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We report on a detailed examination of numerical results and analytical calculations devoted to a study of
two holes doped into a two-dimensional, square lattice described kyxmaodel. Our exact diagonalization
numerical results represent the first solution of the exact ground state of two holes in a 32-site lattice. Using
this wave function, we have calculated several important correlation functions, notably the electron momentum
distribution function and the hole-hole spatial correlation function. Further, by studying similar quantities on
smaller lattices, we have managed to perform a finite-size scaling analysis. We have augmented this work by
endeavouring to compare these results to the predictions of analytical work for two holes moving in an infinite
lattice. This analysis relies on the canonical transformation approach formulated recently fel thedel.

From this comparison we find excellent correspondence between our numerical data and our analytical calcu-
lations. We believe that this agreement is an important step helping to justify the quasiparticle Hamiltonian,
and, in particular, the quasiparticle interactions that result from the canonical transformation approach. Also,
the analytical work allows us to critique the finite-size scaling ansatzes used in our analysis of the numerical
data. One important feature that we can infer from this successful comparison involves the role of higher
harmonics in the two-particlel-wave symmetry bound state—the conventidraisk,) —cosk,)] term is only

one of many important contributions to thlewave symmetry pair wave functiohS0163-182@8)04044-3

[. INTRODUCTION dependent hoppings. Possibly, the full three-band micro-
scopic Hamiltonian is necessdty.
The behavior of mobile holes in an antiferromagnetic Despite the potential inadequacy of this Hamiltonian to
(AF) spin background has been a subject of intensive studygepresent completely the Cy@lanes, it is still the simplest
in part because of its possible connection to high-model that captures the important antiferromagnetic correla-
temperature superconductivity. The ubiquitous structurations of a weakly doped antiferromagriethus, it is crucial
components of such materials are the Guflanes, and a that the properties of this model when doped are elucidated.
simplified description of carriers in these planes is the theo- The Hamiltonian in Eq(1) has been investigated inten-
retical focus of this paper. We consider the so-calletl  sively by different analytical and numerical methods, and we
modell? for which the holes correspond to the Zhang-Ricebelieve that a consistent picture is emerging from these stud-
singlets® mobile vacancies created by doping a single uO ies. For example, results obtained from exact diagonalization
plane. A microscopic representation of this model is numerical work on small clusters with periodic boundary
conditions, such as the energy spectrum and quasiparticle
residue, have been found to be in the excellent agreement
with the behavior predicted by a well-studied analytical
(1)  theoryX However, a large amount of the numerical data for
B ) ) _—. o~ the correlation functions at present are not well understood
where(ij) denotes nearest-neighbor sites, arjgl, C, are  and require further investigation. Such work could help to
the constrained operatorsi,o=cig(l—ci’r’_aci,_g). The ra-  justify the correct quasiparticle model for the system of
tio of the AF exchange constant to the hopping amplitude istrongly interacting holes and spins at low energiktss in
believed to bel/t~0.3. this manner that we unite our analytical and numerical work
Aided by recent angle-resolved photoemissionin this paper.
experiment$, followed by extensive comparisons between Our analytical approach follows from a phenomenology
theory and experimentit is now recognized that this simple, of a common and apparently successful theory of a single
near-neighbor hopping Hamiltonian on its own is insufficienthole moving in an AF aligned background, and involves the
to fully represent the true single-hole state of the real CuOso-called spin polarott=* According to the spin-polaron
plane. Hoppings between more distant neighbors ar@lea, the hole in its movement disturbs the magnetic back-
required®’ as are more complicated three-site spin-ground that one can formally describe as the strong coupling

Ht_Jz—tg (E?UEjU+H.c.)+J% (S-S —imin)),
ij)yo ij
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of the hole and spin degrees of freedom. This makes thiated by a hole introduced in an AF background is described
problem similar to the well-known strong-coupling electron- as a spin polaron, viz. as a quasiparticle consisting of a hole
phonon one. However, in spite of the qualitative similarity of and a cloud of spin excitations. The AF spin-polaron concept
these two polarons, there is an essential difference betweetas put forward in earlier works of Bulaevskii, Nagaev, and
them. If the phonon polaron can be considered as an almogthomskii** and Brinkman and Ric& and then developed in
static object of the shifted ions with the electron in the cen-3 number of more recent pap&s4?*-28using different

ter, the spin polaron is the “spin bag” with theovinghole  techniques.

inside. One of the statements of the present paper is that this The main conclusion of these papers was that the spin

feature of the spin polaron is responsible for the absence Qfy|aron in an AF background is a well-defined quasiparticle
the direct similarity between the answers that theory proyi 4 nonzero residue and a specific dispersion law. The

vides for quasiparticlesand the numerically obtained data yressing of the hole leads to the narrow quasiparticle band
fOI’. bare holes. A similar conclu5|on, using a different ana- ;. a bandwidth~2J for realistic J/t, band minima ak
lytical approach and numerical results for smaller clusters,_ + (/2,+ w/2), and a heavy effective mass along the mag-
=17 . . —_ 1— )
Waskreached by Eder and co-worké?glﬁ Later, similar re-  atic Brillouin zone(MBZ) boundary. Most of these features
marks were made by Rler_a and Da_g 0. ) of the spin polaron were found to be robust under generali-
_ In this paper we combine analytical and exact diagonaly a4iong of thet-J model? including further neighbor and
ization (ED) numerical results of the one- and two-hole prOb'three-site hoppings, and for a wide rangeJéf ratio.

lem to provide a cqmprehenswe study of these |mport§1nt The single-hole problem has been treated analytically in
systems. Computationally we have managed, for the f'rsaetail11‘14*20'22‘27'3%r0uping these efforts, two approaches

time, tq determine Fhe two-hole ground state for two hqleqn treating this problem were usedi) the self-consistent
dope_d into the 32'S'te’ square cluster used t_’y two of us in Born approximatior(SCBA) (e.g., see Refs. 13, 14, and)22
previously published numerical woi‘R.We. find that the o0 4iiY the so-called “string” approacke.q., see Refs. 11,
lowest-energy state is Ia:.o bound state witld,z_y2 sym- . 20, 23, and 25-27 Recently, a relationship between these
metry. We have characterized the ground state by evaluating, ag peen establishdiwe briefly review these methods
a number of important expectation values, notably, the equ;vith an eye to understanding how well they might be able to
tron momentum distribution functioEMDF), and the spa- describe the two-hole or multinole problem
tial palr;‘correlfatmr(]jfurr:ctlon. Hect inarticl i The SCBA method utilizes a property of the hole-magnon
We ave c|>|un that adn be %ct:yg ﬂuasmamcfe Ham'éinteraction, namely, the absence of the lowest-order correc-
ton'a'f"lg“g'”a Yy proposed Dy Belnicher, one of us, andqy g the Born approximation series for the single-particle
Shubin,” may be used to calculate the same expectation vals .aan's function®1422 The attractive feature of the SCBA

ues th?t were obtalrlle(tjjlnume_lrlcally \r’]'a ED'b Fyrtr:jer,_ thglsj%pproach is that the essentially exact single-hole spectral
quantities are remarkably similar to those obtained via EDynctions can be evaluated quite easily using simple numeri-

This gives strong support to the appropriateness of this AU%al calculations. Recently, the detailed structure of the

siparticle Hamiltonian. single-hole ground state and behavior of different correlators

Previous analytical work on the low-energy physics of thehas been studied using SCBAUnfortunately, already in
two-hole system generally describes it in terms of moder-t

telv int ’ - I Thi tical K sh wo- or many-hole problems much more involved numerical
ately interacting spin polarons. This analytical work shows_ 4 analytical efforts are requiréd.

that the dominant effective interactions between spin po- |4 string approach is based on the idea that in an AF

Iaror)s come frpm the short-range nearest-nelghbor static at!')'ackground a hole will be confined by an effective potential
traction and spin-wave exchange, the latter leading to a lonGs e 4teq by overturned spirstrings. Formally, the real-
range dipolar interaction. These mt_eractlons are attractive foépace variational ansatz for the polaron’s wave function with
d-wave Stiteﬁ. and strongly repuIS|r\]/e ?S/ave sltates. The_ d the strings of different length is considered to reproduce this
purpose of this paper Is to use the results to providgejency. In spite of the considerable success of the string
support for this description of the internal structure of theapproach for the single-hole problétthere are some prob-
guaspa_rtlglgesf, har_1d_ lndlre_ctly for the above-mentionediemg that make the use of it as a candidate for a quasiparticle
escription” of their interactions. theory for thet-J model questionable. First of all, the string

\(/j\(e V\.”” grst cliles;nb(_e th(le”pégsent status dOf ﬁ?éhmOdd .method uses the real-space approach, which does not treat
studies in Sec. Il. Section Iscusses In detall the NUMETHroperly the long-range dynamics of the system. The next
cal data available for the ground-state correlation functions

. . ) roblem is that the method starts from the Ising background
Then, Sec. IV summarizes briefly the analytical results oi’0 9 g

and includes fluctuations on a perturbative basis, whereas the

relevant previous work and displays the details of the presen} ctuations are strong in two dimensions and must be “built

calculgtions. Section.V focuses on the comparison of th?n” to the real ground state of the spin system. The third
analytical and numerical results, and in Sec. VI we presen|5roblem concerns the necessity of the normal anticommuta-
our conclusions. tion relations of the quasiparticle operators. If a hole is a
fermion a unitary transformation, which diagonalizes the
Il. PREVIOUS T-J MODEL STUDIES Hamiltonian and dresses the hole by the spin excitations,
would not change its statistics. Within the variational string
and other approaches, one works with the wave functions
Theoretical studies of the-J model have resulted in a and usually identifies the wave function of the quasiparticle
clear understanding of the nature of the low-energy excitawith the operator of the quasiparticle. This leads to the ab-
tions for the system near half-filling. The charge carrier cresence of the commutation relations for these operators and to

A. Analytical results
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troubles with the proper normalization and orthogonality of
the states already for the two-hole probl&hi? Because of
that one cannot correctly derive the effective polaron-polaron
interaction term using a single-hole wave function.

These difficulties notwithstanding, several attempts to ad- d”'.
dress the two-hole ground state have been made. Work base ™
on the string approach has led to some qualitative under-
standing of the problert(,?>3°

The investigation of the interactions between quasiparti- L
cles in thet-J model is a subject of prime interest in the
context of the magnetic pairing mechanism. However, stud- (a) b)
ies of this problem show much less convergence than the
single-hole problem. Other work involves the formulation of  FIG. 1. The 32-site cluster ifa) direct and(b) reciprocal space.
an effective model for spin polarons propagating in the AFEmpty circles are included to mimic the periodic boundary condi-
background®2—3° From the random phase approximation tions used in our studies. The solid lines(b) show the important
(RPA) treatment of the Hubbard model in the strong-directions ink space displaying the high symmetry of the cluster.
coupling limit, the model of “spin bags” interacting via lon- The dashed line ifib) borders the first magnetic Brillouin zone.
gitudinal magnetization fluctuations has been propdée.
phenomenological model for the vacancies coupled by thénportant source of unbiased information on the low-energy
long-range dipolar twist of the spin background has beerphysics of this system. One- and two-hole ground states have
also worked odf*°using a semiclassical hydrodynamic ap- been investigated in great detail on the 16x(),*~>218-
proach. Inspired by the numerical evidence of the hole-holg\/18x \/18), 20- (/20X /20),°3%2 and 26-site (/26
d-wave bound state and the Van Hove singularity in thex \/26) (Refs. 63—69 clusters. Although some of these re-
single-hole spectrum, taking the simplest phenomenologicaults converge, at least partially, these clusters suffer from
form of the interaction, an AF Van Hove model has been puvarious finite-size problems. The 20- and 26-site clusters do
forward3® Using an ansatz for the quasiparticle wavenot have the full rotational symmetry of the square lattice.
function?’ the “contact” hole-hole and the residual hole- Therefore, they do not possess important reciprocal lattice
magnon interactions have been obtaifietf, and then the points along the high-symmetry directions in the first Bril-
effective Hamiltonian for the polarons and long-range spinlouin zone. For example, the important reciprocal lattice
waves has been presentéd. point (7/2,7/2) does not exist in the first Brillouin zone of

Even though most of these theories were formulated on ghe 18-, 20-, and 26-site clusters. This causes the ground-
phenomenological and semiphenomenological basis, thestate momenta of the one-hole state to be different from the
provided two key interactions leading to pairing in thd  predicted= (7/2,= 7/2) points. Although the 16-site cluster
model. One of them is the effective hole-hole static attractiorhas the ¢/2,77/2) point, it has an additional symmetry that
due to minimization of the number of broken bonds foundcauses an accidental degeneracy of the levelsré,£/2)
from placing two holes at nearest-neighbor si®smetimes and (r,0) for one hole, and between (0,0) and,Q) for the
referred to as the “sharing common link effe¢t'The other  two-hole problerﬁ’? Attempts to remedy the missing
is due to spin-wave exchange, and leads to a dipolar-typer/2,m/2) point have been made by using the nonsquare
interaction between hol§.*** 16-site (8% y32) (Ref. 70 and 24-site (/18% /32) (Ref.

Quite recently, a new approach to the derivation of a quazy) clusters.
siparticle model from the-J model has been developétit Previous results on the single-hole problem show that the
used a generalization of the canonical transformatof)  quasiparticle peak at the bottom of the spectral function can
approach of the Lang-Firsov type. An effective Hamiltonianpe expected to survive in the thermodynamic liffit>#e-64
for the spin polarons includes in itself both types of the hO|E'The corresponding quasiparticle band is narfofthe order
hole_interac_tions mentioned above in a natural way. Somef 2J in the “physical” regionJ/t<1) and the band minima
details of this approach are presented in Sec. IV. In Ref. 13re shifted to the antiferromagnetic Brillouin zot(&BZ)
results for the single-hole properties have been comparegoundary. However, due to the previously mentioned defi-
with those of the SCBA calculations and an impressivegiencies of the 16-, 18-, 20-, and 26-site clusters, none of
agreement has been found. This is supported further by théem can actually show that the quasiparticle minima are at
idea that the “canonically transformed” quasiparticles arethe + (/2,+ «/2) points; these wave vectors are those pre-
close to exact-J model ones. Even though the CT approachgicted by numerous theoretical studi@g233°
is less controlled than the SCBA one, it solves naturally all The smallest cluster that has the full rotational symmetry
the problems mentioned above and allows one to derive thgf the square lattice contains the/@,7/2) point, and is free
quasiparticle Hamiltonian for interacting spin polarons fromfrom the spurious degeneracies mentioned above, is the 32-
the originalt-J model. Thus, in this paper we compare thegijte cluster (/32x \32)—see Fig. 1. Also, it is the largest
predictions obtained from this Hamiltonian to our numerics,gchy system that can be solved using modern computers.
and in this way we critique the description of the interactionstpese calculations involve finding the lowest-energy states
between quasiparticles that follows from the CT approach. o matrices with dimensions of up to 300 million.

Recently, some results for the single-hole problem have
been published for this cluster by two of {%sThese numer-

ED studies of the-J model doped away from half-filling ics showed that the effective mass around the minima is an-
on small clusters with periodic boundary conditions are arisotropic, and that the quasiparticle residue is rather small for
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B. Numerical studies
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realisticJ/t, both in excellent agreement with analytical pre- whereN,, is the number of holes, ard(r) is the number of
dictions. Further, the full dispersion relation predicted byequivalent sites at a distancdrom any given site.

analytical work based on the SCBRefs. 13, 14, and 2ds Before presenting the FSS of the EMDF, we discuss what
found to be in excellent agreement with ED numerics on thikind of finite-size behavior one can expect. The EMDF is
cluster’® expected to show how hole doping changes the uniform

ED results for two holes on finite clusters consistentlyvalue of(n,,)=3 obtained in the half-filled case. In a sys-
show that they are coupled in a bound state with .-  tem of free particles, a hole with a certain momentum will
symmetry in a wide range qf/t,**46:47:49.50.52.55,56.6167°69.72 manifest itself as the complete suppressioqmy,) to zero
in agreement with earlier ED data for the 16-site Hubbardat this momentum. In systems with interaction the physics of
model”>’* the Green’s function Monte Carlo studies on 8 which can be described in terms of the quasiparticles, this
% 8 cluster’> and some theories:**36-3%74 ow-lying states  suppression will be proportional to the quasiparticle residue
with other symmetries, as well &s# (0,0) states, have also Z,, and is almost independent of the cluster size; the rest of
been studied®®! Attempts have been made to extrapolatethe hole weight will be distributed among the other available
the binding energy to the thermodynamic limit and thus tok points. Consequently, the makegpoints a system possesses
estimate the critical value df't for the formation of a bound the less hole weight eadghpoint will carry. Therefore, in the
state?’%° Also, some knowledge concerning the internalsingle-hole problem we anticipate that,,) for the ground-
structure of the bound state is knoff"°Lastly, the electron  state momentun®® to be suppressed by a constant propor-
momentum distribution function has been investigated in ortional to Zp. Further, we expect that the deviation from the
der to search for Fermi-like discontinuities. Drastic differ- half-filled value,
ences between the single-hole and two-hole cases have been
noted>:°"*8Finite-size and/t scalings of this quantity have (Niey =(Nky) — 3, ©)
also been studietf:5%62 _ , ,

Nevertheless, the above-mentioned results are of limitetill Scale as 1N at all other points untilroughly the phys-
usefulness simply because of the systematic error introduceg® ©Of the system does not change with the cluster size, i.e.,
by the lower symmetry of the clusters with 16, 18, 20, and 2@vhen size of the quasiparticle is smaller than the cluster size.
sites. Clearly, the 32-site cluster would augment such stud- 1N€ Same argument should apply to the bound states of
ies. Further, with the collection of all such clusters, and soméN€ two-hole problem, where we prediain,,,) to scale as
analytical guidance regarding the correct scaling laws, inforl/N at allk points.
mation on the thermodynamic limit, viz. a density of zero
[two holes in an infinite two-dimension&2D) square lat- A. Single-hole case

tice], would be accessible. _ We wish to provide a FSS analysis of certain quantities
Section 11l will summarize the results of the ED studies of ¢4, the two-hole ground state. To this end, we present new

the single- and two-hole problems that we have obtained Opagits for the one-hole problem that will facilitate such

the 32-site cluster. Some of the single-hole results have begfy

published pr_ewouslﬂl? and we only mention those results  £igyre 2 shows the EMDF of the single-hole ground state

that are crucial to our scaling analyses. A brief summary of & the 32-site cluster al/t=0.3. which has total Spils?

portion of the two-hole comparison to the CT Hamiltonian —+1 and momenturrP—(w/é 7’7/2) Due to the nonz(:etro

=+1 = , )

was presented in Ref. 77. momentum of this state, the only symmetry its EMDF
has is a reflection about the “main diagonal”
IIl. NUMERICAL WORK [(—a,— m) () line].

Several features of the EMDF are worth noticing. First,
ny,) has a “dip” at the GS momenturR. Earlier studies of
the J/t dependence of the intensity of this dip have left no
doubt about its direct relation to the quasiparticle weight
also used in the discussion of the finite-size scaliR§9, Z_P-58 Second, the EMDF deviates significantly from its half-
bound-state energies, and correlation functions. f|II§d value for. both spin directions across the entire Bril-

To look for evidence of hole binding in the low-energy '0Uin zone. This background has a maximum at (0,0) and a
states, we calculate the two—hole binding eneFgy=E,  Minimum at r, ), which is a by-product of minimizing the
—2E,+E,, whereE, andE, are the ground-state energies Kinetic energy O‘f‘ the systell’?]_AIthougrLthls dome” shape
with one and no hole, respectively, afd is the energy of resembles the “large Fermi surface” in a system of free

the two-hole state. Further, two expectation values that w&/€ctrons, it has different physics behind it. The discussion of
are interested in are defined as followi: The electron mo- this behavior will be given in Sec. IV. One observes that this

mentum distribution functiofEMDF) is given by (ny,) dome structure i@nkT) is'sh.ifted'upwards from its half-filled
=(c/ Cx.), Wherec] , ¢, are the Fourier transform of the value, and that iny,) it is shifted downwards {fooy)

constrained operatoréi) The spatial distribution of holes in ~(N(0g))=0.03). The difference between the maximum
: . . . and minimum,
the bound state is characterized by the pair-correlation func-

tion defined as

Most of the results presented in this section are obtaine?
by ED on the 32-site cluster with periodic boundary condi-

tions for the realistic valud/t=0.3. Results at different/t,
as well as on smaller clusters published previodsRf,are

Any=(No0s) = {N(x .m0 (4)
1 e ali _
C(r)= 1—n)(1—n)8_: ), 2 is slightly larger foro=1 than for| [An;y=0.07(0.06) at
) NpNEg(r) 3 (A=) =0 dji-jir) @ J/t=0.3]. AlsoAn, has a stronged/t dependence. Finally,
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[(¢%p] @m O m)
0.460 —— 0.472 —— 0.519 —— 0.463 —— 0.460 0.440 —— 0.442 —— 0.485 —— 0,452 —— 0.440
0.460 0.515 0.512 0,431 0.440 0.485 0.487 0.443
0.463 0.515 0,529 0.514 0.463 0.452 0.481 0.498 0,335 0.452
0.518 0.528 0.526 0.512 0.481 0.498 0.497 0.487
4),0) AN / \ 4),0)
0.519 —— 0.529 —— 0,528 —— 0,529 —— 0.519 (7O) 0.485 —— 0.498 —— 0,498 —— 0.498 —— 0.485 (0)
0.515 0.526 0.528 0.515 0476 0.497 0.498 0.485
N N
0472 | 0406 ' 0529 0515 0472 0442 | 0416 1 0498 0.481 0.442
0.457 0.515 0.518 0.460 0.428 0.476 0.481 0.440
0.460 —— 0.472 —— 0.519 —— 0.463 —— 0.460 0.440 —— 0.442 ——— 0.485 —— 0.452 —— 0.440
(a) (b)

FIG. 2. The EMDF for the single-hole ground state having momerRani7/2,m/2) andS;,,= +1/2 atJ/t=0.3. The numbers are the
electron filling factorga) (ny;), (b) (ny,) at the correspondink points. Antidips at ¢ 7/2,— 7/2) described in the text are denoted by the
dashed boxes, and the dip (i) at the ground-state momentum is highlighted by the solid box.

the EMDF's of botho=1,| have “antidips” at (—#7/2,  we expect to b&/2 (the factor one-half is from the proper
—m/2). They were observed earlier but no successful explanormalization of the wave functionis about 0.14, oZp
nation has been presented. The fact that the antidips are al-0.28. This agrees well with SCBA results°8A=0.271
ways atP—Qar supports the idea that their physics is some-There is no simple scaling for the antidips [¢6np_ )|

how reéated to the long-range AF fluctuations in thepecause of the long-range physics involved. According to the
systent’® Subtraction of the “normal” background from giscussion in Sec. IV they are combinations of terms with

(N(= mi2,- wi2)0) ShOws that the depth of the antidip, different scaling behaviors.
ANanti,o={N(= w2 m2)0) — N (w2~ w12) ) » 6)
is larger for 1 [Angyg.(,=0.11(0.08) at)/t=0.3], and B. Two-hole case
Angng,, has stronged/t dependence. The only zero total momentum bound state that we have

In Figs. 3 and 4 we plotén,,) vs the “inverse volume” found in the zero magnetization channel is a singlet and it
of the system, N, atJ/t=0.3 for allk points(exceptP and  hasd,2_,2 symmetry. Figure @ shows thel/t dependence
P—Qag) available on more than one cluster. One finds re-of the binding energ¥, on the 16-, 26-, and 32-site clusters.
sults consistent with a W/ scaling at all of these points, in One can see that the absolute value of the binding energy
agreement with our expectations. Figure 5 shows the sangets smaller as the size of the cluster grows, and that in some
plot for the EMDF at the ground-state momentum. Extrapo+egion ofJ/t the binding energy becomes positive. Such be-
lation to the thermodynamic limit shows that the dip, which havior seems to be natural in the presence of short-range

J1t=0.3 J=0.3
0.12
0.10 T ® um T T
@t
(a) 0.10 - (b) -
0.08 .
0.08 - —
006 o CO
3 = 0.06
=1 a ]
o
© 0.04 0 L
0.04 - —
*
@0
0.02 . ) i
0.0 *
4,4;’—9—@*4@’@" ©O
0.00 ' ' ! ! 0.00 |

0.00 0.02 0.04 0.06 0.00 0.02 0.04 0.06

1/N I/N

FIG. 3. 1N scaling of the(@) [(ny;)|, (b) [(Sn,)| [see Eq(3)] for k=(m,7) (filled circles, (0,0) (empty circleg, and (m,0) (filled
diamonds for the single-hole ground state &t =0.3. The data from 16-, 20-, 26-, and 32-site clusférs, ), (0,0) pointg and from 16-,
20-, and 32-site clustefg #,0) poini, where these points are available, are used.
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J1t=0.3 J=0.3
008 w2 012 | | v2,—m)
. T T T T T

- (b)

(a) a2 0.10
@w20)

Gv2,m
0.06 -
0.08

0.06

I5n,(K)l
g
150 (k)|

e 0.04

<& N 0.02

@20

0.00 ' L ' L 0.00
0.00 0.02 0.4 0.06 0.00 0.02 0.04 0.06
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FIG. 4. The same as in Fig. 3 fér=(=/2,7) (filled circles, (w/2,— 7) (empty circle$, (7/2,0) (filled diamond$, and (7/2,— 7/2)
(empty diamonds These points are available from 16- and 32-site clusters only.

attraction between the holes. In this case holes on larger In our opinion, this approach is problematic for at least
clusters lower their kinetic energy due to delocalization andwo reasons. First, there is another important hole-hole inter-
make the bound state shallower, whereas on smaller onegtion, viz. magnon exchange, which also leads to pairing. In
they are not allowed to move farther apart. Further, holes offact, it is this interaction that selects tllewave symmetry
smaller clusters are forced to be in the region of the mutuastate. It has been shown analyticaftj**6that this interac-
attraction. Since these short-range interactions are believaghn alone leads to the formation of a shallow long-range
to be of magnetic origin, the interaction energy has to scalgqynd state that does not have a critical valué/ofbecause

asJ. Consequently, the increasing importance of the kinetiGne jnteraction strength grows with Therefore, one can ex-
energy at small/t tends to destroy the bound state. This line pects that further increase in the cluster size will not only

of thinking leads to a discussion of whether or not the criticaI|OWer the kinetic energy of the holes, but will also provide
threshold ofl/t for bound-state formation is above or below o <o for the holes to take advantage of the long-range

Lheeenrﬁgztelcto\/:g?m(;g/ E[Jgrt:‘heiniggrif;{i ?ﬁﬂ:ﬁﬂa\/e attraction. The second reason is the absence of the evident
o 6% ¢ scaling law for the binding energy. Regarding the complexity
through FSS of the binding ener§y®° If we follow the fthe i ons involved and th 9 £ th .
same approach, we obtain the scaling shown in ig, @nd of the interactions involved and the tendency of the magnetic
this data shows the FSS at two representatiteralues. The SUbSYSte.m towards AF long-range order, we expect d|ffgrent
thermodynamic limit ofE, is negative at the larged/t contributions to the FSS d&, _that are O.f d_|fferent prder In
(smaller size of the bound state, larger role of the short—rangg-}/N and of comparablg magnitudes. This is gspeually true at
interaction and positive at the smallél/t (no bound state smallerd/t when the size of.the bound state is comparable to
or larger than the cluster size.
JA=0.3 Another important quantity that shows further evidence of
020 T — T 1 the hole-hole attraction in an AF background is the hole-hole
- a2 - correlation functionC(r), Eq. (2). It has been studied in
detail in smaller systenf$:5967:6972Fjgyres Ta) and 7b)
show the 32-site ED results fdE(r) at J/t=0.3 andJ/t
=0.8, respectively. In a wide region d¥t the strongest
0.42 - 7 correlation is at the/2 distance, while the nearest-neighbor
0.10 - = correlation is also strong. A density-matrix renormalization-
group study? has also found similar physics. At largéft
[Fig. 7(b)] the size of the bound state is small: the nearest-
neighbor and\2 distances accumulate about 80% of the

0.18

0.16

0.14 = -

18n(k)!

0.08 =

0.06 — -

0.04 1 11 holes. However, afi/t=0.3 theprobabilities of finding the

0.02 - — holes aty5 and+/2 distances are almost the same, and only

000 I \ 46% of the holes are located at the nearest-neighbor/2nd
0.00 0.02 0.04 0.06

N distances. The correlation decays slowly with distance at
small J/t. Hence in thel/t=0.3 bound state one can expect
FIG. 5. 1N scaling for the|(sn,,)| (open circles and (C C(r) to have a Ionggr “tail” i_n the thermodynamic limit.
+ a/N) scaling for the dip irj(&n, )| (filled circles at the ground- The next correlation function that can be used to extract
state momenturk=P, J/t=0.3. These points are available for the information on the bound state is the EMDF. Figurés) §b)
16- and 32-site clusters only. show the EMDF at)/t=0.3 andJ/t=1.0 in the first quad-
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D
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-0.8 : : : -1.20 ' ‘ \
0.0 0.2 0.4 0.6 0.8 0.00 0.02 0.04 0.06 0.08
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FIG. 6. (&) The J/t dependence of the binding enerBy, in units oft, from ED studies on the 1&diamond$, 26-(squarey and 32-site
(circles clusters.(b) The binding energy vs W for two representative/t values,J/t=0.3 (upped andJ/t=1.0 (lower. The solid and
dashed lines are W/ scaling using 16- and 32-site data ortfifled circles and data from all available clustetspen and filled circles
respectively.

rant of the Brillouin zone. Since the total momentum of the The available clusters allow us to perform FSS for six of
systemP is zero, the EMDF possesses the full square symthe nine inequivalenk points of the 32-site cluster. Results
metry. Moreover, since the ground state is a singlet;)  for four of them atJ/t=0.3 andJ/t=1.0 are presented in
=(ng,)=(ny). Another noticeable difference from the Figs. 9a),(b). They all show the anticipated N/scaling.
single-hole EMDF is the absence of a “dip” at akypoint. ~ Note that a similar scaling plot at{2,7/2) is not successful
This is not surprising because one would not expect the holdaecause( sny)| is too small. Figure 10 shows the scaling of
in the bound state to have a certain momentum. They will béhe EMDF at ¢r,0). If we discard the 16-site data by arguing

spread over alk points especially if the bound state is well that they are spoiled by the artificial degeneracy, one can
localized in real space. clearly see the N scaling atJ/t=1.0. In contrast to this,

Some of the features of the EMDF are essentially thd(N(z0)| at J/t=0.3 does not show the sameNlscaling.
same as that of the single-hole case. The dome structure J¥€ attribute these different behaviors to the different sizes of

very pronounced. Further, our results shows that the amplit—he bound states. Th#/t=1.0 bound state is small. There-

tude of the background deviatioAn=({no.o) — (N(r.m)). fore, it has to scale asM/even wherN is not too large. The

. Thole Thol . J/t=0.3 bound state is relatively large. An increase in the
s roughly the same asi; ™"+ An, ). This shows that cluster size redistributes the hole weight among the new har-

the background behavior is due to the single-hole excitations, - hics that become available in larger systems. The EMDF
and is irrelevant to the physics of the bound state. We willy; those points not along the AFBZ bound&Rjgs. 9a),(b)]
provide support of this in the next two sections. mostly result from kinematic effects that are saturated at

In the next section we will show that the important EMDF shorter distances. Therefore, they do not depend much on the
data are those along the AF Brillouin zone boundary. Thes@etails of the bound-state structure.

data are practically unaffected by the kinematic form factor
effect, so they can be used to draw conclusions on the inter-
nal structure of the bound stateknspace. One can interpret
the EMDF at these points as the half-filled EMDF sup- Studies of the dopettJ model via the ED technique pro-
pressed by the hole-occupation number. The hole weight atide important information on effective quasiparticle theo-
the single-hole ground-state momentum2,7/2) is surpris-  ries. However, these same numerical results also posed some
ingly small—(n,) deviates from the half-filled value ¢fby  problems and made questionable the relation of these ana-
only 1%. This is the consequence of thg_,2 symmetry, lytical studies to the problem of the “finite doping of the
which restricts the hole weight to be zero at these pointsfinite system.” For example, the EMDF for the ground states
Another interesting feature is that the hole occupation at thef the different number of holes and the pair-correlation
(3w/4,714) point is higher than that at«(,0) [Fig. 8@)]. Itis  function for the two holes doped into the system were inten-
worth noting that at smalle¥/t the hole occupation numbers sively studied numericallysee Secs. Il A, Il). It turned out

at these points are very similar and their absolute values arhat the results for these quantities were found to be in con
larger. As follows from the discussion in the next sections tradiction to some expectations. EMDF, which was naively
these facts indicate the presence and importance of highexpected to show something like “hole pockets,” or simply
harmonics in the bound state at small¥t, because the hole-rich and electron-rich regions knspace, demonstrates
“bare” first d-wave harmoni¢ cosk,)—cosk,)] will always  a dramatic deviation of this quantity for the doped clusters
give a larger hole weight at#,0) than at (37/4,7/4). from the half-filled(no holeg case with the strong variation

IV. ANALYTICAL RESULTS
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FIG. 7. The spatial correlation functio(r), for two holes
doped into a square lattice described by thE model, for(a) J/t
=0.3, andb) J/t=1.0. Our ED result$open circleg the analytical
results for an infinite square latti¢epen diamonds and the ana- 0.530 0.455
lytical results mapped onto a 32-site square lattiiked dia-
mondsg, are all shown. The lines are guides to the eye.(lj
analytical results for the cluster are very close to those for the bulk,
and hence are not shown. 0.530 0.514 0.457
00 @@ 0)

across the whole Brillouin zone. Moreover, there is a strong
doping dependence of these results. Data for the two-hole

ground state differ significantly from the single-hole ones.
More surprisingly, the overall shape of the EMDF reminds
one of the free electrons with a nearest-neighbor hopping
band. This was the reason for the conjecture thattte

(b)

FIG. 8. The EMDF for the two-hole ground states=0, S,
=0 at(a) J/t=0.3,(b) J/t= 1.0 within the first quadrant of the BZ.

demonstrated that the “large Fermi surface” is a conse-

model already at rather low doping concentration undergoeguence of simple sum rules and a minimum of the total en-
a transition to the free-electron physics and shows a “large’ergy, and it is completely irrelevant to the problem of the
Fermi surfacé! Also, the hole-hole correlation function for real Fermi-surface identification. The main idea of these
the d-wave bound state shows the largest weight of the holeworks is that the hole pockets should be attributed to the
in the configurations that should be forbidden by theave  quasiparticles, not to the bare holes. Since the renormaliza-
symmetry (the so-called\2-paradox. In this situation, a tion is strong only a relatively small part of the polaron can
physical explanation of such puzzling behavior of the correbe visualized ik space as a fermion having a certain mo-
lation functions together with an analytical picture would bementum. The “dressed” part of the spin polaron is respon-
highly desirable. sible for the background in the EMDF, which is spread over
A qualitative understanding of these effects in the contexthe entire BZ. More specifically, the EMDF does not only
of the spin-polaron physics has been achieved in the workseasure the lack of the electrons due to the center of the
of Eder and Beckel; and Eder and Witzel'® wherein the  polaron, but it also keeps track of the hole distribution inside
authors showed that theJ model quasiparticles will favor the polaron. Similar physics has been discussed recently in
qualitatively the same EMDF as the ones found in the nuRef. 18.
merical calculations. Using rather general arguments, they Within the same theoretical framework, i.e., a variational
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0.00 0.02 0.04 0.06 FIG. 10. [(6ny)| in the two-hole ground state vsN/for k
I/N =(,0) at J/t=0.3 (filled circle9 and J/t=1.0 (empty circles.
0.20 | w2 Solid line shows I scaling for theJ/t=1.0 data if the 16-site
® w2 cluster result is ignored.
0.18 -
(b) J8=0.3 o ) ]
0.16 |- o ment of two holes moving in an antiferromagnet&FM)

Ising background. We then evaluate the EMDF &)

o1 | using this simplified model in order to see what kind of
= o012 =10 behavior one can expect in the ground state of spin polarons.
E ook _ This work is instructive, and helps in understanding this
& 008 problem. So we present these preliminary results first.

Consider the EMDF. In a system without holes, one finds
0.06 |- . that(n,,) = 1/2 everywhere in the full Brillouin zone. This is

0041 =03 1 2.0 a consequence of the purely local character of the electronic
states andg;,,= 0. By definition
0.02 |- Jt=1.0
0.00 ' . .
0.00 0.02 0.04 0.06 Ko ot
1/N <nk(r>:1/Nzijelkr|J<CiT(er(r>
FIG. 9. 1N scaling of the(sn,)| in the two-hole ground state, = 1NZ(clc,)+ 1IN 2i,d:éoeik'd<CiTUCi+da>-

for (8) k=(m,7) at J/t=0.3 (filled circles and J/t=1.0 (empty

circles, and (0,0) atJ/t=0.3 (filled diamond$ and J/t=1.0 . . )
(empty diamonds and (b) k= (r,7/2) atJ/t=0.3 (filled circleg ~ 1Nhe second term is zero for the half-filled case and the first

and J/t=1.0 (empty circle, and (#/2,0) atJ/t=0.3 (filled dia-  term yields (ny;)=(ny )=1/2. An informative result that
monds andJ/t=1.0 (empty diamonds follows from the second term is that hole doping makes the
matrix elements between different “strings” of the polaron

string approach, we mention that the pairing problem for twayaye function nonzero, and accompanied by the phase factor
holes has been considered elsewheamd the source of the e'kd where|d| is the difference between the lengths of the

large probability of finding holes in the ground state alonggyings. For example, the matrix element between the bare
the diagonal of an elementary square can be explained by the ~ kL . .
large weight of the “hole (hole+1 spin flip™” combination component EiCLle '|Q>) and the one spin-flip string com-
in the two-holed-wave bound-state wave function. Qualita- ponent €; sS Ci 5€'i|0)) is proportional to = 'k’
tive discussion of the same physics has been done recently iny,, which is asymmetric with respect to the transforma-
Ref. 79. tion k—k+(m,7), y«=— Y+ Thus all odd-distance ma-

In what follows we will show how the qualitative picture trix elements are responsible for the antisymmetric contribu-
drawn in Refs. 15-17, which gives a basic understanding ofion to (n,), and this asymmetry makes®,) resemble the
the numerical data, can be reproduced using simple ansatzgRape of a large Fermi surface. Note, that this unusual effect
for the spin polarons and their bound state. Then, the CTs closely related to the localized character of the electronic
approach is used to derive analytical expressions that argates and the spin polaron nature of the carriers. Recently, a
able to explaimuantitativelymost of the one- and two-hole sjmjlar asymmetry observed in the angle-resolved photo-
ED datfa for the ground states described in Sec. Il, and earligfission spectroscopy data of an undoped,C86,Cl,)
in the literature. (Ref. 80 and dopef AFM insulators has been successfully
explained using essentially the same ideas.

Hole excitations near half-fillingwhen long-range AFM
order is presentare most concisely explained using the

We begin our analytical calculations of two holes de-spinless-hole Schwinger-boson representation for the con-
scribed by thet-J model by considering a simplified treat- strained fermion operators. Thus it is necessary to express

A. Qualitative analysis using a simplified model
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(n,) andC(r) in terms of averages of combinations of the amount of holes having the same momentum and by the spin
hole and magnon operators. The essence of this represenfips in sublatticeA. It is increased by the number of spin
tion is the following. The creation of a hotannihilation of ~ €Xcitations in sublattic&. The last term is not zero between

an electrop at sitei in sublatticeA={1} (with the main different components of the spin-polaron wave function, re-

L . . . . .~ flecting the inner structure of this quasiparticle, or the kine-
direction of the spins being Wps achieved by operating; matic “form factor.” Alternatively, according to Ref. 15, it

on the ground state. Thus,;=h. The action of the same reflects “the fast movement of the hole inside the bag.”
operator on sitg in sublatticeB={|} is nonzero only if the Using|1) from Eq.(7), Eq. (9) gives

spin is in the “wrong” direction (). Therefore, creation of 11

a'l hol~e is a(T:c?mpa;med by the annihilation of a spin excita- ()= §+ N(—16ﬂ27§+4ﬂ2+8laﬂlyk), (10)
tion: c”=hj S zhjaj. Thus,

~t~ 1 1 1
(clcii)=(ha;hk;(1—a} aa;)) 8 ad; A <nki>:§ - Eazﬁkyp— NA'BZ'
t t ot
+{haiNg jas ) i ad) 5+ (s i85, ihA ) 91 B A These simple expressions already contain significant qualita-
+<hB,ihE,jaE,jaB,j>5i,B5j,B- 6) tive information about the EMDF for the single-hole ground

state. There is a dip ifn, ) at k=P with weight equal to
The above will suffice for the description in this paper—for one-half of the quasiparticle residue, corresponding to the
an advanced and detailed discussion of this representatiarenter of the polaron. There is also a constant positiega-

we refer the readers to Ref. 81. tive) shift in (n,;) ({ny,)) due to spin excitations in sublat-
First we examine a simple ansatz for the single-holetice B [see Eq(7)]. Although(ny;) does not have any dips,
ground-state wave functiéh** it does have two other features. One is due to the hole dis-
tribution in the dressed part of the polarox ﬁ/ﬁ), and the
11)= \/zﬁf 10) other is due to the “interstring” matrix elements-(y,).
N8P The absence of the interstring terms(im|) in Eq. (10) is

due to the approximation made in the above ansatz viz. Eq.

+ + + (7), namely, the elimination of the longer strings that are
ahB'P+4’8% Ye-dhap-@sa|l0), (D necessary to produce the “dome” structure (o). This
explains the smaller amplitude and stronger dependence
of the differenceAn, =n ), — N(#,~), than those ofAn;, for
the single-hole ground state.

Thus, most features of the single-hole EMDF data re-
ported in Sec. lll can be understood using this simplified
eABZ model. According to Eq(10) all {5n,,) scale as M except

5 N2 for the dip that scales &S+ «/N, a result that is employed

E i , in the FSS analysis of the ED numerical work.

q N g, 55=1 In order to carry out a similar analysis for the two-hole
case, one has to solve the Satinger equation for the
bound-state problem. Instead of doing this we simply pro-

i — i =5, pose the nearest-neighbor bound state wave function having
thaeic-Paeyed =[aamicaneyie 1= Ok -NI2. (8) d-wave symmetry an®Z,,=0 based on the expectation that
Minimal algebra for the EMDF an€(r) yields two static holes attract each other through the “sharing com-
mon link” effect (viz., H;,,=—J/2 nihnjh):

2 ~
=23 Ao

’ 2
_ - d
~VEs

N
(N )N= 2 <hé,khB,k> + % ((aI\,qu,q> - <a1|_;,,an,q>)

\F
~ VN
wherea?+48%=1, and, as noted in Ref. 15, the sign of the
term linear iny, is found from minimizing the kinetic en-

ergy. (Note that the origin of the hole is in sublatti@ so
the total spin of the system i§,,=1/2.) Hereafter,q

and

N
<nkT>NZE —(hAkhai)+ Eq: ((aé,an,q> - <aI\,qu,q>)

- ( < h;&yk% hB,k+qa;q> +H.c.

21t T
a hA’phB’_p

+ 462,8% ( ')’pfqhg,p—thé,—pa;,q

_ ( < h;k% hAvk+qaL’q> +H.c.

+ 7—p—qh/1,ph/§,—p—qag,q)
. ©) s T
_ h h +1682 Cq¥—p-aNt o ohk — @A g@n o |10),
C(r)—m;j W TS B et Yp—aY-p-a'N'B,p—q'lA,—p-q?A,¢9B,q 0)
where nihzhiThi is the hole number operator. The physical (1D

meanings of the terms in,) are apparent. The number of with Ag=[cos©x)—cos©y)] ensuring that the centers of the
electrons with spin up and momentumis reduced by the polarons are at the nearest-neighbor sites.
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The EMDF calculation usingR) in Eq. (11) yields been shown to be adequate in treating the nonlinear feature
of the kinetic energy term of Eq1) properly. Subsequent
(N =(Np) = (N diagonalization of the spin part of the Hamiltonian by the
1 Bogoliubov transformation naturally includes spin fluctua-

1 . :
==+ —(—a?(AY)2-16B8%y2+8|aB|yy), (12  tions in the ground state.

2 N The essential part of theJ Hamiltonian rewritten in this
where the terms inside the bracket are simply the sum of th&ay looks like the electron-phonon Hamiltonian for the
1IN terms in the(n;) and(n,,) expressions of E0) for “usual” polaron problem with an additional direct fermion-
the single-hole case, and the dip structure is replaced by tHérmion interaction term:
probability of finding a bare hole with momentuknin the
bound state. This explains the observation mentioned in Sec. 71, _;~> wqa:;aq+2 (Mk,thfqhkag_l_ H.c)+AH,

1l that the quantityAn=n o)~ N, for the two-hole case q k.q

is roughly the same asn;+An, for the single-hole case. It (14)
is interesting to note that since tkadependence of the terms __ _ t ot
from the dressed part of the polaron and from the “inter- AH 2J(1 Zk)k%’q Yol qNr-+ Mk i

string” processes vanish at the boundary of the magnetic + t .
Brillouin zone (y,=0), features of the EMDF along this line Whereh'(h),a'(«), are the splnlzefg hole and magnon op-
are not disguised by kinematic effects. Thus, one can directifrators, respectivelyy,=2J(1- yg) ™" is the spin-wave en-
observe the structure of the bound state wave functifn ergy, My q=4t(vk-qUqt+ 7cVq), Uq.Vq are the Bogoliubov
from the (n,) data at these points. In particular, the transforzmauon parameters, y, = (cosk+cosk)/2, A
(7/2,712) point has to have zero hole weight due to the=Za(Vgq~ 7qUqVg)=—0.08. AH is an effective hole-hole
d-wave symmetry of the bound state. For the particular formAttraction due to minimization of the number of broken AF

of Ag we have chosen, the maximum of the hole weightbonds' Two important differences r_na_lke thd versi_on of
the polaron problem much more difficult to study) the

(minimum in(n,)) will be at the @r,0) point. . ) Y
The hole-hole correlation function on different clustersabsence of bare dispersion term of the fBlend (i) the

consistently shows a maximal probability for states in Whichgssert;tlally nonlock?l charactefr of.the holﬁjmagnon Interac-
the holes are along the diagonal of an elementary square, i.410N: Pecause each process of emittiagsorbing a magnon

: i iated with an intersite hole hopping.
they prefer to be at a distang®a from one another, where IS associa ; .
ais the lattice constanfAt first glance, such a configuration The CT approach has been applied to the spin-polaron

should be forbidden by thel,z_,. symmetry of the state. Hamiltonian of Eq.(14) in Ref. 19. The generator of the CT

One way to resolve this paradox, as suggested b)‘/l\/aS proposed to be in the form

Poilblanc®® is to introduce modified creation pair operators

hihl s eyShixy to the bareh'hl, ., pair operator. It is 8= fiMy g(hi_ghag—H.c), (15
clear that the bound-state wave function Efl) includes ka

such combinations naturallyCalculation ofC(r) of Eq.(9)  wheref, is the parameter of the transformation, and in Ref.

in the ground state given by E¢L1) gives 19 f, was chosen to minimize the single-hole energy, viz.

5
Fk(g Ek,) =0. (16)

The negligible role of the higher-order hole-magnon vertices
in the transformed Hamiltonian was demonstrated and it was
argued that the initially strong hole-magnon interaction in

Eq. (14) is transfered mainly into a hole “dressing” and into

C(1)=a’l4+9B%4, C(\2)=a?p?,

C(2)=a?p?2, C(\/5)=3B%4, C(3)=p%4. (13

For the physical range dffJ~2—3 the weights accumu-
lated in the bare and “one-string” parts of the polaron wave
function are almost identicalp®=432.2"% This gives

C(1)=C(42), in qualitative agreement with the numerical i pole-hole interaction, Thus, for a wide regionthf one

results. , _ _ can restrict one’s considerations to the effective Hamiltonian
Thus, one can conclude that our simple considerations o

one and two holes in a system of Ising spins, based on a -
simplified spin-polaron picture, already shows qualitative Heffzz EkhIﬁkJrE wqaaaq
agreement with the numerical data. The treatment of the re- . q
alistic system with a Nel spin background requires a proper

. . . ~ ~T ~ ~
account of the spin fluctuations, the long-range dynamics of + 2 Vk,k',th—qhku,qhkfhk
the system, and multiple spin excitatiofienger strings kik'.q
Tt Rt
B. CT approach + l% Fr.aMkq(h—ghkagtH.c), 17

1. CT Hamiltonian whereE, and w, are the polaron and magnon energies, re-

Thet-J model Hamiltonian(1) can be rewritten using the spectively,V, . 4 is the direct polaron-polaron interaction,
spinless-fermion representation for the constrained fermioM, 4 is the bare hole-magnon vertex, aRd , is the renor-
operators and Holstein-Primaktif* or Dyson-Malee¥  malization form factor that is close to zero at lageand is
representation for the spin operators. These formalisms hawonstant (-0.2—0.4) at smallg. The last term, which cor-
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responds to the interaction of the hole with long-range spirwhere 5A:2qV§=0.19. The negligible contribution of the
waves, has been left in the effective Hamiltonian in this formhigher-order termgin the number of magnonso (n, .} has
to account for the retardation effect in the polaron-polarorbeen checked and these terms are omitted.
spin-wave exchange. Also, short-range spin-wave exchange It is interesting to compare these expressions with those
has been converted to the direct polaron-polaron interactiorfor the Ising limit of the model given in Eq10). The num-
The polaron energl, and the weights of the components of ber of holes in sublatticé reducing the number of electrons
the polaron’s wave function have been compared with thevith spin up is decreased by the spin fluctuations (first
results of the other works, especially SCBA results, and veryerm), but due to the same effect the reduction( im;) can
good agreements were found. Since the derivation of theée done by the holes in the sublattiBesecond term The
single polaron energgndthe polaron-polaron interaction in  third terms take into account an imbalance of the number of
the framework of CT approach are the same, one can hopspin excitations of different types. The last term is nonzero
that the effective Hamiltonian of Eq17) properly describes  for the interstring processésow strings are just the compo-
the interaction between the low-energy excitations ofttde  nents of the wave function with the spin excitatipns
model. Using the CT generator of E415) one obtains the wave
function of the spin polaron&,,= +1/2):

)= /28H0= \Zesabo)

t tot .
+ E’ Cp’q’qrgp_q_q,ﬁqaq,+
q,9

2. Our calculations using the CT approach

We are interested in the ground state with total s§fip
=1/2 (S{,;=0) for the single-holétwo-hole case in an AF
ordered system. Thus, it is necessary to use a two-sublattice
representation for the fermions and bosbh#n the two-
sublattice representation there are two types of holes and
magnons, both defined inside the first magnetic Brillouin
zone, whereas in the one-sublattice representations holes and
magnons are defined inside the full Brillouin zone. In the
previous subsection we used the latter for the sake of simpli-

fying notations. There is a simple relation between these twélere,ag=Zp<1 is the quasiparticle residue. An explicit ex-
representations: pression for the exact spin-polaron wave function within the

SCBA was written in Ref. 24 in the same form. The ground-
he=(Ft90/V2, Ny (mm= (=912,

anE’+ % bP,qf;—qB:;

0). (20

state momenta for the spin-polaron in the ptaemodel are
(18 *(x7w/2,712).
ag=(aq+By)/N2, aqs(mm=(aq— B2, ~ Then, using Eq(20) the single-hole EMDF is found to be
wheref, andg, correspond to the hole excitations in the given as
and B sublattices, respectivelya, and g, are the two
branches of the Bogoliubov spin-wave excitations.
The correlation functiongny,) and C(r) expressed in

terms of the averages of the hole and magnon operators are

1 1 2 2\ /2
(nkT>:§+ N —(1-6N)bpp_—apVp_i

_ 2 2 2
2 Chypr g qVatD b3,
a.q9' q

N
(M IN=5 = (1= N)(Fefi) = 2 (G oOkr ) Ve
-2

apbp p_kUp_k+bpp k> CP,P—k,qVq> ) '
T t a
+§ (<ﬁqﬂq>_<aqaq>) 21)

- ( < fl% Ok q( BiUq+ a_qvq)> +H.c.

11 , 1 ,
: (N)=35 =5 S p(1= M)A+ —(1—5x)§ CBap-k_q

N 2 2 2
<”k¢>N:§—(1—5k)<9lgk>_% (1 gfrea V3 _é bP,PfquVq_% b

+§ (<a$aq>—<ﬁaﬂq>) _2% bP,quCP,qu,qu)-

As we will show below, these expressions give gapn-

(19

- ( < gl% frsqladUq+ ﬂ_qvq)> +H.c.

1
C(r)= WIZJ (ninj 3., h="f(g),

when

i e{A}({B}),

titative agreements with numerical data. As befofay )
shows a dip ak=P with a weight proportional to the qua-
siparticle residue due to the center of the polaron. A constant
positive (negative shift due to different amount of spin ex-
citations(fourth term is also present iin,;) ((n,)). The

first three terms in(n,;) and the second and third terms in
(ng,) reflect the hole distribution inside the polaron, whereas
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the last two terms iiny ;) and the last term ifin, ) are from  the gapAE, Eq. (23), is calculated for the system without
the interstring matrix elements. As before, they are odd wittholes and the influence of the latter on it is not known. In the
respect to the transformatidn—k+Q and lead to the for- subsequent calculation of the EMDF for antidips we modify
mation of the dome structure in the EMDF. As we noted, thethe magnon spectrum employed in Eg1) in a way that it
asymmetric term inn ;) comes from the matrix element has a gapE atq=Q point®’
between the second and third components of the wave func- The two-hole problem has been considered using the
tion of Eq.(20). We restrict ourselves to the first three com- Hamiltonian of Eq.(17) in Ref. 19. A bound state with
ponents of Eq.(20) because forJ/t=0.3 they give about dy2-y2 Symmetry was found for €t/J<5. The wave func-
98% of the norm of the wave functiofWe note that in the tion of the d-wave bound state with total momentuf 0
SCBA approach the same approximation gives about 92% dfan be written in terms of creation operators of polarons of
the norni?). Eq. (20),

Formally, Eqs(21) give a 1N scaling for(sn,,) at every
k point except for the dip i{én,,) atk=P. It fails at the 2
point k=P—Q,r Where some ofL the terms in EQR1) are |2>=|qu:0>: \[ﬁzp Ag?géipm%
singular. The reason for these singularities is a peculiarity of
the spin-polaron ground state and the AF long-range order. o o
The dressing of the hole in the Blebackground involves an d_
infinite amount of zero-energy= Q spin excitationgwhose Ap_zl m;x Con-1am{COS[2n—1]pc+2mpy)
total contribution to the hole weight is finite and small due to
the diminishing magnon density of stateSince the EMDF —cog2mp,+[2n—1]py)}
probes the inner structure of the ground state it is actually  _ _ _
measuring this singular probability of the virtual emission of =Cy olcogpy) —cogpy)} + C3ofcog3p,) —cog3py)}
a zero-energy magnorQ) by the hole P) if k is equal to +CqAcog py*+2py) —cogpy*2p,)}+---,
P—Q.% This leads to singularities of different types for
(Niy) and(ny):

1 1
(M)~ o= (P=Q))’ (N )~

(26)

Czn—l,zrn: Czn—l,— 2m

lm w(k—(P—Q)), whereAg is the solution of an analog of the Schinger

N equation for the two-body problem. The form A)ﬁ ensures
(22) the d-wave symmetry of the state and that the centers of the

wherew(k) is the magnon energy. For the finite system thepolarons are always on different sublattices, which in turn

magnon spectrum has the finite-energy gagat which  guaranteesS*=0. Ag has a more general form than the

scales &%°° simple “nearest-neighbal-wave” in the simplified example
of Eq. (11). It has higher harmonics, which have substantial
c?1 c391 weight for realistict/J. In what follows we show that our
AE:JE N 1_EE\/_N+W ’ (23 comparison leads us to the conclusion that the large higher

harmonics ong play an important role in determining the
where c=1.67 andps=0.175 (Ref. 86 are the spin-wave pehavior ofC(r) and(n).

velocity and spin stiffness, respectively. This result gives Note that for the representative valiild= 0.3 about 42%
antidips reported in Sec. Il with the following scaling laws: of the polaronsin the bound state are located at the nearest-
neighbor sites and less than 2% are farther than seven lattice

(n.(P—Q))= 1+ G B _EJF Bz spaces. An interesting feature of this distribution is that the
! 2 N " N N probability in finding the second polaron at a certain distance
from the first falls off slower along th& andy directions.
C, B,In(CoN) Thus, the weight of the (3,0] cos(3,)—cos(3,)] harmonic
— O\ ~ ¥ v &7 d . .
(n (P—Q))= 57N N , (24 of A is rather large(20%), whereas the weight of1,2)
[ cos,*2py)—cos(,=py)] component is less than 5%.
where all constants are positive; , C, are from the “regu- Finally, relating the previous forms of the wave function

lar” part of Eq. (21). An interesting result shown in ER4)  (in terms of creation operators of holes and maghdis
is that the antidip in{n,(k)) is predicted to survive in the (26) becomes

thermodynamic limit: 2
2)= /52 Ape’fiall0)
(ny(—m12,— m12))~ Zpps/c?=0.07- Zp, (25) N*p

whereas all other features except for the dip Ratin _ \FE de At At At
(n,(k))~Zp will disappear. One can see from E@4) that VNS Ap[Ag(p)+A1(p)+A5(p)+1[0),
the scaling laws of the antidips are quite complicated. For a

system as small dd=32, terms of different order i have Ag(p)IAﬁ,l)fggikwL > Afazagl—q 1k+q
similar amplitudes. For exampleBlT/\/B—Z:O.SBoT. This q ’

makes the FSS for the antidips complicated, especially when

only two of available cluster§16 and 32 possess thik +> A:fé,q/fl—q—quik+q+q'
point. An additional complication comes from the fact that 9.9’

+-e (27)
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= 0.04 - 7 lytical (filled diamonds results for
~ (ény;) in the single-hole ground
0% -0.06 |- 1 state atJ/t=0.3 along the lines
shown in the insef(—,—m)
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(2) L.
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Az(p)_%“, [Cp,q,q’fp*qfq/g*erCfp,q’,qugfpquq’

(2) T gt TRt
T Craa9p-af —p-q T 1By

where the subscripts of A’s indicate the number of mag-

nons in the corresponding component of the wave function.
Results of the EMDF an@(r) in Eq. (19) for the ground

state of Eq.(27) are given in full detail in the Appendix. In

the next section we use these expressions to compare this

theory with the numerical data discussed earlier in this paper.

V. COMPARISON OF NUMERICAL
AND ANALYTICAL RESULTS

This section summarizes the comparison of our numerical
ED data with the analytical results obtained from the CT
approach. We focus on the EMDF for one and two holes, the
binding energy, and the hole-hole correlation function for
two holes. These provide a representative juxtaposition of
results obtained from these two techniques, and probe in de-
tail the correlations found in the ground states.

Figures 11-14 show our analytical results for the single-
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M s Te—e— 5

0.00 -

-0.02 -

-0.06 -

on, (k)
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0.08 F ® ®
-m0) m0)

-0.10 ©

012 (a) o= (b)

0.14 L L L

FIG. 12. The same as in Fig.
i 11 along the line§(,0)— (0,7)
_7(77710)_>(0x7 77)]

(©)

w0 @2w2) O Om W22 (—m0)
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0-02 T T T T T T T T T
0.00 - —
-0.02 - B
-0.04 - B
20.06 - 4 FIG. 13. Comparison of the
numerical(open circley and ana-
2 008 A lytical (filled diamondg results for
~ 0.10 (éng,;) in the single-hole ground
& or ) state atd/t=0.3 along the lines
012 - i shown in the insef(—,—m)
mm @ — (7, 7)— (=, m)— (7, — m)].
0.14 - o ® - Solid lines are guides to the eye.
-0.16 - b
sl (a) ®| |4 (©.
(~m—m) (m—m)
_020 | | [ | | | | | [ [ |
T () wm) (T M (-1 00 -

hole EMDF [Eq. (21)] together with the 32-site ED data. of the spin polaron. They make a contribution to the EMDF
Solid lines are guides to the eye. The agreement is good fdEqs(10),(21), which is asymmetric under the transformation
both spin directions. The differences between(tbe,,;) nu-  k—k+Q. These asymmetric terms are responsible for the
merical and analytical data at (0,0) and,¢r) can be attrib- dome shape ofény ,), as was proposed in Ref. 15, thus
uted to the fact that the CT quasiparticle residiye=aZ at  showing that it is not related to a Fermi surface signature.
these points is larger than the “exact” valugsg., SCBA. The J/t dependence of the single-hole EMDF data has
As one can see from E@21), this leads to lower values of been extensively studied in Ref. 58 for smaller systems. As
(6n;). The agreement of thésn,|) quantities away from we already noted in Sec. IV, EQ1) naturally describes the
k=P is better because the role of the background does naesults of these studies and of the observations made in Sec.
depend ona,. The antidips in the analytical results are lllA. To be specific, the depth of the dip is proportional to
marked by the cross notifying that these points were calcuZp, and thug(énp |) must follow theJ/t dependence ofp
lated from Eq.(21) using a finite gap value in the magnon (result of Ref. 58 Also, the background must be getting
spectrunt’ weaker for largerd/t because less hole weight is accumu-
As we discussed in Sec. IV, the internal structure of thdated in the string cloud. The smaller values and strodger
spin polaron is made evident in the EMDF through the nor-dependence oAn, andAn,,; , are due to the second and
mal and interstring terms. The normal terms reflect the disthird components of the spin-polaron wave function involved
tribution of the hole inside of the spin-polaron wave func-in the formation of the én, |) background, which are more
tion, viz. strings of different length. Interstring matrix sensitive tal/t.
elements are nonzero fgpn,) due to the specific structure Now we consider two-hole results, beginning with the
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TABLE |. Amplitudes (C,,-;12m) and weights C%n,l,gm) of next-nearest-neighbor distances. That our analytical work
the harmonics in the spin-polaron bound-state wave function, Egoroduces such behavior is not inconsistent with our state-
(26). Weights are directly related tozthe polaron-polaron spatial disyyent regarding the form a&g Eq. (26): the centersof the
tribution function: P(ry )= (1/2,)C;, , z;-=4; 8 is the coordi-  ho|arons are indeed restricted to be on opposite sublattices,
nation numberl andl” belong to different sublattices. but the holes are almost equally distributed on both sublat-
tices, with the maximum probability of separation being at

2
(2n—1,2m) Can-tam Con-a.on: % V2. In fact, our analysis of the harmonics &f given in
(1,0) 0.642 41.3 Table | shows that about 40% of tip®laronsin the bound
(1,2),(1-2) -0.108 4.6 state are separated by one lattice constant. Thus, the peak of
(3,0) -0.444 19.7 C(r) atr= 2 arises from the components of the wave func-
(3,2),(3-2) 0.160 10.2 tion with strings of length one. Clearly, the spin-polaron pic-
(5,0) 0.240 5.8 ture provides a natural explanation for ti2 paradox found

here and in earlier numerical studies.

o _ _ We believe that there are two reasons for the analytical
bmdmg energy..Thls guantity fqrd—wave bounq states was C(1) being slightly larger thai©(y2). A treatment of the
obtained numerically and analytllchaIIy ata vanetquSf.CE Or  t-J model based on the spinless hole representation involves
J/t=0.3 it was found thatE,"=-0.03 and Ey'=  some unphysical states with the hole and spin excitations
—0.02. As discussed before, the absence of a simple scalingeing at the same site. The number of processes leading to
law for Ey, does not allow one to produce a reliable estimatesych states increases when the polarons are close to each
of its thermodynamic limit at small/t. Nevertheless, we other and henc@(l) grows. Second|y, the CT approach
believe that the close agreement of the energies supports tRfghtly overestimates bare hole weight.

idea that the systems under study represent the same physics.An additional maximum in our analytic&(r) atr =3 is

A simple 1N FSS for the larged/t=1.0, where the size of closely connected to the second important harmonic in the
the bound state is smaller and it is hoped that such a FSS wigtT d,2_y2 bound state~[cos(3)—cos(d,)]. We cannot

be more credible, gives a thermodynamic valueEgP~  explain the absence of such a peak in the ED results—for
—0.32 [Fig. 6(b)], which is very close to the theoretical example, we have been unable to estimate the finite-size ef-
resultES "= —0.34. fect on individual harmonics in the two-hole wave function.

Figure 1a) shows our results for the hole-hole correlation  Figure {b) demonstrates a better agreementl/dt=0.8
function C(r) for two holes in thed-wave bound state, for when the size of the bound state is small. In this case the
J/t=0.3. This expectation value is calculated first for a bulkcorrelation falls rapidly with distance and thus the “bulk to
lattice, and then mapped onto the equivalent sites of a 32-siteuster” mapping does not alter the analytical data. There-
cluster with periodic boundary conditions. This enforces thafore, in the largel/t limit we find the expected result that a
the analytical work approximate some of the finite-size ef-spin-polaron approach adequately describes the physics.
fects of our ED numerics, and facilitates a more natural com- The EMDF for two holes shows an equally satisfactory
parison between the two. Very similar trends are found incomparison, as seen in Fig. 15. The behavioK &f,) in-
both results, with the correlation function decreasing quitevolves the combined effects Gf the internal structure of the
similarly with the distance. polarons, (ii) the d-wave symmetry bound state, arii)

Both numerical and analytical results data show that aboutigher harmonics in the bound-state wave function. We now
45% of the time the holes prefer to stay at the nearest- andlaborate on these features.

0-04 T T T T T T T T T T T T T
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As we argued in Sec. IlIB, the quantitAn?"'®  shown in Sec. Ill for the ED data. Thosepoints that are
=((N(o,0) —{N(m.m))=(ANT"*"*+ An!"'®) shows that the influenced by the long-range physics of the system are
overall background deviation is mainly irrelevant to the shown to have more complicated scaling laws—see Egs.
bound-statek structure. The worst agreement between ED(22),(24). The role of the higher harmonics and the effect of
and CT analytics for the (0,0) andr(w) points(Fig. 19 is  the size of the bound state on the EMDF and the hole-hole
again due to th&,_, problem within the CT approach. correlation function for the two-hole problem are also dis-

Next we focus on the features along the ABZ boundarycussed.
which, as we discussed before, are not disguised by kine-

matic effects(a_ll a_lsymmetric and _rnost of the normal terms ACKNOWLEDGMENTS
are zero on this lineand can be directly related to the form
ong in EQ. (26). Our analytical and numericébn,) results We would like to thank Martin Letz, Frank Marsiglio,

have a local maximum &= (7/2,7/2), and have minima at T.-K. Ng, and Oleg Sushkov for helpful comments. We are
(37/4,7/4) and (w/4,3w/4). The first feature can be ex- grateful to R. Eder for correspondence and for supplying us
plained by thed-wave symmetry of the bound state. The with useful references. This work was supported by the RGC
EMDF is reduced from its half-filled value of 1/2 when holes of Hong Kong, and the NSERC of Canada. The 32-site ED
occupy that momentum state. However, as shown in Eqwork was completed on the Intel Paragon at HKUST.

(12), the EMDF consists of terms proportional t(Aﬂ()z,

which is identically zero at £/2,m/2). Thus,(ény) must  APPENDIX A: EMDF AND C(r) FOR TWO-HOLE CASE

show a local maximum(=0) at this wave vector, so one .
cannot find any direct remnant of hole pockets for The amplitudes of the components of the two-hole wave

dy>_,>-wave symmetry bound state. function Eq.(27), AM™,BM C(, can be expressed through
A’second feature that we observe in both analytical andhe a,b,c components of the single-hole wave function of

numerical results, viz. the minimum along the ABZ bound- EQ. (20):

ary between £,0) and @@/2,7/2), can be related to the par-

ticular form ofAS. Analytically, this quantity has large and AM=aZ, Af&=2bk,qb_k+q,q,
apparently important higher harmonicsee Table | and Eqg.
(26)], and it is the competition between the different harmon- A®

. . =Cx.q,9’C—k+qg+q'.q'.q°
ics that produces the maximum hole number between kgar Taq araana

(7/2,712) and (3m/4,7/4). Our analytical work shows that

the hole number is actually maximized along the ABZ Bia=—ab_kq. B(k?;qf:bk,q’bqu’,qbkarq’,q'1
boundary very close to /2,7/2), roughly at (AL)
(0.457,0.55). It is unclear if experiments could resolve
this feature. (1) 1 2)
Ck,q,q’ = Eakck’q’q/, Ck,q,q’: bk,qb—k,q/'
VI. CONCLUSIONS The quantities, ,by o, andcy 4 4, within the CT approach,

are the products oM, ¢'s of Eq. (14), the transformation

Summarizing, we have presented new ED numerical dat%arametefk of Eq. (16), and different integrals of their com-
for up to two holes in thé-J model for the largest cluster for binations given by
n

which such calculations can be completed presently. Then,
we compared these results with new analytical expressions
based on the canonical transformation approach totihe
model. We find good agreement for the binding energy, the
EMDF for one and two holes, and the hole-hole spatial cor- 1
relation function. We consider this to lend strong support to - —(3+21 FYV+FP+ F<k3))},
the validity of the quasiparticle Hamiltonian derived in Ref. 6!
19, thus supporting the contention that the spin-polaron de-
scription of the quasiparticles in theJ model is correct at 1
least at low hole concentration. bk,q=Mk,q[1— g7 (! k—q)
Certain characteristics in the correlation functions we '

studied are direct consequences of some features of the cor- 1, 1 ) 1
responding ground state wave functions. For example, the et PO kgl gt Ficg) | (A2)
dip in the single-hole spifh EMDF is related to the center of
the spin polaron, whereas the dome structure of the one- and
two-hole EMDF is due to the interstring matrix elements of
(nks)- The large correlation between the holes in dheave
bound state at a distance qf2 is due to the significant
weight of the shortest string in the spin-polaron wave func-
tion. Analytical results for the FSS of the EMDF show &l1/
scaling at almost alk points except at the single-hole ground

)

1 1
_IK+H(IE+F(kl))

=3

ag=

1 1
Ck,q,q’:l"k,qﬂk—q,q{g_ E(Ik"' I k—q+ I k—q—q’)
2
+ a(lkl k_q+Ik_q+Iklk_q_qr+|k_q|k_q_qr

state P [Egs. (10),(12),(21)], in agreement with what is +|§7q7q,+Ff<12q+ Ffi)qfq,
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where
with Ik=% ,uE,q, (1)_2 qu'k q
da(1) A2
=3 wdfile A= wdalia ~ A 2 A A
where uy = fiMy - +E Ad A®
Using Eq.(19) and the bound-state wave function of Eq. bt k+g+q'"k+a+q’,0,9"
(27) one can obtain the EMDF for the two-hole ground state, ’
<nk>~_+ [—<5nﬁve">+2<5nﬁdd>], 1 (1) )
FBy q_A B( ) Ak+q k+q q+2 (Ak+q+q Bk+q+q ,9,9’
2 d
<5nﬁven>:FA§+§ FBE,C]_FC%, FCk]qu' ’ (A3) _AkJrq/B(kZJr)q/’,q’q/; (A4)
odd
_ _ _ (1) d~(1)
(oM™ zq: FBy,qUqFAk+q FAqu: VqFBig FCk,q,q,—Ak+q+q Cirgraraq TAC g q
A C(Z)
k+q’~k+q’,—q,—q""
=2 FCiqqUaFBrigia .~
a.4q
The hole-hole correlation function of E¢L9) in the bound
+Z FBk,q'% VoFCrigr—q,-q' state described in Eq27) is given by
q
|
Co%rij)+C#(rij)=(2Inn?2), wheni+j=2n-1
C(rij)=
(i) CM(rij)=(2n{n{|2), wheni+j=2n
2
Coo(rij):{; AE(Afﬁcoikrij]Jr% A(2>Cos{(k q)r”]+2 Aqu,cos{(k gq—q )r”]”
(A5)

c“<r”>=k§; AEAS@ (B&%Bl[cosﬂk DI COi(k+p+q)r|,]}+28”)Z B\ yicod(k—p+q+q')r;]

—cog (k+ p—Q')rij]}) .

d (1) (1) (1) (1) (2) (2) (1) (1)
C2(ryj)= 2 AYA 2 {(Claa Cour ,+C! raClrarat Cloaa Craa )OS (k—p)rj]+2C 70, ) cof(k—p+q

+q'>ri,-]—zc<k2; CounaC0S(k+p=a")ry1-2C% ,,CH . cof (k+p+a)r]}.
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