occupation-number profile at
edge of a fractional QH sample for filling factorn5121/m. This
picture~see Ref. 12! is based on the use of particle-hole conjugati
~Refs. 19 and 20! to understand the bulkn5121/m fractional QH
effect. The states are most conveniently described in terms of h
in a filled Landau level. Two fractional QH strips are formed by t
holes: an inner strip with filling factorn ( i )512n[1/m and an
outer strip with filling factorn (o)51. The two strips are separate
by a distanced. The abscissa is the wave vectork parallel to the
edge. In the Landau gauge, a state having wave vectork is localized
at a positiony perpendicular to the edge which is proportional tok.
Here, we measurey from the physical boundary of the sample i
wards. If the 2D electron system is placed in a coplanar neutraliz
background charge with a sharp edge, the total charge density
be negative between inner and outer hole strips and positive in
the outer hole strip. The schematic illustration of the resulting
polar strip of charge is unrealistic in its depiction of the variation
charge density across the edge. The density profiles at the edg
both hole strips vary on a magnetic-length scale. Accounting
this in our calculations requires only the introduction of appropri
form factors.
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mode: the separationd of the inner and outer edges, and
velocity vJ used to parametrize the stiffness of the edge
neutral excitations. Evaluations of these parameters for a
croscopic model of a sharpn5121/m edge are presented i
Sec. IV. Numerical results are given for the experimenta
most relevant casen52/3. We conclude in Sec. V with a
discussion of the implications of our results for possible e
perimental studies. Some details of our calculations h
been relegated to Appendixes.

II. EDGE WAVE PACKETS AT TWO-BRANCH EDGES

In previous work17 we have presented a detailed theory
EMP wave-packet dynamics for single-branch fractional Q
edges. Schemes for the excitation and detection of E
wave packets were discussed, along with an analysis of
roles of noise and coupling to phonons of the host semic
ductor. In this section we briefly present a generalization
the most pertinent portions of this paper to the case
present interest.

We start from the assumption that the total electro
number density integrated perpendicularly to the edge ca
separated into contributions from the inner and outer edg
% ( i )(x) and % (o)(x). Herex is the 1D coordinate along th
perimeter of the QH sample, which we take to have lengthL.
We write8,18

% ~ i !~x!5 (
q.0

Aqn~ i !

2pL
~aq

~ i !eiqx1@aq
~ i !#†e2 iqx!, ~1a!

% ~o!~x!5 (
q.0

Aqn~o!

2pL
~aq

~o!e2 iqx1@aq
~o!#†eiqx!. ~1b!

Here,aq
( i ) (aq

(o)) and@aq
( i )#† (@aq

(o)#†) are Bose annihilation
and creation operators for chiral edge modes with 1D w
vector q at the inner~outer! edge. The values of the filling
factors aren ( i )

ª12n[1/m andn (o)
ª1. The commutation

relations implicit in the identification of creation and annih
lation operators follow, in the case of short-range inter
tions, directly from microscopic considerations19–22,12which
we elaborate on in further detail in Sec. III; see also Appe
dix B. The different sign of the wave vector associated w
creation operators at the inner and outer edges expresse
electron character of the outer chiral edge excitations and
hole character of the inner chiral edge excitations.12

For general interparticle interactions, we do not exp
that the low-energy effective TL Hamiltonian will be diago
nal in the boson fields associated with inner and outer ed
The normal modes will be linear combinations of inner a
outer edge modes with coefficients which depend on the
fective interactions between inner and outer edges and
from system to system. For the case of strong coupling
to long-range Coulomb interactions, one of the norm
modes is the EMP, and the other, phononlike, mode w
have linear dispersion at long wavelengths.9,23 The two sets
of creation and annihilation operators are related by a Bo
liubov transformation:
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S aq
~o!

@aq
~ i !#†D 5S coshuq 2sinhuq

2sinhuq coshuq
D S aq

~pl!

@aq
~ph!#†D , ~2!

where the hyperbolic angleuq is, in general, wave-vecto
dependent. When the Coulomb interaction is unscree
however, the coefficients become universal at the long
length scales: coshuq→An (o)/n for q→0.

In the absence of an external perturbation, the diago
ized TL model HamiltonianH0 of the edge is
th
e-
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it
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dg
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H05 (
q.0

Eq
~pl!@aq

~pl!#†aq
~pl!1Eq

~ph!@aq
~ph!#†aq

~ph! , ~3!

with Eq
(pl) andEq

(ph) denoting the dispersion relations for th
EMP and phonon modes, respectively. In Sec. III, we der
explicit expressions for these dispersion relations. Now s
pose that an external time-dependent potentialVext(t)
couples electrostatically to the edge. This can be achie
e.g., by applying a voltage pulse to a metallic gate close
the edge.14,17 In general, the coupling of the inner and out
edges to the external perturbation will differ:
Vext~ t !5u~ t !E
0

L

dx@Vext,o~x!% ~o!~x!1Vext,i~x!% ~ i !~x!# ~4a!

5u~ t ! (
q.0

AqL

2p
$An~o!~V2q

ext,oaq
~o!1Vq

ext,o@aq
~o!#†!1An~ i !~Vq

ext,iaq
~ i !1V2q

ext,i@aq
~ i !#†!%. ~4b!
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In this expression, the shape of the pulse is given by
function u(t), and geometrical details of the coupling b
tween the gate and the 1D edge densities at the inner
outer edges are modeled by the functionsVext,i(x) and
Vext,o(x), respectively. The detailed form of these functio
is determined by electrostatics. For practical purposes,
usually adequate to assume alocal-capacitor modelwhere
the metallic gate and the part of the edge located in its
mediate vicinity form the two ‘‘plates’’ of a capacitor.17 In
such a model, a capacitor which covers the outer edge
not the inner edge would haveVext,i(x)50. We will see that
excitation of the counterpropagating phonon mode requ
differentiated coupling to the inner and outer edges;
local-capacitor model suggests that this could be achieve
arranging for an excitation gate which covers only the ou
part of the edge region. Alternately, a side-gate geometry
also lead to stronger coupling to the outer portion of the e
region.

Given the quadratic edge Hamiltonian, it is possible
solve the time-dependent Schro¨dinger equation explicitly for
H5H01Vext(t) with general pulse shapeu(t) as detailed in
Ref. 17. Wave packets of edge modes can be engineere
appropriately adjusting the characteristics of the volta
e

nd

is

-
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s
e
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r
n
e

by
e

pulse.17 Wave packets with narrow wave-vector distributio
can be generated by repeating a length-Texc pulse N.1
times.

One way to observe the time evolution of the charge d
turbance created by the external perturbation is to mea
the chargeQ(t) that is induced by evolving wave packets o
metallic gates situated close to the edge. In general, the
will respond differently to charge located at the inner a
outer edges:

Q~ t !5E
0

L

dx@Vdet,o~x2x0!^% ~o!~x,t !&

1Vdet,i~x2x0!^% ~ i !~x,t !&#, ~5!

wherex0 is the position~along the edge! of the observing
gate, and angular brackets^ & denote a thermal average. Th
functionsVdet,i(x) @Vdet,o(x)# model the coupling of the de
tecting gate and the 2D electron system, which, we assu
can be qualitatively understood using the local-capac
model. An explicit calculation following the formalism o
Ref. 17 yields the result that there are two contributions
the induced charge:Q(t)5Q(pl)(t)1Q(ph)(t), corresponding
to the EMP and phonon edge wave packets:
Q~pl,ph!~ t !52 ReH (
q.0

Qq
~pl,ph!~ t !exp@ i ~6qx02tEq

~pl,ph!/\!#J . ~6!

In the small-q limit, for unscreened Coulomb interactions, we find that the Fourier components are given by

Qq
~pl!~ t !5

qL

2pn
@Vq

ext,o2~12n!Vq
ext,i #@V2q

det,o2~12n!V2q
det,i #

2 i

\ E
2`

t

dtu~t!exp@ i tEq
~pl!/\#, ~7a!

Qq
~ph!~ t !5

qL

2pn
~12n!@Vq

ext,o2Vq
ext,i #@V2q

det,o2V2q
det,i #

2 i

\ E
2`

t

dtu~t!exp@ i tEq
~ph!/\#. ~7b!
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From Eqs.~7! we can deduce how the excitation and det
tion of the two counterpropagating wave packets depend
the device parameters. To create and observe thephonon
wave packet, both exciting and observing gates must co
differently to the inner and outer edges. This condition pro
ably requires that the metallic gates be positioned with
accuracy better thand, the distance between the inner a
outer edges. The relative amplitudes of EMP and pho
wave packets can be inferred from Eqs.~7! as well: for
Vext,i(x)5Vdet,i(x)50, e.g., the amplitude of the phono
wave packet is smaller by a factor of (12n) than the ampli-
tude of the EMP wave packet. This is probably the larg
relative amplitude which can be achieved. The group velo
ties of the phonon and EMP wave packets will generally
quite different:

v ~pl,ph!5
1

\

dEq
~pl,ph!

dq
U

q5q̃~pl,ph!

, ~8!

where q̃(pl,ph) is the median wave number of the superpo
tion of the modes forming the EMP and phonon wave pa
ets. ~See Sec. III for explicit expressions for the dispersi
relationsEq

(pl) andEq
(ph) . Typical values for the velocities ar

given in Sec. V.! Since both wave packets are created by
same external voltage-pulse characteristics, we know17 that
Eq̃(pl)

(pl)
5Eq̃(ph)

(ph)
52p\/Texc, which in turn allows us to predic

that the width~in real space! of the phonon wave packet i
smaller by a factor of the order ofv (ph)/v (pl) than the width
of the EMP wave packet.

III. SEPARATION OF CONTRIBUTIONS TO THE 1D
HAMILTONIAN

In this section, we develop a framework which reduc
the task of determining generalized-TL-model parameter
a calculation of two microscopic quantities. The latter det
mine the EMP and edge-phonon dispersion relations and
hyperbolic mixing angleuq of Eq. ~2!.

We consider a semi-infinite cylindrical QH sample whi
extends from the edge neary50 to ` in the ŷ direction and
satisfies periodic boundary conditions in thex̂ direction with
0<x<L. This geometry is convenient for calculations, a
the results we obtain are readily applied to experiment
realistic geometries. It is convenient to use the Landau ga
for the single-particle basis states that describe the motio
a 2D charged particle in a uniform transverse magnetic fi
B. The Landau-gauge basis states factor into a plane w
with 1D wave vectork, dependent on thex coordinate par-
allel to the edge, and a harmonic-oscillator orbital of widtl
centered at2kl2 and dependent on they coordinate perpen
dicular to the edge. HerelªA\c/ueBu denotes the magneti
length. The proportionality between the 1D wave vector p
allel to the edge and spatial displacement perpendicula
the edge, in conjunction with the geometry of our Q
sample, implies that, for the many-particle ground state
its low-lying excitations, single-particle states withk beyond
a maximum valuekF0 will be occupied with negligible prob-
ability. It will be convenient for us to exploit this property b
working in a truncated many-particle Fock space which
cludes only single-particle states withk<kF0 . We choose
-
n

le
-
n

n

t
i-
e

-
-

e

s
to
-
he

y
ge
of
ld
ve

r-
to

d

-

the zero for they coordinate such that a state with labelk has
its y-dependent orbital centered aty5(kF02k) l 2. We use
the simplest possible microscopic model which will produ
a sharp edge for the 2D electronic system by taking the e
trons to be confined by a coplanar neutralizing positive ba
ground. To be specific, we take a background which wo
exactly cancel the electron charge density if each electro
orbital were occupied with probability 121/m out to the
edge. As we explain later, the electronic system is drawn
at the edge, which permits us to letkF0 coincide with the
edge of the positive background.

When edge effects are neglected, the many-part
Hamiltonian truncated to the lowest Landau level is exac
particle-hole symmetric. It follows that the ground state w
n5121/m is precisely the particle-hole conjugate of th
ground state atn51/m.19,20,3Particle-hole symmetry is bro
ken at the edge of the system. It has been conjectured12 that
the ground-state electronic structure at the edge is forme
the particle-hole conjugate of an51/m fractional Hall state
for holes, which is embedded into a filled-Landau-level sta
for electrons, which is truncated atkF0 . For sharp edges
numerical studies support this view.24–28 The calculations
presented here provide further insight into the consistenc
this scenario. In this paper, we find it convenient to descr
edge states of an5121/m QH sample in the language o
holes. The ground state then consists of holes which h
phase-separated into an inner strip,y( i )<y,`, which is in
the incompressible state with filling factorn ( i )512n
[1/m, and an outer strip with holes present for 0[y(b)<y
<y(o) with hole filling factorn (o)51. For y(o),y,y( i ), no
holes are present, i.e., the electron orbitals are filled.29 As-
suming overall charge neutrality,y(o) and y( i ) are not inde-
pendent, and the state is completely characterized by
separationd between the inner and outer hole strips:

d[y~ i !2y~o!5
n

12n
@y~o!2y~b!#[

n

12n
y~o!. ~9!

For d50, the outer strip is absent, and the system is stric
neutral locally. Ford.0, the sample is stillglobally neutral
because of the presence of the uniform neutralizing ba
ground, but a deviation from local neutrality in the form of
dipolar strip of charge exists; see Figs. 1 and 2~a!. This
ground-state configuration is still 1D locally neutral, b
which we mean that, at any fixed positionx along the edge,
the charge density integrated perpendicularly to the e
yields zero. Note that, in this hole language, charge fluct
tions are possible only aty( i ) andy(o). The outer edge of the
outer hole strip aty5y(b)[0 originates from the truncation
of the Hilbert space in which we perform the particle-ho
conjugation and doesnot support physical excitations.

Phenomenological8 and microscopic22 considerations for
the noninteracting case have established that the excita
at a chiral QH edge can be described as the excitations
chiral 1D electron system. This is obvious for a filling fact
equal to 1, because a filled Landau level is equivalent to a
Fermi sea.30 But even more generally, for QH systems wi
simple filling factors of the form 1/m with m odd, the low-
energy excited states are in one-to-one correspondence t
low-lying states of a chiral 1D Fermi gas.31,22 It can be ex-
pected that, in the chiral system, the character of the lo
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lying excited states remains unchanged in the presenc
~even long-range! interactions.32 As seen above, applicatio
of particle-hole conjugation to describe the QH effect
systems at filling factorn5121/m leads to an edge
electronic structure with two chiral edges; the inner edge
y( i ) ~i.e., the outer edge of the hole system that is in
n ( i )512n[1/m QH state! and the outer edge aty(o) ~i.e.,
the inner edge of the hole system that is in then (o)51 filled-
Landau-level state!. The validity of our description of the
edge of such a QH sample in terms of a generalized
model rests on the assumption that, even in the presenc
long-range interactions, the low-energy scattering proce
conserve the number of particles at the inner and outer e
separately.

Our calculation of the parameters of the generalized-
effective Hamiltonian is similar in spirit to the Landau-Sil
theory16 for charged Fermi liquids. In a metal, interactio
between quasiparticles, especially at small scattering an
can be totally dominated by the direct Coulomb interacti

FIG. 2. For a quantum Hall system with bulk filling factorn
5121/m, the ground-state charge-density profile at a sharp e
will have the dipolar strip that is illustrated schematically in Fig.
However, at any point along the edge, the 1D charge density in
ground state, obtained by integrating the 2D charge density a
the coordinate perpendicular to the edge, is zero. At long wa
lengths, parameters of the generalized Tomonaga-Luttinger m
for the edge are dominated by the long-range interactions betw
1D charge-density fluctuations. On the other hand, the ch
phonon-mode velocity is determined by smaller residual inter
tions. In order to determine these accurately, we introduce a fi
tious model system in which the edge of the background charg
adjusted to maintain zero 1D charge density at each point along
edge. For example, when a hole is added at the inner edge@~a!#, the
background charge is reduced by moving its outer edge as i
trated in~b!. Similarly, when the outer edge is moved outward, t
background edge is also moved outward.~See text.! Here we mea-
sure densities in units of 1/(2p l 2).
of

r

t
e

L
of
es
es

L

es,
.

However, for some physical properties, e.g., the spin m
netic susceptibility, the Coulomb interaction cancels o
leaving a dependence only on the weaker residual inte
tions which reflect correlations between underlying ele
tronic degrees of freedom. Evaluation of the Fermi-liqu
parameters that determine the spin susceptibility requires
the direct Coulomb interaction be carefully separated fr
exchange and correlation contributions. Our main aim her
to estimate the phonon-mode velocity, which would vanish
only Coulomb interactions between 1D charge densities w
included in the generalized TL model Hamiltonian. In ord
to accurately evaluate the important residual contribution
the effective interactions in the model, we introduce an a
ficial model in which long-range Coulomb interactions a
eliminated by adjusting the background charge to maint
1D local charge neutrality. The energy,dE, of a state with a
given 1D charge density for the physical case of a fix
background charge differs from the energy of the fictitio
1D locally neutral system,dẼ, because of the interaction
between electrons and the change in background, and
cause of the self-interaction energy of the artificial change
background. For details, see Appendix A. Lettingdn2D(rW) be
the change relative to the ground state of the 2D elect
density anddnbg

2D(rW) be the change in the background dens
necessary in the fictitious 1D locally neutral system, we fi
that

dE5dmbg1dẼ1dEC, ~10a!

with the definition

dECª
e2

e E d2rd2r 8

urW2rW8u
dnbg

2D~rW !Fdn2D~rW8!2
1

2
dnbg

2D~rW8!G ,
~10b!

and a termdmbg contributing to the chemical potential whic
is irrelevant for our considerations to follow and will b
dropped from now on.~See Appendix A.! Here,e character-
izes the dielectric environment of the 2D electron system33

The contributiondẼ@dn2D(rW)# is the excitation energy in the
1D locally neutral artificial system, and we will subsequen
refer to it as the neutral term; it contains only short-ran
interaction contributions. The long-range Coulomb intera
tion is contained indEC, the ‘‘Coulomb term.’’ In the fol-
lowing subsections, we derive expressions for the two co
sponding contributions to the Tomonaga-Luttinger mo
Hamiltonian which depend on two microscopic paramet
characterizing the edge. Section IV describes the evalua
of these parameters.

A. Edge-mode energies: Coulomb term

To evaluate the Coulomb termdEC for an edge excita-
tion, we have to find the 2D charge distributionsdn2D(rW)
and dnbg

2D(rW) that correspond to the 1D charge fluctuatio
% ( i )(x) and% (o)(x) associated with edge waves at inner a
outer edges. Most generally, we can write
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dn2D~rW !5% ~ i !~x!F ~ i !~y2y~ i !!1% ~o!~x!F ~o!~y2y~o!!,

~11a!

dnbg
2D~rW !5@% ~ i !~x!1% ~o!~x!#F ~b!~y2y~b!!. ~11b!

The structure of the transverse density profile at the in
and outer edges as well as at the physical boundary of
sample enters through the form factorsF ( i )(y), F (o)(y), and
F (b)(y), respectively. Using the Fourier representation, a
defining the coupling functions

Fq
~rs!

ª

e2

e
2E dydy8K0~quy2y8u!

3F ~r !~y2y~r !!F ~s!~y82y~s!!, ~12!

where the indicesr ,sP$ i ,o,b% and K0 denotes a modified
Bessel function of zeroth order, we express the Coulo
term in a form which will be convenient for identifying it
contribution to the TL model15 Hamiltonian:

dEC5
2p\

L (
q.0

lq@%q
~ i !1%q

~o!#@%2q
~ i ! 1%2q

~o! #

1
2p\

L (
q.0

vC@%q
~o!%2q

~o!2%q
~ i !%2q

~ i ! #. ~13!

The parameterslq andvC have the units of velocity and ar
given by

2p\lq5Fq
~bi !1Fq

~bo!2Fq
~bb! , ~14a!

2p\vC5Fq
~bo!2Fq

~bi ! . ~14b!

~In most cases, the wave-vector dependence ofvC will be
unimportant.! In Eq. ~13!, we have separateddEC into a term
dependent only on the total 1D charge fluctuation at the e
and a term which occurs because of the spatial separatio
inner and outer edges. The first term in Eq.~13! corresponds
to the familiar4 EMP mode, which becomes one of the ed
normal modes if long-range Coulomb interaction
present9,23 ~see also Sec. III C below!. In that case, the sec
ond term in Eq.~13! which involves the velocityvC becomes
important only at large wave vectors. Note that, ifdEC were
the only contribution to the edge excitation energy, the co
terpropagating phonon mode would have zero velocity;
Sec. III C below. In the small-q limit, Eq. ~12! simplifies to

Fq
~rs!52

e2

e
2@ ln~4a2ql !1D~rs!#, ~15!

where a5AeC/8'0.47, with C50.577 . . . being Euler’s
constant, and

D~rs!5E dydy8ln~ uy2y81y~r !2y~s!u/ l !F ~r !~y!F ~s!~y8!.

~16!

@Some analytical details of the functionD (rs) are known30 for
the special case ofF (r )(y)5F (s)(y)5exp(2y2/l2)/(Ap l ).# In
general, Eqs.~14! specialize in the small-q limit to
r
he

d

b

ge
of

-
e

lq52
e2

e\

1

p
lnS 16a3Yl~d!

12n

n2

d2

l
qD , ~17a!

vC52
e2

e\

1

p
ln@YC~d!~12n!#. ~17b!

The fact thatlq→` for q→0 results from the long range o
the Coulomb interaction. Thed-dependent factorsYl(d) and
YC(d) account for the details of the transverse density p
file. Both approach unity ford* l . The microscopic param
eterd must be determined to fix the TL model parameters.
value for filling factorn52/3 is calculated in Sec. IV, wher
we find d2/3'1.7l . This value is consistent with numerica
studies28 performed for systems with up to 50 electrons. W
determined the correction factorsYl(d2/3)'YC(d2/3)
'0.86. See Appendix C for that calculation and a detai
discussion of the transverse density profile for edge exc
tions. Our result@Eq. ~17a!# for the EMP dispersion relation
is similar to the one obtained in hydrodynamic theories4 if
we interpretd2/ l as the effective width of the edge region

B. Edge-mode energies: Neutral term

We now evaluate the neutral termdẼ in Eq. ~10a!. This is
the energy of an edge excitation in a fictitious system wh
the neutralizing background is adjusted so that the cha
density integrated perpendicularly to the edge vanishe
any fixed point along the edge. We call this property ‘‘1D
local neutrality.’’ With excitations present, the inner an
outer edges move to new positionsỹ( i ),ỹ(o), with a new
separationD5 ỹ( i )2 ỹ(o). In the fictitious system where 1D
local neutrality is maintained, the background charge e
not aty(b)50 but instead at some new positionỹ(b). When
the density of holes varies withx, all of ỹ( i ),ỹ(o),ỹ(b),D will
also depend onx. Requiring 1D local charge neutrality a
each positionx along the edge yields

D~x!5~m21!@ ỹ~o!~x!2 ỹ~b!~x!#,

exactly like Eq.~9!. The neutral-edge system is complete
characterized byD(x), and the energydẼ can be expressed
as a functional ofD(x), or, more conveniently, as a func
tional of @D(x)2d# whered is the ground-state separatio
of the inner and outer edges. In order to quantize this ene
functional, we must expressD(x) in terms of the charge-
density contributions from inner and outer edges. The re
tion between the deviation ofD(x) from its ground-state
valued and the 1D charge fluctuations localized at the inn
and outer edges can be derived straightforwardly; it is

D~x!2d522p l 2F% ~o!~x!1
1

12n
% ~ i !~x!G . ~18!

Equation~18! is an exact statement and follows from the fa
that edge waves at the inner~outer! edge correspond to rigid
deformations of the 2D ground-state density profile for t
inner ~outer! QH strip. See Appendix C for details. Whe
% ( i )(x)52% (o)(x)/m, both edges suffer identical displace
ments and the distance between them is not altered.
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As the configuration withD(x)[d is the ground state, the
zeroth- and first-order terms in the functional expansion
dẼ with respect to@D(x)2d# vanish. Unlike the Coulomb
term, this contribution to the energy will be local for long
wavelength excitations, allowing us to parametrize the co
ficient of the quadratic term in terms of a single parame
vJ , with units of velocity:

dẼ5
vJ

2

12n

n

\

2p l 2E dxFD~x!2d

l G2

. ~19!

Expressing the distance between inner and outer edge
terms of inner and outer edge charge densities using Eq.~18!
and Fourier transforming allow us to write the short-ran
term in a convenient TL form:15

dẼ5
2p\

L
vJ(

q.0
H 12n

n
%q

~o!%2q
~o!1

1

n~12n!
%q

~ i !%2q
~ i !

1
1

n
@%q

~o!%2q
~ i ! 1%q

~ i !%2q
~o! #J . ~20!

We show in Sec. IV how to determine the velocityvJ . An
analytical result~valid for d@ l ) is

vJ52
e2

e\

1

p
@n ln~n!1~12n!ln~12n!#. ~21!

Our calculation~outlined in Sec. IV and detailed in Appen
dix B! shows, however, that the ground-state separationd2/3
of the inner and outer edges for the case ofn52/3 is not
particularly large, so corrections to the asymptotic form
@Eq. ~21!# have to be taken into account. As an improv
result forn52/3, we findvJ'0.24e2/(e\).

C. Dispersion of EMP normal modes

The low-energy, small-wave-vector effective 1D Ham
tonian for the edge at filling factorn5121/m can be written
in the form of a TL Hamiltonian;15 it is given by

dEC1dẼ→HTL , ~22!

with the termsdEC and dẼ taken from Eqs.~13! and ~20!,
respectively. Equation~22! signifies that we obtain the TL
Hamiltonian from our energy calculations by considering
1D density fluctuations as operators which have the ap
priate chiral-Luttinger-liquid commutation relations.8 A
straightforward Bogoliubov transformation9 @Eq. ~2!# to the
normal modes yields the diagonal Hamiltonian of Eq.~3!. In
the small-wave-vector limit~wherelq@vJ ,vC), we find for
the dispersions of the EMP and phonon normal modes

Eq
~pl!5\qnlq , ~23a!

Eq
~ph!5\qvJ . ~23b!

@The expression forlq in its most general form is given in
Eq. ~14a!. With our approximations used, we find Eq.~17a!.#
We see that the energy of the EMP normal mode is
primarily to the Coulomb interaction; the separationd of the
inner and outer edges in the ground state enters promine
because it determines the effective width of the edge reg
f

f-
r,

in

e

a

e
o-

e

tly
n.

The energy of the phononlike mode, however, is natura
given by the velocityvJ , because that quantity measures t
energy of excitations that preserve 1D local neutrality in
system.

IV. EVALUATION OF EDGE WIDTH AND
PHONON-MODE VELOCITY

We have shown that then5121/m sharp-edge Hamil-
tonian can be expressed in terms of two characteristic par
eters: the ground-state separationd between inner and oute
edges, and the velocityvJ . In this section, we determine
both quantities simultaneously by calculating the ene
change due to a hole transfer from the inner to outer inco
pressible strips at a neutral edge.

Consider a configuration that differs from the ground st
only by the transfers of an arbitrary number of holes betwe
inner and outer strips. Such a state is 1D locally neutral,
its charge profile perpendicular to the edge looks similar
that of the ground state. However, we allow the separation
the inner and outer edges ([yini

( i )2yini
(o)) to differ from the

valued for the ground state.~See Fig. 3.! The energy of such
an excited state is given bydEini ([dẼini because no ad
justment of the background is necessary to ensure 1D l
neutrality!. If yini

( i )2yini
(o) is not too different fromd, we can

write

dEini[dẼini5
vJ

2

12n

n

\L

2p l 2F @yini
~ i !2yini

~o!#2d

l G2

, ~24!

which is a specialization of Eq.~19! to the case of an exci
tation with a transverse density profile that is uniform alo
the edge.

Now we transfer one extra hole from the inner edge to
outer one~see Fig. 3!. This changes the separation of the tw
edges by

FIG. 3. The process we consider to calculate the parameted
andvJ . We consider configurations in which the holes have pha
separated into two incompressible strips as in the ground sta
filling factor n5121/m, but allow the separationyini

( i )2yini
(o) of the

two strips to differ fromd ([ the strip separation in the groun
state!. We imagine then that a hole is transferred from the edge
the inner strip to the edge of the outer strip, preserving the 1D lo
neutrality of the reference state. No adjustment of the backgroun
necessary, and the overall shape of the 1D density profile is sim
to its shape in the ground state. We are able to extract the value
d andvJ from the energy change produced by the hole transfer
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DD~x!5
n

12n

2p l 2

L
. ~25!

For the corresponding energy change, we find

D~dEini!'
\vJ

l

@yini
~ i !2yini

~o!#2d

l
, ~26!

where we neglected a term that is small if the relation

@yini
~ i !2yini

~o!#2d

l
@2p

n

12n

l

L

holds. As the perimeterL of the edge in typical QH sample
is usually many magnetic lengths, such an assumptio
valid except for an extremely narrow interval around t
point yini

( i )2yini
(o)5d.

To determine the parametersd and vJ , we performed a
microscopic calculation of the energy on the left-hand side
Eq. ~26!. This turns out indeed to yield an expression of t
form of the right-hand side, with suitable choices of the p
rametersd andvJ . The equilibrium separation between inn
and outer edges is reached when the energy change as
ated with hole transfer vanishes. A summary of the calcu
tion details is relegated to Appendix B. Here we explain
main ingredients and report numerical results for filling fa
tor n52/3, which are summarized in Fig. 4.

The energy required to perform the transfer of a hole fr
the inner edge to the outer one has several contributi
Some are conveniently expressed in terms ofz(g), the en-
ergy per particle in a homogeneous QH state of filling fac
g in the presence of a uniform coplanar neutralizi
background.34 Hartree and exchange-correlation contrib
tions to the energy change are treated separately in the
culation. The essence of the energetics at the edge ca
understood by the following simple argument. First we
move a hole from the edge of the inner strip which is in
fractional QH state of filling factor 12n. The loss of
exchange-correlation energy isuz(12n)u. Adding this hole
to the edge of the outer strip gives a gain in exchan
correlation energy which is close touz(1)u, provided that the
width of the outer strip is larger than the magnetic leng
~Since the outer strip is a simple filled-Landau-level state
is easy to incorporate finite-thickness corrections to its ad
tion energy, and we do so as detailed in Appendix B.! Since
uz(12n)u,uz(1)u, there is a net gain inexchange-
correlation energy when transferring holes from the inn
strip to the outer one in that situation. This gain is balanc
by the increase inelectrostaticenergy that comes about du
to the existence of the dipolar strip of charge; see Fig. 1.
hole that is being transferred is brought closer to the ou
part of the dipolar strip which electrostatically repels hol
The separation of the two edges in the state where the ga
exchange-correlation energy for the hole transfer is exa
offset by the loss in electrostatic energy is the ground-s
separationd. The electrostatic energy cost of hole trans
increases linearly withd for d. l . Comparing with Eq.~26!,
we see that, in this approximation, the slope of the curve
the electrostatic contribution to the transfer energy is\vJ / l .
is
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This simple picture requires a number of modificatio
which are detailed in Appendix B but, as illustrated forn
52/3 in Fig. 4, these have little quantitative importance.

V. DISCUSSION OF EXPERIMENTAL IMPLICATIONS

We have determined the conditions under which it is p
sible to excite and observe two counterpropagating E
wave packets at the edge of a QH sample that is at fill
factor n5121/m. It is important that the geometry of th
sample allows for an external potential that is different at
positions of the inner and outer edges. According to the c
culation of the preceding section, the separationd of the two
strips for filling factorn52/3 is d2/3'1.7l . In typical mag-
netic fields, this corresponds tod2/3;20 nm. For a top gate
significant differential coupling to inner and outer edg
would require that the distance to the gate not be too m
larger than;20 nm and that its edge be positioned relati
to the QH edge with an accuracy of better than;20 nm.
Both these conditions appear to be realizable.

FIG. 4. Energy balance for the transfer of a hole from the in
edge to the outer one~see Fig. 3!. The curves are calculated for
filling factor n52/3. The electrostatic energy required to trans
the hole~solid curve! is the work performed against the extern
potential stemming from the dipolar strip of charge; see Fig.
Details of its evaluation are given in Appendix B. This portion
the energy is linear in the separationyini

( i )2yini
(o) of the inner and

outer edges for separations larger than the magnetic length.
exchange-correlation energy gain is given approximately
uz(1)u2uz(1/3)u. Corrections to the simple expression for th
exchange-correlation energy gain detailed in Appendix B beco
important at smaller interedge distance. The full result for
exchange-correlation energy gain is given by the dashed curve.
point where the two curves cross gives the equilibrium edge se
ration within our variational two-strip model. The approximatio
used in our calculation of the exchange-correlation energy are
valid for strip separations much smaller than the magnetic lengtl ,
and the crossing of the curves at the smaller value ofyini

( i )2yini
(o) is

unphysical. The other crossing occurs in a regime where our
proximations apply. From the point of crossing we conclude t
d'1.7l . At this value ofd, the exchange-correlation energy gain
nearly constant and the electrostatic-energy-cost curve is nearly
ear. From its slope we obtainvJ'0.24e2/(e\).
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The result we have obtained for the EMP wave-pac
group velocity is

v ~pl!52n
e2

e\

1

pF lnS 16a3Yl~d!
12n

n2

d2

l
q̃~pl!D 11G ,

~27!

whereq̃(pl) is the characteristic wave vector of the domina
charge fluctuation in this wave packet. Specializing Eq.~27!
to the case of the dielectric environment of typical 2
electron systems in GaAs,33 taking a QH sample with
n52/3, and assumingq̃(pl)L!L/ l , we find that v2/3

(pl);
703 ln@L/(50l )# mm/ns. The phonon wave packet moves
a direction opposite to that of the EMP wave packet, and
linear dispersion with velocityv (ph)[vJ . For n52/3, we
have found thatvJ'0.24e2/(e\). In typical samples, we
therefore havev2/3

(ph);70 mm/ns. The ratiov2/3
(pl)/v2/3

(ph) turns
out to be of the order of ln@L/(50l )#; this number is;8 for
the experiment reported in Ref. 14. The relative width of
two wave packets is inversely proportional to the ratio
their respective velocities; the phonon wave packet w
therefore be much more narrow~in its 1D extension along
the edge! because it is much slower than the EMP wa
packet. We expect the numerical group-velocity estima
given here to be realistic for the case of a sharp edge with
external potential sufficiently similar to that produced by t
coplanar neutralizing charge used in these microscopic
culations. It appears likely to us that sharp edges will oc
only in specially prepared QH samples, for example in th
prepared using a cleaved-edge overgrowth technique.5 We
remark that this technique appears to be compatible w
side-gate-based capacitive coupling which we believe
produce the differentiation necessary to excite the pho
modes. The microscopic formalism developed in this wo
can, in principle, be elaborated to model the details o
specific sample and arrive at precise predictions for the r
tive velocities of the two modes. The microscopic electro
structure at smooth edges is presently not well understoo35

even for the simpler case where the bulk filling factor is
integer. Nevertheless, it appears clear that, for very smo
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edges, 1D electron-gas models are not appropriate. The
citation spectrum will have many collective modes,36 and
each of these will, in general, decay into incoherent partic
hole excitations at a finite rate. If a sample with a sharp e
can be fabricated, the present calculations suggest that g
velocities of the modes are slow enough to permit the use
capacitive coupling to detect wave-packet evolution, and
enough to permit several orbits around a macroscopic sam
to occur before the wave packet is dissipated through
coupling to bulk phonon modes of the host semiconducto17
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APPENDIX A: LANDAU-SILIN-TYPE SEPARATION
OF COULOMB AND SHORT-RANGE INTERACTIONS

In this section, we show briefly how the separation of t
Coulomb and short-range pieces of the interaction lead
Eqs.~10!.

We start from the ground state of an edge which ha
density profile as depicted schematically in Fig. 1. Our g
is to find the energydE it costs to make an excitation tha
leads to a deviationdn2D(rW) from the ground-state densit
profile. To separate long-range and short-range contribut
to dE, we relate our physical system to a fictitious syste
which has only short-range forces, because any excita
dn2D(rW) is simultaneously followed by an adjustment of th
background charge densitydnbg

2D(rW) that restores 1D loca

neutrality. Obviously, the amount of energydẼ that it takes
to make an excitationdn2D(rW) in the fictitious 1D-locally
neutral system differs fromdE by the energy necessary fo
adjusting the background charge:
dẼ5dE1
e2

e E d2rd2r 8
1

urW2rW8u
dnbg

2D~rW !H 1

2
dnbg

2D~rW8!1nbg
2D~rW8!2dn2D~rW8!2n2D~rW8!J . ~A1!
-
o-
il-
The first term in the curly brackets of Eq.~A1! comes from
the self-interaction of the adjusted piece of the backgrou
the second term is the interaction energy of the adjus
background piece with the ground-state background-cha
distribution denoted bynbg

2D(rW), the third one is the interac
tion energy of the charged electronic excitation with the
justed piece of the background, and the last term comes f
the interaction of the electronic ground-state charge distr
tion n2D(rW) with the adjusted background piece. We arri
readily at Eqs.~10! if we define
d,
d

ge

-
m
-

dmbgª
e2

e E d2rd2r 8

urW2rW8u
dnbg

2D~rW !@n2D~rW8!2nbg
2D~rW8!#.

~A2!

The termdmbg, being linear in the charge distribution re
lated to the excitation, contributes only to the chemical p
tential and does not affect the generalized TL model Ham
tonian because the latter is derived from terms indE that are
quadratic indn2D anddnbg

2D .
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APPENDIX B: CALCULATION OF SHARP-EDGE
CHARACTERISTIC PARAMETERS

We start with the Hamiltonian of 2D interacting electro
in the lowest Landau level. After performing the transform
tion of particle-hole conjugation, we work consistently in t
Fock space ofholeswith single-hole states available fork
<kF0 . This truncation of the Hilbert space is permitted
long as states withk equal to or in excess ofkF0 are always
occupied by holes. The validity of this assumption for sta
close to the sharp-edge ground state can be verified a
end of the calculation.

Particle-hole conjugation can be performed easily us
the formalism of second quantization. Starting from any o
erator expressed in terms of electron creation and annih
tion operators, it is possible to derive its particle-hole con
gate by replacing the electron’s creation operatorck

†

~annihilation operatorck) by the hole’s annihilation operato
hk ~creation operatorhk

†). Consider the Hamiltonian for in
teracting electrons in the lowest Landau level with an ex
nal confining potential present:

H5H01H int, ~B1a!

H05(
k

«kck
†ck, ~B1b!

H int5
1

2L (
k,p,q

Vq~k2p!ck1q
† cp

†cp1qck . ~B1c!

The single-electron dispersion«k is due entirely to the exter
nal potential confining the electrons in the QH sample,
cause all electrons in the lowest Landau level have the s
kinetic energy irrespective of their quantum numberk. We
choose the confining potential to be due to a uniform ba
ground charge that would exactly neutralize the elect
charge if each lowest-Landau-level orbital were occup
with probability n5121/m:

«k52n (
p<kF0

V0~k2p!. ~B2!

Here,Vq(k2p) is the two-body matrix element of the Cou
lomb interaction in the Landau-gauge representation
single-particle states in the lowest Landau level. Explicit e
pressions forVq(k2p) can be found, e.g., in Refs. 11 an
17. Replacing the electron operators by hole operators
normal ordering3 yields

H* 5Eh1Hh
01Hh

int , ~B3a!

Eh5(
k

S «k1
1

2
jkD , ~B3b!

Hh
052(

k
~«k1jk!hk

†hk , ~B3c!

Hh
int5

1

2L (
k,p,q

Vq~k2p!hk
†hp1q

† hphk1q . ~B3d!
-
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The constant term (Eh) in this hole Hamiltonian is unimpor-
tant, but the correction to the single-particle energyjk plays
an essential role in the edge physics:

jkª
1

L(
p

@V0~k2p!2Vk2p~0!#. ~B4!

We now evaluate the energy of states where the ho
form an incompressible bulk state with filling factor 12n in
the strip for whichy( i )<y,` and form a filled-Landau-
level state in the strip for which 0<y<y(o). The inner strip
contributes nonzero occupation numbers fork<kF

( i ) . Except
close to the edge,37,38these states are occupied with probab
ity 12n. The outer strip contributes nonfluctuating integ
occupation numbers for states withkF

(o)<k<kF0 . Note that
we have adopted a notation wherekF

(o) is the inner edge of
the outer hole strip. Low-energy excitations can occur at t
edge. In contrast,kF0 is the outer edge of the outer hole stri
This edge is formed by the Hilbert-space truncation and d
not support physical excitations. Our calculations will de
onstrate that states of this type are locally stable. We can
envisage alternatives and believe that these states, and
edge-wave excitations, are the only states in the low-ene
portion of the Hilbert space for sharp edges.

Since the states we consider have fixed numbers of
ticles in inner and outer strips, it is useful to separate the h
Hamiltonian into parts as follows:

H* 5Eh1H ~ i !1H ~o!1dH. ~B5a!

The termH ( i ) describes the inner strip of interacting hol
that is assumed to be confined by a uniform backgrou
neutralizing for holes @density: (12n)/(2p l 2)] extending
over the intervaly( i )<y,`:

H ~ i !5 (
k<kF

~ i !
«k

~ i !hk
†hk1

1

2L (
k,p<kF

~ i !

q

Vq~k2p!hk
†hp1q

† hphk1q

~B5b!

with

«k
~ i !
ª2~12n!

1

L (
p<kF

~ i !
V0~k2p!.

This strip is presumed to be in the fractional-QH state
filling (1 2n). As it is infinite, the energy per particle in th
inner strip assumes its thermodynamic value34 z(12n)'
20.41e2/(e l ). The contributionH (o) is for the outer strip of
holes, for which a neutralizing background with dens
1/(2p l 2) is assumed to extend in the region 0<y<y(o).
That strip is in the QH state with filling factor equal to 1.

H ~o!5 (
k>kF

~o!
«k

~o!hk
†hk1

1

2L (
k,p>kF

~o!

q

Vq~k2p!hk
†hp1q

† hphk1q

~B5c!

and
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«k
~o!
ª2

1

L (
p>kF

~o!
V0~k2p!.

The states we consider have no fluctuations in the quan
numbers on whichH (o) operates. Since the Hartree intera
tion is canceled by the background, the contribution ofH (o)

to the energy is simply the exchange energy of the occup
orbitals in the outer strip.

With the termsH ( i ) and H (o) defined above, Eq.~B5a!
constitutes the definition ofdH. The latter encompasses on
body terms, including the part from the external poten
due to residual background charge not accounted fo
H ( i )1H (o), and two-body terms coming from interaction
between holes from different strips. Theq50 interaction
terms can be grouped with the one-body term. The one-b
contribution todH also contains the exchange contributi
to jk . In total, we have

dH5dH1-body
eff 1dH2-body

qÞ0 , ~B6a!

dH1-body
eff 5(

k
d«khk

†hk , ~B6b!

where

d«k5d«k
H1d«k

F , ~B6c!

d«k
H
ªH (

p>kF
~o!

n

L
2 (

kF
~ i !

,p,kF
~o!

12n

L J V0~k2p!,

~B6d!

d«k
F
ª

1

L(
p

Vk2p~0!. ~B6e!

The two terms displayed in Eqs.~B6d! and ~B6e! represent
the electrostatic and exchange contributions to the exte
potential felt by the holes. In Fig. 5, we show their spat
variation. Note thatd«k

F appears because of particle-ho
conjugation; it represents the repulsive exchange interac
between holes and the vacuum which is weaker at the e
of the system and attracts holes to the physical boundar
the QH sample. Apart from this term and the constantEh ,
the above Hamiltonian could also describe two strips ofelec-

trons in the ñ51/m and ñ51 states, respectively. This term
is responsible for the qualitative distinction between the e
structures forn5121/m and n51/m bulk fractional QH
states. TheqÞ0 two-body terms give the energy contrib
tion due to exchange and correlation between electron
different strips.

Close to the edge of a QH system that has a filling fac
1/m with m53,5, . . . , oscillations occur in the occupatio
numbers of the lowest-Landau-level basis states.37 In our
model of a QH edge at filling factorn5121/m, such oscil-
lations occur at the inner edge. The expression for the e
trostatic contribution to the external potential which is giv
in Eq. ~B6d! does not account for the true occupatio
m
-

d

l
in

dy

al
l

n
ge
of

e

in

r

c-

number distribution function at the inner edge. However,
we comment below, corrections to Eq.~B6d! are small, and
we neglect them.

Now consider the difference in energy between a fi
state and an initial state which differ by the transfer of o
hole from the inner strip to the outer one.~See Fig. 3.! We
find that

dEfin2dEini52z~12n!2
1

L (
k50

kF02kF
~o!

Vk~0!1dEres.

~B7!

The first term in Eq.~B7! is the correlation energy we hav
to pay to remove the hole from the inner strip, the secon
the exchange energy we gain by putting the hole at the e
of the outer strip, while the final term contains both the on
body and two-body contributions from the residual intera
tion dEres. The one-body piece isd«k

F
(o)2d«k

F
( i ) which can

be interpreted as the change in the self-consistent~external
1Hartree! potential felt by the hole which is being trans
ferred. If we neglect correlations between holes from diff
ent strips, the two-body residual term consists only ofhd

( i )

2hd
(o) , where we denote the exchange energy for a h

interacting at a distanceh with the inner/outer strips by the
symbolshh

( i ) andhh
(o) , respectively. Hence we have

dEres5d«k
F
~o!2d«k

F
~ i !1hd

~ i !2hd
~o! . ~B8!

Using the expressions

hd
~ i !
ª2

12n

L (
p<kF

~ i !
Vk

F
~o!2p~0!, ~B9a!

FIG. 5. External potential for holes. In addition to the electr
static contribution@dashed curve; cf. Eq.~B6d!# resulting from the
dipolar strip of charge, there is an additional contribution to t
external potential@dot-dashed curve; cf. Eq.~B6e!# which is en-
tirely due to particle-hole conjugation in a finite system. This s
ond contribution attracts holes to the physical edge of the sam
and is essential for the phase separation into an inner and outer
strip. The electrostatic potential was calculated for filling factorn
52/3 and a separationy( i )2y(o)5d2/3'1.7l of the inner and outer
edges.
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hd
~o!
ª2

1

L (
p>kF

~o!
Vk

F
~ i !2p~0!, ~B9b!

which can be expected to be good for not-too-small distan
yini

( i )2yini
(o)[@kF

(o)2kF
( i )# l 2, we find dEfin2dEini5DH2DF,

where

DH5d«k
F
~o!

H
2d«k

F
~ i !

H
, ~B10a!

DF5z~1!2z~12n!1
n

L (
k>kF

~o!
2kF

~ i !
Vk~0!. ~B10b!

As noted above, our calculation ofdEfin2dEini neglects
contributions due to the oscillations occurring in t
occupation-number distribution function37 for holes at the
inner edge. Taken into account properly, these oscillati
would affectdEres in essentially the same way as they affe
the energy per particle of the inner QH strip. In Ref. 38, t
energy per particle for a filling factor equal to 1/3 was c
culated for two different choices of the neutralizing bac
ground: ~a! a constant background-charge density that n
tralizes the electron charge in the bulk, and~b! a background
that neutralizes the electron charge locally. The differe
between the values of the energy per particle for the mo
~a! and ~b! corresponds to the correction to Eqs.~B6d! and
~B7! when the true occupation-number distribution functi
is used. This difference was found38 to be smaller than
0.0001e2/(e l ). The error we make in our calculation ofdEres

is therefore three orders of magnitude smaller than the
maining term in Eq.~B7!.

Expressions for the matrix elements which are derived
the Landau gauge11,30 enable us to calculate the two contr
butionsDH andDF, at least numerically. In Fig. 4, we sho
the result for filling factorn52/3. The solid and dashe
curves are the results forDH and DF, respectively. In par-
ticular, we used

d«k
H52

e2

e lp

1

A2p
E

2`

`

dkk lnukuF~k,y/ l ,l/ l !

~B11!

with the definitionsyª@kF02k# l 2 ([ coordinate perpen
dicular to the edge, measured from the physical edge of
sample towards the bulk!, lªy1

( i )2y1
(o) ([ separation of

the inner and outer edges in the initial state!, and

F~k,y,l!ª~12n!expH 2
@k2y1l/n#2

2 J
2expH 2

@k2y1~12n!l/n#2

2 J
1nexpH 2

@k2y#2

2 J . ~B12!
es

s
t
e
-
-
-

e
ls

e-

r

e

To make progress analytically, we have derived a system
expansion of DH in the parameter@y1

( i )2y1
(o)#/ l . The

asymptotic result in the limit of large separation of the tw
edges is

DH52
e2

e l

1

p
@n ln~n!1~12n!ln~12n!#

y1
~ i !2y1

~o!

l
,

~B13!

which yields the analytical result forvJ as it is given in Eq.
~21!.

APPENDIX C: TRANSVERSE DENSITY PROFILE
FOR EDGE EXCITATIONS

Although we use 1D models to describe edge excitatio
it is important to realize that the electrons forming the fra
tional QH sample move in 2D and, therefore, have a wa
function that depends ontwo coordinates. The part of the
wave function depending on the transverse coordinate~y! is
Gaussian with a width of the order of the magnetic lengthl .
Hence, the transverse density profile~i.e., the variation of the
2D density perpendicular to the edge! is not sharp on scale
shorter than; l , even if the occupation-number distributio
function ~ONDF! for the lowest-Landau-level basis stat
were sharp~as is the case, e.g., when the filling factor
equal to 1!. In this section, we consider the 2D aspect of ed
excitations of fractional QH systems at the simple fillin

factorsñ51/m, wherem51,3, . . . . In particular, the profile
of the 2D charge density perpendicular to the edge is ca
lated for many-body states with edge excitations present.
results presented in this section were applied to the inner
outerhole strips that arise in the model of a sharp edge o
fractional QH sample at filling factorn5121/m, as dis-
cussed above in the bulk of this paper.

The sample geometry considered here is the surface
semi-infinite cylinder, see Sec. III, which is occupied b

electrons such that the filling factorñ is equal to the inverse
of an odd integer. This sample therefore supports a sin
branch of edge excitations which are, without loss of gen
ality, assumed to be right-going. The edge is located ay
50, and the largest wave-vector label of lowest-Landa
level states that are occupied in the ground state iskF . To
avoid confusion, operators are indicated, in this section, b
caret.

In a symmetric notation, and using our conventions
the sample geometry, the second-quantized operator of
2D density in the lowest Landau level is
n̂2D~x,y!5
1

L(
q

exp$ iqx%exp$2~ql !2/4%(
k

exp$2~y2@kF2k# l 2!2/ l 2%

p1/2l
ck1q/2

† ck2q/2 . ~C1!
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The operator of the 1D edge density is defined as the inte
of Eq. ~C1! over the transverse coordinate~y! from minus
infinity across the edge to a reference pointy5Y.0, located
in the bulk:

r̂1D~x!5E
2`

Y

dyn̂2D~x,y!. ~C2!

It is easy to see that the Fourier components of the 1D e
density operatorr̂1D(x) have the form

r̂q
1D5exp$2~ql !2/4%(

k
I kck1q/2

† ck2q/2 , ~C3a!

where

I k5
1

p1/2l
E

l 2kF2Y

`

dy exp$2~y2 l 2k!2/ l 2%. ~C3b!

As we are interested in the long-wavelength limitq! l only,
the Gaussian prefactor in Eq.~C3a! will be dropped. In the
subspace of low-energy excitations, the Fourier compon
of r̂1D(x) obey the familiar chiral-Luttinger-liquid commu
tation relations8

@ r̂2q8
1D ,r̂q

1D#5 ñ
qL

2p
dq,q8 . ~C4!

Due to the incompressibility of the ground stateuC0& of a
fractional QH system at filling factorñ, the operatorsr̂2q

1D

satisfy

r̂2q
1D uC0&[0 for q.0. ~C5!

We pose the following problem: Given a stateuc& in the
edge-excitation subspace that has a 1D density fluctua
d%(x) along the edge, what is the full 2D density profile f
this state? At first sight, this seems like a question imposs
to answer: How can we deduce the 2D density from its in
gral over the transverse coordinate? Enabling us to solve
above problem is the fact that the low-lying excitations in t
system are created by the operatorsr̂q

1D for positiveq. The
edge-density fluctuationd%(x) determinesuc& uniquely to
be a coherent state39 of the form

uc&5expH 2p

ñL
(
pÞ0

d%2p

p
r̂p

1DJ uC0&. ~C6!

Here,d%p is a Fourier component of the 1D density fluctu
tion:

d%p5E
0

L

dxeipxd%~x!. ~C7!

It is then straightforward to calculate the 2D density fluctu
tion dn2D(x,y) associated with the stateuc&, which is de-
fined by

dn2D~x,y!5^cun̂2D~x,y!uc&2n0
2D~x,y!, ~C8!

where we denote the 2D density profile in the ground s
by n0

2D(x,y)ª^C0un̂2D(x,y)uC0&. The result is
al

ge

ts

on

le
-

he

-

te

dn2D~x,y!5n0
2D@x,y12p l 2d%~x!/ ñ #2n0

2D~x,y!,
~C9!

which implies that the 2D density profile for a state with
edge waved%(x) present differs from the ground-state de
sity profile by arigid transverse deformation. The amount of
the transverse displacement is 2p l 2d%(x)/ ñ. Application of
this result to the inner and outer edges of a QH sample
filling factor n5121/m immediately yields Eq.~18!.

To determine the parameters in the generalized TL Ham
tonian describing edge excitations for a QH system at fill
factor n5121/m, we have to calculate the energydEC of
Eq. ~10b! up to second order in the 1D edge-density fluctu
tions. For that purpose, we need the 2D density profile of
~C9! only up to first order ind%(x), which reads then

dn2D~x,y!5
2p l 2

ñ
@]yn0

2D~x,y!#d%~x!. ~C10!

In a situation where the ONDF is a step function with a s
of height ñ at k5kF , one finds the analytical result

2p l 2

ñ
]yn0

2D~x,y!5
exp~2y2/ l 2!

Ap l
. ~C11!

Equation ~C11! is exact for a QH strip at a filling facto
equal to 1. It also applies to the density profile of the ne
tralizing background we have chosen@see Eq.~B2!#. We can
then deduce the form factors to be used in Eqs.~11!; they are

F ~ i !~y!5
2p l 2

12n
]yn0

~ i !~x,y2y~ i !!, ~C12a!

FIG. 6. Accounting for the full 2D density profile in our calcu
lation of the Coulomb contribution,dEC , to the edge-mode energ
requires the introduction of appropriate form factors,F ( i )(y) and
F (o)(y), for the inner and outer hole strips.~See Sec. III A.! As
shown in Appendix C, these form factors are related to the der
tive of the 2D ground-state density profile in the transverse dir
tion. It is possible to determineF (o)(y) analytically @dotted curve,
see Eq.~C12b!# because there are no fluctuations in the occupa
numbers for holes in the outer strip which has a filling factor eq
to 1. The situation is more complicated for the inner hole st
which has a fractional filling factor equal to 1/m with m
53,5, . . . . With the solid curve, we show the form factorF ( i )(y)
for m53 obtained from the ground-state density profile that h
been determined numerically in Ref. 38.
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F ~o!~y!5
exp~2y2/ l 2!

Ap l
, ~C12b!

F ~b!~y!5
exp~2y2/ l 2!

Ap l
. ~C12c!

We have denoted the 2D ground-statehole density for the
inner strip byn0

( i ) . At present, it is not possible to give
closed-form analytical result forF ( i )(y). So far, the 2D den-
sity profile and ONDF for fractional QH systems withñ
51/3, 1/5, and 1/7 have only been obtained numerica
for small numbers of particles.37,38 It is established tha
the ONDF in fractional QH systems at the simple 1m
filling factors is not a step function.8 With a broadened
ONDF at the inner edge, we also expectF ( i )(y) to be
broader thanF (o)(y). However, the form factorF ( i )(y) dif-
S

tro
or
A

-
,
B
rk
os
iq

ha
th
ig

ys
y

fers from F (o)(y)[F (b)(y) in a more significant way be
cause oscillations appear37,38 in the ONDF and the 2D den
sity profile close to the edge of añ51/m QH sample when
m.1. In the long-wavelength limit, all these effects a
taken into account in the correction factorsYl andYC. @See
Eqs. ~17!.# To compute actual numbers for the experime
tally most relevant case ofn52/3, we have taken the dat
reported in Fig. 3 of Ref. 38 for the 2D ground-state dens
profile of a fractional QH system atñ51/3 and derived the
corresponding form factorF ( i )(y). The result is given in Fig.
6, where we also showF (o)(y) as it is determined from Eq
~C12b!.

Using the analytical expressions forF (o)(y)5F (b)(y) and
the numerical result forF ( i )(y) as shown in Fig. 6, we de
termine the wave-vector-independent quantitiesD (bi), D (bo),
andD (bb) for the case ofd5d2/3'1.7l . This yields Eqs.~17!
with the quoted values of the correction factors.
1D
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17U. Zülicke, R. Bluhm, V. A. Kostelecky´, and A. H. MacDonald,
Phys. Rev. B55, 9800~1997!.

18We use the convention that theoutermode is right-going and the
inner mode is left-going. This corresponds to choosing a sign
the transverse external magnetic field. The direction of propa
tion for the EMP mode is given by the rule for classicalE cross
B drift. @See, e.g., J. D. Jackson,Classical Electrodynamics, 2nd
ed. ~Wiley, New York, 1975!, p. 582.#

19S. M. Girvin, Phys. Rev. B29, 6012~1984!.
20A. H. MacDonald and D. B. Murray, Phys. Rev. B32, 2707

~1985!.
21J. J. Palacios and A. H. MacDonald, Phys. Rev. Lett.76, 118

~1996!.
22A. H. MacDonald, Braz. J. Phys.26, 43 ~1996!.
23M. D. Johnson, inHigh Magnetic Fields in the Physics of Sem

conductors, edited by D. Heiman~World Scientific, Singapore,
1995!.

24M. D. Johnson and A. H. MacDonald, Phys. Rev. Lett.67, 2060
~1991!.

25J. M. Kinaret et al., Phys. Rev. B45, 9489 ~1992!; 46, 4681
~1992!.

26D. Yoshioka, J. Phys. Soc. Jpn.62, 839 ~1993!.
27M. Greiter, Phys. Lett. B336, 48 ~1994!.
28Y. Meir, Phys. Rev. Lett.72, 2624~1994!.
29Here and in the following,y( i ) is the coordinate at which the

outermost lowest-Landau-level orbital from the inner strip
centered. Likewise, the orbital with the smallest wave-vec



ho

m
t b

a

ri

ec-
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