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Electrodynamics of the phonon-mediated optical Stark effect
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~Received 24 November 1997!

The electrodynamics of three-wave polariton-phonon interactions with spatial dispersion is developed and
applied to the phonon-mediated optical Stark effect in bulk polar semiconductors. This electrodynamics is
formulated within three macroscopic equations, which describe the coupled probe light field, excitonic polar-
ization, and LO phonons of a semiconductor virtually excited by the pump light. We analyze how the incident
probe light reflects~transmits! from a boundary of the crystal in the presence of an intense coherent polariton.
A Poynting theorem, which clarifies the structure of the total energy flux of the probe wave resonantly coupled
to the pump polariton through Raman interaction, is derived. In order to calculate the reflectivity of the probe
light from the boundary of a virtually excited crystal, we apply the recently developed wave-vector-space
method@B. Chen and D.F. Nelson, Phys. Rev. B48, 15 372~1993!#. The transient excitonic spectra of the
phonon-mediated Stark effect are analyzed and calculated numerically for bulk CdS.@S0163-1829~98!01727-5#
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I. INTRODUCTION

An excitonic polariton is one of the central concepts
semiconductor optics.1–6 If the exciton-photon interaction is
dominant, the polariton representation gives an adequate
scription of the resonantly interacting excitons and phot
which form a conservative, closed system in a direct-ba
gap bulk semiconductor~for a review of the polariton phys
ics see, e.g., Ref. 7!. Due to the momentum conservation
the optical transition ‘‘photon↔ exciton,’’ an incoming
photon with momentump can be many times resonantly r
absorbed and reemitted by the excitons with the same
mentum. Within the polariton picture, this process is coh
ent and does not lead to a ‘‘true optical absorption’’~in the
dissipative sense! due to the excitonic resonance. Classic
polariton electrodynamics requires the macroscopic polar
equations,4,5 a corresponding energy theorem,8–10 and an ad-
ditional boundary condition~ABC! to calculate the optica
reflectivity/transmissivity in the spectral vicinity of the exc
ton resonance.2,4,5,7,9

There are two energy parametersVc andv l t in the polar-
iton optics. The polariton parameterVc is the oscillator
strength of the exciton-photon coupling. The longitudin
transverse splittingv l t characterizes the spectral width of a
excitonic line at the low temperatures. BecauseVc

5A2v l tv t@v l t , the pump light with frequencyvk from the
spectral bandv t2Vc<vk<v t2v l t does not undergo ab
sorption but virtually creates excitons (\v t is the energy of
an exciton at rest, i.e., characterizes the spectral positio
the exciton line!. This important feature of the polarito
eigenwaves, which was recognized by Hopfield,11 actually
gives rise to the optical Stark effect.

An exciton optical Stark effect~OSE! is the shift and
shape change of an exciton line, which follow dynamica
the intensity of the pump light. The classical OSE manife
itself as a dynamical blueshift of the exciton levelv t in the
presence of a high-intensity (I 0.1GW/cm2) pump light of
the frequencyv,v t and partly results from the exciton
exciton Coulombic interaction.12 A phonon-mediatedoptical
PRB 580163-1829/98/58~3!/1349~9!/$15.00
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Stark effect~PMOSE! of excitons in direct-band-gap bul
semiconductors, which has been analyzed theoretically13–18

and observed experimentally,15,19–21stems from the exciton-
phonon interaction.

The intense coherent light of the frequencyvk from the
transparency bandv t2Vc<vk<v t2v l t induces the pump
polariton with wave vectork. The excitonic component o
the pump polariton characterizes the concentrationN0}I 0 of
the coherent virtual excitons. The virtual excitons with m
mentum k couple resonantly with optical phonons of th
frequencyV0. This interaction gives rise to the PMOS
which develops at the anti-Stokes resonancevk1V0 of the
pump polariton and results in a drastic line shape change~for
10 MW/cm2<I 0!1 GW/cm2) and a significant dynamica
shift ~for I 0.1 GW/cm2) of the exciton line. Both redshift
~for vk.v t1v l t2V0) and blueshift ~for vk,v t2v l t
2V0) of the exciton level can be realized by varying th
frequencyvk of the pump light.

The PMOSE is a manifestation of thephonoritonspec-
trum of a bulk semiconductor in the presence of a pu
polariton.13,14,16–18This spectrum originates from the mutu
hybridization and unification of the initial exciton polarito
and phonon dispersions, similarly to how the polariton d
persion develops from the exciton and photon spectra
phonoriton is the corresponding three-component, pho
exciton, and phonon, eigenstate of the semiconductor vi
ally excited by the pump light. Both the exciton-photon co
pling and the pump-induced exciton-phonon interaction
included to construct the phonoriton eigenwaves.

So far, the PMOSE has been analyzed mainly with resp
to the pump-induced changes of theelectronic ~excitonic!
properties, i.e., within the corresponding phonoriton disp
sion equation. In experiments, the probe light of the f
quencyv tests the PMOSE in reflectivity or transmissivity o
the exciton resonance~see Fig. 1, where the pump and pro
light counterpropagate!. Similar to the polariton picture, the
incident probe light induces two frequency-degenerate ph
oritons of the same direction of propagation. The furth
mixing of an optical phonon with the polariton does not i
crease the number of the frequency degenerate excita
1349 © 1998 The American Physical Society
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1350 PRB 58A. L. IVANOV AND D. F. NELSON
because an optical phonon is nonpropagating in the l
wavelength limit. Therefore, theopticsof the PMOSE needs
a generalized polariton analysis. In the present paper,
develop the electrodynamics of the PMOSE within the m
roscopic phonoriton equations applied to a bounded p
semiconductor.

In the resonant Raman triplet, the probe polariton,
pump polariton, and the phonon field, the pump polariton
treated as a given classical field. Thus the three macrosc
phonoriton equations deal with the electromagnetic and
citonic components of the probe polariton and the phon
field which couples the pump and probe polaritons. T
pump polariton propagates as a free polariton. The pr
light of the frequencyv.vk1V0, which tests the phonori
ton spectrum of the PMOSE, does not influence the pu
polariton. On the other hand, we assume no pump deple
due to Stokes scattering. In principle, Stokes scattering le
to an instability of the pump polariton and results in stim
lated Raman scattering of the pump light.22,23 However,
these processes develop much more slowly than the PM
and in our case can indeed be neglected.23

It seems that II–VI direct-band-gap polar semiconducto
e.g., CdS and CdSe, with the well-developed polariton ef
and strong exciton–LO-phonon Fro¨hlich interaction are op-
timal for the effective realization of the PMOSE. The n
merical calculations of this paper refer to bulk CdS with t
polariton parameter\Vc598.5 meV, the longitudinal-
transverse splitting\v l t51.9 meV, and the LO-phonon fre
quency\V0538 meV. BecauseVc@V0, these parameter
are well suited for the PMOSE. An observation of t
PMOSE in CdS was reported in Ref. 19.

In Sec. II, we analyze the macroscopic phonoriton eq
tions which describe the electromagnetic, polarization,
LO-phonon components of the probe wave in a semicond
tor virtually excited by the pump light. The phonoriton di
persion and the corresponding frequency-degenerate p
oriton eigenwaves are discussed in detail.

In Sec. III, we derive from the macroscopic phonorit

FIG. 1. Energy-momentum diagram of the LO-phonon-media
Raman interaction of the polaritons in CdS. One-dimensional c
figuration pikix axis, where (p,v) and (k,vk) refer to the probe
and pump polaritons, respectively.
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equations the Poynting energy theorem for the PMOSE
polar semiconductors. The structure of the total energy fl
of the probe wave coupled with the pump polariton by t
LO-phonon resonant Raman interaction is analyzed.

In Sec. IV, as a means of studying the optics of t
PMOSE, we calculate the reflectivity and transmissivity
the incident probe light from a boundary of a bulk semico
ductor in the presence of a pump polariton. For this purpo
the wave-vector-space method24 is applied to the macro-
scopic phonoriton equations. This method derives Pek
ABC, which puts the excitonic polarization equal to zero
the crystal boundary and does not involve the phonon co
ponent of the phonoritons induced by the probe light.

In Sec. V, the electrodynamics of the PMOSE is exa
ined with respect to the continuity of the energy flux of t
incident probe light at the boundary of the crystal. The n
merical evaluations of the PMOSE in the exciton reflectiv
are given for CdS.

II. PHONORITON EIGENWAVES

The closed set of the macroscopic phonoriton equati
for the positive-frequency components of the electric fie
E(r ,t), excitonic polarizationP(r ,t), and LO-phonon scala
potentialF(r ,t) is given by14

F«b

c2

]2

]t2 2D GE~1 !~r ,t !52
4p

c2

]2

]t2 P~1 !~r ,t !, ~1a!

F ]2

]t2 12gx
]

]t
1v t

22
\v t

Mx
DGP~1 !~r ,t !

5v t
2bE~1 !~r ,t !22v tArLPk

~1 !~r ,t !DF~1 !~r ,t !,

~1b!

F ]2

]t2 12gph
]

]t
1V0

2GF~1 !~r ,t !

5
2L

Arv tb
Pk

~2 !~r ,t !•P~1 !~r ,t !, ~1c!

where«b is the background dielectric constant for the ex
ton resonance,Mx is the exciton translational mass,r is the
crystal reduced mass density,gx and gph are the rates of
incoherent scattering of excitons and LO phonons, resp
tively. The latter one, i.e., the inverse lifetime of LO
phonons, is mainly due to the lattice anharmonicity whi
leads to the decay ‘‘LO phonon→ 2 LA phonons.’’ The
LO-phonon scalar potentialF (1)(r ,t) determines the corre
sponding lattice displacement fieldu(1)(r ,t) by u(1)(r ,t)
5¹F (1)(r ,t) andPk is the polarization of the pump polar
iton. The dimensionless oscillator strengthb of the exciton-
photon interaction relates to the polariton parameterVc by
Vc

254pbv t
2/«b .

Macroscopic equations~1a!–~1c! refer to the phonoritons
in polar semiconductors. In this case, the LO-phonon re
nant Raman scattering of polaritons is mainly determined
the Fröhlich mechanism.25–27 The corresponding matrix ele
ment of the exciton-phonon interaction isMx-ph(q)
5L(\/2V0V)1/2uqu, whereq is the LO-phonon wave vector
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V is the volume of a crystal, and the parameterL is given by
L5@V0(me2mh)/Mx#@p(«s /«`21)(ax

3/m)#1/2.28,29 Here,
me(mh) is the electron~hole! mass,Mx5me1mh and m
5memh /Mx are the translational and reduced excit
masses, respectively,«s is the static dielectric constant,«` is
the high-frequency dielectric constant for the LO-phon
frequencyV0, andax is the exciton Bohr radius. The pump
induced terms on the right-hand side~RHS! of Eqs.~1b! and
~1c! are proportional toL.

Equation~1a! is the Maxwell wave equation for the ligh
coupled with the excitonic resonance, i.e., with the source
photons on the RHS due to the excitonic polarization. T
left-hand side~LHS! of Eq. ~1b! describes the excitonic po
larization with a quadratic wave vector dispersion. The fi
term on the RHS of Eq.~1b! refers to an inverse process
Eq. ~1a!, i.e., to the generation of excitons by the photo
The second term on the RHS is due to the LO-phon
mediated Raman coupling between excitons of the pr
wave and the pump polariton. Finally, Eq.~1c! describes the
generation of LO phonons in the resonant Raman interac
of the two polaritons. Because the excitonic polarizat
Pk(r ,t) of the pump polariton is taken as a given coher
field, Eqs. ~1a!–~1c! are linear with respect to the fields
E, P, and F of the probe wave. Moreover, macroscop
equations~1a!–~1c! are valid even for an operator represe
tation of the fields and, therefore, are independent of
photon statistics of the probe light. With decreasing Ram
coupling, i.e., if LPk→0, Eqs. ~1a! and ~1b! reduce to
Hopfield’s polariton equations4,5 while the dynamic equation
~1c! describes the free LO phonons.

Macroscopic equations~1a!–~1c! are derived for a semi
conductor which is isotropic in the long wavelength limit.
particular, the analyzed intraband exciton-LO-phonon Fr¨h-
lich coupling occurs only for the diagonal Raman scatteri
i.e., is proportional to the scalar productP•Pk . This assump-
tion is valid irrespective of the crystal symmetry, if excito
are supposed to be isotropic.25 Furthermore, Eqs.~1a!–~1c!
imply that the carrier frequencyv of the probe wave be
longs to the spectral vicinity of the anti-Stokes resona
vk1V0 of the pump polariton~see Fig. 1!. For the resonan
Raman interaction of the probe and pump waves, only
ground-state exciton resonance is treated. This assump
denotes thatVc@V0 and holds, e.g., for CdS.

We analyze a case when the coherent pump polariton
cw plane wave, i.e.,Pk

(1)(r ,t)5P0k
(1)exp(2ivkt1 ik•r ),

whereP0k
(1)5const is the positive-frequency amplitude of t

excitonic polarization of the pump wave. Then, the phono
ton eigenwaves can be found by substitutionE(1)(r ,t)
5E0

(1)exp(2ivt1ip•r ), P(1)(r ,t)5P0
(1)exp(2ivt1ip•r ),

and F (1)(r ,t)5F0
(1)exp@2i(v2vk)t1 i (p2k)•r #, where

E0
(1) , P0

(1) , and F0
(1) are the constant positive-frequenc

amplitudes. In order to simplify Eqs.~1a!–~1c!, we treat the
one-dimensional geometry withPkiP and kipix axes ~see
Fig. 2!. For example, macroscopic equations~1a!–~1c! can
be applied to the one-dimensional geometry of Raman s
tering in CdS or CdSe if, in addition,PkiP'c andx'c. Here,
c is the main crystallographic axis of these uniaxial semic
ductors.

For the one-dimensional geometry, one gets from E
~1a!–~1c! the phonoriton dispersion equation
f
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Fv212igxv2v t
22\v t

p2

Mx
G S p22

«b

c2v2D @~v2vk!2

12igph~v2vk!2V0
2#24Q2~p2k!V0v t

3S p22
«b

c2 v2D1
«b

c2 v2Vc
2

3@~v2vk!212igph~v2vk!2V0
2#50, ~2!

where

Q2~p2k!5N0L2
\~p2k!2

2V0
~3!

is proportional to the concentrationN0 of the virtual coherent
excitons induced by the pump light. The concentrationN0 is
given through the intensityI 0 of the pump light by

N05
2

\v tb
uP0k

~1 !u25
I 0

\vk

A«b

c

Vc
2

~v t2vk!2

1

~11A«b!2
,

~4!

where the reflection from a crystal surface is taken into
count for normal incidence of the pump light.

Macroscopic Eqs.~1a!–~1c! and dispersion equation~2!
characterize the three-component phonoriton eigenwa
The phonoriton is a coherent admixture of excitons, photo
and LO phonons which occurs in a spectral vicinity of t
anti-Stokes resonancevk1V0 of the pump polariton. The
underlying physical picture of the phonoritons is the follow
ing one. The incoming probe light creates resonantly an
citon with momentump. The excitonp undergoes a stimu
lated Raman transition to the pump polaritonk with an
emission of the LO phonon with the wave vectorp2k. In
turn, the created LO phonon can be reabsorbed by exci
of the pump ~macroscopic! polariton and gives rise to
the inverse process. Within the phonoriton picture the

FIG. 2. Counterpropagating configuration of the pump-pro
resonant Raman interaction in CdS. The pump polariton is cha
terized by the wave vectork, frequencyvk , and linear polarization
ek. The normally incident probe light of the frequencyv, wave
vectorp0 (p05v/c), and linear polarizationep (epiek'c axis and
p0ikix axis! induces the probe polariton (p,v) ~in the absence of
the pump light! or two frequency degenerate phonoritons (p1,v)
and (p2,v) ~in the presence of the pump polariton!.
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1352 PRB 58A. L. IVANOV AND D. F. NELSON
quence ‘‘excitonp→exciton k1LO phononp2k→exciton
p→••• ’’ is a coherent process. The coherent phono
mediated oscillations between the probe and pump wa
result in the development of a split at the anti-Stokes re
nance of the pump polariton, i.e., at frequencyvk1V0. This
picture is similar to the polariton one. The phonoriton eige
waves are a generalization of Hopfield’s concept to thr
particle coherent interactions.

According to dispersion equation~2!, there are two basic
parametersVc and Q(p2k) characterizing the exciton
photon interaction and the pump-induced Raman transitio
respectively. With decreasing pump intensityI 0 the Raman
coupling Q(p2k)→0 and the phonoritonp decouples into
the polaritonp and LO phononp2k. An increase of the
damping processes, i.e.,gx and gph, also relaxes the phon
oriton picture. BecauseQ(p2k) is proportional to the value
up2ku of the transferred phonon momentum, the larg
phonoriton split atvk1V0 occurs for the backscatterin
configuration when the pump and probe light counterpro
gate~see Figs. 1 and 2!.

The phonoriton dispersion calculated with Eq.~2! for
N05531018cm23 in CdS is plotted in Fig. 3. The corre
sponding Mott factorN0ax

3.0.1 is still considerably less
than unity. Because the dispersion equation~2! is fourth or-
der with respect to the wave vectorp, there are four phon-
oriton dispersion branches 1–4. In order to classify the d
persion branches we preserve the finite damping, i.e.,

FIG. 3. The phonoriton dispersion curves for the concentra
N05531018cm23 of virtual excitonsk induced by the coheren
pump light. The following CdS parameters are used in the num
cal evaluations:\v t52.552 eV, \v l t51.9 meV, ax528 Å, me

50.2m0 , mh5mh'50.7m0 , «b5«s59.3, and«`55.81. The
frequency of the pump light~pump polariton! corresponds to\vk

52.515 eV, i.e.,\(vk1V02v t)51meV. The phonoriton disper
sion branches 1-2~3-4! refer to the backscattering~forwardscatter-
ing! interaction of the counterpropagating~copropagating! probe
and pump polaritons,pi 51,2,3,48 5Re$pi 51,2,3,4(v)% ~solid lines 1–4!
and pi 51,2,3,49 5Im$pi 51,2,3,4(v)% ~dotted lines 1* –4* ). The damp-
ing constants are given by\gx50.01 meV and\gph50.1 meV.
-
es
-

-
-

s,

t

-

-
e

imaginary terms in Eq.~2!. For the counterpropagating con
figuration, the probe wave of frequencyv induces two fre-
quency degenerate phonoritons with wave vectorsp1(v) and
p2(v) of branches 1 and 2, respectively. The phonorit
amplitudes decrease with propagation, according to
damping. For forwardscattering, when the macroscopic
lariton and the probe light copropagate, the phonoritons w
wave vectorsp3(v) and p4(v) of branches 3 and 4 ar
excited. The sectors of anomalous dispersion of branch
and 3 correspond to the pump-induced split~see Fig. 3!. For
branch 1~backscattering! the split is considerably more de
veloped in comparison with that of branch 3~forwardscatter-
ing!.

With decreasing pump intensityI 0→0 the upper sectors
of branches 2 and 4 and branches 1 and 3 evolve to the u
and lower polariton dispersions, respectively, while t
lower sectors of branches 2 and 4 yield the LO-phonon d
persion calculated from the frequencyvk , i.e., a horizontal
line vk1V0. The phonoriton modification of the initial LO
phonon term is accompanied by a finite LO-phonon ma
because according to Eq.~3! Q2(p2k)}uMx-ph(p2k)u2
}(p2k)2. The finite pump-induced mass can be estima
from the dispersion equation~2! as

Mph
eff5Mph

eff~ I 0 ,v!5
V0~v22v t

2!

2v tN0L2 . ~5!

Simultaneously, one gets a pump-induced renormaliza
of the bare exciton massMx . This renormalization can be
easily seen for the monochromatic spatially inhom
geneous waves of Eqs.~1a!–~1c!, i.e., for E(1)(r ,t)
5Ev

(1)(r )exp(2ivt), P(1)(r ,t)5Pv
(1)(r )exp(2ivt), and

F (1)(r ,t)5Fv2vk

(1) (r )exp@2i(v2vk)t#. With substitution of

F (1)(r ) from Eq. ~1c! in Eq. ~1b!, the initial macroscopic
equations reduce to

F«b

c2 v21D GEv
~1 !~r !52

4p

c2 v2Pv
~1 !~r !, ~6a!

F2v222igxv t1v t
22

\v t

Mx
D2

\v t

Mx
eff ~¹2 ik!2GPv

~1 !~r !

5v t
2bEv

~1 !~r !, ~6b!

where the pump-induced effective massMx
eff is given by

Mx
eff5Mx

eff~ I 0 ,v!

5
1

2v tN0L2 @~v2vk!212igph~v2vk!2V0
2#. ~7!

The extrema of the pump-induced LO-phonon dispers
with Mph

eff of Eq. ~5! and of the additional excitonic disper
sion with Mx

eff of Eq. ~7! refer to the same pointk ~wave
vector of the pump polariton! in momentum space. For th
well-separated Raman and excitonic resonances, i.e., w
uvk1V02v tu>v l t , one gets from Eqs.~5! and ~7! the ap-
proximate relationship

n

i-
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Mph
eff~ I 0 ,v.vk1V0!52Mx

eff~ I 0 ,v.v t!

5
V0

N0L2 ~vk1V02v t!. ~8!

According to Eq.~8!, the sign of the pump-induced effectiv
LO-phonon mass depends upon the position of the Ra
resonancevk1V0 with respect to the exciton levelv t . The
assumed proportionality of the matrix elementMx-ph(p2k)
to up2ku, which gives rise to finiteMph

eff and Mx
eff , is valid

provided thatup2kuax,1. This inequality holds for the op
tical range of Fig. 3.

III. THE POYNTING THEOREM FOR A CRYSTAL
VIRTUALLY EXCITED BY PUMP LIGHT

The Poynting theorem is a continuity relation between
time rate of change of the stored electromagnetic energy
outgoing flow of energy, and its dissipation. In our case,
energy theorem clarifies a structure and an origin of the
ergy flow of a probe wave coupled with the pump polarit
through the LO-phonon-assisted Raman interaction. The
ergy theorem is formulated within the macroscopic E
~1a!–~1c!. Mainly, we are interested in the total energy flu
S of the probe wave, because conservation of its nor
component at a surface of the virtually excited polar se
conductor is a natural constraint for any set of the bound
conditions.

In order to get the energy theorem, one starts from
well-known consequence of Maxwell’s equations

c

4p
¹•~E3H!1

1

4pS «bE•
]E

]t
1H•

]H

]t
14pE•

]P

]t D50,

~9!

whereH is the magnetic field of the light. Substituting a
expression forE in terms ofP andDF from Eq.~1b! into the
term 4pE•]P/]t of Eq. ~9! and performing some vector a
gebra, which involves Eq.~1c!, we derive

]W

]t
1¹•S1Q50, ~10!

where W is the density of a total stored energy,Q is the
energy dissipation rate, andS is the total energy flux given
by

S5Sg1Sx1Sx-LO , Sg5
c

16p
@E~2 !3H~1 !1H.c.#,

~11a!

Sx52
\

4v tbMx
F]P~2 !

]t
3~¹3P~1 !!

1~¹•P~1 !!
]P~2 !

]t
1H.c.G , ~11b!

Sx-LO5
Lr1/2

8v tb
F S ]P~2 !

]t
•Pk

~1 !D¹F~1 !1H.c.G . ~11c!

According to Eqs.~11a!–~11c!, the total energy flux consist
of three components. The first oneSg is an electromagnetic
flux given by the Poynting vector of the probe wave. T
an

e
he
e
n-

n-
.

al
i-
ry

e

second oneSx of Eq. ~11b! characterizes a ‘‘mechanical’
flow due to the translational motion of excitons of the pro
wave. Finally, the vectorSx-LO of Eq. ~11c! describes a flow
of coherent LO phonons generated in the stimulated Ram
transitions of excitons of the probe wave into the pump p
lariton k. With decreasing pump intensityI 0, the flux Sx-LO
disappears. Physically, the three contributions toS originate
from the three components~exciton, photon, and LO pho
non! of the phonoriton. Both, the excitonic fluxSx and the
pump-induced phonon fluxSx-LO slow down the energy
propagation of the probe wave.

The total energy densityW is given by

W5Wg1Wx1WLO1Wx-LO ,

Wg5
1

16p
@«b~E~1 !

•E~2 !!1H~1 !
•H~2 !#, ~12a!

Wx5
1

4v t
2bF]P~1 !

]t
•

]P~2 !

]t
1v t

2P~1 !
•P~2 !

1S \v t

Mx
D ~¹3P~1 !!•~¹3P~2 !!G , ~12b!

WLO5
r

4FV0
2~¹F~1 !!•~¹F~2 !!1S ]

]t
¹F~1 !D •S ]

]t
¹F~2 !D

1 ivkS ]

]t
¹F~1 !D •~¹F~2 !!2 ivkS ]

]t
¹F~2 !D

•~¹F~1 !!G , ~12c!

Wx-LO52
Lr1/2

8v tb
$¹@P~2 !

•P0k
~1 !exp~2 ivkt1 ik•r !#

•¹F~1 !1H.c.%. ~12d!

Here, Wg and Wx are the densities of the electromagne
energy and of the energy of the excitonic polarization,
spectively. The density of the phonon energyWLO of Eq.
~12c! refers to the LO-phonon frequencyV0 calculated from
the frequency vk of the pump polariton, i.e.,WLO

5(r/4)(V01vk)
2u(1)

•u(2). Physically, this is because i
the stimulated Raman decay ‘‘probe wave→ pump polariton
1 LO phonon’’ the phonon energy\V0 is accompanied by
the ‘‘hidden’’ energy\vk which refers to the pump polar
iton. Finally, Wx-LO is the energy density of the exciton
phonon coupling induced by the macroscopic polariton.

The energy dissipation rateQ is

Q5
gx

v t
2b

S ]P~1 !

]t
•

]P~2 !

]t D 1gph
r

2F2S ]

]t
¹F~1 !D

•S ]

]t
¹F~2 !D1 ivkS ]

]t
¹F~1 !D •~¹F~2 !!

2 ivkS ]

]t
¹F~2 !D •~¹F~1 !!G . ~13!

The incoherent scattering of excitons proportional togx and
the decay of LO phonons given bygph contribute to the
energy dissipation. Similarly to the termWLO of Eq. ~12c!,
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the phonon dissipation term of Eq.~13! refers to the effective
energy\(V01vk)@\V0, due to the presence of the pum
polariton.

An energy flux Sph, which corresponds to the phono
energy densityWLO given by Eq.~12c!, does not contribute
to the total fluxS because the group velocity of LO phonon
unperturbed by the pump polariton, is equal to zero. T
energy flux Sx-LO of the coherent LO phonons originate
from a pump-induced finite massMph

eff @see Eq.~5!#. With the
pump intensityI 0→0, the polariton system decouples fro
the LO-phonon one. In this case, Eqs.~11a!, ~11b! and Eqs.
~12a!, ~12b! are identical to those derived in Ref. 8.

IV. EXCITONIC SPECTRA OF THE PHONON-MEDIATED
OPTICAL STARK EFFECT

The PMOSE changes the reflectivity~transmissivity! of
the probe light from a crystal. These modifications refer
the Raman resonancevk1V0 and follow dynamically the
intensityI 0 of the pump light. In order to find the PMOSE i
the transient excitonic spectra, one needs to analyze how
incident probe light reflects, propagates, and transmits in
from a crystal in the presence of a pump polariton. In
present paper, we apply a recently developed wave-vec
space method24 to macroscopic phonoriton Eqs.~1a!–~1c!. A
macroscopicapproach is used, i.e., Eqs.~1a!–~1c! are sup-
posed to be valid up to an abrupt crystal boundarys0 at
x50 ~see Fig. 2!. No changes of the parameters of Eq
~1a!–~1c! due to the surface effects are assumed. Deri
quantities such as the susceptibility are affected near the
face by the nonlocal interactions. Since these effects occu
a surface layer that is narrow compared to a wavelegth, t
arise naturally as surface distributions of fields in the lo
wavelength or macroscopic theory. We consider a nor
incidence of the probe light on the crystal from a spatia
nondispersive media~e.g., from air or vacuum!.

The wave-vector-space method,24 which was originally
developed to calculate an excitonic reflection~transmission!
within the polariton picture, operates in momentum spa
and yields the reflection and transmission coefficients w
out any explicit use of the boundary conditions. Being a
plied to the macroscopic phonoriton equations, this met
allows us to find the reflection coefficientr (v) and the par-
tial transmission coefficientst1,2(v) of the probe light. The
coefficientst1,2 describe how the transmitted intensity of th
probe wave is shared between the two frequency-degen
phonoritonsp1(v) andp2(v).

In the wave-vector-space method, the macroscopic E
~1a!–~1c!, which are valid forx>0, are supplemented by th
wave equation

F 1

c2

]2

]t2 2D GE~1 !~r ,t !50, ~14!

which describes the incident and reflected probe light
x<0. A combination of Eq.~14! for x<0 and Eqs.~1a!–~1c!
for x>0 is given in terms of the step functionQ(x). Then,
for the considered one-dimensional geometry, a Fou
transform*2`

1`
•••exp(2ipx)dx of Eq. ~14! and Eqs.~1a!–

~1c! yields
,
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S p22
v2

c2 DE2~p!1S p22«b

v2

c2 DE1~p!2
4p

c2 v2P1~p!50,

~15a!

S v t
22v222igxv1

\v t

Mx
p2D P1~p!2bv t

2E1~p!

22v tArL~p1k!2P0k
~1 !F1~p1k!1

\v t

Mx

1

2p

3F ipP~0!1S ]P

]x D ~0!G2v tArLP0k
~1 !

3
1

pF i ~p1k!F~0!1S ]F

]x D ~0!G50, ~15b!

@~v2vk!212igph~v2vk!2V0
2#F1~p1k!

1
2L

Arv tb
P0k

~2 !P1~p!50. ~15c!

Here, a Fourier transformF @F5E(1)(p), P(1)(p), and
F (1)(p1k)] is treated asF5F11F2 , whereF1 has poles
only in the upper half complexp5p81 ip9 plane which can
be shown to be those of the semiconductor (x>0), whileF2

has poles only in the lower half-plane which can be attr
uted to the incident and reflected probe light atx<0. The
surface values of the excitonic polarizationP(0) and of the
LO-phonon potentialF (0) and their first-order derivatives
(]P/]x)(0) and (]F/]x)(0) are defined by F (0)

[*2`
1`F(p)dp and (]F/]x)(0)[*2`

1`ipF(p)dp (F5P,F),
respectively. These quantities are still unknown at this po
in the derivation. Equations~15a!–~15c! in momentum space
are equivalent to Eq.~14! (x<0) and Eqs.~1a!–~1c! (x
>0) in real space.

The functional form of the electric field in wave vecto
space is given by24

E2~p!52
E0

2p i F 1

p2v/c1 id
1

r

p1v/c1 idG ,
E1~p!5

E0

2p i F t1

p2p1
1

t2

p2p2
G , ~16!

whereE0 is the amplitude of the incident light andd→10.
Substituting in Eq.~15a! the expressions ofF1(p1k) and
P1(p) in terms ofE1(p) found from Eqs.~15b!,~15c!, one
gets

11r 2t12t250, ~17a!

~v/c!~12r !2t1p12t2p250, ~17b!

Ã@ t1~p2p31p2p41p3p4!1t2~p1p31p1p41p3p4!#

2B̃~ t11t2!2C̃~ t1p11t2p2!1D̃a250, ~17c!

2Ã~ t1p21t2p1!p3p41B̃~ t1p11t2p2!1 iD̃a150.
~17d!

Here,



n

he
la

n

s

s
-

on
qs.
n-
ag-

r-
two

of

of

ite
of

that
nic

ll-
l
va-
-

e
-
and

PRB 58 1355ELECTRODYNAMICS OF THE PHONON-MEDIATED . . .
Ã5S \v t

Mx
D @~v2vk!212igph~v2vk!2V0

2#12\L2N0v t ,

~18a!

B̃52@~v2vk!212igph~v2vk!2V0
2#~v212igphv2v t

2!

12\k2L2N0v t , ~18b!

C̃54\kL2N0v t , ~18c!

D̃5
8p2

c2 v2@~v2vk!212igph~v2vk!2V0
2#, ~18d!

a15v tArLP0k
~1 !

1

pF ikF~0!1S ]F

]x D ~0!G2
\v t

Mx

1

2pS ]P

]x D ~0!

,

~18e!

a25v tArLP0k
~1 !

1

p
F~0!2

\v t

Mx

1

2p
P~0!. ~18f!

After the treatment described above, Eq.~15a! reduces to a
cubic polynomial of the variablep. Equations~17a!–~17d!
originate from the requirement that this polynomial is ide
tical to zero and thatp is arbitrary~for details of the method
see Ref. 24!. This procedure implies thatr and t1,2 are inde-
pendent of the variablep. Formally, five unknown variables
r , t1,2, anda1,2 enter four coupled Eqs.~17a!–~17d!.

From Eq. ~15c! one gets the relationships between t
surface values of the phonon potential and excitonic po
ization and their first-order spatial derivatives:

F~0!5hn~v!P~0!, S ]F

]x D ~0!

5hn~v!F ikP~0!1S ]P

]x D ~0!G ,
~19!

where

h5h~N0!52
L

V0
2S 2\N0

v tbr D 1/2

,

n~v!5n8~v!1 in9~v!

5
V0

2

~v2vk!212igph~v2vk!2V0
2

. ~20!

Taking into account Eqs. ~19! and the definition
P(0)5*2`

1`P(p)dp, one derives from Eqs.~15b! and ~15c!:

a25
bv t

2

p~3p̃22 p̃1!
S t1

p̃22p1

1
t2

p̃22p2
D 1

2i

~3p̃22 p̃1!
a1 ,

~21!

wherep̃1 and p̃2 are the solutions of the quadratic equatio

Ãp21C̃p1B̃5Ã~p2 p̃1!~p2 p̃2!50. ~22!
-

r-

Equations~17a!–~17d! and Eq.~21! are five coupled lin-
ear equations which completely define the reflectivityr , the
partial transmission coefficientst1,2, and the surface term
a1,2. Then, the surface valuesP(0), (]P/]x)(0), F (0),
and (]F/]x)(0) can be found from Eqs.~18e!,~18f! and Eqs.
~19!. The solution of Eqs.~17a!–~17d! and ~21! yields P(0)

50 and

r ~v!5
A2B

A1B
, ~23!

whereA andB are given by

A5S v

c D ~p11p2!, B5S p1p21
«b

c2 v2D . ~24!

Equations~23! and ~24! with the phonoriton wave vector
p1,25p1,2(v) given by Eq.~2! describe the PMOSE in re
flectivity.

V. DISCUSSION

The transient excitonic spectra of the PMOSE depend
the boundary conditions for the macroscopic phonoriton E
~1a!–~1c!. In our case, the Maxwell equations yield the co
tinuity of the tangential components of the electric and m
netic fields of the probe light ats0:5,30

Et
~ I !5Et

~ II !us0
, Ht

~ I !5Ht
~ II !us0

. ~25!

The Maxwellian boundary conditions~25! refer to the wave
equation~1a!, but are not used explicitly in the wave-vecto
space method. Because the incident probe light induces
frequency-degenerate phonoritons of the same direction
propagation~along thex-axis!, Eqs.~25! should be supple-
mented by an additional boundary condition. The problem
the ABC’s is well-known in polariton optics.2,4,5,9,24 The
nonlocal dispersion of phonoritons stems both from the fin
exciton massMx and from the wave vector dependence
the Raman interaction. Therefore, it might be expected
in this more general case the ABC deals with the excito
polarizationP and the phonon potentialF at the crystal sur-
faces0. The wave-vector-space method yields Eqs.~23! and
~24! which correspond to Pekar’s ABC:

Pus0
50. ~26!

As recognized in Ref. 9 for polariton optics, the Maxwe
ian boundary conditions~25! together with an additiona
boundary condition should satisfy the energy flux conser
tion at the crystal surfaces0. In our case, for a monochro
matic probe wave withP(1)}E(1)}exp(2ivt1ip•r ) and
F (1)}exp@2i(v2vk)t1 i (p2k)•r )] the pump-induced
LO-phonon fluxSx-ph is proportional to the phonon wav
vector (p2k) and SgiSxiSx-phipik. For the analyzed one
dimensional geometry of the counterpropagating pump
probe plane waves, one gets from Eqs.~11a!–~11c!

S~x!5ut1u2S~1!~x!1ut2u2S~2!~x!1@ t1t2* S~12!~x!1H.c.#,
~27!
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where t i 51,2 are the partial transmission coefficients of t
probe light into the two frequency-degenerate phonorit
p1(v) andp2(v) and

S~ i 51,2!~x!5S c

v D H pi81
c2

«bVc
2v2S pi

22
«b

c2 v2D
3S ~pi* !22

«b

c2 v2D F S \v t

Mx
D pi81N0\v tL

2
1

V0
2

3@~pi1k!n~v!1~pi* 1k!n* ~v!#G J
3exp~22pi9x!ux>0 , ~28a!

S~12!~x!5
1

2S c

v D H ~p11p2* !1
c2

«bVc
2v2S p1

22
«b

c2 v2D
3S ~p2* !22

«b

c2 v2D F S \v t

Mx
D ~p11p2* !12N0\v tL

2

3
1

V0
2 @~p11k!n~v!1~p2* 1k!n* ~v!#G J

3exp@ i ~p12p2* !x#ux>0 . ~28b!

Here, S( i 51,2) are the total energy fluxes of the phonorito
waves with the real frequencyv and the complex wave vec
tors pi 51,25pi 51,28 1 ipi 51,29 , S(12) is the interference flux
of the two frequency-degenerate phonoritons, and the c
plex functionn(v)5n8(v)1 in9(v) is given by Eq.~20!.

The continuity of the energy flux of the probe light at th
crystal surfaces0 results in the following condition:

12ur u25S~x50!, ~29!

where S(x) is given by Eq.~27! @note thatS(x) of Eqs.
~27!–~29! is normalized by the incident flux of the prob
light#. The transmission coefficientst i 51,2 are determined by
Eqs. ~17a!,~17b! with r of Eq. ~23!. Equations~17a! and
~17b! are equivalent to the Maxwellian boundary conditio
~25!. Straightforward substitution of the coefficien

FIG. 4. The phonon-mediated optical Stark effect in the ex
tonic reflectivityR5ur (v,vk)u2 of CdS. The concentration of vir
tual coherent excitonsk induced by the pump light isN055
31017cm23 (I 051.5 GW/cm2).
s

-

r , t i 51,2, and the phonoriton wave vectorspi 51,2 of the
dispersion Eq.~2! show that Eq.~29! is indeed valid for
Pekar’s ABC~26!.

As it is shown above, Pekar’s ABC for the phonorito
Eqs.~1a!–~1c! has been generated by the wave-vector-sp
method as two conditionsPus0

5P(0)50. This ABC natu-
rally conserves the energy flux of the incident probe lig
across the crystal boundary, because according to Eqs.~11b!
and ~11c! Sxus0

}vPus0
50 andSx-LOus0

}vPus0
50. While

the exciton fluxSx and the pump-induced phonon fluxSx-LO
disappear ats0, the conservation of the total flux stems fro
the continuity of the electromagnetic flowSg of the probe
light. The Maxwellian boundary conditions~25! are respon-
sible for the conservation ofSg .

The reflectivityR(v,vk)5ur u2 of the probe light from the
boundary of bulk CdS in the presence of the cw pump lig
is plotted in Fig. 4 for the various positions of the anti-Stok
resonancevk1V0. The development of the PMOSE in re
flectivity with the increasing pump intensityI 0 is shown in
Fig. 5. The PMOSE of Fig. 5 corresponds to the most co
plicated case when the pump-induced Raman resonanc
vk1V0 nearly overlaps with the spectral band of the unp
turbed excitonic reflection.

VI. CONCLUSIONS

In this paper, we develop the electrodynamics of t
phonon-mediated optical Stark effect for excitons in po
semiconductors. The following conclusions summarize
study.

~i! The PMOSE is formulated in terms of three macr
scopic Eqs.~1a!–~1c! which describe the coupled electro
magnetic, excitonic polarization, and LO-phonon fields
the probe wave in a polar semiconductor in the presence
pump polariton. The corresponding three-component ph
oriton eigenwaves originate from the pump-induced hybr
ization of the initial polariton and LO-phonon dispersions

~ii ! The Poynting theorem for a crystal virtually excite
by the coherent pump light is derived and applied to
PMOSE. The total energy flux of the probe wave consists
the electromagnetic, excitonic, and pump-induced L
phonon components.

~iii ! In order to develop the optics of the PMOSE, w
apply the wave-vector-space method to the macrosco

-

FIG. 5. The PMOSE in the excitonic reflectivity versus pum
intensityI 0. The frequencyvk of the pump polariton corresponds t
that of Fig. 3@\vk52.515 eV, i.e.,\(vk1V02v t)51 meV].
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phonoriton equations. We calculate reflectivity of the pro
light and show that the continuity of the total energy flux
the crystal boundary is satisfied. The wave-vector-sp
method generates Pekar’s ABC. Numerical evaluations
the transient excitonic reflectivity spectra of the PMOSE
given for bulk CdS.
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