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Comprehensive numerical and analytical study of two holes doped
into the two-dimensional t-J model
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We report on a detailed examination of numerical results and analytical calculations devoted to a study of
two holes doped into a two-dimensional, square lattice described by thet-J model. Our exact diagonalization
numerical results represent the first solution of the exact ground state of two holes in a 32-site lattice. Using
this wave function, we have calculated several important correlation functions, notably the electron momentum
distribution function and the hole-hole spatial correlation function. Further, by studying similar quantities on
smaller lattices, we have managed to perform a finite-size scaling analysis. We have augmented this work by
endeavouring to compare these results to the predictions of analytical work for two holes moving in an infinite
lattice. This analysis relies on the canonical transformation approach formulated recently for thet-J model.
From this comparison we find excellent correspondence between our numerical data and our analytical calcu-
lations. We believe that this agreement is an important step helping to justify the quasiparticle Hamiltonian,
and, in particular, the quasiparticle interactions that result from the canonical transformation approach. Also,
the analytical work allows us to critique the finite-size scaling ansatzes used in our analysis of the numerical
data. One important feature that we can infer from this successful comparison involves the role of higher
harmonics in the two-particle,d-wave symmetry bound state—the conventional@cos(kx)2cos(ky)# term is only
one of many important contributions to thed-wave symmetry pair wave function.@S0163-1829~98!04044-2#
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I. INTRODUCTION

The behavior of mobile holes in an antiferromagne
~AF! spin background has been a subject of intensive stu
in part because of its possible connection to hig
temperature superconductivity. The ubiquitous structu
components of such materials are the CuO2 planes, and a
simplified description of carriers in these planes is the th
retical focus of this paper. We consider the so-calledt-J
model,1,2 for which the holes correspond to the Zhang-R
singlets,3 mobile vacancies created by doping a single Cu2
plane. A microscopic representation of this model is

Ht2J52t (
^ i j &s

~ c̃ is
† c̃ j s1H.c.!1J(̂

i j &
~Si•Sj2

1
4 ninj !,

~1!

where^ i j & denotes nearest-neighbor sites, andc̃ is
† , c̃is are

the constrained operators,c̃is5cis(12ci ,2s
† ci ,2s). The ra-

tio of the AF exchange constant to the hopping amplitude
believed to beJ/t;0.3.

Aided by recent angle-resolved photoemissi
experiments,4 followed by extensive comparisons betwe
theory and experiment,5 it is now recognized that this simple
near-neighbor hopping Hamiltonian on its own is insufficie
to fully represent the true single-hole state of the real Cu2
plane. Hoppings between more distant neighbors
required,5–7 as are more complicated three-site sp
PRB 580163-1829/98/58~20!/13594~20!/$15.00
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dependent hoppings. Possibly, the full three-band mic
scopic Hamiltonian is necessary.8

Despite the potential inadequacy of this Hamiltonian
represent completely the CuO2 planes, it is still the simples
model that captures the important antiferromagnetic corr
tions of a weakly doped antiferromagnet.9 Thus, it is crucial
that the properties of this model when doped are elucida

The Hamiltonian in Eq.~1! has been investigated inten
sively by different analytical and numerical methods, and
believe that a consistent picture is emerging from these s
ies. For example, results obtained from exact diagonaliza
numerical work on small clusters with periodic bounda
conditions, such as the energy spectrum and quasipar
residue, have been found to be in the excellent agreem
with the behavior predicted by a well-studied analytic
theory.10 However, a large amount of the numerical data
the correlation functions at present are not well underst
and require further investigation. Such work could help
justify the correct quasiparticle model for the system
strongly interacting holes and spins at low energies. It is in
this manner that we unite our analytical and numerical w
in this paper.

Our analytical approach follows from a phenomenolo
of a common and apparently successful theory of a sin
hole moving in an AF aligned background, and involves t
so-called spin polaron.11–14 According to the spin-polaron
idea, the hole in its movement disturbs the magnetic ba
ground that one can formally describe as the strong coup
13 594 ©1998 The American Physical Society
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of the hole and spin degrees of freedom. This makes
problem similar to the well-known strong-coupling electro
phonon one. However, in spite of the qualitative similarity
these two polarons, there is an essential difference betw
them. If the phonon polaron can be considered as an alm
static object of the shifted ions with the electron in the ce
ter, the spin polaron is the ‘‘spin bag’’ with themovinghole
inside. One of the statements of the present paper is that
feature of the spin polaron is responsible for the absenc
the direct similarity between the answers that theory p
vides for quasiparticlesand the numerically obtained da
for bare holes. A similar conclusion, using a different an
lytical approach and numerical results for smaller cluste
was reached by Eder and co-workers.15–17 Later, similar re-
marks were made by Riera and Dagotto.18

In this paper we combine analytical and exact diagon
ization~ED! numerical results of the one- and two-hole pro
lem to provide a comprehensive study of these import
systems. Computationally we have managed, for the
time, to determine the two-hole ground state for two ho
doped into the 32-site, square cluster used by two of us
previously published numerical work.10 We find that the
lowest-energy state is aP50 bound state withdx22y2 sym-
metry. We have characterized the ground state by evalua
a number of important expectation values, notably, the e
tron momentum distribution function~EMDF!, and the spa-
tial pair-correlation function.

We have found that an effective quasiparticle Ham
tonian, originally proposed by Belinicher, one of us, a
Shubin,19 may be used to calculate the same expectation
ues that were obtained numerically via ED. Further, th
quantities are remarkably similar to those obtained via E
This gives strong support to the appropriateness of this q
siparticle Hamiltonian.

Previous analytical work on the low-energy physics of t
two-hole system generally describes it in terms of mod
ately interacting spin polarons. This analytical work sho
that the dominant effective interactions between spin
larons come from the short-range nearest-neighbor stati
traction and spin-wave exchange, the latter leading to a lo
range dipolar interaction. These interactions are attractive
d-wave states and strongly repulsive fors-wave states. The
purpose of this paper is to use the ED results to prov
support for this description of the internal structure of t
quasiparticles, and indirectly for the above-mention
description19 of their interactions.

We will first describe the present status of thet-J model
studies in Sec. II. Section III discusses in detail the num
cal data available for the ground-state correlation functio
Then, Sec. IV summarizes briefly the analytical results
relevant previous work and displays the details of the pres
calculations. Section V focuses on the comparison of
analytical and numerical results, and in Sec. VI we pres
our conclusions.

II. PREVIOUS T-J MODEL STUDIES

A. Analytical results

Theoretical studies of thet-J model have resulted in a
clear understanding of the nature of the low-energy exc
tions for the system near half-filling. The charge carrier c
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ated by a hole introduced in an AF background is descri
as a spin polaron, viz. as a quasiparticle consisting of a h
and a cloud of spin excitations. The AF spin-polaron conc
was put forward in earlier works of Bulaevskii, Nagaev, a
Khomskii11 and Brinkman and Rice,20 and then developed in
a number of more recent papers12–14,21–28using different
techniques.

The main conclusion of these papers was that the s
polaron in an AF background is a well-defined quasiparti
with a nonzero residue and a specific dispersion law. T
dressing of the hole leads to the narrow quasiparticle b
with a bandwidth;2J for realistic J/t, band minima atk
56(p/2,6p/2), and a heavy effective mass along the ma
netic Brillouin zone~MBZ! boundary. Most of these feature
of the spin polaron were found to be robust under gener
zations of thet-J model,29 including further neighbor and
three-site hoppings, and for a wide range ofJ/t ratio.

The single-hole problem has been treated analytically
detail.11–14,20,22–27,30Grouping these efforts, two approach
in treating this problem were used:~i! the self-consistent
Born approximation~SCBA! ~e.g., see Refs. 13, 14, and 22!,
and ~ii ! the so-called ‘‘string’’ approach~e.g., see Refs. 11
20, 23, and 25–27!. Recently, a relationship between the
two has been established.31 We briefly review these method
with an eye to understanding how well they might be able
describe the two-hole or multihole problem.

The SCBA method utilizes a property of the hole-magn
interaction, namely, the absence of the lowest-order cor
tion to the Born approximation series for the single-parti
Green’s function.13,14,22The attractive feature of the SCBA
approach is that the essentially exact single-hole spec
functions can be evaluated quite easily using simple num
cal calculations. Recently, the detailed structure of
single-hole ground state and behavior of different correlat
has been studied using SCBA.32 Unfortunately, already in
two- or many-hole problems much more involved numeri
and analytical efforts are required.33

The string approach is based on the idea that in an
background a hole will be confined by an effective poten
created by overturned spins~strings!. Formally, the real-
space variational ansatz for the polaron’s wave function w
the strings of different length is considered to reproduce
tendency. In spite of the considerable success of the st
approach for the single-hole problem,25 there are some prob
lems that make the use of it as a candidate for a quasipar
theory for thet-J model questionable. First of all, the strin
method uses the real-space approach, which does not
properly the long-range dynamics of the system. The n
problem is that the method starts from the Ising backgrou
and includes fluctuations on a perturbative basis, whereas
fluctuations are strong in two dimensions and must be ‘‘b
in’’ to the real ground state of the spin system. The th
problem concerns the necessity of the normal anticomm
tion relations of the quasiparticle operators. If a hole is
fermion a unitary transformation, which diagonalizes t
Hamiltonian and dresses the hole by the spin excitatio
would not change its statistics. Within the variational stri
and other approaches, one works with the wave functi
and usually identifies the wave function of the quasiparti
with the operatorof the quasiparticle. This leads to the a
sence of the commutation relations for these operators an
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troubles with the proper normalization and orthogonality
the states already for the two-hole problem.18,34 Because of
that one cannot correctly derive the effective polaron-pola
interaction term using a single-hole wave function.

These difficulties notwithstanding, several attempts to
dress the two-hole ground state have been made. Work b
on the string approach has led to some qualitative un
standing of the problem.17,23,35

The investigation of the interactions between quasipa
cles in thet-J model is a subject of prime interest in th
context of the magnetic pairing mechanism. However, st
ies of this problem show much less convergence than
single-hole problem. Other work involves the formulation
an effective model for spin polarons propagating in the
background.30,36–39 From the random phase approximatio
~RPA! treatment of the Hubbard model in the stron
coupling limit, the model of ‘‘spin bags’’ interacting via lon
gitudinal magnetization fluctuations has been proposed.37 A
phenomenological model for the vacancies coupled by
long-range dipolar twist of the spin background has be
also worked out30,40 using a semiclassical hydrodynamic a
proach. Inspired by the numerical evidence of the hole-h
d-wave bound state and the Van Hove singularity in
single-hole spectrum, taking the simplest phenomenolog
form of the interaction, an AF Van Hove model has been
forward.39 Using an ansatz for the quasiparticle wa
function,27 the ‘‘contact’’ hole-hole and the residual hole
magnon interactions have been obtained,41,42 and then the
effective Hamiltonian for the polarons and long-range s
waves has been presented.36

Even though most of these theories were formulated o
phenomenological and semiphenomenological basis,
provided two key interactions leading to pairing in thet-J
model. One of them is the effective hole-hole static attract
due to minimization of the number of broken bonds fou
from placing two holes at nearest-neighbor sites~sometimes
referred to as the ‘‘sharing common link effect’’!. The other
is due to spin-wave exchange, and leads to a dipolar-t
interaction between holes.30,36,43

Quite recently, a new approach to the derivation of a q
siparticle model from thet-J model has been developed.19 It
used a generalization of the canonical transformation~CT!
approach of the Lang-Firsov type. An effective Hamiltoni
for the spin polarons includes in itself both types of the ho
hole interactions mentioned above in a natural way. So
details of this approach are presented in Sec. IV. In Ref.
results for the single-hole properties have been compa
with those of the SCBA calculations and an impress
agreement has been found. This is supported further by
idea that the ‘‘canonically transformed’’ quasiparticles a
close to exactt-J model ones. Even though the CT approa
is less controlled than the SCBA one, it solves naturally
the problems mentioned above and allows one to derive
quasiparticle Hamiltonian for interacting spin polarons fro
the original t-J model. Thus, in this paper we compare t
predictions obtained from this Hamiltonian to our numeri
and in this way we critique the description of the interactio
between quasiparticles that follows from the CT approac

B. Numerical studies

ED studies of thet-J model doped away from half-filling
on small clusters with periodic boundary conditions are
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important source of unbiased information on the low-ene
physics of this system. One- and two-hole ground states h
been investigated in great detail on the 16- (434),44–52 18-
(A183A18), 20- (A203A20),53–62 and 26-site (A26
3A26) ~Refs. 63–69! clusters. Although some of these re
sults converge, at least partially, these clusters suffer fr
various finite-size problems. The 20- and 26-site clusters
not have the full rotational symmetry of the square lattic
Therefore, they do not possess important reciprocal lat
points along the high-symmetry directions in the first Br
louin zone. For example, the important reciprocal latt
point (p/2,p/2) does not exist in the first Brillouin zone o
the 18-, 20-, and 26-site clusters. This causes the grou
state momenta of the one-hole state to be different from
predicted6(p/2,6p/2) points. Although the 16-site cluste
has the (p/2,p/2) point, it has an additional symmetry tha
causes an accidental degeneracy of the levels at (p/2,p/2)
and (p,0) for one hole, and between (0,0) and (p,0) for the
two-hole problem.52 Attempts to remedy the missin
(p/2,p/2) point have been made by using the nonsqu
16-site (A83A32) ~Ref. 70! and 24-site (A183A32) ~Ref.
71! clusters.

Previous results on the single-hole problem show that
quasiparticle peak at the bottom of the spectral function
be expected to survive in the thermodynamic limit.10,45,48,64

The corresponding quasiparticle band is narrow~of the order
of 2J in the ‘‘physical’’ regionJ/t,1) and the band minima
are shifted to the antiferromagnetic Brillouin zone~ABZ!
boundary. However, due to the previously mentioned d
ciencies of the 16-, 18-, 20-, and 26-site clusters, none
them can actually show that the quasiparticle minima are
the 6(p/2,6p/2) points; these wave vectors are those p
dicted by numerous theoretical studies.12,21,23,30

The smallest cluster that has the full rotational symme
of the square lattice contains the (p/2,p/2) point, and is free
from the spurious degeneracies mentioned above, is the
site cluster (A323A32)—see Fig. 1. Also, it is the larges
such system that can be solved using modern compu
These calculations involve finding the lowest-energy sta
of matrices with dimensions of up to 300 million.

Recently, some results for the single-hole problem ha
been published for this cluster by two of us.10 These numer-
ics showed that the effective mass around the minima is
isotropic, and that the quasiparticle residue is rather smal

FIG. 1. The 32-site cluster in~a! direct and~b! reciprocal space.
Empty circles are included to mimic the periodic boundary con
tions used in our studies. The solid lines in~b! show the important
directions ink space displaying the high symmetry of the clust
The dashed line in~b! borders the first magnetic Brillouin zone.
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realisticJ/t, both in excellent agreement with analytical pr
dictions. Further, the full dispersion relation predicted
analytical work based on the SCBA~Refs. 13, 14, and 22! is
found to be in excellent agreement with ED numerics on t
cluster.10

ED results for two holes on finite clusters consisten
show that they are coupled in a bound state withdx22y2

symmetry in a wide range ofJ/t,44,46,47,49,50,52,55,56,61,67–69,7

in agreement with earlier ED data for the 16-site Hubb
model,73,74 the Green’s function Monte Carlo studies on
38 cluster,75 and some theories.17,19,36–39,76Low-lying states
with other symmetries, as well askÞ(0,0) states, have als
been studied.49,61 Attempts have been made to extrapola
the binding energy to the thermodynamic limit and thus
estimate the critical value ofJ/t for the formation of a bound
state.67,69 Also, some knowledge concerning the intern
structure of the bound state is known.68,75Lastly, the electron
momentum distribution function has been investigated in
der to search for Fermi-like discontinuities. Drastic diffe
ences between the single-hole and two-hole cases have
noted.51,57,58Finite-size andJ/t scalings of this quantity have
also been studied.58,59,62

Nevertheless, the above-mentioned results are of lim
usefulness simply because of the systematic error introdu
by the lower symmetry of the clusters with 16, 18, 20, and
sites. Clearly, the 32-site cluster would augment such s
ies. Further, with the collection of all such clusters, and so
analytical guidance regarding the correct scaling laws, in
mation on the thermodynamic limit, viz. a density of ze
@two holes in an infinite two-dimensional~2D! square lat-
tice#, would be accessible.

Section III will summarize the results of the ED studies
the single- and two-hole problems that we have obtained
the 32-site cluster. Some of the single-hole results have b
published previously,10 and we only mention those resul
that are crucial to our scaling analyses. A brief summary o
portion of the two-hole comparison to the CT Hamiltoni
was presented in Ref. 77.

III. NUMERICAL WORK

Most of the results presented in this section are obtai
by ED on the 32-site cluster with periodic boundary con
tions for the realistic valueJ/t50.3. Results at differentJ/t,
as well as on smaller clusters published previously,51,67 are
also used in the discussion of the finite-size scaling~FSS!,
bound-state energies, and correlation functions.

To look for evidence of hole binding in the low-energ
states, we calculate the two–hole binding energyEb[E2
22E11E0 , whereE1 andE0 are the ground-state energie
with one and no hole, respectively, andE2 is the energy of
the two-hole state. Further, two expectation values that
are interested in are defined as follows:~i! The electron mo-
mentum distribution function~EMDF! is given by ^nks&
[^c̃ks

† c̃ks&, wherec̃ks
† , c̃ks are the Fourier transform of th

constrained operators.~ii ! The spatial distribution of holes in
the bound state is characterized by the pair-correlation fu
tion defined as

C~r !5
1

NhNE~r !(i , j ^~12ni !~12nj !d u i 2 j u,r&, ~2!
s

d

l

r-

een

d
ed
6
d-
e
r-

f
n
en

a

d
-

e

c-

whereNh is the number of holes, andNE(r ) is the number of
equivalent sites at a distancer from any given site.

Before presenting the FSS of the EMDF, we discuss w
kind of finite-size behavior one can expect. The EMDF
expected to show how hole doping changes the unifo
value of ^nks&5 1

2 obtained in the half-filled case. In a sys
tem of free particles, a hole with a certain momentum w
manifest itself as the complete suppression of^nks& to zero
at this momentum. In systems with interaction the physics
which can be described in terms of the quasiparticles,
suppression will be proportional to the quasiparticle resid
Zk , and is almost independent of the cluster size; the res
the hole weight will be distributed among the other availa
k points. Consequently, the morek points a system possess
the less hole weight eachk point will carry. Therefore, in the
single-hole problem we anticipate that^nks& for the ground-
state momentumP to be suppressed by a constant prop
tional to ZP . Further, we expect that the deviation from th
half-filled value,

^dnks&5^nks&2 1
2 , ~3!

will scale as 1/N at all other points until~roughly! the phys-
ics of the system does not change with the cluster size,
when size of the quasiparticle is smaller than the cluster s

The same argument should apply to the bound state
the two-hole problem, where we predict^dnks& to scale as
1/N at all k points.

A. Single-hole case

We wish to provide a FSS analysis of certain quantit
for the two-hole ground state. To this end, we present n
results for the one-hole problem that will facilitate su
work.

Figure 2 shows the EMDF of the single-hole ground st
on the 32-site cluster atJ/t50.3, which has total spinStot

z

51 1
2 and momentumP5(p/2,p/2). Due to the nonzero

momentum of this state, the only symmetry its EMD
has is a reflection about the ‘‘main diagona
@(2p,2p)↔(p,p) line#.

Several features of the EMDF are worth noticing. Fir
^nk↓& has a ‘‘dip’’ at the GS momentumP. Earlier studies of
the J/t dependence of the intensity of this dip have left
doubt about its direct relation to the quasiparticle weig
ZP .58 Second, the EMDF deviates significantly from its ha
filled value for both spin directions across the entire Br
louin zone. This background has a maximum at (0,0) an
minimum at (p,p), which is a by-product of minimizing the
kinetic energy of the system16. Although this ‘‘dome’’ shape
resembles the ‘‘large Fermi surface’’ in a system of fr
electrons, it has different physics behind it. The discussion
this behavior will be given in Sec. IV. One observes that t
dome structure in̂nk↑& is shifted upwards from its half-filled
value, and that in̂ nk↓& it is shifted downwards (̂n(0,0)↑&
2^n(0,0)↓&.0.03). The difference between the maximu
and minimum,

Dns5^n~0,0!s&2^n~p,p!s&, ~4!

is slightly larger fors5↑ than for↓ @Dn↑(↓).0.07(0.06) at
J/t50.3]. Also Dn↓ has a strongerJ/t dependence. Finally



e
he

13 598 PRB 58A. L. CHERNYSHEV, P. W. LEUNG, AND R. J. GOODING
FIG. 2. The EMDF for the single-hole ground state having momentumP5(p/2,p/2) andStot
z 511/2 atJ/t50.3. The numbers are th

electron filling factors~a! ^nk↑&, ~b! ^nk↓& at the correspondingk points. Antidips at (2p/2,2p/2) described in the text are denoted by t
dashed boxes, and the dip in~b! at the ground-state momentum is highlighted by the solid box.
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the EMDF’s of boths5↑,↓ have ‘‘antidips’’ at (2p/2,
2p/2). They were observed earlier but no successful ex
nation has been presented. The fact that the antidips ar
ways atP2QAF supports the idea that their physics is som
how related to the long-range AF fluctuations in t
system.58 Subtraction of the ‘‘normal’’ background from
^n(2p/2,2p/2)s& shows that the depth of the antidip,

Dnanti,s5^n~2p/2,2p/2!s&2^n~p/2,2p/2!s&, ~5!

is larger for ↑ @Dnanti,↑(↓).0.11(0.08) atJ/t50.3], and
Dnanti,↓ has strongerJ/t dependence.

In Figs. 3 and 4 we plot̂dnsk& vs the ‘‘inverse volume’’
of the system, 1/N, at J/t50.3 for all k points~exceptP and
P2QAF) available on more than one cluster. One finds
sults consistent with a 1/N scaling at all of these points, in
agreement with our expectations. Figure 5 shows the s
plot for the EMDF at the ground-state momentum. Extrap
lation to the thermodynamic limit shows that the dip, whi
a-
al-
-

-

e
-

we expect to beZP/2 ~the factor one-half is from the prope
normalization of the wave function!, is about 0.14, orZP
.0.28. This agrees well with SCBA result,ZP

SCBA50.271.13

There is no simple scaling for the antidips ofu^dnP2Qs&u
because of the long-range physics involved. According to
discussion in Sec. IV they are combinations of terms w
different scaling behaviors.

B. Two-hole case

The only zero total momentum bound state that we h
found in the zero magnetization channel is a singlet an
hasdx22y2 symmetry. Figure 6~a! shows theJ/t dependence
of the binding energyEb on the 16-, 26-, and 32-site cluster
One can see that the absolute value of the binding ene
gets smaller as the size of the cluster grows, and that in s
region ofJ/t the binding energy becomes positive. Such b
havior seems to be natural in the presence of short-ra
FIG. 3. 1/N scaling of the~a! u^dnk↑&u, ~b! u^dnk↓&u @see Eq.~3!# for k5(p,p) ~filled circles!, (0,0) ~empty circles!, and (p,0) ~filled
diamonds! for the single-hole ground state atJ/t50.3. The data from 16-, 20-, 26-, and 32-site clusters@(p,p), (0,0) points# and from 16-,
20-, and 32-site clusters@(p,0) point#, where these points are available, are used.
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FIG. 4. The same as in Fig. 3 fork5(p/2,p) ~filled circles!, (p/2,2p) ~empty circles!, (p/2,0) ~filled diamonds!, and (p/2,2p/2)
~empty diamonds!. These points are available from 16- and 32-site clusters only.
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attraction between the holes. In this case holes on la
clusters lower their kinetic energy due to delocalization a
make the bound state shallower, whereas on smaller o
they are not allowed to move farther apart. Further, holes
smaller clusters are forced to be in the region of the mu
attraction. Since these short-range interactions are belie
to be of magnetic origin, the interaction energy has to sc
asJ. Consequently, the increasing importance of the kine
energy at smallJ/t tends to destroy the bound state. This li
of thinking leads to a discussion of whether or not the criti
threshold ofJ/t for bound-state formation is above or belo
the ‘‘realistic’’ value of J/t for the cuprates. Attempts hav
been made to estimate the thermodynamic limit of (J/t)uc
through FSS of the binding energy.67,69 If we follow the
same approach, we obtain the scaling shown in Fig. 6~b!, and
this data shows the FSS at two representativeJ/t values. The
thermodynamic limit ofEb is negative at the largerJ/t
~smaller size of the bound state, larger role of the short-ra
interaction! and positive at the smallerJ/t ~no bound state!.

FIG. 5. 1/N scaling for the u^dnk↑&u ~open circles! and (C
1a/N) scaling for the dip inu^dnk↓&u ~filled circles! at the ground-
state momentumk5P, J/t50.3. These points are available for th
16- and 32-site clusters only.
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In our opinion, this approach is problematic for at lea
two reasons. First, there is another important hole-hole in
action, viz. magnon exchange, which also leads to pairing
fact, it is this interaction that selects thed-wave symmetry
state. It has been shown analytically19,30,36that this interac-
tion alone leads to the formation of a shallow long-ran
bound state that does not have a critical value ofJ/t because
the interaction strength grows witht. Therefore, one can ex
pects that further increase in the cluster size will not o
lower the kinetic energy of the holes, but will also provid
more sites for the holes to take advantage of the long-ra
attraction. The second reason is the absence of the evi
scaling law for the binding energy. Regarding the complex
of the interactions involved and the tendency of the magn
subsystem towards AF long-range order, we expect differ
contributions to the FSS ofEb that are of different order in
1/N and of comparable magnitudes. This is especially true
smallerJ/t when the size of the bound state is comparable
or larger than the cluster size.

Another important quantity that shows further evidence
the hole-hole attraction in an AF background is the hole-h
correlation functionC(r ), Eq. ~2!. It has been studied in
detail in smaller systems.44,50,67,69,72Figures 7~a! and 7~b!
show the 32-site ED results forC(r ) at J/t50.3 andJ/t
50.8, respectively. In a wide region ofJ/t the strongest
correlation is at theA2 distance, while the nearest-neighb
correlation is also strong. A density-matrix renormalizatio
group study78 has also found similar physics. At largerJ/t
@Fig. 7~b!# the size of the bound state is small: the neare
neighbor andA2 distances accumulate about 80% of t
holes. However, atJ/t50.3 theprobabilities of finding the
holes atA5 andA2 distances are almost the same, and o
46% of the holes are located at the nearest-neighbor andA2
distances. The correlation decays slowly with distance
small J/t. Hence in theJ/t50.3 bound state one can expe
C(r ) to have a longer ‘‘tail’’ in the thermodynamic limit.

The next correlation function that can be used to extr
information on the bound state is the EMDF. Figures 8~a!,~b!
show the EMDF atJ/t50.3 andJ/t51.0 in the first quad-



13 600 PRB 58A. L. CHERNYSHEV, P. W. LEUNG, AND R. J. GOODING
FIG. 6. ~a! TheJ/t dependence of the binding energyEb , in units oft, from ED studies on the 16-~diamonds!, 26- ~squares!, and 32-site
~circles! clusters.~b! The binding energy vs 1/N for two representativeJ/t values,J/t50.3 ~upper! and J/t51.0 ~lower!. The solid and
dashed lines are 1/N scaling using 16- and 32-site data only~filled circles! and data from all available clusters~open and filled circles!,
respectively.
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rant of the Brillouin zone. Since the total momentum of t
systemP is zero, the EMDF possesses the full square sy
metry. Moreover, since the ground state is a singlet,^nk↑&
5^nk↓&5^nk&. Another noticeable difference from th
single-hole EMDF is the absence of a ‘‘dip’’ at anyk point.
This is not surprising because one would not expect the h
in the bound state to have a certain momentum. They wil
spread over allk points especially if the bound state is we
localized in real space.

Some of the features of the EMDF are essentially
same as that of the single-hole case. The dome structu
very pronounced. Further, our results shows that the am
tude of the background deviation,Dn5(^n(0,0)&2^n(p,p)&),
is roughly the same as (Dn↑

1hole1Dn↓
1hole). This shows that

the background behavior is due to the single-hole excitati
and is irrelevant to the physics of the bound state. We w
provide support of this in the next two sections.

In the next section we will show that the important EMD
data are those along the AF Brillouin zone boundary. Th
data are practically unaffected by the kinematic form fac
effect, so they can be used to draw conclusions on the in
nal structure of the bound state ink space. One can interpre
the EMDF at these points as the half-filled EMDF su
pressed by the hole-occupation number. The hole weigh
the single-hole ground-state momentum (p/2,p/2) is surpris-
ingly small—̂ nk& deviates from the half-filled value of1

2 by
only 1%. This is the consequence of thedx22y2 symmetry,
which restricts the hole weight to be zero at these poi
Another interesting feature is that the hole occupation at
(3p/4,p/4) point is higher than that at (p,0) @Fig. 8~a!#. It is
worth noting that at smallerJ/t the hole occupation number
at these points are very similar and their absolute values
larger. As follows from the discussion in the next sectio
these facts indicate the presence and importance of hi
harmonics in the bound state at smallerJ/t, because the
‘‘bare’’ first d-wave harmonic@cos(kx)2cos(ky)# will always
give a larger hole weight at (p,0) than at (3p/4,p/4).
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The available clusters allow us to perform FSS for six
the nine inequivalentk points of the 32-site cluster. Resul
for four of them atJ/t50.3 andJ/t51.0 are presented in
Figs. 9~a!,~b!. They all show the anticipated 1/N scaling.
Note that a similar scaling plot at (p/2,p/2) is not successfu
becauseu^dnk&u is too small. Figure 10 shows the scaling
the EMDF at (p,0). If we discard the 16-site data by arguin
that they are spoiled by the artificial degeneracy, one
clearly see the 1/N scaling atJ/t51.0. In contrast to this,
u^dn(p,0)&u at J/t50.3 does not show the same 1/N scaling.
We attribute these different behaviors to the different sizes
the bound states. TheJ/t51.0 bound state is small. There
fore, it has to scale as 1/N even whenN is not too large. The
J/t50.3 bound state is relatively large. An increase in t
cluster size redistributes the hole weight among the new
monics that become available in larger systems. The EM
at those points not along the AFBZ boundary@Figs. 9~a!,~b!#
mostly result from kinematic effects that are saturated
shorter distances. Therefore, they do not depend much on
details of the bound-state structure.

IV. ANALYTICAL RESULTS

Studies of the dopedt-J model via the ED technique pro
vide important information on effective quasiparticle the
ries. However, these same numerical results also posed s
problems and made questionable the relation of these
lytical studies to the problem of the ‘‘finite doping of th
finite system.’’ For example, the EMDF for the ground sta
of the different number of holes and the pair-correlati
function for the two holes doped into the system were int
sively studied numerically~see Secs. II A, III!. It turned out
that the results for these quantities were found to be in c
tradiction to some expectations. EMDF, which was naiv
expected to show something like ‘‘hole pockets,’’ or simp
hole-rich and electron-rich regions ink space, demonstrate
a dramatic deviation of this quantity for the doped clust
from the half-filled~no holes! case with the strong variation
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across the whole Brillouin zone. Moreover, there is a stro
doping dependence of these results. Data for the two-h
ground state differ significantly from the single-hole one
More surprisingly, the overall shape of the EMDF remin
one of the free electrons with a nearest-neighbor hopp
band. This was the reason for the conjecture that thet-J
model already at rather low doping concentration underg
a transition to the free-electron physics and shows a ‘‘larg
Fermi surface.57 Also, the hole-hole correlation function fo
thed-wave bound state shows the largest weight of the ho
in the configurations that should be forbidden by thed-wave
symmetry ~the so-calledA2-paradox!. In this situation, a
physical explanation of such puzzling behavior of the cor
lation functions together with an analytical picture would
highly desirable.

A qualitative understanding of these effects in the cont
of the spin-polaron physics has been achieved in the wo
of Eder and Becker,15 and Eder and Wro´bel,16 wherein the
authors showed that thet-J model quasiparticles will favor
qualitatively the same EMDF as the ones found in the
merical calculations. Using rather general arguments, t

FIG. 7. The spatial correlation function,C(r ), for two holes
doped into a square lattice described by thet-J model, for ~a! J/t
50.3, and~b! J/t51.0. Our ED results~open circles!, the analytical
results for an infinite square lattice~open diamonds!, and the ana-
lytical results mapped onto a 32-site square lattice~filled dia-
monds!, are all shown. The lines are guides to the eye. In~b!,
analytical results for the cluster are very close to those for the b
and hence are not shown.
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demonstrated that the ‘‘large Fermi surface’’ is a con
quence of simple sum rules and a minimum of the total
ergy, and it is completely irrelevant to the problem of t
real Fermi-surface identification. The main idea of the
works is that the hole pockets should be attributed to
quasiparticles, not to the bare holes. Since the renorma
tion is strong only a relatively small part of the polaron c
be visualized ink space as a fermion having a certain m
mentum. The ‘‘dressed’’ part of the spin polaron is respo
sible for the background in the EMDF, which is spread ov
the entire BZ. More specifically, the EMDF does not on
measure the lack of the electrons due to the center of
polaron, but it also keeps track of the hole distribution ins
the polaron. Similar physics has been discussed recentl
Ref. 18.

Within the same theoretical framework, i.e., a variation

k,

FIG. 8. The EMDF for the two-hole ground state,P50, Stot
z

50 at ~a! J/t50.3, ~b! J/t51.0 within the first quadrant of the BZ
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string approach, we mention that the pairing problem for t
holes has been considered elsewhere17 and the source of the
large probability of finding holes in the ground state alo
the diagonal of an elementary square can be explained by
large weight of the ‘‘hole3~hole11 spin flip!’’ combination
in the two-holed-wave bound-state wave function. Qualit
tive discussion of the same physics has been done recen
Ref. 79.

In what follows we will show how the qualitative pictur
drawn in Refs. 15–17, which gives a basic understanding
the numerical data, can be reproduced using simple ansa
for the spin polarons and their bound state. Then, the
approach is used to derive analytical expressions that
able to explainquantitativelymost of the one- and two-hol
ED data for the ground states described in Sec. II, and ea
in the literature.

A. Qualitative analysis using a simplified model

We begin our analytical calculations of two holes d
scribed by thet-J model by considering a simplified trea

FIG. 9. 1/N scaling of theu^dnk&u in the two-hole ground state
for ~a! k5(p,p) at J/t50.3 ~filled circles! and J/t51.0 ~empty
circles!, and (0,0) atJ/t50.3 ~filled diamonds! and J/t51.0
~empty diamonds!, and ~b! k5(p,p/2) at J/t50.3 ~filled circles!
and J/t51.0 ~empty circles!, and (p/2,0) at J/t50.3 ~filled dia-
monds! andJ/t51.0 ~empty diamonds!.
o
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ment of two holes moving in an antiferromagnetic~AFM!
Ising background. We then evaluate the EMDF andC(r )
using this simplified model in order to see what kind
behavior one can expect in the ground state of spin polar
This work is instructive, and helps in understanding th
problem. So we present these preliminary results first.

Consider the EMDF. In a system without holes, one fin
that^nks&51/2 everywhere in the full Brillouin zone. This i
a consequence of the purely local character of the electr
states andStot

z 50. By definition

^nks&51/N ( i j e
ikr i j ^c̃is

† c̃ j s&

5 1/N ( i^ c̃is
† c̃is&11/N ( i ,d5” 0eik•d^c̃is

† c̃i 1ds&.

The second term is zero for the half-filled case and the fi
term yields ^nk↑&5^nk↓&51/2. An informative result that
follows from the second term is that hole doping makes
matrix elements between different ‘‘strings’’ of the polaro
wave function nonzero, and accompanied by the phase fa
eik•d, whereudu is the difference between the lengths of t
strings. For example, the matrix element between the b
component (( i c̃i↓e

ikr iu0&) and the one spin-flip string com
ponent (( i ,dSi

1c̃i 1d↑e
ikr iu0&) is proportional to (deikd

;gk , which is asymmetric with respect to the transform
tion k→k1(p,p), gk52gk1Q . Thus all odd-distance ma
trix elements are responsible for the antisymmetric contri
tion to ^nk&, and this asymmetry makes^nk& resemble the
shape of a large Fermi surface. Note, that this unusual ef
is closely related to the localized character of the electro
states and the spin polaron nature of the carriers. Recent
similar asymmetry observed in the angle-resolved pho
emission spectroscopy data of an undoped (Sr2CuO2Cl2)
~Ref. 80! and doped18 AFM insulators has been successful
explained using essentially the same ideas.

Hole excitations near half-filling~when long-range AFM
order is present! are most concisely explained using th
spinless-hole Schwinger-boson representation for the c
strained fermion operators. Thus it is necessary to exp

FIG. 10. u^dnk&u in the two-hole ground state vs 1/N for k
5(p,0) at J/t50.3 ~filled circles! and J/t51.0 ~empty circles!.
Solid line shows 1/N scaling for theJ/t51.0 data if the 16-site
cluster result is ignored.
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^nk& and C(r ) in terms of averages of combinations of th
hole and magnon operators. The essence of this repres
tion is the following. The creation of a hole~annihilation of
an electron! at site i in sublatticeA5$↑% ~with the main
direction of the spins being up! is achieved by operatingc̃i↑
on the ground state. Thus,c̃i↑.hi

† . The action of the same
operator on sitej in sublatticeB5$↓% is nonzero only if the
spin is in the ‘‘wrong’’ direction (↑). Therefore, creation o
a hole is accompanied by the annihilation of a spin exc
tion: c̃ j↑5hj

†Sj
2.hj

†aj . Thus,

^c̃i↑
† c̃ j↑&5^hA,ihA, j

† ~12aA, j
† aA, j !&d i ,Ad j ,A

1^hA,ihB, j
† aB, j&d i ,Ad j ,B1^hB,iaB, j

† hA, j
† &d i ,Bd j ,A

1^hB,ihB, j
† aB, j

† aB, j&d i ,Bd j ,B. ~6!

The above will suffice for the description in this paper—f
an advanced and detailed discussion of this representa
we refer the readers to Ref. 81.

First we examine a simple ansatz for the single-h
ground-state wave function27,41

u1&5A2

N
h̃B,P

† u0&

5A2

NFahB,P
† 14b(

q
gP2qhA,P2q

† aB,q
† G u0&, ~7!

wherea214b251, and, as noted in Ref. 15, the sign of t
term linear ingk is found from minimizing the kinetic en
ergy. ~Note that the origin of the hole is in sublatticeB, so
the total spin of the system isStot

z 51/2.) Hereafter,q
PABZ,

(
q

5
2

N (
qn ,n51

N/2

,

and

$hA~B!k ,hA~B!k8
† %5@aA~B!k ,aA~B!k8

†
#5dk,k8•N/2. ~8!

Minimal algebra for the EMDF andC(r ) yields

^nk↑&N.
N

2
2^hA,k

† hA,k&1(
q

~^aB,q
† aB,q&2^aA,q

† aA,q&!

2S K hA,k
† (

q
hB,k1qaB,q

† L 1H.c.D ,

^nk↓&N.
N

2
2^hB,k

† hB,k&1(
q

~^aA,q
† aA,q&2^aB,q

† aB,q&!

2S K hB,k
† (

q
hA,k1qaA,q

† L 1H.c.D ,

~9!

C~r !5
1

NhNE~r !(i , j ^ni
hnj

hd u i 2 j u,r&,

whereni
h5hi

†hi is the hole number operator. The physic
meanings of the terms in̂nk& are apparent. The number o
electrons with spin up and momentumk is reduced by the
ta-

-

ion

e

l

amount of holes having the same momentum and by the
flips in sublatticeA. It is increased by the number of spi
excitations in sublatticeB. The last term is not zero betwee
different components of the spin-polaron wave function,
flecting the inner structure of this quasiparticle, or the kin
matic ‘‘form factor.’’ Alternatively, according to Ref. 15, i
reflects ‘‘the fast movement of the hole inside the bag.’’

Using u1& from Eq. ~7!, Eq. ~9! gives

^nk↑&.
1

2
1

1

N
~216b2gk

214b218uabugk!, ~10!

^nk↓&.
1

2
2

1

2
a2dk,P2

1

N
4b2.

These simple expressions already contain significant qua
tive information about the EMDF for the single-hole groun
state. There is a dip in̂nk↓& at k5P with weight equal to
one-half of the quasiparticle residue, corresponding to
center of the polaron. There is also a constant positive~nega-
tive! shift in ^nk↑& (^nk↓&) due to spin excitations in sublat
tice B @see Eq.~7!#. Although ^nk↑& does not have any dips
it does have two other features. One is due to the hole
tribution in the dressed part of the polaron (;gk

2), and the
other is due to the ‘‘interstring’’ matrix elements (;gk).
The absence of the interstring terms in^nk↓& in Eq. ~10! is
due to the approximation made in the above ansatz viz.
~7!, namely, the elimination of the longer strings that a
necessary to produce the ‘‘dome’’ structure of^nk↓&. This
explains the smaller amplitude and strongert/J dependence
of the differenceDn↓5n(0,0)↓2n(p,p)↓ than those ofDn↑ for
the single-hole ground state.

Thus, most features of the single-hole EMDF data
ported in Sec. III can be understood using this simplifi
model. According to Eq.~10! all ^dnks& scale as 1/N except
for the dip that scales asC1a/N, a result that is employed
in the FSS analysis of the ED numerical work.

In order to carry out a similar analysis for the two-ho
case, one has to solve the Schro¨dinger equation for the
bound-state problem. Instead of doing this we simply p
pose the nearest-neighbor bound state wave function ha
d-wave symmetry andStot

z 50 based on the expectation th
two static holes attract each other through the ‘‘sharing co
mon link’’ effect ~viz., Hint52J/2 ni

hnj
h):

u2&5A2

N(
p

Dp
dh̃A,p

† h̃B,2p
† u0&

5A2

N(
p

Dp
dFa2hA,p

† hB,2p
†

14ab(
q

~gp2qhB,p2q
† hB,2p

† aA,q
†

1g2p2qhA,p
† hA,2p2q

† aB,q
† !

116b2(
q,q8

gp2qg2p2q8hB,p2q
† hA,2p2q

† aA,q
† aB,q8

† G u0&,

~11!

with Dp
d5@cos(px)2cos(py)# ensuring that the centers of th

polarons are at the nearest-neighbor sites.
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The EMDF calculation usingu2& in Eq. ~11! yields

^nk&5^nk↑&5^nk↓&

.
1

2
1

1

N
~2a2~Dk

d!2216b2gk
218uabugk!, ~12!

where the terms inside the bracket are simply the sum of
1/N terms in thê nk↑& and^nk↓& expressions of Eq.~10! for
the single-hole case, and the dip structure is replaced by
probability of finding a bare hole with momentumk in the
bound state. This explains the observation mentioned in
III that the quantityDn5n(0,0)2n(p,p) for the two-hole case
is roughly the same asDn↑1Dn↓ for the single-hole case. I
is interesting to note that since thek dependence of the term
from the dressed part of the polaron and from the ‘‘int
string’’ processes vanish at the boundary of the magn
Brillouin zone (gk50), features of the EMDF along this lin
are not disguised by kinematic effects. Thus, one can dire
observe the structure of the bound state wave functionDk

d

from the ^nk& data at these points. In particular, th
(p/2,p/2) point has to have zero hole weight due to t
d-wave symmetry of the bound state. For the particular fo
of Dp

d we have chosen, the maximum of the hole weig
~minimum in ^nk&) will be at the (p,0) point.

The hole-hole correlation function on different cluste
consistently shows a maximal probability for states in wh
the holes are along the diagonal of an elementary square
they prefer to be at a distanceA2a from one another, where
a is the lattice constant.@At first glance, such a configuratio
should be forbidden by thedx22y2 symmetry of the state
One way to resolve this paradox, as suggested
Poilblanc,68 is to introduce modified creation pair operato
hi

†hi 6x6y
† Si 6x(y)

1 to the barehi
†hi 6x(y)

† pair operator. It is
clear that the bound-state wave function Eq.~11! includes
such combinations naturally.# Calculation ofC(r ) of Eq. ~9!
in the ground state given by Eq.~11! gives

C~1!5a4/419b4/4, C~A2!5a2b2,

C~2!5a2b2/2, C~A5!53b4/4, C~3!5b4/4. ~13!

For the physical range oft/J;223 the weights accumu
lated in the bare and ‘‘one-string’’ parts of the polaron wa
function are almost identical,a2.4b2.27,38 This gives
C(1).C(A2), in qualitative agreement with the numeric
results.

Thus, one can conclude that our simple consideration
one and two holes in a system of Ising spins, based o
simplified spin-polaron picture, already shows qualitat
agreement with the numerical data. The treatment of the
alistic system with a Ne´el spin background requires a prop
account of the spin fluctuations, the long-range dynamics
the system, and multiple spin excitations~longer strings!.

B. CT approach

1. CT Hamiltonian

The t-J model Hamiltonian~1! can be rewritten using the
spinless-fermion representation for the constrained ferm
operators and Holstein-Primakoff12,14 or Dyson-Maleev81

representation for the spin operators. These formalisms h
e

he

c.

-
ic

ly

t

.e.,

y

of
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n
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been shown to be adequate in treating the nonlinear fea
of the kinetic energy term of Eq.~1! properly. Subsequen
diagonalization of the spin part of the Hamiltonian by t
Bogoliubov transformation naturally includes spin fluctu
tions in the ground state.

The essential part of thet-J Hamiltonian rewritten in this
way looks like the electron-phonon Hamiltonian for th
‘‘usual’’ polaron problem with an additional direct fermion
fermion interaction term:

Ht2J.(
q

vqaq
†aq1(

k,q
~M k,qhk2q

† hkaq
†1H.c.!1DH,

~14!

DH522J~122l! (
k,k8,q

gqhk2q
† hk81q

† hk8hk ,

whereh†(h),a†(a), are the spinless hole and magnon o
erators, respectively,vq52J(12gq

2)1/2 is the spin-wave en-
ergy,M k,q54t(gk2qUq1gkVq), Uq ,Vq are the Bogoliubov
transformation parameters, gk5(coskx1cosky)/2, l
5(q(Vq

22gqUqVq)520.08. DH is an effective hole-hole
attraction due to minimization of the number of broken A
bonds. Two important differences make thet-J version of
the polaron problem much more difficult to study:~i! the
absence of bare dispersion term of the hole,82 and ~ii ! the
essentially nonlocal character of the hole-magnon inter
tion, because each process of emitting~absorbing! a magnon
is associated with an intersite hole hopping.

The CT approach has been applied to the spin-pola
Hamiltonian of Eq.~14! in Ref. 19. The generator of the C
was proposed to be in the form

S5(
k,q

f kM k,q~hk2q
† hkaq

†2H.c.!, ~15!

where f k is the parameter of the transformation, and in R
19 f k was chosen to minimize the single-hole energy, viz

d

d f k
S (

k8
Ek8D 50. ~16!

The negligible role of the higher-order hole-magnon vertic
in the transformed Hamiltonian was demonstrated and it w
argued that the initially strong hole-magnon interaction
Eq. ~14! is transfered mainly into a hole ‘‘dressing’’ and int
the hole-hole interaction. Thus, for a wide region oft/J one
can restrict one’s considerations to the effective Hamilton

He f f5(
k

Ekh̃k
†h̃k1(

q
vqaq

†aq

1 (
k,k8,q

Vk,k8,qh̃k2q
† h̃k81q

† h̃k8h̃k

1(
k,q

Fk,qM k,q~ h̃k2q
† h̃kaq

†1H.c.!, ~17!

whereEk and vq are the polaron and magnon energies,
spectively,Vk,k8,q is the direct polaron-polaron interaction
M k,q is the bare hole-magnon vertex, andFk,q is the renor-
malization form factor that is close to zero at largeq, and is
constant (;0.220.4) at smallq. The last term, which cor-
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responds to the interaction of the hole with long-range s
waves, has been left in the effective Hamiltonian in this fo
to account for the retardation effect in the polaron-pola
spin-wave exchange. Also, short-range spin-wave excha
has been converted to the direct polaron-polaron interact
The polaron energyEk and the weights of the components
the polaron’s wave function have been compared with
results of the other works, especially SCBA results, and v
good agreements were found. Since the derivation of
single polaron energyand the polaron-polaron interaction i
the framework of CT approach are the same, one can h
that the effective Hamiltonian of Eq.~17! properly describes
the interaction between the low-energy excitations of thet-J
model.

2. Our calculations using the CT approach

We are interested in the ground state with total spinStot
z

51/2 (Stot
z 50) for the single-hole~two-hole! case in an AF

ordered system. Thus, it is necessary to use a two-subla
representation for the fermions and bosons.19 In the two-
sublattice representation there are two types of holes
magnons, both defined inside the first magnetic Brillou
zone, whereas in the one-sublattice representations holes
magnons are defined inside the full Brillouin zone. In t
previous subsection we used the latter for the sake of sim
fying notations. There is a simple relation between these
representations:

hk5~ f k1gk!/A2, hk1~p,p!5~ f k2gk!/A2,
~18!

aq5~aq1bq!/A2, aq1~p,p!5~aq2bq!/A2,

where f k andgk correspond to the hole excitations in theA
and B sublattices, respectively.aq and bq are the two
branches of the Bogoliubov spin-wave excitations.

The correlation functionŝnks& and C(r ) expressed in
terms of the averages of the hole and magnon operators

^nk↑&N.
N

2
2~12dl!^ f k

†f k&2(
q

^gk1q
† gk1q&Vq

2

1(
q

~^bq
†bq&2^aq

†aq&!

2S K f k
†(

q
gk1q~bq

†Uq1a2qVq!L 1H.c.D ,

^nk↓&N.
N

2
2~12dl!^gk

†gk&2(
q

^ f k1q
† f k1q&Vq

2

1(
q

~^aq
†aq&2^bq

†bq&!

2S K gk
†(

q
f k1q~aq

†Uq1b2qVq!L 1H.c.D ,

~19!

C~r !5
1

NhNE~r !(i , j ^ni
hnj

hd u i 2 j u,r&, h5 f ~g!,

when i P$A%~$B%!,
n

n
ge
n.

e
y
e

pe

ice

nd

nd

li-
o

re

wheredl5(qVq
250.19. The negligible contribution of the

higher-order terms~in the number of magnons! to ^nk,s& has
been checked and these terms are omitted.

It is interesting to compare these expressions with th
for the Ising limit of the model given in Eq.~10!. The num-
ber of holes in sublatticeA reducing the number of electron
with spin up is decreased by the spin fluctuations (dl, first
term!, but due to the same effect the reduction in^nk↑& can
be done by the holes in the sublatticeB ~second term!. The
third terms take into account an imbalance of the numbe
spin excitations of different types. The last term is nonze
for the interstring processes~now strings are just the compo
nents of the wave function with the spin excitations!.

Using the CT generator of Eq.~15! one obtains the wave
function of the spin polaron (Stot

z 511/2):

u1&5A2

N
g̃P

†u0&5A2

N
eSgP

†u0&

5A2

NFaPgP
†1(

q
bP,qf P2q

† bq
†

1(
q,q8

cP,q,q8gP2q2q8
† bq

†aq8
†

1•••G u0&. ~20!

Here,aP
25ZP,1 is the quasiparticle residue. An explicit ex

pression for the exact spin-polaron wave function within t
SCBA was written in Ref. 24 in the same form. The groun
state momenta for the spin-polaron in the puret-J model are
6(6p/2,p/2).

Then, using Eq.~20! the single-hole EMDF is found to be
given as

^nk↑&.
1

2
1

1

NS 2~12dl!bP,P2k
2 2aP

2VP2k
2

2(
q,q8

cP,q8,P2k2q2q8
2 Vq

21(
q

bP,q
2

22S aPbP,P2kUP2k1bP,P2k(
q

cP,P2k,qVqD D ,

~21!

^nk↓&.
1

2
2

1

2
dk,P~12dl!aP

21
1

NS 2~12dl!(
q

cP,q,P2k2q
2

2(
q

bP,P2k2q
2 Vq

22(
q

bP,q
2

22(
q

bP,P2k2qcP,P2k2q,qUqD .

As we will show below, these expressions give goodquan-
titative agreements with numerical data. As before,^nk↓&
shows a dip atk5P with a weight proportional to the qua
siparticle residue due to the center of the polaron. A cons
positive ~negative! shift due to different amount of spin ex
citations~fourth term! is also present in̂nk↑& (^nk↓&). The
first three terms in̂ nk↑& and the second and third terms
^nk↓& reflect the hole distribution inside the polaron, where



it

th
t

un
-

o
de

to

al
o

r

h

e
s:

r

he

a

t
he
ify

the

of

the
rn
e

tial

her
e

st-
ttice
the
ce

n

13 606 PRB 58A. L. CHERNYSHEV, P. W. LEUNG, AND R. J. GOODING
the last two terms in̂nk↑& and the last term in̂nk↓& are from
the interstring matrix elements. As before, they are odd w
respect to the transformationk→k1Q and lead to the for-
mation of the dome structure in the EMDF. As we noted,
asymmetric term in̂ nk↓& comes from the matrix elemen
between the second and third components of the wave f
tion of Eq. ~20!. We restrict ourselves to the first three com
ponents of Eq.~20! because forJ/t50.3 they give about
98% of the norm of the wave function.~We note that in the
SCBA approach the same approximation gives about 92%
the norm32!.

Formally, Eqs.~21! give a 1/N scaling for^dnks& at every
k point except for the dip in̂dnk↓& at k5P. It fails at the
point k5P2QAF where some of the terms in Eq.~21! are
singular. The reason for these singularities is a peculiarity
the spin-polaron ground state and the AF long-range or
The dressing of the hole in the Ne´el background involves an
infinite amount of zero-energyq5Q spin excitations~whose
total contribution to the hole weight is finite and small due
the diminishing magnon density of states!. Since the EMDF
probes the inner structure of the ground state it is actu
measuring this singular probability of the virtual emission
a zero-energy magnon (Q) by the hole (P) if k is equal to
P2Q.83 This leads to singularities of different types fo
^nk↑& and ^nk↓&:

^nk↑&;
1

N

1

v„k2~P2Q!…
, ^nk↓&;

1

N
ln v„k2~P2Q!…,

~22!

wherev(k) is the magnon energy. For the finite system t
magnon spectrum has the finite-energy gap atQAF which
scales as84,85

DE5J
c2

rs

1

NS 12
c

rs

3.9

4p

1

AN
1••• D , ~23!

where c.1.67 andrs.0.175 ~Ref. 86! are the spin-wave
velocity and spin stiffness, respectively. This result giv
antidips reported in Sec. III with the following scaling law

^n↑~P2Q!&.
1

2
1

C↑
N

2B0↑2
B1↑

AN
1

B2↑
N

,

^n↓~P2Q!&.
1

2
2

C↓
N

2
B↓ln~C0N!

N
, ~24!

where all constants are positive.C↑ , C↓ are from the ‘‘regu-
lar’’ part of Eq. ~21!. An interesting result shown in Eq.~24!
is that the antidip in̂ n↑(k)& is predicted to survive in the
thermodynamic limit:

^n↑~2p/2,2p/2!&;ZPrs /c2.0.07•ZP , ~25!

whereas all other features except for the dip atP in
^n↓(k)&;ZP will disappear. One can see from Eq.~24! that
the scaling laws of the antidips are quite complicated. Fo
system as small asN532, terms of different order inN have
similar amplitudes. For example,B1↑ /A32.0.5B0↑ . This
makes the FSS for the antidips complicated, especially w
only two of available clusters~16 and 32! possess thisk
point. An additional complication comes from the fact th
h

e

c-

of

f
r.

ly
f

e

s

a

n

t

the gapDE, Eq. ~23!, is calculated for the system withou
holes and the influence of the latter on it is not known. In t
subsequent calculation of the EMDF for antidips we mod
the magnon spectrum employed in Eq.~21! in a way that it
has a gapDE at q5Q point.87

The two-hole problem has been considered using
Hamiltonian of Eq.~17! in Ref. 19. A bound state with
dx22y2 symmetry was found for 0,t/J,5. The wave func-
tion of the d-wave bound state with total momentumP50
can be written in terms of creation operators of polarons
Eq. ~20!,

u2&5uCP50
d &5A2

N(
p

Dp
df̃ p

†g̃2p
† u0&,

~26!

Dp
d5 (

n51

`

(
m52`

`

C2n21,2m$cos~@2n21#px12mpy!

2cos~2mpx1@2n21#py!%

5C1,0$cos~px!2cos~py!%1C3,0$cos~3px!2cos~3py!%

1C1,2$cos~px62py!2cos~py62px!%1•••,

C2n21,2m5C2n21,22m

where Dp
d is the solution of an analog of the Schro¨dinger

equation for the two-body problem. The form ofDp
d ensures

the d-wave symmetry of the state and that the centers of
polarons are always on different sublattices, which in tu
guaranteesSz50. Dp

d has a more general form than th
simple ‘‘nearest-neighbord-wave’’ in the simplified example
of Eq. ~11!. It has higher harmonics, which have substan
weight for realistict/J. In what follows we show that our
comparison leads us to the conclusion that the large hig
harmonics ofDp

d play an important role in determining th
behavior ofC(r ) and ^nk&.

Note that for the representative valueJ/t50.3 about 42%
of the polaronsin the bound state are located at the neare
neighbor sites and less than 2% are farther than seven la
spaces. An interesting feature of this distribution is that
probability in finding the second polaron at a certain distan
from the first falls off slower along thex and y directions.
Thus, the weight of the (3,0)@cos(3px)2cos(3py)# harmonic
of Dp

d is rather large~20%!, whereas the weight of~1,2!
@cos(px62py)2cos(2px6py)# component is less than 5%.

Finally, relating the previous forms of the wave functio
~in terms of creation operators of holes and magnons! Eq.
~26! becomes

u2&5A2

N(
p

Dp
deSf p

†g2p
† u0&

5A2

N(
p

Dp
d@D̂0

†~p!1D̂1
†~p!1D̂2

†~p!1#u0&,

D̂0
†~p!5Ap

~1! f p
†g2k

† 1(
q

Ap,q
~2!gk2q

† f 2k1q
†

1(
q,q8

Ap,q,q8
~3! f k2q2q8

† g2k1q1q8
†

1•••, ~27!
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FIG. 11. Comparison of the
numerical~open circles! and ana-
lytical ~filled diamonds! results for
^dnk↑& in the single-hole ground
state atJ/t50.3 along the lines
shown in the inset@(2p,2p)
→(p,p)→(2p,p)→(p,2p)#.
Solid lines are guides to the eye.
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de-

le-
D̂1
†~p!5(

q FBp,q
~1! f p

†f 2p2q
†

1(
q8

Bp,q,q8
~2! f p2q82q

† f 2p1q8
†

1•••Gbq
†

1(
q FB2p,q

~1! gp2q
† g2p

†

1(
q8

B2p,q,q8
~2! gp1q8

† g2p2q2q8
†

1•••Gaq
† ,

D̂2
†~p!5(

q,q8
@Cp,q,q8

~1! f p2q2q8
† g2p

† 1C2p,q8,q
~1! f p

†g2p2q2q8
†

1Cp,q,q8
~2! gp2q

† f 2p2q8
†

1•••#aq
†bq8

† ,
where the subscriptsn of D̂ ’s indicate the number of mag
nons in the corresponding component of the wave functi

Results of the EMDF andC(r ) in Eq. ~19! for the ground
state of Eq.~27! are given in full detail in the Appendix. In
the next section we use these expressions to compare
theory with the numerical data discussed earlier in this pa

V. COMPARISON OF NUMERICAL
AND ANALYTICAL RESULTS

This section summarizes the comparison of our numer
ED data with the analytical results obtained from the C
approach. We focus on the EMDF for one and two holes,
binding energy, and the hole-hole correlation function
two holes. These provide a representative juxtaposition
results obtained from these two techniques, and probe in
tail the correlations found in the ground states.

Figures 11–14 show our analytical results for the sing
.
FIG. 12. The same as in Fig
11 along the lines@(p,0)→(0,p)
→(2p,0)→(0,2p)#.
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FIG. 13. Comparison of the
numerical~open circles! and ana-
lytical ~filled diamonds! results for
^dnk↓& in the single-hole ground
state atJ/t50.3 along the lines
shown in the inset@(2p,2p)
→(p,p)→(2p,p)→(p,2p)#.
Solid lines are guides to the eye.
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hole EMDF @Eq. ~21!# together with the 32-site ED data
Solid lines are guides to the eye. The agreement is good
both spin directions. The differences between the^dnk↑& nu-
merical and analytical data at (0,0) and (p,p) can be attrib-
uted to the fact that the CT quasiparticle residueZk5ak

2 at
these points is larger than the ‘‘exact’’ values~e.g., SCBA!.
As one can see from Eq.~21!, this leads to lower values o
^dnk↑&. The agreement of thêdnk↓& quantities away from
k5P is better because the role of the background does
depend onak . The antidips in the analytical results a
marked by the cross notifying that these points were ca
lated from Eq.~21! using a finite gap value in the magno
spectrum.87

As we discussed in Sec. IV, the internal structure of
spin polaron is made evident in the EMDF through the n
mal and interstring terms. The normal terms reflect the d
tribution of the hole inside of the spin-polaron wave fun
tion, viz. strings of different length. Interstring matri
elements are nonzero for^dnk& due to the specific structur
or

ot

-

e
-
-

of the spin polaron. They make a contribution to the EMD
Eqs.~10!,~21!, which is asymmetric under the transformatio
k→k1Q. These asymmetric terms are responsible for
dome shape of̂dnk,s&, as was proposed in Ref. 15, thu
showing that it is not related to a Fermi surface signature

The J/t dependence of the single-hole EMDF data h
been extensively studied in Ref. 58 for smaller systems.
we already noted in Sec. IV, Eq.~21! naturally describes the
results of these studies and of the observations made in
III A. To be specific, the depth of the dip is proportional
ZP , and thuŝ dnP,↓& must follow theJ/t dependence ofZP
~result of Ref. 58!. Also, the background must be gettin
weaker for largerJ/t because less hole weight is accum
lated in the string cloud. The smaller values and strongerJ/t
dependence ofDn↓ and Dnanti,↓ are due to the second an
third components of the spin-polaron wave function involv
in the formation of thê dnk,↓& background, which are more
sensitive toJ/t.

Now we consider two-hole results, beginning with th
.
FIG. 14. The same as in Fig
13 along the lines@(p,0)→(0,p)
→(2p,0)→(0,2p)#.
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binding energy. This quantity ford-wave bound states wa
obtained numerically and analytically at a variety ofJ/t. For
J/t50.3 it was found that Eb

ED520.05t and Eb
CT5

20.02t. As discussed before, the absence of a simple sca
law for Eb does not allow one to produce a reliable estim
of its thermodynamic limit at smallJ/t. Nevertheless, we
believe that the close agreement of the energies support
idea that the systems under study represent the same ph
A simple 1/N FSS for the largerJ/t51.0, where the size o
the bound state is smaller and it is hoped that such a FSS
be more credible, gives a thermodynamic value ofEb

ED.
20.32t @Fig. 6~b!#, which is very close to the theoretica
resultEb

CT520.38t.
Figure 7~a! shows our results for the hole-hole correlati

function C(r ) for two holes in thed-wave bound state, fo
J/t50.3. This expectation value is calculated first for a bu
lattice, and then mapped onto the equivalent sites of a 32
cluster with periodic boundary conditions. This enforces t
the analytical work approximate some of the finite-size
fects of our ED numerics, and facilitates a more natural co
parison between the two. Very similar trends are found
both results, with the correlation function decreasing qu
similarly with the distance.

Both numerical and analytical results data show that ab
45% of the time the holes prefer to stay at the nearest-

TABLE I. Amplitudes (C2n21,2m) and weights (C2n21,2m
2 ) of

the harmonics in the spin-polaron bound-state wave function,
~26!. Weights are directly related to the polaron-polaron spatial d
tribution function: P(r ll 8)5(1/zll 8)Cll 8

2 , zll 854; 8 is the coordi-
nation number.l and l 8 belong to different sublattices.

(2n21,2m) C2n21,2m C2n21,2m
2 , %

(1,0) 0.642 41.3
(1,2),(1,22) -0.108 4.6
(3,0) -0.444 19.7
(3,2),(3,22) 0.160 10.2
(5,0) 0.240 5.8
g
e

the
ics.

ill

ite
t
-
-

n
e

ut
d

next-nearest-neighbor distances. That our analytical w
produces such behavior is not inconsistent with our sta
ment regarding the form ofDp

d Eq. ~26!: the centersof the
polarons are indeed restricted to be on opposite sublatti
but the holes are almost equally distributed on both sub
tices, with the maximum probability of separation being
A2. In fact, our analysis of the harmonics inDp

d given in
Table I shows that about 40% of thepolarons in the bound
state are separated by one lattice constant. Thus, the pe
C(r ) at r 5A2 arises from the components of the wave fun
tion with strings of length one. Clearly, the spin-polaron p
ture provides a natural explanation for theA2 paradox found
here and in earlier numerical studies.

We believe that there are two reasons for the analyt
C(1) being slightly larger thanC(A2). A treatment of the
t-J model based on the spinless hole representation invo
some unphysical states with the hole and spin excitati
being at the same site. The number of processes leadin
such states increases when the polarons are close to
other and henceC(1) grows. Secondly, the CT approac
slightly overestimates bare hole weight.

An additional maximum in our analyticalC(r ) at r 53 is
closely connected to the second important harmonic in
CT dx22y2 bound state;@cos(3px)2cos(3py)#. We cannot
explain the absence of such a peak in the ED results—
example, we have been unable to estimate the finite-size
fect on individual harmonics in the two-hole wave functio

Figure 7~b! demonstrates a better agreement atJ/t50.8
when the size of the bound state is small. In this case
correlation falls rapidly with distance and thus the ‘‘bulk
cluster’’ mapping does not alter the analytical data. The
fore, in the largeJ/t limit we find the expected result that
spin-polaron approach adequately describes the physics

The EMDF for two holes shows an equally satisfacto
comparison, as seen in Fig. 15. The behavior of^dnk& in-
volves the combined effects of~i! the internal structure of the
polarons,~ii ! the d-wave symmetry bound state, and~iii !
higher harmonics in the bound-state wave function. We n
elaborate on these features.

q.
-

FIG. 15. Comparison of the
numerical~open circles! and ana-
lytical ~filled diamonds! results for
^dnk↓& in the two-hole ground
state at J/t50.3 along the
lines shown in the inset
@(0,0)→(p,p)→ (0,p)→ (p,0)
→(0,0)]. Solid lines are guides to
the eye.
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As we argued in Sec. III B, the quantityDn2hole

5(^n(0,0)&2^n(p,p)&).(Dn↑
1hole1Dn↓

1hole) shows that the
overall background deviation is mainly irrelevant to t
bound-statek structure. The worst agreement between E
and CT analytics for the (0,0) and (p,p) points~Fig. 15! is
again due to theZk50 problem within the CT approach.

Next we focus on the features along the ABZ bound
which, as we discussed before, are not disguised by k
matic effects~all asymmetric and most of the normal term
are zero on this line! and can be directly related to the for
of Dp

d in Eq. ~26!. Our analytical and numerical^dnk& results
have a local maximum atk5(p/2,p/2), and have minima a
(3p/4,p/4) and (p/4,3p/4). The first feature can be ex
plained by thed-wave symmetry of the bound state. Th
EMDF is reduced from its half-filled value of 1/2 when hol
occupy that momentum state. However, as shown in
~12!, the EMDF consists of terms proportional to (Dk

d)2,
which is identically zero at (p/2,p/2). Thus, ^dnk& must
show a local maximum~50! at this wave vector, so on
cannot find any direct remnant of hole pockets
dx22y2-wave symmetry bound state.

A second feature that we observe in both analytical a
numerical results, viz. the minimum along the ABZ boun
ary between (p,0) and (p/2,p/2), can be related to the pa
ticular form of Dp

d . Analytically, this quantity has large an
apparently important higher harmonics@see Table I and Eq
~26!#, and it is the competition between the different harmo
ics that produces the maximum hole number betw
(p/2,p/2) and (3p/4,p/4). Our analytical work shows tha
the hole number is actually maximized along the AB
boundary very close to (p/2,p/2), roughly at
(0.45p,0.55p). It is unclear if experiments could resolv
this feature.

VI. CONCLUSIONS

Summarizing, we have presented new ED numerical d
for up to two holes in thet-J model for the largest cluster fo
which such calculations can be completed presently. Th
we compared these results with new analytical express
based on the canonical transformation approach to thet-J
model. We find good agreement for the binding energy,
EMDF for one and two holes, and the hole-hole spatial c
relation function. We consider this to lend strong support
the validity of the quasiparticle Hamiltonian derived in Re
19, thus supporting the contention that the spin-polaron
scription of the quasiparticles in thet-J model is correct at
least at low hole concentration.

Certain characteristics in the correlation functions
studied are direct consequences of some features of the
responding ground state wave functions. For example,
dip in the single-hole spin↓ EMDF is related to the center o
the spin polaron, whereas the dome structure of the one-
two-hole EMDF is due to the interstring matrix elements
^nks&. The large correlation between the holes in thed-wave
bound state at a distance ofA2 is due to the significan
weight of the shortest string in the spin-polaron wave fu
tion. Analytical results for the FSS of the EMDF show a 1N
scaling at almost allk points except at the single-hole groun
state P @Eqs. ~10!,~12!,~21!#, in agreement with what is
y
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ns
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shown in Sec. III for the ED data. Thosek points that are
influenced by the long-range physics of the system
shown to have more complicated scaling laws—see E
~22!,~24!. The role of the higher harmonics and the effect
the size of the bound state on the EMDF and the hole-h
correlation function for the two-hole problem are also d
cussed.

ACKNOWLEDGMENTS

We would like to thank Martin Letz, Frank Marsiglio
T.-K. Ng, and Oleg Sushkov for helpful comments. We a
grateful to R. Eder for correspondence and for supplying
with useful references. This work was supported by the R
of Hong Kong, and the NSERC of Canada. The 32-site
work was completed on the Intel Paragon at HKUST.

APPENDIX A: EMDF AND C„r … FOR TWO-HOLE CASE

The amplitudes of the components of the two-hole wa
function Eq.~27!, A(n),B(n),C(n), can be expressed throug
the a,b,c components of the single-hole wave function
Eq. ~20!:

Ak
~1!5ak

2 , Ak,q
~2!52bk,qb2k1q,q ,

Ak,q,q8
~3!

5ck,q,q8c2k1q1q8,q8,q ,

Bk,q
~1!52akb2k,q , Bk,q,q8

~2!
5bk,q8bk2q8,qb2k1q8,q8 ,

~A1!

Ck,q,q8
~1!

5
1

2
akck,q,q8, Ck,q,q8

~2!
5bk,qb2k,q8.

The quantitiesak ,bk,q , andck,q,q8, within the CT approach,
are the products ofM k,q’s of Eq. ~14!, the transformation
parameterf k of Eq. ~16!, and different integrals of their com
binations given by

ak5F12
1

2!
I k1

1

4!
~ I k

21Fk
~1!!

2
1

6!
~ I k

312I kFk
~1!1Fk

~2!1Fk
~3!!G ,

bk,q5mk,qF12
1

3!
~ I k1I k2q!

1
1

5!
~ I k

21Fk
~1!1I kI k2q1I k2q

2 1Fk2q
~1! !G , ~A2!

ck,q,q85mk,qmk2q,q8F 1

2!
2

1

4!
(I k1I k2q1I k2q2q8)

1
1

6!
(I kI k2q1I k2q

2 1I kI k2q2q81I k2qI k2q2q8

1I k2q2q8
2

1Fk2q
~1! 1Fk2q2q8

~1! )G ,
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with I k5(
q

mk,q
2 , Fk

~1!5(
q

mk,q
2 I k2q ,

Fk
~2!5(

q
mk,q

2 Fk2q
~1! , Fk

~3!5(
q

mk,q
2 I k2q

2 ,

wheremk,q5 f kM k,q .
Using Eq.~19! and the bound-state wave function of E

~27! one can obtain the EMDF for the two-hole ground sta

^nk&.
1

2
1

1

N
@2^dnk

even&12^dnk
odd&# ,

^dnk
even&5FAk

21(
q

FBk,q
2 1(

q,q8
FCk,q,q8

2 , ~A3!

^dnk
odd&5(

q
FBk,qUqFAk1q2FAk(

q
VqFBk,q

2(
q,q8

FCk,q,q8Uq8FBk1q1q8,2q

1(
q8

FBk,q8(q
VqFCk1q8,2q,2q8 ,
s

,

where

FAk5Dk
dAk

~1!1(
q

Dk1q
d Ak1q,q

~2!

1(
q,q8

Dk1q1q8
d Ak1q1q8,q,q8

~3! ,

FBk,q5Dk
dBk,q

~1!2Dk1q
d Bk1q,2q

~1! 1(
q8

~Dk1q1q8
d Bk1q1q8,q,q8

~2!

2Dk1q8
d Bk1q8,2q,q8

~2! , ~A4!

FCk,q,q85Dk1q1q8
d Ck1q1q8,q,q8

~1!
1Dk

dC2k,q8,q
~1!

2Dk1q8
d Ck1q8,2q,2q8

~2! .

The hole-hole correlation function of Eq.~19! in the bound
state described in Eq.~27! is given by
C~r i j !.H C00~r i j !1C22~r i j !5^2uni
fnj

gu2&, wheni 1 j 52n21

C11~r i j !5^2uni
fnj

f u2&, wheni 1 j 52n

C00~r i j !5F(k
Dk

dS Ak
~1!cos@kr i j #1(

q
Ak,q

~2!cos@~k2q!r i j #1(
q,q8

Ak,q,q8
~3! cos@~k2q2q8!r i j # D G2

,

~A5!

C11~r i j !5(
k,p

Dk
dDp

d(
q S Bk,q

~1!Bp,q
~1!H cos@~k2p!r i j #2cos@~k1p1q!r i j #%12Bk,q

~1! (
q8

Bk,q,q8
~2! $cos@~k2p1q1q8!r i j #

2cos@~k1p2q8!r i j #% D ,

C22~r i j !5(
k,p

Dk
dDp

d(
q,q8

$~Ck,q,q8
~1! Cp,q,q8

~1!
1C2k,q8,q

~1! C2p,q8,q
~1!

1Ck,q,q8
~2! Cp,q,q8

~2!
!cos@~k2p!r i j #12Ck,q8,q

~1! C2p,q8,q
~1! cos@~k2p1q

1q8!r i j #22Ck,q8,q
~2! Cp,q,q8

~1! cos@~k1p2q8!r i j #22Ck,q,q8
~2! C2p,q8,q

~1! cos@~k1p1q8!r i j #%.
od-
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