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Vortices in density-wave systems subject to transverse electric fields
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In this paper we predict many interesting properties of vortices in highly anisotropic density wave systems
subject to strong transverse electric fields. We mainly concentrate on ground state properties. Besides electric
field-induced vortices we consider also thermally activated vortices. A different type of temperature-driven
transition between two different phases of density waves in strong fields is predicted and several properties of
those phases are report¢80163-1828)09035-3

[. INTRODUCTION We would like to emphasize the fact that the two terms in
Finhom are of totally different origin. As is well knowhjn
It is now well realized that the dynamics of topological the system described abovécharge or spindensity modu-
defects plays an important role in low dimensional electronidation appears with the wave vectar= qq=(2kg,7/b,0):
systems. In a particular case of density wa&dV) ground pxReA exp(qgr). A spatial variation ofA gives rise to the

states(for a review, see Ref.)lit was found that topological effective shift inq by 5q=V ¢ where ¢ is the phase of the
defects are responsible for such interesting phenomena as tBémpIex order parameter. Thus the gap is developed at the
generation of narrow-band nofsend nonlinear current- wave vector which is slightly off its optimal valug,. This
voltage characteristics in strong fieldhe phenomenon as- ¢osts extra energySE | 5q|—it is linear with &q which is
sociated with the so-called “phase slippag€™ More re-  quite costly for small deviations. Instead the system rear-
cently, quantum phase slip through creation of vortices Waganges itselectron densityin such a way thatocally 2kq
proposed to explain low-temperature properties of the spin-coincides with the new DW wave vector. There is no more
density wave compounMTSF),PF;.>7 linear contribution to the energy, however another contribu-
This paper was originally initiated by the predictithat  tion arises—the energy of the nonhomogeneous electron

DW systems should possess a phase in strong electric fieldgnsity distribution. But the fact is that this densijyer
applied transverse to the direction of highest conductivity chajp) is

This phase was called a “mixed state” in analogy with the

mixed state of type-1l superconductors, and was character-

ized by the presence of vortices. We have undertaken an P:;ﬁxfl’ 2
extensive study of the predicted transition. The possibility of

transverse electric field-induced transition to metallic stateand the extra energy i8E x p?x(8q,)?—it is quadraticin
(type-I-like) was also investigated and a temperature-drivensq, and therefore wins for small distortions of DW gap. This
transition between type-l and type-Il regions of the phasgyhenomenon is usually described as follows: “particle den-
diagram was predicted. We report these findings here as wedlty follows the variations of the gap.” At the same time the
as some interesting anticipated properties of the aboveyradient iny direction does not lead to any change in the
mentioned phases such as, e.g., nonexponential screening|géal charge density; its contribution to the free energy is of

electric fields by DW systems in a mixed state. purely elastic character.
In this paper we shall be interested in the response of DW
Il. GINSBURG-LANDAU THEORY system to externaélectric fields. We take account of the

) ) o effect of electric field by introduction of the following term
We adopt a macroscopic mean-field description of the dy;ntg the free energy function4l:

namics of DW systems and make use of (Bme-
independentGinsburg-Landau free energwhich is a func-

tional of complex order parametar(r) =|A(r)|exp(¢), the Fe|=f dr
absolute value of which is a DW gap in the electronic spec-

trum. For the case of a highly anisotropic system with anyere the first term describes coupling of the electric field to
open Fermi surfac&=[ =kg(1+y cosbk)]k, k) (herex  the charge induced by DW distortion, the term in parentheses
is the direction of highest conductivity—usually the direction represents energy associated with electric field itself and with
along conducting chaing,is the direction of strongest Fermi the coupling of electric field to free charge carriers excited
surface wrappingyy is the anisotropy parameter, adis  over the DW gap. The last term represents the interaction of
lattice constant along; we neglect dispersion alord, this  electric field with external chargés.Strictly speaking, Eq.
functional is (3) is the action of the system taken with a minus sign.
However, we shall use the term “free energy functional” to
(1) denote a functional of which an extremum determines the
ground state. We also emphasize that electric field couples

Jepe— ([T ol N 26D+ 6p™. 3
o= g (elVel*+ g e®) +op™).

K 2 2 2
Finhom= | dr W[wal +y |(9yA| ].
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only to x component of the gradient of the gap—only this mined by both quasiparticles and phasons leading to screen-

component induces electric charge. ing length\,=\1¢ .2 This is again a manifestation of the
An important point here is that our action is essentiallyfact that only the phason mode along thdirection couples

different from that of Ref. 8 in that it contains wave-vector- to the electric field3

dependent dielectric constaet= e(k). It appears because

the ground state of DW, in complete analogy with the [dw- IV. STRONG FIELDS

ground state ofemiconductorsis highly polarizable due to . o ) o

excitations ofvirtual electron-hole pairs. This should not be ~ AS We have just seen, electric fields in thedirection

mixed either with the screening due to thermally excited qual@long the chainsare screened at the short lengthsre,

siparticles, nor should it be mixed with the screening due tdt all temperatures. In contrast to that, #gcomponent of -

spatial distortion of the order parametesee below We the flel_d can penetrate far enough into .the bulk since its

stress that this dielectric function generic for a gapped Screening is determined by thermally excited quasiparticles,

electronic system. It can be calculated using simple anisdthe concentration of which is exponentially decreased at low

tropic two-band semiconductor model temperatures. However in strong electric fields the situation
changesA can no longer be considered constant and it may

)\;FZ be energetically favorable for the system to expel the electric

e(k)~ KCTE(K) 2 (4) field from the sample by spatial variation of the magnitude of

the gap:* First, it's obvious that in the limiE,— c the state
Here, A 1¢ is the Thomas-Fermi screening length in the me-of the system is metallic. A simple argument for this is that
tallic state, and(k) is anisotropic coherence length in DW in competition between condensate energy(eg)A?/2
state.[The value €(0) is usually huge: for instance(0) [heren(eg)=N, /v is density of states at the Fermi level,
~10° for (TMTSF),PF;]. Now we turn to the analysis of the N, is the density of chains in the plane perpendicular to the

response of DW systems to external electric fields. chaing and electrostatic energig D/87 the latter always
wins in the limit of strong fields: the gap vanishes giving rise
IIl. WEAK FIELDS to screening. Thus in the region of strong fields there is a thin

layer near the edge of the sample in which the state is me-

Density wave is the state of broken translational invari-tallic. The electric field in this layer is screened at the dis-
ance. In the absence of external fields the phase of the ordgince~ A1r. However, taking into account that actually the
parameten = |A|exp(6) is the so-called degeneracy param- continuous model used here is not applicable at such small
eter: the free energy is globally(1) invariant—it does not distances, one should substititgr for interchain distance.
change if we make a global substitutiér- 6+ const which  This corresponds to a metallic layer with the thickness of as
corresponds to a homogeneous displacement of the densigynall as a single interchain distance. However, in the bulk
wave along thex axis. Consequently, there is ghason the electric field is absent and the DW state is restored.
(Goldstone gapless mode associated with this degeneracy. Thus we establish that there must exist a critical value of
At the same time the orthogonainplitudonmode, in which  E, for which a transition occurs from DW to some other
|A| is varied, has a gap in the spectrunkatO. Therefore we phase. As the field is increased from small values, two pos-
expect that in the limit of weak fields the response of thesibilities may occur:A can jump to a smooth configuration
system is given by the excitation of phason mode only. Thustype I) or a configuration with topological defelt&ype II).
we set|A| to be constant. After Fourier transform, The latter means that the ground state is characterized by the
presence of vortices—centers the in-plane circulation of the
phase of the order parameter around which is nonzero. These
two possibilities correspond to the two types of supercon-
ductors in a magnetic field. An ordinary isotropic supercon-

KK2
Finhom™ I:eI:f dr T Ok

2+Jeq0kikx0_k

1 P 5 ext ductor can be distinguished between these two types by the
- Q(Ek T hgp)| P+ PPk evaluation of the Ginsburg-Landau parameter\/&. Val-
) uesk<1W2 and «>1W2 correspond to type | and type Il,
KKj . 202 respectively. In our case, this simple argument is not appli-
:f dr 2 O~ i2ekepi/vek, cable since DW materials are usually highly anisotropic. In-
L deed, usually along the direction one haa,<¢, whereas
2 5 2 ext along they direction eithern,<¢, and \,> ¢, can hold
~gn (KA e +‘Pkpk} depending on temperaturg;, éxpgnentiaIK/ increases with
decreasing temperatufsee below for a more detailed dis-
5 cussion. Instead we shall use a more physical argument to
A[2=)\;p2+fs)\{F2E2, (5)  decide between type | and type Il. Namely, we shall evaluate
4 the critical field for these two cases. Then we can argue that

the minimization with respect t6, becomes trivial. Then the the system will make a transition to the state for which the
remaining effective action for the electric field leads to ancritical field is lower.

anisotropic screening length. Screening length in thg

direction isk,= \/e()\;pI))\qp and is due to the interaction of A. Type |

the electric field with quasiparticles excited over the gap. On  The critical field for this case can be obtained by equating
the other hand, screening in tixedirection is now deter- condensate and electrostatic free energy densities:
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ED 1 C. Single vortex

— 2
a7~ 2"(er)do Now n(r)=2#48(r) and the electrostatic potential pro-
(6) duced by a single vortex is given by the Fourier transform of
A, do Eqg. (10). It is hard to obtain an analytical expression in the

general case, but one can get an idea of what this potential
looks like from the consideration of the purely isotropic case:

v=1, A=A =const. With this simplification the potential is

I — ~
¢ 2eNte EMtE

Here we have introducedy=uv/2e—a parameter with the

dimensionality of the electric dipole momefgee below. given by
We use the value of the dielectric constant1 because the - P
metallic breakdown will occur in a thin layer near the bound- $(r)=—2ey"J sin 61(r),
ary with the thickness- A< £,—polarization will not de-
velop at such small scales. f(r):f dk Ja(kr)
ek>+ A2
B. Type Ill—vortices r el2 »

First of all let us clarify what a vortex is in a DW system. 7¢I r<e™A,
As was mentioned above the phagef the complex order =1 A2 1y
parameten\ =|A|exp(6) is the degeneracy parameter of the —, r>el2A .
state with broken translational symmetry. The order param- r

eter, as a function of coordinates, should be univalued. Thi
implies that, as we travel along a closed contour, the phase
the order parameter can get an incrementr2wheren is
integer calledvinding numberThe corresponding texture of
the order parameter is calledtimes quantized vortexet us

now consider a singly quantized vortex located at0

ere,J, is the first Bessel function. The effect of huge actual
anisotropy inA can be taken into account qualitatively in the
following way. First of all we may notice that there still will
be two characteristic regions<e?A () andr> e'?A (6)
where A(6) is now an angle-dependent crossover scale
(which is, of course, extremely anisotropidhen we may
) also notice that in the largeregionf(r) is still angle inde-
A(r)=|A(r)|expi ), (7)  pendent: itis given by(r)~A2 /r whereA ,, is some “av-
erage” screening length. An important point here is that the
where ¢ is azimuthal angle in the-y plane. The absolute total charge densityn the larger region falls off exponen-

value of the gap is assumed to be constant everywhere excetpé"y: one can check that by taking the LapIaciangn:(fF).

regions .Of the siz¢ (correlatiqn lengthnear the vortex cen- g "the ahove-mentioned extreme anisotropy comes to play
ters.. Th|§ assumption constitutes the so—cglled London any the smalle region—the core of a vortex is highly aniso-
proximation. From Eq(7) we can calculate induced charge tropic and hard to analyze

density (per chain using Eq.(2), Some of the vortex properties, however, allow an exact

. description. From Eq(10) it can be inferred that the total
esiné ®) charge of a vortex is zero, but there is a nonzero electric
T r dipole moment directed along

ep=

We see that it falls off as A+—it is highly nonlocal. However 5 efg

the screeningnakes the fall-ofexponential To see how this dy=2meeI\g,= d02(1—_fs)' (12
happens we make the following substitution in E§) in

order to take vortex degrees of freedom into acc&unt:Here,do=v/2e. d, is exponentially increased ds-0. It

(V 0)—ik oL (ik X Z/k?)n,, wheren(r)=2m3n;5(r _should be niot.ed that this expression was derived for a vortex
—r,) is vorticity andn; is the winding number of a vortex at N the bulk; it is expected that for vortices near boundéing

r,. Minimizing the free energy functional with respect to ¢ase which is relevant for vortices produced by external

aﬁhasonwe get an effective action: fields—see beloythe induced dipole moment is reduced.
d2K Kyz ieJky 2 D. Critical field
Finhomt Fel= 2m? | 22 M~ Pk Now we estimate the critical field at which an appearance

of a single vortex becomes energetically favorable. In order

1 B to do that we substitute EGLO) (with n,=21r) back into Eq.
- g(szﬂ\tfz) el * T ek 9 (o)
-2
Electric potential produced by vortices is obtained by the = :J' d2K Ky? Eszr)‘TF _ g Eext (13)
minimization of Eq.(9) with respect top, and is given by eff 2k | e+ A2 VY

4miey?d Kk, 7Ky \ W
— ) 1 — qp _ ext
Py 6k2+A|22 k%/nk (10 > _)\TF In m dyEy . (14
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Here,W is the size of the system in thyedirection. From Eq. V. THERMALLY-EXCITED VORTICES

(14) and Eq.(12) we obtain the critical field: An alternative to the production of vortices in DW sys-

tems by applying a transverse electric field at low tempera-
D!l = vdo log W _ (15) ture is their thermal activation in the temperature region near
¢ ANgphtE 61/2)\qp T.. We have already calculated the energy required to pro-
duce a singly quantized vortex in the absence of external
Comparing this expression with its superconducting analoglectric field[Eq. (14)]—this energy is given by
one may calld, a “quantum of electric dipole moment.”
The dependence of the critical field on temperature is given 7Ky N W
by g =N7E\27A /T exp(=A,/T). So the critical field for A= )\—qp n —m—.
: L . T €°N
the vortex mixed state can be significantly lowered by in- ar
creasing the screening length in thelirection asT—0. AS ¢ |ow temperature this energy is big, but as we get closer to
we do so, an |Inte_rest|_ng Situation can OC@E: can be made e transition pointE, it decreases rapidly because of de-
smaller tharD. signaling a temperature-driven transition be- creasing rigidityk (it is proportional to the condensate den-
tween type-I-like and type-Il-like ground states. A more in- sjty). Moreover,K is renormalized to smaller values in the
tuitive explanation of this transition is obvious: one can, invicinity of critical point by the fluctuations of the order pa-
principle, evaluatec, =\, /&, and k,=\,/&,. Usually one  rameter. The description of the dynamics of thermally ex-
hask,<1 while x, is exponentially temperature dependent.cjted vortices in external transverse electric fields is beyond
One can argue then that the type of the ground state is dghe scope of this article and will be reported elsewhere; how-
termined by the geometric mean of the two kappas: ever a simple picture can be outlined here. The key point is
= Jkxky. This “mean” Ginsburg-Landau parameter is  that there is a gas of thermally activated vortices at some
also temperature dependent. This raises a possibility of finite temperature. We shall restrict ourselves to only two
Type-l/Type-Il temperature-driven transition as some criticalkinds of vortices, namely those with winding numbexs-
value k.~1 is passed by in a temperature sweep. =1 and dipole momentd,=*|d,|, respectively. It is as-
sumed that the excitation of vortices with higher winding
numbers is suppressed to be their bigger energies. Then ap-
plying a transverse electric field one would be able to polar-

From the physical point of view the reason why the ap-j;e the vortex gas. The dielectric constant of the vortex gas
pearance of vortices becomes favorable at high fields is tha ihe case ofveak fieldss

vortices can screen external electric fields. In order to show

this we first introduce a “dense limit approximatiofi”in 2
X ) ) : 47nd

which the average distance between vortices is assumed to e= y

be much less than the characteristic length of the external T

electric field variation. Then one can take the vorticri‘(f)
to be a continuous function rather than the sumsdtinc-

(17)

E. Screening properties

(18)

Here,n is the density of vorticea also enters the expres-
tions. The minimization of the effective energy, E8), with sion for the correlation length in the gas of vortex dipoles.
Thus one would be able to extrattfrom experiments con-

s — A~ 1py ; " .

respect tmk becomes ”""a"?k do E‘S and leaves US.W'th ..cerned with the response of DW materials to transverse elec-
the effective free energy which describes the screening Wlt|a,ic fields. Such experiments are currently underdfay

the screening length=\¢. In fact this contradicts to the ' '

above made dense limit approximation; nevertheless the con-

clusion about screening remains valid if we assume that the VI. CONCLUSIONS
screening length is rather equal to the average inter-vortex
distance:n =n"Y2 But now the screening length becomes
coordinate dependent leading to a nonexponential screenin
Indeed, the Poisson equatiop’ —\ ?¢=0 in this case
reads asp”+d, 'oe’ =0. Its solution is

We have performed an extensive analysis of vortices in
highly anisotropic quasi-one-dimensional DW systems. This
Work builds a more detailed and correct picture of the struc-
ture and dynamics of vortices as compared to Ref. 8, and
also predicts several unique properties of such vortices never
encountered before with the case of their superconducting
_ 2dy 16 counterparts. Among those are the possibility of a
e(y)= y+2doe(0) "1 (16) temperature-controlled phase transition between type-I-like
and type-ll-like phases; the nonexponential screening of
At distances~\,, however, the exponential screening duestrong electric fields by vortices at comparably large scales
to quasiparticles comes into play. So in the bulk the DWas opposed to the incorrect conclusion about short range ex-
state is restored. Thus the electric-field-induced transition tg@onential screening drawn in Ref. &mperature controlled
a vortex state is aurface effectTherefore it is unlikely to be  “flux quantum” of a vortex—its dipole momentVe would
detected in any transport measuremén®n the other hand like to point out that the exploration of the dynamics of
the best way to observe such a transition would be to medopological defects in DW systems is a relatively new and
sure directly the screening length. It would be expected thatctively developing area of condensed matter physics with
the screening length is \ o, for field below critical whereas many surprises and, possibly, some connections to other
for fields above critical it collapses to some small value.branches of physidsee, e.g., a recent papeand references
Such experiments are currently underwiy. therein.
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