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Analytic scaling functions applicable to dispersion measurements
in percolative metal-insulator systems
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Scaling functions,F1(v/vc
1) and F2(v/vc

2) for f.fc and f,fc , respectively, are derived from an
equation for the complex conductivity of binary conductor-insulator composites. It is shown that the real and
imaginary parts ofF6 display most properties required for the percolation scaling functions. One difference is
that, forv/vc,1, ReF2(v/vc) has anv dependence of (11t)/t and notv2 as previously predicted, but never
conclusively observed. Experimental results on a graphite–Boron nitride system are given, which are in
reasonable agreement with thev (11t)/t behavior for ReF2 . Anomalies in the real dielectric constant just above
fc are also discussed.@S0163-1829~98!07443-8#
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I. INTRODUCTION

The ac and dc conductivities of resistor and resist
capacitor (RC) networks and continuum conductor-insulat
composites have been extensively studied for many year
systems where there is a very sharp change~metal-insulator
transition or MIT! in the dc conductivity at a critical volume
fraction or percolation threshold denoted byfc , the most
successful model, for both the dc and ac properties,
proved to be percolation theory. Early work concentrated
the dc properties, but since it was realized1–6 that the per-
colation threshold is a critical point, and that the percolat
equations could be arrived at from a scaling relation, sev
papers, which are referenced and discussed in a prev
paper,7 reporting experimental results on the ac conductiv
have appeared. Review articles, containing the theory
some experimental results, on the complex ac conducti
and other properties of binary metal-insulator systems
clude Refs. 8–10.

In another paper, extensive dc conductivity and low f
quency dielectric constant results on systems based
graphite~G! and hexagonal boron nitride~BN!, which have
what are probably the cleanest and sharpest dc MIT’s
observed in a continuum system, have been reported11,12

These G-BN results were found to obey the percolat
equations, as a function of volume fraction in Refs. 11, 12
Ref. 7 it was shown that the experimental dispersion resu
for samples with various volume fractions of G, can
scaled onto two curves that are consistent with previou
measured percolation parameters;11,12 one curve refers to the
real conductivity above and the other to the imaginary c
ductivity ~real dielectric constant! below the critical volume.
Unfortunately, the parametersvc

6 that had to be used to
achieve this scaling were found to be different from tho
expected from the scaling models (RC lattice8 and anoma-
lous diffusion13!, no matter whether thevc

1 and vc
2 were

calculated using the accepted universal parameters or th
ready reported dc conductivity and low-frequency dielec
results.11,12 However, there is agreement between the criti
exponents, characterizing the frequency dependence o
real conductivity whenf.fc ~where f denotes the con
PRB 580163-1829/98/58~20!/13558~7!/$15.00
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ducting volume fraction!, the imaginary conductivity forf
,fc and the exponents found from the previously repor
dc and low frequency ac results.11,12

One measurable scaling function that did not agree w
the previous power law predictions8–10 was that for the loss
component in the insulating region. As these results w
somewhat controversial they were not discussed in Ref. 7
the meantime further measurements have been made on
of the G-BN systems11,12and other systems, using a recen
acquired dielectric spectrometer system that is able to m
sure far smaller dielectric loss parameters as well as loss
phase angles. Some of these results are presented in
paper.

The present paper introduces scaling functions that
depend oncomplexconductivities. They closely fit results o
the medium conductancesM , in particular the frequency~v!
dependence of the first-order real part forf.fc and the
first-order imaginary part forf,fc as was shown in Ref. 7
Most of the scaling power laws given in Refs. 8–10 a
obtained; the range of parameters over which these funct
can be expected to generate accurate scaling functions is
rived. It is also shown that, while the second-order terms
the scaling functions have the exponentst/(s1t) for f
'fc andv/vc@1 as given in Refs. 8–10, the second-ord
exponents for low frequencies andf*0 or f&1 differ from
those of Refs. 8–10. Experimental results forsM(v,f) are
presented that agree reasonably well with the exponents
dicted by the introduced scaling functions, provided that
complexconductivities of the dielectric components of th
continuum systems are taken into account. The meas
ments forsM (f,fc) in the G-BN systems are definitel
not in accord with thev2 prediction given in Refs. 8–10.

A feature of the experimental results is that, where m
surable, the real dielectric constant continues to increase
f for f.fc and certainly does not decrease according
(f2fc)

2s as given in Refs. 8–10. However, this increase
qualitatively consistent with the expressions introduced
this paper. The effect is more clearly observed in carb
black-polyethylene compounds14 and in three-dimensiona
systems where various conducting powders are distribu
on the surfaces of large insulating grains.15
13 558 ©1998 The American Physical Society
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II. THEORY

The equation

~12f!~s I
1/s2sM

1/s!

~s I
1/s1AsM

1/s!
1

f~sC
1/t2sM

1/t!

~sC
1/t1AsM

1/t!
50 ~1!

gives aphenomenologicalrelationship betweensC , s I , and
sM , which are the conductivities of the conducting and
sulating component and the mixture of the two compone
respectively.7,16 Results obtained from an earlier version17 of
Eq. ~1! are reviewed in Ref. 18 and references therein, wh
the dc conductivities of some two phase systems are succ
fully modeled fors5t. The conducting volume fractionf
ranges between 0 and 1 withf50 characterizing the pure
insulator substance (sM[s I) andf51 the pure conducto
substance (sM[sC). The critical volume fraction, or perco
lation threshold, is denoted byfc , where a transition from
an essentially insulating to an essentially conducting med
takes place. We use the notationA5(12fc)/fc . For s5t
51 the equation is equivalent to the Bruggeman symme
media equation.18,19 The equation yields the two limits

usCu→`: sM5s I

fc
s

~fc2f!s , f,fc ~2!

us I u→0: sM5sC

~f2fc!
t

~12fc!
t , f.fc , ~3!

which characterize the exponentss and t. Note that Eqs.~2!
and ~3! are the normalized percolation equations. For
measurements, Refs. 8–10 have given equations for the
wheresC is real ands I52 ive0e I , which characterizes a
lossless dielectric. However, we note that all three quanti
s I , sC , andsM can in principle be complex numbers in E
~1!. A solution forsM can be obtained after rewriting Eq.~1!
using the variablez5sM

1/t , viz.,

Az11a2za~Af1f21!sC
1/t2z~A2Af2f!s I

a/t

2~s I
asC!1/t50 ~4!

with a5t/s. We note in passing that Eq.~4! has explicit
solutions fora51, 2, and 3, while numerical solutions a
easily obtained for larger integer values. Our interest is n
focused on the question as to what extent the solution forsM
can be used to obtain valid scaling functions.

The scaling conditions, which are based on those give
Refs. 8–10, read

sM5H sC

~fc2f! t

fc
t F2~x2!, f,fc ~5!

sC

~f2fc!
t

~12fc!
t F1~x1!, f.fc , ~6!

where the scaling functionsF6(x6) depend on the scaling
parameters

x25
s I

sC

fc
s1t

~fc2f!s1t 52 i
v

vc
2 , f,fc ~7!

with
-
s,

re
ss-

m

ic

c
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s
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vc
25

sC

e0e I

~fc2f!s1t

fc
s1t ,

and

x15
s I

sC

~12fc!
s1t

~f2fc!
s1t 52 i

v

vc
1 , f.fc ~8!

with

vc
15

sC

e0e I

~f2fc!
s1t

~12fc!
s1t .

The expressions involvingv6 assume specifically a purel
real sC and imaginarys I . To ensure that curves drawn fo
F6 fall on top of each other for differentfc , the normaliza-
tion employed in all the equations used in this paper diff
somewhat from the one used in Refs. 8–10. Using the v
able u5F2

1/t an equation is found foru by the substitution
z5usC

1/t(fc2f)/fc in Eq. ~4!. It reads forf,fc as

Au11a1ua2u
~fc2f!~12f2fc!

fc
2

x2
1/s2x2

1/s50. ~9!

In a similar way, the substitutionz5usC
1/t(f2fc)/(1

2fc) leads to an equation forF1
1/t ~again denoted byu) for

f.fc

Au11a2Aua2u
~f2fc!~12f2fc!

fc~12fc!
x1

1/s2x1
1/s50. ~10!

If the term linear inu of Eqs. ~9! and ~10! could be ne-
glected, the scaling functionsF6 would manifestly depend
only on the respective variablesx6 . It is due to this term that
scaling is invalidated to a certain degree by the solution
sM of Eq. ~1!. The range and extent to which this is the ca
are discussed below. An interesting aspect of Eqs.~9! and
~10! is exact scaling atf5fc and f512fc . Whether or
not exact scaling forf512fc is merely a coincidence ca
only be revealed by appropriate experiments. We stress
all results obtained in this section are independent of whe
the conductances and hence the scaling functionsF6 are
genuinely complex or real.

Exact solutions of Eqs.~9! and~10! can be read off at the
limit points of the concentration. Atf50, it is ua5x2

1/s , i.e.,
F2[x2 and atf51, it is u51, i.e., F1[1. From these
solutions, Eqs.~2! and~3! are obtained from Eqs.~5! and~6!,
respectively. In fact, the respective solutions are valid to h
accuracy forf.0 andf,1 as long asux6u!1 or for f
very close to eitherfc or 12fc . Correction terms are given
below.

For the opposite limit of the scaling parameters, i.
ux6u@1, we obtain for the leading term atf'fc the solu-
tion Au11a5x1/s from both equations,~9! and ~10!. This
translates into

F65~x6! t/~s1t !A2st/~s1t !, ~11!

which gives

sM5
sC

Ast/~s1t ! S s I

sC
D t/~s1t !

at f5fc . ~12!
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Note that Eq.~12! conveniently lends itself for complex va
ues ofs I andsC ; in particular, ifs I is purely imaginary and
sC real one obtains

Im sM52
sC

Ast/~s1t ! U ve0e I

sC
U t/~s1t !

sinS pt

2~s1t ! D , ~13!

Re sM51
sC

Ast/~s1t ! Uve0e I

sC
U t/~s1t !

cosS pt

2~s1t ! D . ~14!

From Eq.~11! it follows that the slope of the real and imag
nary part of ln(F6) is t/(t1s) when plotted against ln(x6)
for ux6u@1. Equations~13! and ~14! show that, withs I
52 ive0e I , the frequency dependence of both real a
imaginary sM is v t/(s1t). This dispersion law is given in
Refs. 7–10. Experimental results validating this power l
are found in Refs. 7, 12, 20–24. The loss angled
5arctan$pt/@2(s1t)#% implied by Eqs.~13! and ~14! is also
given in Ref. 8.

It is of physical interest to determine the correction ter
of next order in Eqs.~2! and ~3!. Note that Eq.~2! yields a
purely imaginary result forsM if s I is imaginary. However,
a loss term should emerge forv.0 when f.0. This is
obtained by expanding the solution of Eq.~9! for f*0. One
finds for the scaling function

F25x22s
f

fc
2 x2

x2
1/t

Ax2
1/t11

5
s I

sC
S 11~s1t !

f

fc
2s

f

fc
2

~s I /sC!1/t

A~s I /sC!1/t11D , ~15!

which can be used for real or complexs I or sC . Combining
Eq. ~15! with Eq. ~5! one obtains for smallf/fc , as ex-
pected, both an enhanced dielectric loss term ResI(1
1sf/fc) and a composite loss term. Taking specificallys I
purely imaginary andsC real, the composite loss term rea
explicitly up to terms linear inf/fc

Re sM5ssC

f

fc
2

u s I /sCu~11t !/tsin~p/2t !

Aus I /sCu2/t12Aus I /sCu1/tcos~p/2t !11
.

~16!

An important consequence of Eq.~16! is the small frequency
behavior of the loss term~recall s I52 ive0e I), which im-
plies

Re sM;v~11t !/t, ~17!

which differs from thev2 behavior predicted by the expan
sions used forF2 in Refs. 8–10. We note that these expa
sions assume analytic behavior forsM aroundv50, which
is in contrast to our findings; also we obtain a loss term t
vanishes forf→0, which is not the case for the expressio
in Refs. 8–10. The following section presents experimen
results that appear to confirm the power law expressed
Eq. ~17!.

By similar means we obtain the first order correction te
in the vicinity of f&1, which reads
d

s

-

t

l
by

F1511t
12f

fc~12fc!

x1
1/s

A1x1
1/s

511t
12f

fc~12fc!

~s I /sC!1/s

A1~s I /sC!1/s . ~18!

Note that this term implies not only a correction to the re
part ofsM in Eq. ~3! but also a switching on of an imaginar
part for complexs I . For purely imaginarys I this is

Im sM52t
12f

fc~12fc!
sC

3
us I /sCu1/ssin~p/2s!

A212Aus I /sCu1/scos~p/2s!1us I /sCu2/s ~19!

which implies in this limit, fors I52 ive0e I , that ImsM
;v1/s.

So far, we have concentrated on regions where scalin
obeyed by the solution of Eq.~1! either exactly or to high
accuracy, that is, for 0<f,fc and fc,f<1, if ux6u!1,
and forf'fc , if ux6u@1. There is an intermediate regio
ux6u;1, where the linear term inu of Eqs. ~9! and ~10!
invalidates the sole dependence ofF6 on x6 except forf
5fc or f512fc . In fact, it can be shown that, as long a
the inequality

v

v0
,

fc

122fc
with v05U sC

e0e I
U ~20!

is obeyed, the linear term of Eqs.~9! and ~10! is immaterial
and scaling prevails. As a consequence, the leading beha
of F6 , for x6@1, is governed by the power lawx6

t/(t1s) only
up to the frequency that obeys the inequality~20!, for larger
frequenciesF6 becomes a linear function ofx6 . Note, how-
ever, that the right-hand side of Eq.~20! depends onfc in
such a way that scaling is expected to be invalidated only
small values offc and sufficiently large values ofv. In turn,
for fc.1/3 the right-hand side of Eq.~20! is larger than
unity, and forfc→1/2 no bound onv prevails.~Note that
fc51/3 is the Bruggeman value for spheres in three dim
sions andfc51/2 for discs in two dimensions.18,19! As a
consequence, there should be no discernible deviations f
scaling forfc.1/3. To what extent these results are phy
cally valid can only be assessed by experiment. No exp
ments in this region appear to exist and the situation is co
plicated by the fact thatsC and s I depend onv when v
becomes sufficiently large.

In Fig. 1 we illustrate the behavior of the real and imag
nary parts ofF6(x6) for s51, t52 andf5fc50.16, that
is for the situation where scaling holds exactly. As discus
above, deviations are marginal whenf is near tofc and
become noticeable only when the inequality~20! is apprecia-
bly invalidated. Note the equal slopes for largex6 of all four
curves in accordance with Eqs.~13! and ~14!. Also, sincet
.s, the imaginary parts are larger than the real parts; fos
5t all four curves would coincide asymptotically. Fors.t
the real parts would be larger than the imaginary parts bu
such system has been observed or predicted.

We interpret the dependence ons I /sC of the percolation
loss term as predicted by Eqs.~15!–~17! as follows: Con-
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sider a three-dimensional lattice, with ideal capacitors
nearly all the bonds but with a small number of random
distributed resistors embedded in the capacitor matrix, ei
as isolated components or as small clusters, and ch
Cv,1/R. If a voltage is applied to two opposite faces of t
lattice, the displacement current in the lattice is determin
almost entirely by the capacitors. Therefore, as the curren
the resistors is evoked by a ‘‘fixed current source,’’ which
determined by the value of 1/(Cv), the dissipation is pro-
portional to I 2R, i.e., the largerR the more power is dissi
pated. This argument can be extended to continuum syst
which qualitatively explains the dependence ons I /sC in Eq.
~15!. The presence of the exponentt, which determines the
rate of increase of the conductivity beyondfc , would there-
fore appear to have a role in the formation of the conduct
clusters, which determine the dissipation belowfc . How-
ever, belowfc , the behavior of the complex effective con
ductivity is dominated by the imaginary component, which
primarily determined by the interconnectivity of the insula
ing medium, or more specifically its ability of keeping th
clusters of the conducting medium disconnected belowfc ,
which in turn is characterized by the exponents.

We note that the treatment given in Refs. 8–10 has not or
s dependence forx2,1 or x1,1, respectively. However
our Eqs.~15! and ~18!, which are based upon Eqs.~9! and
~10!, indicate that the exponentt, which characterizes the
formation of the conducting backbone, continues to pla
role for f,fc ; similarly, the real dielectric constant is no
independent ofs for f.fc .

III. EXPERIMENTAL METHOD

The percolation system7,11,12 that best exhibits the (1
1t)/t behavior is a lightly poured powder of 55% graph
45% boron nitride, which is compressed, expelling air, in
capacitive cell through the percolation threshold. As the p
colation threshold is at 0.124~volume fraction of G!, the
insulator at and around this point consists of 11.4% BN a
88.6% dry air, which obviously has a Ree close to one and a

FIG. 1. Plots ofF1 andF2 againstx1(v/vc
1) andx2(v/vc

2),
respectively. The parameters used aref'fc50.16,s51, and t
52. As f'fc the values used forsC must be accordingly large to
yield a finitevc

6 . The upper solid curve is ReF1 and the lower one
ReF2 ~the second order dielectric loss term!. The dashed line is
Im F2 ~the first-order term belowfc), and the dotted line is ImF1 .
Note how this term rises above ImF2 in the region wherex6 is
between 1 and 100.
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very low Im e term. The dissipation in more compacted sy
tems, such as compressed pellets of G-BN~Ref. 7! or
polyethylene-carbon black,14 would appear to be dominate
by the dissipation in the dielectric component.

As the constructions of the cells and experimental pro
dures for the G-BN powder have been adequately descr
for the dc and low-frequency ac measurements in Refs.
and 12 as well as the dispersion measurements@sM(v) for
fixed f# in Refs. 7 and 12, they will not be repeated he
Some experimental results are presented, which are obta
by tumbling various conducting powders with larger w
coated insulating grains. The conductor coated grains
then compressed into disks.15

The measurements presented here are the results o
real and imaginary parts of the conductivity between 1021

and 3.106 Hz, obtained using a newly acquired Novocontr
Dielectric Spectrometer. This instrument is able to meas
far smaller loss components of the dielectric or insulat
phase~equivalent to a resistor of 1018 V at 1021 Hz and
108 V at 105 Hz in parallel with a perfect capacitor! and had
a better resolution of loss or phase angle~a maximum of
tand of .103 and a minimum of,1023 can be measured!
than the instruments used in Ref. 7 or measurements
similar nature.20–24

IV. RESULTS AND DISCUSSION

The experimental results for Ree and ResM for the
55%G-45%BN powder as a function of frequency betwe
1021 and 33106 Hz are given in Figs. 2 and 3. The dispe
sion results for the three highest-lying curves in Fig. 3 a
conducting samples (f.fc) with dispersion free conduc
tivities at low frequencies.8–10 The dielectric constant o
these three samples~upper curves in Fig. 2! show a strong
dispersion, which should go froms/(s1t)50.47/(0.47
14.8)'0.09 atfc to 1/s'2 near tof51. The observed
values range from 0.1 to 0.33. The dielectric constant for

FIG. 2. A plot of the real part of the dielectric constant again
frequency for a 55%-45% G-BN powder on a log-log scale
various values off @f50.1309~open circles!, 0.1290~triangles!,
0.1272 ~open squares!, 0.1236 ~plus!, 0.1219 ~crosses!, 0.1203
~dots!, 0.1187~asterisks!, 0.1171~solid squares!#. These are relative
volume fractions, as the absolute error is about60.001.
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conducting samples (f.fc) will be further discussed be
low.

The sample marked by plus signs in Fig. 3 (f2fc
520.000460.001) is actually metallic, as its conductivit
breaks away from a constant slope at sufficiently low f
quencies, as predicted for metallic samples in this paper
Refs. 8–10. Note too that the larger exponent 0.15 for
higher frequencies shown by this sample in Fig. 2 also in
cates that it is not an insulator (x2,1). When compared to
the results in Fig. 1 in Ref. 7, this observation illustrates
necessity of making measurements at lower frequencies
previously done in any experiments of this nature.

In Fig. 2, the exponent of Ree drops form 20.10 to
20.02 for the last four samples. While, from the resu
given in Ref. 7, a dispersion exponent of20.10 could indi-
cate a sample still in thex2.1 region, the fact that the sum
of the absolute values of the exponents for the dispersio
Ree and ResM are greater than 1, precludes th
possibility.7–10 This, combined with the ever decreasin
magnitude of the Ree exponents, going down to 0.02 from
the lowest-lying curve, allows us to conclude that these f
samples lie in the dielectric orx2,1 region. Note that the
lowest measured values fors/(s1t) recorded in the
literature7,19–23 are 0.07 for 50%G-50%BN and 0.10 fo
55%G-45%BN.7

Based on the arguments given above, the four low
lying plots of the conductivity against frequency in Fig. 3 a
the conductivities for samples in the insulating or dielect
state (x2,1). There is a very slight upward curvature of th
results between 10 and 33106 Hz, but the mean slopes i
this region are 1.06 and 1.09. The slope decreases b
3Hz. According to Eq.~15! the conductivity is made up o
both a dielectric and percolation loss term, the relative c
tributions of which must now be examined.

In order to evaluate Eqs.~15!, ~16!, ~18!, and ~19!, an
expression fors I is required. Unfortunately the loss term
the boron nitride–air system is too small to measure dire
on the dielectric spectrometer, which also meant that the

FIG. 3. A plot of the real part of the conductivity against fr
quency for a 55%-45% G-BN powder on a log log scale for vario
values off @f50.1309~open circles!, 0.1290~triangles!, 0.1272
~open squares!, 0.1236 ~plus!, 0.1219 ~crosses!, 0.1203 ~dots!,
0.1187~asterisks!, 0.1171~solid squares!#. These are relative vol-
ume fractions as the absolute error is about60.001.
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colation parameters for this system could not be measu
directly. Therefore, the complex conductivity of boro
nitride–air mixture had to be calculated, using effective m
dia theories, from measurements made on a compressed
with a porosity of 0.19. When plotted against the frequen
in the range 1021– 33106 Hz, Ree for this disk was found
to be virtually constant, and that the ResM term could be
fitted to ResM5sdc1Dv0.9 ~Ref. 25! with sdc being sensi-
tive to how dry the BN in the disk was~and therefore also
how dry the BN in the G-BN powder was!. By pumping on
the disks long enough the dc component became unmea
able@i.e.,,10218(V m)21 at 1021 Hz]. D was independen
of sdc and had a value of 9.0310216. Unfortunately, the
powders could not be pumped to lower values ofsdc as this
caused them to collapse.

Although the system is anisotropic,7 if measurements are
made in the axial~compression! and radial directions, it is
probably still valid to use the Hashim-Strickman~HS! upper
and lower bounds26 for measurements made in the rad
direction only. Therefore, ResM and ImsM for ‘‘bulk’’ BN
where determined using the upper bound, as the BN gr
are obviously in contact at low volume fractions, whic
makes the system closer to one where the BN surrounds
air.27 The bulk parameters are Ree54.1 and D51.2
310215. As the critical volume fraction for the 55%G
45%BN system is 0.124, the upper limit for dilute system
was taken to bef50.02. At this volume fraction of G the
volume fraction of BN was 0.0164 and of air 0.9636. The
fore the parameters determiningsM for a system with 0.017
volume fraction of BN and 0.983 for air were calculate
again using the formula for the HS upper bound, which ga
a Ree51.03 and aD51.41.310217 with sdc selected to fit
the experimental results. The calculated ResM at f50.02 is
then used to evaluate the enhanced dielectric loss term
percolation contribution and the combination of these, us
Eqs. ~5! and ~15!. These are all shown in Fig. 3. The com
puted value of ResM for the air-BN insulator is not shown
but lies below the enhanced curve by a factor ofsf/fc . The
other valuess50.47,t54.8, andsC53126(V m)21, used
to calculate these curves, have all been determined by
percolation measurements11,12 andsdc was chosen to match
the curvature at low frequencies. The mean slopes of 1.05
the squares and 1.09 for the crosses are lower than the v
of (114.8)/4.851.21, as is predicted by Eq.~17!. The dis-
crepancy is explained by the comparatively large values of
in the experimental results; in fact numerical solutions of E
~4! show that thev1/(11t) behavior is flattening out for in-
creasing f as it has to attain thev t/(s1t) behavior for
f→fc .

The only data that claim anv2 dependence forsM , f
,fc , is that of Benguigui.21 However, there are problem
with his data in a mixture of iron balls and glass beads. H
sample contains only 105 particles~about 108 in the present
experiments not even counting the air volume! and only 30
particles between the capacitor plates~nearly 300 plus air in
the present experiments!. Although Benguigui mentions the
dc conductivity of the glass, it would appear that neither t
nor the dielectric loss term in the glass is taken into accou
The authors are also at a loss to explain how the very
frequency dispersion observed for Ree(v) in an insulating

s
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20.0% iron balls sample~Fig. 2 in Ref. 21! can give a
Ree(v)v;Im sM(v) which varies asv2 when plotted
against the frequency~Fig. 8 in Ref. 21!. Therefore we do
not regard these experiments as definitive.

In Fig. 2 the dielectric results for the conducting samp
are terminated at 1 kHz as for lower frequencies tand ex-
ceeds 103 and the dielectric spectrometer gives spurious
sults. However, the results at 1 kHz~a frequency commonly
used in low frequency experiments to measure Ree) clearly
show that Ree continues to increase withf below and above
fc . This is in sharp disagreement with the predictions giv
in Refs. 8–10, where it is claimed that Ree should decrease
as (f2fc)

2s for f.fc .
The smooth behavior of Ree as a function off passing

and extending beyondfc has also recently been observed
carbon black-polyethylene composites18 and a number of
systems where various fine conducting powders are imp
nated onto the surface of almost spherical insulator gra
before the coated grains are compressed into a th
dimensional continuum.19. Therefore there is now strong ex
perimental evidence that the second order term forf.fc
given in Refs. 8–10 is in disagreement with experimen
evidence. Their second-order percolation term also fails
vanish forf→1 in contrast to our result in Eq.~18!.

However, Eqs.~1! and ~4! show a Ree that continues to
increase abovefc . Unfortunately, the agreement with th
experimental results is qualitative, at best, if the parame
obtained from dc experiments are substituted into Eq.~4!, as
is shown in Figs. 4 and 5.

Figure 4 shows the experimental Ree results at 1 kHz and
1 MHz, plotted againstf, for the G-BN powder. All theo-
retical curves, calculated from Eq.~4! are for t54.8.11 The
solid curves are forsC53.13103(V m)21,7,11 Ree51.18
~calculatedfc value!, fc50.124 ands50.96. The upper
solid curve is for 1 kHz and the lower one for 1 MHz. Th
dotted curves use the same parameters except thats50.6. As
the experimental results all lay above the theoretical curv
we display the dashed curve wheresC has been changed t
3.13105(V m)21. From this figure and the behavior of th
theoretical plots it is apparent that the experimental res
can be better fitted, if some or all of the above parameters
varied to get the best fit. In this case it would not be nec
sary to changefc from its dc value of 0.12460.001. As the

FIG. 4. Experimental values of Ree for G-BN, plotted against
f, at 1 kHz~dots! and 1 MHz~circles!. The nature and paramete
for the theoretical curves are given in the text.
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dc conductivity changes by nine orders of magnitude
tween 0.120 and 0.130, one cannot argue that the incor
fc has been identified.

Of the six powders that were coated onto the wax coa
insulating grains, as previously described, only the nic
powder did not show an increasing Ree above the dc value
for fc , this was because the conductivity at and abovefc
was too high to measure Ree.19 This combined with the
results for carbon black-polyethylene,18 both as a function of
f, andfc ~as a function of temperature! for fixed f, show
that this could well be the usual behavior for continuu
systems. The reason that this has not been previously
ported is probably due to the limitations of tand in the in-
struments previously used, and the fact that fort'2 and
large sC /(ve0e) ratios the solution of Eq.~4! is sharply
peakedjust abovefc . To observe this difference accura
measurements of both the dc and the apparent ac value ofc
~delayed peak in Ree) would have had to be made. This ha
never been done except for the G-BN system, the coa
grain system,19 and to some extent the carbon blac
polyethylene system.18,28 In all the coated grain system
sharp changes in the dc curves ofsM give unambiguousfc
values.19 With a poor conductor~magnetite! Ree increases
sharply nearfc and then smoothly up to 3fc .19

Figure 5 shows the experimental results for Ree for a
system of insulating grains coated with NbC.19. All theoret-
ical curves, calculated from Eq.~4!, are fort54.8. The solid
curves are forsC57000(V m)21, Ree57.45,fc50.065,
ands50.8. The upper solid curve is for 1 kHz and the low
one 1 MHz. The lower dotted curves are for the same par
eters buts50.4, which is the measured dc value. The lo
value for sC could be due to the resistance of the syst
being largely determined by contacts between the extrem
hard and angular NbC grains. All the above parameters,
cept fors50.8, are close to those obtained from the dc co
ductivity fit using Eq.~1!. Except for the fact that the drop in
e for larger values off is not observed the results could b
called qualitatively correct.

The curves selected do not show that the theoret
curves widen considerably ast is increased, i.e., the conduc
tivity exponent plays a large role in determining Ree. An
explanation may be that as the conductivity of a percolat
system abovefc increases more slowly withf for high t

FIG. 5. Experimental values of Ree for NbC coated grains,
plotted againstf, at 1 kHz~dots! and 1 MHz~circles!. The nature
and parameters for the theoretical curves are given in the text.
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values, this means that a smaller fraction of the conduc
component is on the backbone of a system with a hight
value than a system with a lowert. This ‘‘off the backbone’’
conducting material then creates nearly conducting links
tween different sections of the backbone, which are bro
by the insulating component. It would then be the effect
these interdead endcapacitances that continues to increa
Ree abovefc , until these capacitances are shorted out
an ever more conductive backbone.

V. SUMMARY AND CONCLUSIONS

In this paper we have shown analytically that Eq.~1!, in
conjunction with Eqs.~5! and ~6!, gives complex scaling
functions for continuum percolation type systems with t
following results:

~i! ReF1(x1) has zero slope forx1,1 ~first order term!,
and a slope oft/(s1t) for x1.1.

~ii ! Im F2(x2) has slope unity forx2,1 ~first order
term!, and a slope oft/(s1t) for x2.1.

~iii ! A slope of t/(s1t) for Im F6 and ReF6 for x1 and
x2.1.

Note that forx1 andx2.1 one cannot clearly distinguis
between first- and second-order terms. All of these limit
slopes agree with those given in Refs. 8–10. However,
F6 in this paper are analytic functions with no unspecifi
constants. The functions ReF1 and ImF2 have been shown
to continuously fit the first-order dispersion data for t
G-BN systems over the whole range of values forx6 ,7 and
ys

h,
g

e-
n
f
e
y

g
e

F6 the dc conductivity results for AlxGe12x .16

The slopes for ImF1 and ReF2 for x6,1 ~second order
terms! differ from those given in Refs. 8–10, which ar
based on the plausible assumptions made in Refs. 1–6. H
ever, no definitive experimental verification of these tw
terms seems to exist and the new experimental work gi
here strongly favors the second order term for ReF2 given
by Eqs.~1! and ~5!. The experimentally observed increas
in Ree with f abovefc , some of which are given in Figs.
and 5, is completely incompatible with the percolation equ
tions, as given in Refs. 8–10, but is qualitatively in agre
ment with Eq.~1! if the separately measured dc paramet
are used. Better agreement between Eq.~1! and experiment
could be obtained if best fit parameters were used.

From the above evidence Eq.~1! may well be a better
description of the ac and dc conductivity~dielectric constant!
of percolative type systems than the standard percola
equations given in Refs. 8–10. However, as Eq.~1! is a
phenomenological equation its validity may need to be f
ther tested by experiment as must the standard percola
equations.
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