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Density of states in the non-Hermitian Lloyd model
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We reconsider the recently proposed connection between density of states in the so-called ‘‘non-Hermitian
quantum mechanics’’ and the localization length for a particle moving in random potential. We argue that it is
indeed possible to find the localization length from the density of states of a non-Hermitian random ‘‘Hamil-
tonian.’’ However, finding the density of states of a non-Hermitian random Hamiltonian remains an open
problem, contrary to previous findings in the literature.@S0163-1829~98!05144-3#
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I. INTRODUCTION

There are situations in physics in which observables
be obtained from properties of non-Hermitian operators.
this context, the recent work of Hatano and Nelson1 on ran-
dom ‘‘Hamiltonians’’ with an imaginary vector potential ha
caused considerable interest in so-called ‘‘non-Hermit
quantum mechanics.’’2–12 Motivated by the study of the pin
ning of vortices by columnar defects in a superconduc
attention has focused on two main questions: What is
spectrum of eigenvalues of a non-Hermitian Hamiltonia
and are the corresponding eigenfunctions localized or
tended in space?

In the model introduced by Hatano and Nelson, partic
are hopping on a lattice with a non-Hermitian dynamics g
erned by the Hamiltonian1

Hh5Kh1(
j

wjc j
†c j , ~1a!

Kh52
t

2(j ,a ~eh•ac j
†c j1a1e2h•ac j1a

† c j !. ~1b!

Here, c j
† creates the state at lattice sitej , a is a directed

nearest-neighbor vector,t is the bandwidth, andwj is the
random~real! on-site potential. Periodic boundary conditio
are assumed. The ‘‘time evolution’’ induced byHh is non-
unitary because of the imaginary vector potentialih. Nu-
merical simulations by Hatano and Nelson support their c
jecture that in the thermodynamic limit, the spectrum of t
non-Hermitian operator~1! is concentrated on the real ax
for energies Re«>«0 and extends into the complex plan
near the center of the band,2«0,Re«,«0 . They showed
that the eigenstates with real eigenvalues in the reg
uRe«u.«0 are localized, while the eigenstates correspond
to complex eigenvalues are extended in space.1 The picture
that emerges from their analysis is that the energy«0 , which
separates the real and complex eigenvalues, serves as a
bility edge’’ for the non-Hermitian problem~barring some
unforseen ‘‘conspiracy’’ in which all extended eigenfun
tions in some energy range«02e,uRe«u,«0 have real en-
ergy eigenvalues!. As was shown by Hatano and Nelson, t
PRB 580163-1829/98/58~20!/13539~5!/$15.00
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value of the imaginary vector potentialh where the eigen-
values of the non-Hermitian Hamiltonian start to pop out in
the complex plane is related to the localization lengthj(«)
of the problem in the absence of the imaginary vector pot
tial,

uhu5j~«0!21. ~2!

It was recently suggested by Hatano10 and Gurarie and
Zee11 that the relationship~2! can be inverted, to use it as
method to extract the localization length of the Hermiti
problem from the support of the spectrum of the no
Hermitian problem. In this way, knowledge of the support
the density of states~DOS! of the random Hamiltonian~1! as
a function of the imaginary vector potential permits the c
culation of the localization length as a function of energy
the Hermitian caseh[uhu50.

To our knowledge, the ~ensemble-averaged! non-
Hermitian DOS for the random operator~1! is known only in
zero2 and one dimension.3,7 In this paper we consider th
DOS and its relation to the localization length for the s
called Lloyd model,13 in which the random potentialswj are
independently distributed with the Cauchy distribution

P~w!5
g

p

1

g21w2 . ~3!

It is believed that the choice of the Cauchy distribution~3!
~instead of, say, a Gaussian one! does not modify the univer-
sal properties of the Anderson metal-insulator transition
dimensiond.2.14

As shown by Lloyd,13 the advantage of this choice of th
probability distribution is that the ensemble-averaged D
of the Hermitian problem can be found exactly in any dime
sion d. It has been proposed in the literature that the D
can also be obtained for arbitraryd in the case of thenon-
Hermitian Lloyd model.6 According to relation~2!, such a
result would permit us to find the localization length of th
Hermitian Lloyd model for arbitraryd. We show in this pa-
per that the calculation in Ref. 6 does not give the corr
DOS when applied to dimensionsd.1. We also discuss the
difference between the Lloyd model ind51 andd.1 and
13 539 ©1998 The American Physical Society
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illustrate for the one-dimensional Lloyd model how the l
calization length for the hermitian problem can be extrac
from the support of the non-Hermitian DOS. Calculation
the localization length in the Lloyd model ford>2, how-
ever, remains an open problem.

II. LOCALIZATION LENGTH
FROM NON-HERMITIAN DOS

We first discuss how one arrives at relation~2! between
the mobility edge«0 , the imaginary vector potentialh, and
the localization lengthj(«) of the Hermitian problem.

Hereto we consider, for a given realization of the rand
potentialwj , a nondegenerate eigenvalue« of the Hermitian
operatorH0 with periodic boundary conditions.~The sub-
script 0 indicates that the imaginary vector potentialh is set
to zero, i.e., that the HamiltonianH0 is Hermitian.! Follow-
ing Ref. 1, we assume that the corresponding eigens
C0( j ) is localized by the random potentialwj , i.e.,F0( j ) is
maximum at a sitem and decays exponentially far awa
from m:

F0~ j !;expF2
u j2mu
j~«! G . ~4!

By definition, the exponential decay lengthj(«) in Eq. ~4! is
the localization length. Let us now switch on an imagina
vector potentialih. As long ash is sufficiently small, the
wave function

C~ j !5eh• jF0~ j ! ~5!

is a very good approximation to the exact eigenfunct
Fh( j ) of Hh , which adiabatically evolves fromF0( j ) asuhu
is increased. AlthoughC satisfiesHhC5«C, it is not an
exact eigenfunction, because it violates the periodic bou
ary conditions. The error that one makes is of ord
exp$@uhu21/j(«)#L%.

Hence, as long as

uhu,
1

j~«!
~6!

the wave functionC will be a good approximation, and it
energy« will remain real and unshifted~up to an exponen-
tially small correction, in principle!.

When the magnitude of the imaginary vector potentia
larger than the inverse localization length 1/j(«), the wave
function ~4! will no longer be a good approximation. Bot
the eigenvalue and eigenfunction undergo a qualita
change reflecting the non-Hermiticity of the Hamiltonia
Hence, in the limit of an infinite system size, atuhu
51/j(«), a generic eigenvalue« enters the complex plan
with unit probability, resulting in relation~2!.

To justify the inversion of Eq.~2! to find the localization
lengthj(«) from the support of the spectrum ofHh , we note
that for uhu'1/j(«) eigenfunctions are strongly sensitive
the boundary conditions. This sensitivity to the bounda
conditions causes the phenomenon of level attraction4 with
complex eigenvalues coalescing along curves ind51, or in
compact sets ind>2 as the system size increases. The s
port of the DOS ofHh appears to be self-averaging in th
thermodynamic limit, i.e., subject to decreasing fluctuatio
d
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as the system size increases. Therefore, the mobility edg«0
is well defined for the non-Hermitian problem. It has th
been proposed in Refs. 10 and 11 to relate the real part«0 of
the energy at which the first complex eigenvalue appear
the spectrum ofHh to the localization length defined by Eq
~2!.

III. SINGLE-PARTICLE GREEN FUNCTION
FOR THE NON-HERMITIAN HAMILTONIAN

The advantage of the Cauchy distributed disorder is tha
allows the exact calculation of the~ensemble averaged!
single-particle Green function. In this section we discu
whether a similar property exists for a non-Hermitian syst
with Cauchy disorder.

The DOS of the non-Hermitian Hamiltonian~1! is com-
puted from the Green function or resolvent

Gh~z!5
1

N
Tr

1

z2Hh
, ~7!

whereN is the total number of lattice sites~periodic bound-
ary conditions are assumed!. The DOSrh(z) in the complex
plane reads4

rh~z!5
1

p

]

]z*
Gh~z!. ~8!

For a Hermitian system, whenG0(z) is analytic for Imz
Þ0 Eq. ~8! reproduces the usual DOS concentrated on
real axis.

Let us now consider the ensemble average of the Gr
function G0 and the DOSr0 . Lloyd13 has shown that the
average Green function̂G0& of the Hermitian Hamiltonian
H0 is related to the Green functionK0 of the nonrandom
HamiltonianK0 @see Eq.~1!#,

^G0~z!&5(
6

K0~z6 ig!u~6Im z!, ~9a!

K0~z!5
1

N
Tr

1

z2K0
. ~9b!

The angular brackets denote an average over the ran
disorder potentialwj , g is the width of the distribution ofwj
@see Eq.~3!#, andu(x)51 (0) for x.0 (x,0). It follows
that the average DOS can be expressed in terms of the
random operatorK0 only:

^r0~z!&5
1

2p i
@K0~z2 ig!2K0~z1 ig!#d~ Im z!. ~10!

Does the Green function relation, Eq.~9!, also hold for
the Green functionGh of the non-Hermitian Hamiltonian
Hh? The answer is positive, provided

uIm zu.l, ~11!

wherel is the imaginary part of the eigenvalue of the no
Hermitian HamiltonianHh with the largest imaginary part,

l5sup $maxkIm «k%
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5maxkIm «k8

5t sinh~ uhuuau! for N@1. ~12!

Here«k («k8), k51, . . . ,N are theN eigenvalues ofHh (Kh)
for a given realization of the disorder and the supremum
the first line is taken with respect to all possible disord
realizations.

To see why this is so, we choose to express the Gr
function in terms of a replicated bosonic path integral,

Gh~z!5
1

N
Tr E D@fa ,fa* #f1* f1e6 i *fa* ~z2Hh!fa.

~13!

Here,a is a replica index. The sign in the exponent is fix
by the condition that the path integral be convergent. It is1
if Im z.l and 2 if Im z,2l. If neither of these two in-
equalities holds, i.e., ifz lies inside the stripuIm zu,l, the
path integral~13! cannot be constructed. Averaging Eq.~13!
over the random potentialwj is easily done with the Cauch
distribution of Eq.~3! if uIm zu.l. In that case, the repli
cated integrand satisfies the condition of applicability of
Cauchy theorem after closing the contour of integration o
w either in the upper half-plane or lower half-plane, depe
ing on whether the sign1 or 2 is chosen in Eq.~13!. It is
thus found that, foruIm zu.l,

^Gh~z!&5(
6

Kh~z6 ig!u~6Im z!, uIm zu.l,

~14a!

Kh~z!5
1

N
Tr

1

z2Kh
. ~14b!

As in the Hermitian case, the right-hand side is expres
solely in terms of the nonrandom resolventKh(z).

Equation ~14! first appeared in Ref. 6 but without th
restrictionuIm zu.l. The authors of Ref. 6 applied Eq.~14!
to the stripuIm zu,l to obtain the non-Hermitian DOS in th
complex plane,

^rh~z!&5sh~z1 ig!u~ Im z!1sh~z2 ig!u~2Im z!

1
1

2p i
@Kh~z2 ig!2Kh~z1 ig!#d~ Im z!,

~15!

where sh(z)5p21]z* Kh(z) is the DOS of the non-
Hermitian problem in the absence of disorder. The DOS~15!
corresponds to a non-Hermitian DOS coalescing both on
real axis~second line! and on a compact set in the comple
plane~first line!.

The analytical continuation of Eq.~14! to the strip
uIm zu,l in order to find the DOS can be problematic sin
the Green functionGh is a nonanalytic function ofz where
the DOS is nonzero@compare with Eq.~8!#. It can only be
justified in the thermodynamic limit in one dimension whe
the non-Hermitian spectrum collapses to a 1d curve. We
return to this case in the next section. In all other cases
~15! is incorrect. To illustrate where it might lead to, w
consider Eq.~15! in the thermodynamic limitN→` and ex-
n
r

en

e
r
-
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e
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tract the length scalel («)51/h by locating the edge«(h) at
which the wings of the spectrum fork into the complex e
ergy plane. Using the arguments leading to Eq.~2!, one
would identify l («) with the localization length. The depen
dence ofl on energy« and dimensionalityd is then given by

coshF 1

l ~«!G55
1

2t
@A0~«!1A2~«!#, u«u.~d21!t,

1

t
Ag21t2, u«u<~d21!t,

An~«!5A„u«u2~d2n!t…21g2. ~16!

Note that the length scalel («) given by Eq.~16! is finite for
all energies and all dimensions. Hence, if Eq.~15! were true,
one would conclude that, irrespective of dimensionality,
states are localized in the Lloyd model.11 This conclusion is
not surprising in 1d or 2d. In fact, the lengthl («) agrees
with the localization length of the Lloyd model in 1d.15–17In
2d, however,l («) is much smaller than the weak disord
estimate for a Gaussian disorder.18 Moreover, ind.2, such a
conclusion contradicts the belief that the existence of la
tails in the Cauchy distribution does not modify the univer
properties of the Anderson metal-insulator transition.14 We
return to the issue of dimensionsd>2 and the interpretation
of l («) in Sec. V. The reason why the length scalel («)
cannot be interpreted as the localization length ford.1 is
that analytical continuation of Eq.~14! to the strip Imz,l is
in general invalid unless the DOS is supported on a o
dimensional curve, as in 1d or in the hermitian caseh50. In
particular, we conclude that Eq.~15! does not yield the av-
erage DOS of the non-Hermitian extension of the Llo
model ind.1.

IV. NON-HERMITIAN DOS FOR ONE CHAIN

In view of the unreliability of analytic continuation of Eq
~14!, it is important to compare Eq.~14! with what is known
about the spectral properties of the non-Hermitian Ham
tonianHh from other methods.

First, we note that in any dimension, analytic continuati
of Eq. ~14! is certainly wrong in a system of finite size: Fo
any finite system and for any dimension the support of
averaged DOŜrh(z)& occupies the entire strip in the com
plex energy plane that is excluded in Eq.~11!. To see this,
choose the realizationw15•••5wN5V with V an arbitrary
real number. Equation~14!, however, results in a DOS with
a significantly smaller support: it is the DOS of the syste
without disorder shifted by an amount6g towards the real
axis.6

What about the DOS in the thermodynamic limitN→`?
Let us first discuss the one-dimensional Lloyd model. A d
cussion of the cased.1 is postponed to the next section.
one dimension, several independent approaches have
taken in the literature.3,5,7 For the Lloyd model, Goldsheid
and Khoruzhenko7 have shown that the support of the spe
trum ofHh is self-averaging in the thermodynamic limit an
found a DOS that coincides with Eq.~15!. Hence, the DOS
obtained from Eq. ~15! is correct in an infinite one-
dimensional system, despite the flaws in its derivation. St
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ing from this non-Hermitian DOS, one can use the arg
ments of Sec. II to identifyl («) with the localization length
j(«) of the Lloyd model in one dimension.

We find it instructive to present an alternative derivati
of Eq. ~15! for weak disorder, using the approach of Ref.
where the support of the DOS was calculated for we
Gaussian disorder. In this approach, knowledge of the lo
ization length is required to calculate the non-Hermiti
DOS. In the absence of disorder, the energy spectrum is
rameterized in terms of the~complex valued! wave numbers
s52p/N1 ih, . . . ,2p1 ih of the plane-wave states diago
nalizingKh ,

«8~s!52t coss. ~17!

In Ref. 3, a transfer-matrix approach was used to calcu
the spectrum ofHh for weak non-Hermiticity and weak dis
order to leading order in 1/N. Weak non-Hermiticity means
uhuuau!1, whereas weak disorder amounts tousin Resu j
@1, wherej is the localization length of the 1d Hermitian
Lloyd model, see Eq.~16!. To leading order in 1/N, it was
found that3

uIm su5uhu2j21 ~18a!

5uhu2
g

At22~Re«!2
1O~g2/t2!. ~18b!

Here, we have expanded Eq.~16! to lowest nontrivial order
in j21 andg/t. Hence, we find that the support of the spe
trum is given by

Im «52t cos~Res!sinh~ Im s!

56hAt22~Re«!27g, ~19!

in agreement with Eq.~15! whend51. The variance of Im«
vanishes likeN21 in the thermodynamic limit. Note that Eq
~19! relies on very general properties of one-dimensional d
ordered systems through Eq.~18a! and only on the specifici-
ties of the Hermitian Lloyd model through Eq.~18b!. One
dimension is very special in that localization length and D
are closely related.16 The situation is more intricate in highe
dimensions where a new length scale, the mean free p
appears besides the localization length.

For smallg, the DOS in the Lloyd model is qualitativel
different from the non-Hermitian DOS in the presence
Gaussian distributed disorder:3,7 In the latter case, the uni
form shift g in Eq. ~19! should be replaced by the nonun
form and much smaller shiftg2/At22(Re«)2, whereg2 is
the variance of the Gaussian distribution. To explain the
ference, we compare theg dependences of the localizatio
lengths at the center of the band for both disorder distri
tions. For the Cauchy distribution we havej(0)5t/g, while
j(0)5t2/g2 for a Gaussian distribution.19 Using the relation
~18! between localization length and non-Hermitian DO
such a difference is directly carried over to the DOS. In fa
the mechanism of localization in 1d is very different for
Cauchy disorder compared to that of Gaussian disorder:
a Cauchy distribution, the dependence on the disor
strengthg of the inverse localization lengthj21;g/t fol-
lows immediately from estimating the probability that th
-
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disorder potentialwj at an arbitrary site be larger than th
bandwidtht, in which case the chain is classically broke
Thus, localization in the one-dimensional Hermitian Lloy
model is not caused by quantum interferences effects,
rather by wave functions accomodating to large fluctuatio
in the disorder by vanishing locally. In contrast, in the ca
of Gaussian distributed disorder, localization is entirely d
to quantum interference.

V. HIGHER DIMENSIONS: MEAN FREE PATH

In Sec. III we have shown that analytical continuation
Eq. ~14! into the stripuIm zu<l yields a length scalel («)
that remains finite irrespective of dimensionality. If this an
lytical continuation were justified, the arguments of Sec.
would allow us to identifyl («) as the localization length o
the Lloyd model. Then the Lloyd model would not display
metal-insulator transition irrespective of dimensionali
However, as we have seen, in general, Eq.~14! cannot be
applied inside the stripuIm zu<l. This does not mean tha
the length scalel («) obtained from Eq.~14! is entirely
meaningless. In this section, we compare the length s
l («) defined by Eq.~16! with other length scales that ap
peared in previous studies of the Lloyd model,20–23 and find
that, in the limit of weak disorder,l («) is to be interpreted as
the mean free path, rather than the localization length.@For
strong disorder there is no distinction between mean f
path and localization length.# The fact that analytical con
tinuation of Eq.~14! yields the correct DOS and localizatio
length in one dimension is thus simply understood as the
that localization length and mean free path coincide ind
51.

To see what is the correct interpretation of the leng
scale l («) defined in Eq.~16!, we go back to the work of
Johnston and Kunz,20 who considered the quantity

1

l r8~z!
52r 21^ lnuGj , j 1r~z!u&, ~20!

whereG(z)5(z2H0)21. They found an expression for Eq
~20! valid at least for sufficiently largeuIm zu, at fixedr and
system size. Johnston and Kunz also found that if their
pression forl r8(z) is analytically continued toz→« on the
real axis, and the limits of infinite system size and separa
r are then taken, one obtains a resultl 8(«) which coincides
with Eq. ~16!. Finally, Johnston and Kunz hypothesized th
l 8(«) should coincide with the localization length, which on
may define by

1

j~«!
52^ lim

r→`

r 21 lim
z→«

lnuGj , j 1r~z!u&. ~21!

@We remark that the localization lengthj(«) is a self-
averaging quantity, so that the ensemble average in Eq.~21!
is not necessary.# However, as was noticed by Thouless21

MacKinnon,22 and by Rodrigues, Pastawski, and Weisz23

this hypothesis is not correct. Moreover, Rodrigues, Past
ski, and Weisz showed that the result~16! for l 8(«) coin-
cides with the length scalel 9(«) defined by
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1

l 9~«!
52 lim

r→`

r 21ln U limz→«
^Gj , j 1r~z!&U. ~22!

This length scale is naturally interpreted as the scale
which the phase of wave functions is randomized, rather t
the length scale on which the amplitude decays expon
tially. The lengthl 9(«) can also be interpreted as the me
free path of a particle for weak scattering. Unfortunately,
find the true localization lengthj(«), defined by Eq.~21!,
remains an open problem in the Lloyd model ind.1.

A more intuitive picture of what is going on in highe
dimensions can be obtained along the lines of the last p
graph of Sec. IV. The length scalel («) of Eq. ~16! behaves
like

l ~«!5
t

g
1OS g2

t2 D , u«u,~d21!t, ~23!

for all dimensions and weak disorder. This implies that
calculation scheme of Ref. 6, i.e., application of Eq.~14! to
the stripuIm zu,l, is predicated on the same mechanism
in 1d, namely, the removal of a site with probabilityg/t. In
contrast to 1d, the removal of a site does not preclude prop
gation in d>2. Instead, the removal of sites leads to t
usual impurity scattering, and we see from Eq.~23! that l («)
has the semiclassical interpretation of an average length
free propagation between two impurities, i.e., a semiclass
mean free path.

If we are to interpret Eq.~16! for weak disorder as the
mean free path, we have no reason to exclude that one
rameter scaling18 applies toHh in the caseh50. It is widely
believed that propagation becomes diffusive for a window
y

d,
n
n

n-

a-

e

s

-

or
al

a-

f

length scales beyond the mean free pathl («). The upper
length scale for diffusive propagation is, by definition, t
localization length. Thus, for the Lloyd model in the wea
disorder limit we are led to expect the same localizat
properties as for weak Gaussian distributed disorder:~i! lo-
calization at all energies ifd52, ~ii ! existence of a diffusive
regime for a window of energies centered around«50 if d
53. This expectation is confirmed by the localizatio
properties24 of a caricature of the Lloyd model defined by
random hopping tight-binding Hamiltonian whereby the ho
ping amplitude takes the valuet with probability 12g/t and
vanishes with probabilityg/t.

VI. CONCLUSION

In this paper we have outlined that the localization leng
of a particle moving in a random potential can be obtain
from the averaged DOS of a non-Hermitian particle in
random potential. Non-Hermitian densities of states ha
only been calculated in zero and one dimensions. The ca
lation of the non-Hermitian DOS in closed form in more th
one dimension thus remains an open problem. We exp
that the non-Hermitian trick should provide an alternative
numerical calculations of the localization length relying
transfer-matrix approaches in strip geometries.
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