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Density of states in the non-Hermitian Lloyd model
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We reconsider the recently proposed connection between density of states in the so-called “non-Hermitian
guantum mechanics” and the localization length for a particle moving in random potential. We argue that it is
indeed possible to find the localization length from the density of states of a non-Hermitian random “Hamil-
tonian.” However, finding the density of states of a non-Hermitian random Hamiltonian remains an open
problem, contrary to previous findings in the literati80163-18208)05144-3

I. INTRODUCTION value of the imaginary vector potential where the eigen-
values of the non-Hermitian Hamiltonian start to pop out into
There are situations in physics in which observables camhe complex plane is related to the localization length)
be obtained from properties of non-Hermitian operators. Irof the problem in the absence of the imaginary vector poten-
this context, the recent work of Hatano and Nefson ran-  ftjal,
dom “Hamiltonians” with an imaginary vector potential has
caused considerable interest in so-called “non-Hermitian Ih|=¢&(eo) L. (2
quantum mechanics?*'? Motivated by the study of the pin-
ning of vortices by columnar defects in a superconductor, It was recently suggested by Hatdh@nd Gurarie and
attention has focused on two main questions: What is th@eé' that the relationshifg2) can be inverted, to use it as a
spectrum of eigenvalues of a non-Hermitian Hamiltonian,method to extract the localization length of the Hermitian
and are the corresponding eigenfunctions localized or exproblem from the support of the spectrum of the non-
tended in space? Hermitian problem. In this way, knowledge of the support of
In the model introduced by Hatano and Nelson, particleshe density of state®OS) of the random Hamiltoniafil) as
are hopping on a lattice with a non-Hermitian dynamics gov-a function of the imaginary vector potential permits the cal-

erned by the Hamiltonidn culation of the localization length as a function of energy in
the Hermitian casé=|h|=0.
Hh:’Ch_l'; W, l#;rlﬁj, (13 To our knowledge, the (ensemble-averaggd non-

Hermitian DOS for the random operatd is known only in
zerd and one dimensiof’ In this paper we consider the
ot hoat Cheat DOS and its relation to the localization length for the so-
Kn=~— E% (e ate "y aly). (1b) called Lloyd model? in which the random potentiais; are
’ independently distributed with the Cauchy distribution
Here, ij creates the state at lattice sjtea is a directed

nearest-neighbor vectot,is the bandwidth, andav; is the y

random(rea) on-site potential. Periodic boundary conditions P(w)= 7T yrw? &)
are assumed. The “time evolution” induced I, is non-

unitary because of the imaginary vector potential Nu- It is believed that the choice of the Cauchy distributi@n

merical simulations by Hatano and Nelson support their con¢instead of, say, a Gaussian ¢mi®es not modify the univer-
jecture that in the thermodynamic limit, the spectrum of thesal properties of the Anderson metal-insulator transition in
non-Hermitian operatofl) is concentrated on the real axis dimensiond>2.14

for energies Re=¢, and extends into the complex plane  As shown by Lloyd'® the advantage of this choice of the
near the center of the bane,cy<Ree<egq. They showed probability distribution is that the ensemble-averaged DOS
that the eigenstates with real eigenvalues in the regioonf the Hermitian problem can be found exactly in any dimen-
|Ree|> ¢ are localized, while the eigenstates correspondingsion d. It has been proposed in the literature that the DOS
to complex eigenvalues are extended in sgathe picture can also be obtained for arbitradyin the case of theon-
that emerges from their analysis is that the energywhich  Hermitian Lloyd model® According to relation(2), such a
separates the real and complex eigenvalues, serves as a “mesult would permit us to find the localization length of the
bility edge” for the non-Hermitian problenfbarring some Hermitian Lloyd model for arbitrargl. We show in this pa-
unforseen ‘“conspiracy” in which all extended eigenfunc- per that the calculation in Ref. 6 does not give the correct
tions in some energy rangg— e<|Ree|<e have real en- DOS when applied to dimensioms>1. We also discuss the
ergy eigenvalues As was shown by Hatano and Nelson, the difference between the Lloyd model d=1 andd>1 and
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illustrate for the one-dimensional Lloyd model how the lo- as the system size increases. Therefore, the mobility eglge
calization length for the hermitian problem can be extracteds well defined for the non-Hermitian problem. It has thus
from the support of the non-Hermitian DOS. Calculation of been proposed in Refs. 10 and 11 to relate the realsgant
the localization length in the Lloyd model fat=2, how- the energy at which the first complex eigenvalue appears in
ever, remains an open problem. the spectrum ofH,, to the localization length defined by Eqg.
(2.
Il. LOCALIZATION LENGTH
FROM NON-HERMITIAN DOS Ill. SINGLE-PARTICLE GREEN FUNCTION

We first discuss how one arrives at relati(®) between FOR THE NON-HERMITIAN HAMILTONIAN

the mobility edgesq, the imaginary vector potentidl, and The advantage of the Cauchy distributed disorder is that it

the localization lengtl¥(e) of the Hermitian problem. allows the exact calculation of théensemble averaggd
Hereto we consider, for a given realization of the randomsingle-particle Green function. In this section we discuss

potentialw;, a nondegenerate eigenvaluef the Hermitian  whether a similar property exists for a non-Hermitian system

operatorH, with periodic boundary conditiongThe sub-  with Cauchy disorder.

script 0 indicates that the imaginary vector potentias set The DOS of the non-Hermitian Hamiltonigd) is com-

to zero, i.e., that the HamiltoniaH,, is Hermitian) Follow- puted from the Green function or resolvent

ing Ref. 1, we assume that the corresponding eigenstate

Wo(j) is localized by the random potentiad , i.e., Pq(j) is

1
Gn(2)= NTV (7)

maximum at a siten and decays exponentially far away z—Hy'

from m: whereN is the total number of lattice sitéperiodic bound-
) [j—m]| ary conditions are assumedhe DOSp;,(z) in the complex

<I>0(1)~exr{ - | (4 plane reads
&(e)

By definition, the exponential decay lengife) in Eq. (4) is

the localization length. Let us now switch on an imaginary pn(2)=———Gn(2). (8)

vector potentialih. As long ash is sufficiently small, the

wave function For a Hermitian system, wheGy(z) is analytic for Imz

. #0 Eqg. (8) reproduces the usual DOS concentrated on the

W(j)=e"dy(j) ®)  real axis.

is a very good approximation to the exact eigenfunction L€t us now consider the ensem?sle average of the Green
®p(j) of My, which adiabatically evolves fromb(j) as|h] ~ function Go and the DOSp,. Lloyd™ has shown that the

is increased. Although? satisfiesH, W=V, it is not an  @verage Green functiofG,) of the Hermitian Hamiltonian
exact eigenfunction, because it violates the periodic boundtto S related to the Green functioi, of the nonrandom
ary conditions. The error that one makes is of ordefHamiltoniank, [see Eq(1)],

expi[|h|—1/5(e) 1L}

Hence, as long as (Go(2))=2, Ko(z=iy)6(+Imz), (9a)
L =
"<ge © 1
Ko(2)=—=Tr . (9b)
the wave functior will be a good approximation, and its N z2=K

energye will remain real and unshiftedup to an exponen-  the angular brackets denote an average over the random
tially small correction, in principle __disorder potentialv;, y is the width of the distribution ofy;
When the magnitude of the imaginary vector potential iS[see Eq(3)], and6(x)=1 (0) forx>0 (x<0). It follows

larger than the inverse localization lengtig(), the wave hat the average DOS can be expressed in terms of the non-
function (4) will no longer be a good approximation. Both random operatok, only:

the eigenvalue and eigenfunction undergo a qualitative

change reflecting the non-Hermiticity of the Hamiltonian. 1

Hence, in the limit of an infinite system size, & (po(z)>=ﬁ[K0(z—iy)—Ko(z+iy)]5(Im z). (10
=1/¢(e), a generic eigenvalue enters the complex plane
with unit probability, resulting in relatio2).

To justify the inversion of Eq(2) to find the localization
length&(e) from the support of the spectrum #f;,, we note
that for |h|~1/¢(¢) eigenfunctions are strongly sensitive to
the boundary conditions. This sensitivity to the boundary lImz]>X, (11)
conditions causes the phenomenon of level attratticith
complex eigenvalues coalescing along curveddnl, or in ~ where\ is the imaginary part of the eigenvalue of the non-
compact sets il=2 as the system size increases. The supHermitian Hamiltoniar,, with the largest imaginary part,
port of the DOS ofH,, appears to be self-averaging in the
thermodynamic limit, i.e., subject to decreasing fluctuations A=sup {maxIm e}

Does the Green function relation, E@®), also hold for
the Green functionGy, of the non-Hermitian Hamiltonian
‘Hn? The answer is positive, provided
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=maxlme, tract the length scalge) =1/h by locating the edge(h) at
which the wings of the spectrum fork into the complex en-
=t sinh(|h||a]) for N>1. (12)  ergy plane. Using the arguments leading to E2), one
would identify [ (¢) with the localization length. The depen-
Heres (i), k=1,... N are theN eigenvalues ott,, (K;;)  dence of on energye and dimensionalityl is then given by

for a given realization of the disorder and the supremum in
the first line is taken with respect to all possible disorder 1
realizations. z[AO(S)-FAz(S)], le|>(d—1)t,

To see why this is so, we choose to express the Green cosv{ 1 }:
function in terms of a replicated bosonic path integral, %W le|<(d—1)t,

I(e)

Gh(z)=$Tr f D[, $3167 $re7/Pal e, —
(13) An(e)= (e[ = (d—n)t)*+ 7, (16)

Here, « is a replica index. The sign in the exponent is fixed Note that the length scal¢e) given by Eq.(16) is finite for

by the condition that the path integral be convergent. ttis @l energies and all dimensions. Hence, if ELp) were true,
if Im z>\ and — if Im z< —\. If neither of these two in- ©One would conclude that, irrespective of dimensionality, all

equalities holds, i.e., it lies inside the strigimz|<X\, the  States are localized in the Lloyd modéIThis conclusion is

path integra13) cannot be constructed. Averaging E3) ~ Not surprising in @ or 2d. In fact, the IengtH_(s)lg\glgees
over the random potentia¥; is easily done with the Cauchy With the localization length of the Lloyd model ird1™""In
distribution of Eq.(3) if [Imz|>X\. In that case, the repli- 2d, however,I(e) is much smaller than the weak disorder
cated integrand satisfies the condition of applicability of theestimate for a Gaussian disord@Moreover, ind>2, such a

w either in the upper ha|f-p|ane or lower ha|f_p|ane, dependlails in the CaUChy distribution does not mOdlfy the universal
ing on whether the sigr- or — is chosen in Eq(13). Itis  Properties of the Anderson metal-insulator transifibiwve

thus found that, foflmz|>X, return to the issue of dimensiods=2 and the interpretation
of I(e) in Sec. V. The reason why the length scé(e)
. cannot be interpreted as the localization lengthdorl is
(Gn(2))= Z Kn(zxiy)6(=Imz), [Imz|>\, that analytical continuation of E414) to the strip Inz<\ is
- (149 in general invalid unless the DOS is supported on a one-
dimensional curve, as indLlor in the hermitian cask=0. In
1 particular, we conclude that E¢L5) does not yield the av-
—t (14b) erage DOS of the non-Hermitian extension of the Lloyd
h model ind>1.
As in the Hermitian case, the right-hand side is expressed

1
Kh(Z) = NTr

solely in terms of the nonrandom resolvegi(z). V. NON-HERMITIAN DOS FOR ONE CHAIN
Equation (14) first appeared in Ref. 6 but without the ) o ) ) )
restriction|Im z|>\. The authors of Ref. 6 applied E(L4) In view of the unreliability of analytic continuation of Eq.
to the strip|Im z| <\ to obtain the non-Hermitian DOS in the (14), it is important to compare Eq14) with what is known
complex plane, about the spectral properties of the non-Hermitian Hamil-
tonianH;, from other methods.
(pn(2)Y=0on(z+iy)0(Im2)+ on(z—iy) 6(—Imz) First, we note that in any dimension, analytic continuation

of Eq. (14) is certainly wrong in a system of finite size: For
any finite system and for any dimension the support of the
averaged DOSpn(2)) occupies the entire strip in the com-
(15) plex energy plane that is excluded in Eql). To see this,
choose the realizatiow,= - - - =wy=V with V an arbitrary
where on(2)=7"19,K,(z) is the DOS of the non- real number. Equatiofil4), however, results in a DOS with
Hermitian problem in the absence of disorder. The D08  a significantly smaller support: it is the DOS of the system
corresponds to a non-Hermitian DOS coalescing both on theithout disorder shifted by an amounty towards the real
real axis(second ling and on a compact set in the complex axis®
plane(first line). What about the DOS in the thermodynamic limit—?

The analytical continuation of Eq(14) to the strip Let us first discuss the one-dimensional Lloyd model. A dis-
[Imz|<N\ in order to find the DOS can be problematic sincecussion of the casé>1 is postponed to the next section. In
the Green functiorGy, is a nonanalytic function of where  one dimension, several independent approaches have been
the DOS is nonzerfcompare with Eq(8)]. It can only be taken in the literaturé>’ For the Lloyd model, Goldsheid
justified in the thermodynamic limit in one dimension whereand Khoruzhenkbhave shown that the support of the spec-
the non-Hermitian spectrum collapses to d &urve. We  trum of H,, is self-averaging in the thermodynamic limit and
return to this case in the next section. In all other cases Edound a DOS that coincides with E¢L5). Hence, the DOS
(15) is incorrect. To illustrate where it might lead to, we obtained from Eq.(15 is correct in an infinite one-
consider Eq(15) in the thermodynamic limiN—« and ex-  dimensional system, despite the flaws in its derivation. Start-

1
+ 5IKn(z= 19~ Kn(z+ip]a(im2),
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ing from this non-Hermitian DOS, one can use the argudisorder potentialv; at an arbitrary site be larger than the
ments of Sec. Il to identify(e) with the localization length  bandwidtht, in which case the chain is classically broken.
&(€) of the Lloyd model in one dimension. Thus, localization in the one-dimensional Hermitian Lloyd
We find it instructive to present an alternative derivationmodel is not caused by quantum interferences effects, but
of Eq. (15) for weak disorder, using the approach of Ref. 3,rather by wave functions accomodating to large fluctuations
where the support of the DOS was calculated for weakn the disorder by vanishing locally. In contrast, in the case
Gaussian disorder. In this approach, knowledge of the localef Gaussian distributed disorder, localization is entirely due
ization length is required to calculate the non-Hermitianto quantum interference.
DOS. In the absence of disorder, the energy spectrum is pa-
rameterized in terms of thegeomplex valuegiwave numbers
s=2m/N+ih, ... 2r+ih of the plane-wave states diago-

nalizing KCy,, In Sec. Il we have shown that analytical continuation of
N Eq. (14) into the strip|Imz|<\ yields a length scalé(e)
e'(s)=—t coss. 17 that remains finite irrespective of dimensionality. If this ana-
In Ref. 3, a transfer-matrix approach was used to calculat®/tical continuation were justified, the arguments of Sec. I
the spectrum of+,, for weak non-Hermiticity and weak dis- Would allow us to identifyl(z) as the localization length of
order to leading order in V. Weak non-Hermiticity means the Lloyd model. Then the Lloyd model would not display a
|h||a]<1, whereas weak disorder amounts |&n Res| ¢ metal-insulator transition irrespective of dimensionality.
>1, where¢ is the localization length of thedlHermitian ~ However, as we have seen, in general, Bef) cannot be
Lloyd model, see Eq(16). To leading order in M, it was  applied inside the striplm z|<\. This does not mean that

V. HIGHER DIMENSIONS: MEAN FREE PATH

found that the length scald(e) obtained from Eg.(14) is entirely
meaningless. In this section, we compare the length scale
[Ims|=|h|—¢ ! (18a  I(e) defined by Eq.(16) with other length scales that ap-

peared in previous studies of the Lloyd moé&?3and find
y - that, in the limit of weak disordet(¢) is to be interpreted as

+ O(v4It7). (18  the mean free path, rather than the localization lendtbr
Vt2—(Ree)? strong disorder there is no distinction between mean free
Here, we have expanded E(.6) to lowest nontrivial order path and localization lengthThe fact that analytical con-

in £~ and y/t. Hence, we find that the support of the SpeC_tinuation of Eq.(14) yields the correct DOS and localization
trum is given by ’ length in one dimension is thus simply understood as the fact

that localization length and mean free path coincidedin

=|h|—

Ime=—t cogRes)sinh(Ims) =1
To see what is the correct interpretation of the length
=+h\t?—(Ree)?F v, (199  scalel(e) defined in Eq.(16), we go back to the work of

Johnston and Kun?, who considered the quantity
in agreement with Eq15) whend=1. The variance of Ina

vanishes likeN ! in the thermodynamic limit. Note that Eq.
(19) relies on very general properties of one-dimensional dis- L
ordered systems through Ed.89 and only on the specifici- 1/ (z)
ties of the Hermitian Lloyd model through E¢L8b). One
dimension is very special in that localization length and DOSwhereG(z) = (z—H,) ~ . They found an expression for Eq.
are closely relatetf The situation is more intricate in higher (20) valid at least for sufficiently largilm z|, at fixedr and
dimensions where a new length scale, the mean free patBystem size. Johnston and Kunz also found that if their ex-
appears besides the localization length. o pression forl/(2) is analytically continued ta—e on the

For smally, the DOS in the Lloyd model is qualitatively real axis, and the limits of infinite system size and separation
different from the non-Hermitian DOS in the presence of; are then taken, one obtains a reslts) which coincides
Gaussian distributed disord®f:In the latter case, the uni- ith Eq. (16). Finally, Johnston and Kunz hypothesized that
form shift y in Eq. (19) should be replaced by the nonuni- |’(¢) should coincide with the localization length, which one

form and much smaller shify?/ \t?—(Res)?, wherey? is  may define by
the variance of the Gaussian distribution. To explain the dif-

ference, we compare the dependences of the localization 1

lengths at the center of the band for both disorder distribu- ——=—(lim r‘llimln|gj j+r(Z)|>- (21)
tions. For the Cauchy distribution we hag€0)=t/, while &(e) o zoe

£(0)=t?/~? for a Gaussian distributiot?. Using the relation

(18) between localization length and non-Hermitian DOS,[We remark that the localization length(s) is a self-
such a difference is directly carried over to the DOS. In factaveraging quantity, so that the ensemble average in(ZyJ.
the mechanism of localization indlis very different for is not necessaryHowever, as was noticed by Thouléss,
Cauchy disorder compared to that of Gaussian disorder: FdvlacKinnon?? and by Rodrigues, Pastawski, and Weisz,
a Cauchy distribution, the dependence on the disordethis hypothesis is not correct. Moreover, Rodrigues, Pastaw-
strengthy of the inverse localization length™ 1~ y/t fol- ski, and Weisz showed that the res(6) for I’'(g) coin-
lows immediately from estimating the probability that the cides with the length scalé(e) defined by

=—17XIn[G, 1. (D)), (20
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1 length scales beyond the mean free pHth). The upper
——=—1m r~ln lim(G; ;+(2))|. (22 length scale for diffusive propagation is, by definition, the
1"(2) r—o z—e localization length. Thus, for the Lloyd model in the weak

ﬁiisorder limit we are led to expect the same localization

This length scale is naturally interpreted as the scale o roperties as for weak Gaussian distributed disorgo-
which the phase of wave functions is randomized, rather thaRy oP€" o - . A
calization at all energies =2, (ii) existence of a diffusive

the length scale on which the amplitude decays exponenr—e ime for a window of eneraies centered arowndo if d
tially. The lengthl”(e) can also be interpreted as the mean 9! wihdow 9! @ :

; : =3. This expectation is confirmed by the localization
free path of a particle for weak scattering. Unfortunately, to : ) s
find 'R\e frue Iopcalization lengtti(z), defiged by Eq.(21),y propertie$* of a caricature of the Lloyd model defined by a

. . dom hopping tight-binding Hamiltonian whereby the hop-
remains an open problem in the Lloyd modeldr 1. ran opping tg g He - y P
A more intFL)Jitivg picture of what >i/s going on in higher ping amplitude takes the valuevith probability 1— v/t and

dimensions can be obtained along the lines of the last par.s‘(—anism:“S with probabilityy/t.
lgi;lizph of Sec. IV. The length scalés) of Eq. (16) behaves VI. CONCLUSION
In this paper we have outlined that the localization length

le|<(d— 1)t (23) of a particle moving in a random potential can be obtained

from the averaged DOS of a non-Hermitian particle in a

for all dimensions and weak disorder. This implies that therandom potential. Nqn—Herm|t|an den§|t|es .Of states have
calculation scheme of Ref. 6, i.e., application of Etg) to only been calculated in zero and one dimensions. The calcu-
the strip|Im z| <X, is predicat;ad o,n the same mechanism agation of the non-Hermitian DOS in closed form in more than

in 1d, namely, the removal of a site with probabiligy/t. In one dimension thus remains an open problem. We expect

contrast to #, the removal of a site does not preclude propa—that the non-Hermitian trick should provide an alternative to
numerical calculations of the localization length relying on

gation ind=2. Instead, the removal of sites leads to thetransfer-matrix aoproaches in strio geometries
usual impurity scattering, and we see from E2p) thatl (¢) P P9 '
has the semiclassical interpretation of an average length for
free propagation between two impurities, i.e., a semiclassical
mean free path. We are indebted to J. T. Chalker and D. R. Nelson for

If we are to interpret Eq(16) for weak disorder as the useful discussions. We acknowledge the support by the NSF
mean free path, we have no reason to exclude that one pander Grant Nos. DMR 94-16910, DMR 96-30064, DMR
rameter scalin applies toH,, in the caseh=0. It is widely =~ 97-14725, and PHY 94-07194, and from the Swiss Nation-
believed that propagation becomes diffusive for a window ofalfonds(C.M.).

t yz
|(8)=;+O(t—2
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