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Vortices in density-wave systems subject to transverse electric fields

Akakii Melikidze
Physics Department, Princeton University, Princeton, New Jersey 08544

~Received 18 February 1998!

In this paper we predict many interesting properties of vortices in highly anisotropic density wave systems
subject to strong transverse electric fields. We mainly concentrate on ground state properties. Besides electric
field-induced vortices we consider also thermally activated vortices. A different type of temperature-driven
transition between two different phases of density waves in strong fields is predicted and several properties of
those phases are reported.@S0163-1829~98!09035-3#
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I. INTRODUCTION

It is now well realized that the dynamics of topologic
defects plays an important role in low dimensional electro
systems. In a particular case of density wave~DW! ground
states~for a review, see Ref. 1! it was found that topologica
defects are responsible for such interesting phenomena a
generation of narrow-band noise2 and nonlinear current
voltage characteristics in strong fields~the phenomenon as
sociated with the so-called ‘‘phase slippage’’!.3,4 More re-
cently, quantum phase slip through creation of vortices w
proposed5 to explain low-temperature properties of the sp
density wave compound~TMTSF!2PF6.

6,7

This paper was originally initiated by the prediction8 that
DW systems should possess a phase in strong electric fi
applied transverse to the direction of highest conductiv
This phase was called a ‘‘mixed state’’ in analogy with t
mixed state of type-II superconductors, and was charac
ized by the presence of vortices. We have undertaken
extensive study of the predicted transition. The possibility
transverse electric field-induced transition to metallic st
~type-I-like! was also investigated and a temperature-driv
transition between type-I and type-II regions of the pha
diagram was predicted. We report these findings here as
as some interesting anticipated properties of the abo
mentioned phases such as, e.g., nonexponential screeni
electric fields by DW systems in a mixed state.

II. GINSBURG-LANDAU THEORY

We adopt a macroscopic mean-field description of the
namics of DW systems and make use of a~time-
independent! Ginsburg-Landau free energy1 which is a func-
tional of complex order parameterD(r )5uD(r )uexp(if), the
absolute value of which is a DW gap in the electronic sp
trum. For the case of a highly anisotropic system with
open Fermi surface,k5@6kF(11g cos(bky)#,ky ,kz) ~herex
is the direction of highest conductivity—usually the directi
along conducting chains,y is the direction of strongest Ferm
surface wrapping,g is the anisotropy parameter, andb is
lattice constant alongy; we neglect dispersion alongz#, this
functional is9

Finhom5E dr
K

2uD0u2 @ u]xDu21g2u]yDu2#. ~1!
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We would like to emphasize the fact that the two terms
Finhom are of totally different origin. As is well known,1 in
the system described above a~charge or spin! density modu-
lation appears with the wave vector:q5q05(2kF ,p/b,0):
r}ReD exp(iq0r ). A spatial variation ofD gives rise to the
effective shift inq by dq5¹W f wheref is the phase of the
complex order parameter. Thus the gap is developed at
wave vector which is slightly off its optimal valueq0 . This
costs extra energy:dE}udqu—it is linear with dq which is
quite costly for small deviations. Instead the system re
ranges itselectron densityin such a way thatlocally 2kF
coincides with the new DW wave vector. There is no mo
linear contribution to the energy, however another contrib
tion arises—the energy of the nonhomogeneous elec
density distribution. But the fact is that this density~per
chain! is1

r5
1

p
]xf ~2!

and the extra energy isdE}r2}(dqx)
2—it is quadratic in

dqx and therefore wins for small distortions of DW gap. Th
phenomenon is usually described as follows: ‘‘particle de
sity follows the variations of the gap.’’ At the same time th
gradient iny direction does not lead to any change in t
local charge density; its contribution to the free energy is
purely elastic character.

In this paper we shall be interested in the response of D
system to externalelectric fields. We take account of the
effect of electric field by introduction of the following term
into the free energy functional:8

Fel5E dr FJerw2
1

8p
~eu¹W wu21lqp

22w2!1wrextG . ~3!

Here the first term describes coupling of the electric field
the charge induced by DW distortion, the term in parenthe
represents energy associated with electric field itself and w
the coupling of electric field to free charge carriers excit
over the DW gap. The last term represents the interactio
electric field with external charges.11 Strictly speaking, Eq.
~3! is the action of the system taken with a minus sign
However, we shall use the term ‘‘free energy functional’’
denote a functional of which an extremum determines
ground state. We also emphasize that electric field cou
13 534 ©1998 The American Physical Society
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only to x component of the gradient of the gap—only th
component induces electric charge.

An important point here is that our action is essentia
different from that of Ref. 8 in that it contains wave-vecto
dependent dielectric constante5e(k). It appears becaus
the ground state of DW, in complete analogy with the lowT
ground state ofsemiconductors, is highly polarizable due to
excitations ofvirtual electron-hole pairs. This should not b
mixed either with the screening due to thermally excited q
siparticles, nor should it be mixed with the screening due
spatial distortion of the order parameter~see below!. We
stress that this dielectric function isgeneric for a gapped
electronic system. It can be calculated using simple an
tropic two-band semiconductor model1

e~k!;
lTF

22

k21j~k!22 . ~4!

Here,lTF is the Thomas-Fermi screening length in the m
tallic state, andj(k) is anisotropic coherence length in DW
state. @The valuee~0! is usually huge: for instancee(0)
;105 for ~TMTSF!2PF6#. Now we turn to the analysis of th
response of DW systems to external electric fields.

III. WEAK FIELDS

Density wave is the state of broken translational inva
ance. In the absence of external fields the phase of the o
parameterD5uDuexp(iu) is the so-called degeneracy param
eter: the free energy is globallyU(1) invariant—it does not
change if we make a global substitutionu→u1const which
corresponds to a homogeneous displacement of the de
wave along thex axis. Consequently, there is aphason
~Goldstone! gapless mode associated with this degenera
At the same time the orthogonalamplitudonmode, in which
uDu is varied, has a gap in the spectrum atk50. Therefore we
expect that in the limit of weak fields the response of
system is given by the excitation of phason mode only. T
we setuDu to be constant. After Fourier transform,

Finhom1Fel5E dr FKkg
2

2
UukU21Jewkikxu2k

2
1

8p
~ek21lqp

22!UwkU21wkr2k
extG

5E dr FKkg
2

2
Uuk2 i2ekxwk /vFkg

2U2

2
1

8p
~ek21Lk

22!UwkU21wkr2k
extG

Lk
225lqp

221 f slTF
22

kx
2

kg
2 , ~5!

the minimization with respect touk becomes trivial. Then the
remaining effective action for the electric field leads to
anisotropic screening lengthl. Screening length in they
direction isly5Ae(lqp

21)lqp and is due to the interaction o
the electric field with quasiparticles excited over the gap.
the other hand, screening in thex direction is now deter-
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mined by both quasiparticles and phasons leading to scr
ing lengthlx5lTF .12 This is again a manifestation of th
fact that only the phason mode along thex direction couples
to the electric field.13

IV. STRONG FIELDS

As we have just seen, electric fields in thex direction
~along the chains! are screened at the short lengths,;lTF ,
at all temperatures. In contrast to that, theEy component of
the field can penetrate far enough into the bulk since
screening is determined by thermally excited quasipartic
the concentration of which is exponentially decreased at
temperatures. However in strong electric fields the situat
changes:D can no longer be considered constant and it m
be energetically favorable for the system to expel the elec
field from the sample by spatial variation of the magnitude
the gap.14 First, it’s obvious that in the limitEy→` the state
of the system is metallic. A simple argument for this is th
in competition between condensate energy2n(eF)D2/2
@heren(eF)5N' /pvF is density of states at the Fermi leve
N' is the density of chains in the plane perpendicular to
chains# and electrostatic energyED/8p the latter always
wins in the limit of strong fields: the gap vanishes giving ri
to screening. Thus in the region of strong fields there is a t
layer near the edge of the sample in which the state is
tallic. The electric field in this layer is screened at the d
tance;lTF . However, taking into account that actually th
continuous model used here is not applicable at such s
distances, one should substitutelTF for interchain distance.
This corresponds to a metallic layer with the thickness of
small as a single interchain distance. However, in the b
the electric field is absent and the DW state is restored.

Thus we establish that there must exist a critical value
Ey for which a transition occurs from DW to some oth
phase. As the field is increased from small values, two p
sibilities may occur:D can jump to a smooth configuratio
~type I! or a configuration with topological defects8 ~type II!.
The latter means that the ground state is characterized by
presence of vortices—centers the in-plane circulation of
phase of the order parameter around which is nonzero. Th
two possibilities correspond to the two types of superc
ductors in a magnetic field. An ordinary isotropic superco
ductor can be distinguished between these two types by
evaluation of the Ginsburg-Landau parameterk5l/j. Val-
uesk,1/& and k.1/& correspond to type I and type II
respectively. In our case, this simple argument is not ap
cable since DW materials are usually highly anisotropic.
deed, usually along thex direction one haslx!jx whereas
along they direction eitherly!jy and ly@jy can hold
depending on temperature:ly exponentially increases with
decreasing temperature~see below for a more detailed dis
cussion!. Instead we shall use a more physical argumen
decide between type I and type II. Namely, we shall evalu
the critical field for these two cases. Then we can argue
the system will make a transition to the state for which t
critical field is lower.

A. Type I

The critical field for this case can be obtained by equat
condensate and electrostatic free energy densities:
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ED

4p
5

1

2
n~eF!D0

2,
~6!

Dc
I 5

D0

2elTF
;

d0

jxlTF
.

Here we have introducedd05vF/2e—a parameter with the
dimensionality of the electric dipole moment~see below!.
We use the value of the dielectric constante;1 because the
metallic breakdown will occur in a thin layer near the boun
ary with the thickness;lTF!jy—polarization will not de-
velop at such small scales.

B. Type II—vortices

First of all let us clarify what a vortex is in a DW system
As was mentioned above the phaseu of the complex order
parameterD5uDuexp(iu) is the degeneracy parameter of t
state with broken translational symmetry. The order para
eter, as a function of coordinates, should be univalued. T
implies that, as we travel along a closed contour, the phas
the order parameter can get an increment 2np wheren is
integer calledwinding number. The corresponding texture o
the order parameter is calledn-times quantized vortex. Let us
now consider a singly quantized vortex located atrW50

D~rW !5uD~r !uexp~ if!, ~7!

wheref is azimuthal angle in thex-y plane. The absolute
value of the gap is assumed to be constant everywhere ex
regions of the sizej ~correlation length! near the vortex cen
ters. This assumption constitutes the so-called London
proximation. From Eq.~7! we can calculate induced charg
density~per chain! using Eq.~2!,

er5
e

p

sin f

r
. ~8!

We see that it falls off as 1/r—it is highly nonlocal. However
thescreeningmakes the fall-offexponential. To see how this
happens we make the following substitution in Eq.~5! in
order to take vortex degrees of freedom into accou8

(¹W u)k→ ikWu k
phason1( ikW3 ẑ/k2)nk , wheren(r )52p(nid(r

2r i) is vorticity andni is the winding number of a vortex a
r i . Minimizing the free energy functional with respect
u k

phasonwe get an effective action:

Finhom1Fel5E d2kW

~2p!2 FKg2

2kg
2 Unk2

ieJky

K
wkU2

2
1

8p
~ek21l t f

22!UwkU21wkr2k
extG . ~9!

Electric potential produced by vortices is obtained by
minimization of Eq.~9! with respect towk and is given by

wk5
4p ieg2J

ek21Lk
22

ky

kg
2 nk . ~10!
-

-
is
of

ept

p-

:

e

C. Single vortex

Now n(r )52pd(r ) and the electrostatic potential pro
duced by a single vortex is given by the Fourier transform
Eq. ~10!. It is hard to obtain an analytical expression in t
general case, but one can get an idea of what this pote
looks like from the consideration of the purely isotropic ca
g51, Lk5L5const. With this simplification the potential i
given by

f~rW !522eg2J sin u f ~r !,

f ~r !5E dk
J1~kr !

ek21L22

5H r

2e
ln

e1/2L

r
r !e1/2L,

L2

r
, r @e1/2L.

~11!

Here,J1 is the first Bessel function. The effect of huge actu
anisotropy inL can be taken into account qualitatively in th
following way. First of all we may notice that there still wil
be two characteristic regions:r !e1/2L(u) and r @e1/2L(u)
where L~u! is now an angle-dependent crossover sc
~which is, of course, extremely anisotropic!. Then we may
also notice that in the large-r region f (r ) is still angle inde-
pendent: it is given byf (r )'Lav

2 /r whereLav is some ‘‘av-
erage’’ screening length. An important point here is that
total charge densityin the large-r region falls offexponen-

tially: one can check that by taking the Laplacian ofw(rW).
But the above-mentioned extreme anisotropy comes to p
in the small-r region—the core of a vortex is highly aniso
tropic and hard to analyze.

Some of the vortex properties, however, allow an ex
description. From Eq.~10! it can be inferred that the tota
charge of a vortex is zero, but there is a nonzero elec
dipole moment directed alongy,

dy52peeJlqp
2 5d0

e f s

2~12 f s!
. ~12!

Here,d05vF/2e. dy is exponentially increased asT→0. It
should be noted that this expression was derived for a vo
in the bulk; it is expected that for vortices near boundary~the
case which is relevant for vortices produced by exter
fields—see below! the induced dipole moment is reduced.

D. Critical field

Now we estimate the critical field at which an appearan
of a single vortex becomes energetically favorable. In or
to do that we substitute Eq.~10! ~with nk52p) back into Eq.
~9!:

Fe f f5E d2kW
Kg2

2kg
2 S ek21lTF

22

ek21Lk
22D 2dyEy

ext ~13!

5
pKg

2

lqp

lTF
ln

W

e1/2lqp
2dyEy

ext . ~14!
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Here,W is the size of the system in they direction. From Eq.
~14! and Eq.~12! we obtain the critical field:

Dc
II 5

gd0

4lqplTF
log

W

e1/2lqp
. ~15!

Comparing this expression with its superconducting ana
one may calld0 a ‘‘quantum of electric dipole moment.’
The dependence of the critical field on temperature is gi
by lqp

225lTF
22A2pD0 /T exp(2D0 /T). So the critical field for

the vortex mixed state can be significantly lowered by
creasing the screening length in they direction asT→0. As
we do so, an interesting situation can occur:Dc

II can be made
smaller thanDc

I signaling a temperature-driven transition b
tween type-I-like and type-II-like ground states. A more i
tuitive explanation of this transition is obvious: one can,
principle, evaluatekx5lx /jx and ky5ly /jy . Usually one
haskx!1 while ky is exponentially temperature depende
One can argue then that the type of the ground state is
termined by the geometric mean of the two kappas:k
5Akxky. This ‘‘mean’’ Ginsburg-Landau parameterk is
also temperature dependent. This raises a possibility
Type-I/Type-II temperature-driven transition as some criti
valuekc;1 is passed byk in a temperature sweep.

E. Screening properties

From the physical point of view the reason why the a
pearance of vortices becomes favorable at high fields is
vortices can screen external electric fields. In order to sh
this we first introduce a ‘‘dense limit approximation’’8 in
which the average distance between vortices is assume
be much less than the characteristic length of the exte
electric field variation. Then one can take the vorticityn(rW)
to be a continuous function rather than the sum ofd func-
tions. The minimization of the effective energy, Eq.~9!, with
respect tonk becomes trivial:nk5d0

21Ek
y and leaves us with

the effective free energy which describes the screening w
the screening lengthl5lTF . In fact this contradicts to the
above made dense limit approximation; nevertheless the
clusion about screening remains valid if we assume that
screening length is rather equal to the average inter-vo
distance:l5n21/2. But now the screening length becom
coordinate dependent leading to a nonexponential screen
Indeed, the Poisson equationw92l22w50 in this case
reads asw91d0

21ww850. Its solution is

w~y!5
2d0

y12d0w~0!21 . ~16!

At distances;lqp , however, the exponential screening d
to quasiparticles comes into play. So in the bulk the D
state is restored. Thus the electric-field-induced transition
a vortex state is asurface effect. Therefore it is unlikely to be
detected in any transport measurements.15 On the other hand
the best way to observe such a transition would be to m
sure directly the screening length. It would be expected
the screening length is;lqp for field below critical whereas
for fields above critical it collapses to some small valu
Such experiments are currently underway.16
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V. THERMALLY-EXCITED VORTICES

An alternative to the production of vortices in DW sy
tems by applying a transverse electric field at low tempe
ture is their thermal activation in the temperature region n
Tc . We have already calculated the energy required to p
duce a singly quantized vortex in the absence of exte
electric field@Eq. ~14!#—this energy is given by18

Ea5
pKg

2

lqp

lTF
ln

W

e1/2lqp
. ~17!

At low temperature this energy is big, but as we get close
the transition pointEa it decreases rapidly because of d
creasing rigidityK ~it is proportional to the condensate de
sity!. Moreover,K is renormalized to smaller values in th
vicinity of critical point by the fluctuations of the order pa
rameter. The description of the dynamics of thermally e
cited vortices in external transverse electric fields is beyo
the scope of this article and will be reported elsewhere; ho
ever a simple picture can be outlined here. The key poin
that there is a gas of thermally activated vortices at so
finite temperature. We shall restrict ourselves to only t
kinds of vortices, namely those with winding numbersni5
61 and dipole momentady56udyu, respectively. It is as-
sumed that the excitation of vortices with higher windin
numbers is suppressed to be their bigger energies. Then
plying a transverse electric field one would be able to po
ize the vortex gas. The dielectric constant of the vortex
in the case ofweak fieldsis

e5
4pndy

2

T
. ~18!

Here,n is the density of vortices.n also enters the expres
sion for the correlation length in the gas of vortex dipole
Thus one would be able to extractn from experiments con-
cerned with the response of DW materials to transverse e
tric fields. Such experiments are currently underway.16

VI. CONCLUSIONS

We have performed an extensive analysis of vortices
highly anisotropic quasi-one-dimensional DW systems. T
work builds a more detailed and correct picture of the str
ture and dynamics of vortices as compared to Ref. 8,
also predicts several unique properties of such vortices n
encountered before with the case of their superconduc
counterparts. Among those are the possibility of
temperature-controlled phase transition between type-I-
and type-II-like phases; the nonexponential screening
strong electric fields by vortices at comparably large sca
as opposed to the incorrect conclusion about short range
ponential screening drawn in Ref. 8;temperature controlled
‘‘flux quantum’’ of a vortex—its dipole moment. We would
like to point out that the exploration of the dynamics
topological defects in DW systems is a relatively new a
actively developing area of condensed matter physics w
many surprises and, possibly, some connections to o
branches of physics~see, e.g., a recent paper17 and references
therein!.
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