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Electrodynamics of the phonon-mediated optical Stark effect
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The electrodynamics of three-wave polariton-phonon interactions with spatial dispersion is developed and
applied to the phonon-mediated optical Stark effect in bulk polar semiconductors. This electrodynamics is
formulated within three macroscopic equations, which describe the coupled probe light field, excitonic polar-
ization, and LO phonons of a semiconductor virtually excited by the pump light. We analyze how the incident
probe light reflectgtransmit$ from a boundary of the crystal in the presence of an intense coherent polariton.
A Poynting theorem, which clarifies the structure of the total energy flux of the probe wave resonantly coupled
to the pump polariton through Raman interaction, is derived. In order to calculate the reflectivity of the probe
light from the boundary of a virtually excited crystal, we apply the recently developed wave-vector-space
method[B. Chen and D.F. Nelson, Phys. Rev.4B, 15 372(1993]. The transient excitonic spectra of the
phonon-mediated Stark effect are analyzed and calculated numerically for bulkSTi$3-182608)01727-5

[. INTRODUCTION Stark effect(PMOSBE of excitons in direct-band-gap bulk
semiconductors, which has been analyzed theoreti¢alfy
An excitonic polariton is one of the central concepts ofand observed experimentally;*~?*stems from the exciton-
semiconductor optick:® If the exciton-photon interaction is phonon interaction.
dominant, the polariton representation gives an adequate de- The intense coherent light of the frequeney from the
scription of the resonantly interacting excitons and photondransparency bana;— Q< wy=< w;— wy; induces the pump
which form a conservative, closed system in a direct-bandPolariton with wave vectok. The excitonic component of
gap bulk semiconductdfor a review of the polariton phys- the pump polariton characterizes the concentralign |, of
ics see, e.g., Ref.)7Due to the momentum conservation in the coherent virtual excitons. The wrtqal excitons with mo-
the optical transition “photon— exciton,” an incoming mentumk couple resonantly with optical phonons of the

photon with momentunp can be many times resonantly re- frequency (. This interaction gives rise to the PMOSE

absorbed and reemitted by the excitons with the same md’yhr'gh delv?iltcm;‘s ar‘]t dt?e alr;tl—iitolijers rﬁs%rrlam: Qo c;:‘ the
mentum. Within the polariton picture, this process is coher pump polariton and results in a drastic line shape chifuge

ent and does not lead to a “true optical absorptiginy the 10 Mwicnf<lo<1 GWjent) and a significant dynamical

dissipative sengedue to the excitonic resonance. Classicalsfhlft (for lo=1 GW(/lcrr?) ofdthglexcg_c;tn ;me. Both redshift
lariton electrodynamics requires the macroscopic polarit0t£| Or - @ic= e+ oy~ o) an uesh (_or WK O = Ot
gouationé‘f’a corresponding enerav theor&mOand an ad- —Q) of the exciton level can be realized by varying the
q ' ponading 9y ' . frequencyw, of the pump light.
ditional boundary conditiofABC) to calculate the optical

o A o . The PMOSE is a manifestation of thghonoriton spec-
reflectivity/transmissivity in the spectral vicinity of the exci- ++,m of a bulk semiconductor in the presence of a pump
ton resonancé*> "

. polariton®1416-18Thjs spectrum originates from the mutual
There are two energy parametéls andwy, in the polar-  hypridization and unification of the initial exciton polariton
iton optics. The polariton parametéd. is the oscillator and phonon dispersions, similarly to how the polariton dis-
strength of the exciton-photon coupling. The longitudinal-persion develops from the exciton and photon spectra. A
transverse splittingy;; characterizes the spectral width of an phonoriton is the corresponding three-component, photon,
excitonic line at the low temperatures. Becau$k.  exciton, and phonon, eigenstate of the semiconductor virtu-
=\ 2w w>w), the pump light with frequency, from the  ally excited by the pump light. Both the exciton-photon cou-
spectral bandv,— Q. < w<w;— w); does not undergo ab- pling and the pump-induced exciton-phonon interaction are

sorption but virtually creates excitons &, is the energy of included to construct the phonoriton eigenwaves.
an exciton at rest, i.e., characterizes the spectral position of So far, the PMOSE has been analyzed mainly with respect
the exciton ling. This important feature of the polariton to the pump-induced changes of théectronic (excitonig
eigenwaves, which was recognized by Hopfiéidctually  properties, i.e., within the corresponding phonoriton disper-
gives rise to the optical Stark effect. sion equation. In experiments, the probe light of the fre-
An exciton optical Stark effectOSE is the shift and quencyw tests the PMOSE in reflectivity or transmissivity of
shape change of an exciton line, which follow dynamicallythe exciton resonandsee Fig. 1, where the pump and probe
the intensity of the pump light. The classical OSE manifestdight counterpropagaje Similar to the polariton picture, the
itself as a dynamical blueshift of the exciton levgl in the  incident probe light induces two frequency-degenerate phon-
presence of a high-intensity 4=1GW/cn?) pump light of  oritons of the same direction of propagation. The further
the frequencyw<w; and partly results from the exciton- mixing of an optical phonon with the polariton does not in-
exciton Coulombic interactiotf. A phonon-mediatedptical  crease the number of the frequency degenerate excitations
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equations the Poynting energy theorem for the PMOSE in
polar semiconductors. The structure of the total energy flux
of the probe wave coupled with the pump polariton by the
LO-phonon resonant Raman interaction is analyzed.

In Sec. IV, as a means of studying the optics of the
PMOSE, we calculate the reflectivity and transmissivity of
the incident probe light from a boundary of a bulk semicon-
ductor in the presence of a pump polariton. For this purpose,
the wave-vector-space mettfds applied to the macro-
scopic phonoriton equations. This method derives Pekar's
-30 - ABC, which puts the excitonic polarization equal to zero at
the crystal boundary and does not involve the phonon com-

wW- 0, (meV)

ok (k,0, ) 1 ponent of the phonoritons induced by the probe light.
_ In Sec. V, the electrodynamics of the PMOSE is exam-
X ined with respect to the continuity of the energy flux of the
-50 - : . : []5| 1'0 15 incident probe light at the boundary of the crystal. The nu-
15 10 -05 0 6 1 ' ' merical evaluations of the PMOSE in the exciton reflectivity

Wave vector (10" cm ) are given for CdS.
FIG. 1. Energy-momentum diagram of the LO-phonon-mediated
Raman interaction of the polaritons in CdS. One-dimensional con- II. PHONORITON EIGENWAVES

figuration p||k|x axis, where p,») and (,w,) refer to the probe

and pump polaritons, respectively. The closed set of the macroscopic phonoriton equations

for the positive-frequency components of the electric field
. . Lo E(r,t), excitonic polarizatiorP(r,t), and LO-phonon scalar
because an optical phonon is nonpropagating in the lon

. . . 4
wavelength limit. Therefore, thepticsof the PMOSE needs %otenUaI(I)(r,t) is given by
a generalized polariton analysis. In the present paper, we

2 2
develop the electrodynamics of the PMOSE within the mac- iz ——AEM)(r,t)=— Aﬁ; izP“)(r,t), (1a)
roscopic phonoriton equations applied to a bounded polar ¢ at co dt
semiconductor. )
In the resonant Raman trlplet_, the probe poIanto_n, the f9_+2 Xi+w2— @A POO(r 1)
pump polariton, and the phonon field, the pump polariton is a2 " Y at toM, '
treated as a given classical field. Thus the three macroscopic 5
phonoriton equations deal with the electromagnetic and ex- =0 BECV(r,1) = 20pLPL" (r,) A (1 1),
citonic components of the probe polariton and the phonon (1b)
field which couples the pump and probe polaritons. The
pump polariton propagates as a free polariton. The probe 2 P
light of the frequencyw=w,+ ), which tests the phonori- {7+zyph—+ Q21d)(r 1)
ton spectrum of the PMOSE, does not influence the pump Jt Jt
polariton. On the other hand, we assume no pump depletion oL
due to Stokes scattering. In principle, Stokes scattering leads = P (r,t)-PU(r, 1), (10

to an instability of the pump polariton and results in stimu- \/;wt,B
lated Raman scattering of the pump light® However, _ _ _ _
these processes develop much more slowly than the pMoSkheresy, is the ba}ckground.dlelectrlc C(_)nstant for Fhe exci-
and in our case can indeed be negledfed. ton resonanceM, is the exciton translational mass,is the

It seems that 11—V direct-band-gap polar semiconductorsCrystal reduced mass density, and »*" are the rates of
e.g., CdS and CdSe, with the well-developed polariton effecicoherent scattering of excitons and LO phonons, respec-
and strong exciton—LO-phonon Triich interaction are op- tively. Th<_a Iattgr one, i.e., the inverse I|fet|m_e_ of LO
timal for the effective realization of the PMOSE. The nu- Phonons, is mainly due to the lattice anharmonicity which
merical calculations of this paper refer to bulk CdS with thel€ads to the decay “LO phonor- 2 LA phonons.” The
polariton parameter#Q.=98.5 meV, the longitudinal- LO-phonon scalar potentiab*)(r,t) determines the corre-
transverse splitting w;;=1.9 meV, and the LO-phonon fre- Sponding lattice displacement field*)(r,t) by u*)(r,t)
quency%Q,=38 meV. Becausé€l>Q,, these parameters =V®!")(r,t) andPy is the polarization of the pump polar-
are well suited for the PMOSE. An observation of theiton. The dimensionless oscillator strengdhof the exciton-
PMOSE in CdS was reported in Ref. 19. photon interaction relates to the polariton paramélerby

In Sec. Il, we analyze the macroscopic phonoriton equaﬂg=47r,8wt2/8b-
tions which describe the electromagnetic, polarization, and Macroscopic equationda—(1c) refer to the phonoritons
LO-phonon components of the probe wave in a semicondudn polar semiconductors. In this case, the LO-phonon reso-
tor virtually excited by the pump light. The phonoriton dis- nant Raman scattering of polaritons is mainly determined by
persion and the corresponding frequency-degenerate photie Frdilich mechanisnf> 2" The corresponding matrix ele-
oriton eigenwaves are discussed in detail. ment of the exciton-phonon interaction 81, ,(q)

In Sec. lll, we derive from the macroscopic phonoriton =L(A/2Q,V)*?q|, whereq is the LO-phonon wave vector,
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V is the volume of a crystal, and the paramdtas given by %
L=[Qo(me—my)/M, [ m(es/e.— 1) (% ) ]2282° Here, CdS
me(my) is the electron(hole) mass,M,=my+m, and u o
=mem,/M, are the translational and reduced exciton incident ePL»
P
(+]

I

|

l

|

masses, respectively, is the static dielectric constant,, is probe light |
the high-frequency dielectric constant for the LO-phonon __fek Egligfitonl
frequencyﬂo, anda, is .the exciton.Bohr radius. The pump- reflected o k |
induced terms on the right-hand siRHS) of Egs.(1b) and probe light E_T fe |
° |

|

|

(1¢) are proportional td.. <4+—
Equation(1a) is the Maxwell wave equation for the light
coupled with the excitonic resonance, i.e., with the source of O c-axis

photons on the RHS due to the excitonic polarization. The
left-hand sidg(LHS) of Eq. (1b) describes the excitonic po- .
larization with a quadratic wave vector dispersion. The first 0 X

rm on the RHS of Eq1b) refer n inver r
term on the S of Eq1b) refers to a erse process to FIG. 2. Counterpropagating configuration of the pump-probe

Eﬁé(lsz)t,:(;ﬁ(.j’ :g”twf;eoge:lheerag%nsoifsegﬁléo?s ?getrl%?hﬁézgi_resonant Raman interaction in CdS. The pump polariton is charac-
mediated Raman coupling between excitons of thpe robterized by the wave vectdy, frequencyw, , and linear polarization

: upiing W Xxcl . P SK The normally incident probe light of the frequeney wave
wave and the pump polariton. Finally, Ed.c) describes the

. ) . ._vectorp, (po=w/c), and linear polarizatiom, (&, &L c axis and
generation of LO phonons in the resonant Raman interactiop) . i1x axis) induces the probe polaritorp{w) (in the absence of

of the two polaritons. Becau_se the excitonip polarization,q pump light or two frequency degenerate phonoritons, ()
Pi(r,t) of the pump polariton is taken as a given coherentyng (v, w) (in the presence of the pump polarilon
field, Eqgs. (1a—(1c) are linear with respect to the fields

E, P, and® of the probe wave. Moreover, macroscopic
equationg1a)—(1c) are valid even for an operator represen-
tation of the fields and, therefore, are independent of the
photo_n statistics of the probe light. With decreasing Raman +2i ,yph(w_wk)_Qg]_4Q2(p_k)QOwt
coupling, i.e., if LP,.—0, Egs. (1@ and (1b) reduce to
Hopfield’s polariton equatiofis while the dynamic equation
(1¢) describes the free LO phonons. X
Macroscopic equation€la)—(1c) are derived for a semi-
conductor which is isotropic in the long wavelength limit. In X[(0—wy)%+2i Y (w— wk)—Qﬁ]zo, 2
particular, the analyzed intraband exciton-LO-phononhFro
lich coupling occurs only for the diagonal Raman scattering Vhere
i.e., is proportional to the scalar produtP, . This assump- h(p—K)2
tion is valid irrespective of the crystal symmetry, if excitons Q%(p—k)= NOLZp—
are supposed to be isotropit Furthermore, Eqs(1a)—(1c) 20
imply that the carrier frequencyw of the probe wave be-
longs to the spectral vicinity of the anti-Stokes resonanc
w,+ Qg of the pump polaritorisee Fig. L For the resonant
Raman interaction of the probe and pump waves, only th
ground-state exciton resonance is treated. This assumption I, Ve Q2 1
denotes thaf).> (), and holds, e.g., for CdS. No=———|P5")|2= 0 Véb c ,
We analyze a case when the coherent pump polariton is a hoB hog © (w—w)? (1+ep)?
cw plane wave, ie.,P{7(r,t)=P expiwt+ik-r), (4)
WhgreP_(()I)zco_nst_ls the positive-frequency amplitude of th‘? where the reflection from a crystal surface is taken into ac-
excno_nlc polarization of the pump wave. Th_en: th+e) Phonori--qunt for normal incidence of the pump light.
ton cigenwaves can be found by f“bSt'tuF'E'(‘ (r,1) Macroscopic Egs(1a—(1c) and dispersion equatiof®)
=E{ expiwt+ip-r), PO(r,t)=P{ exp(-iot+ip-r),  characterize the three-component phonoriton eigenwaves.
and ®(r,t)=d{exd —i(w—w)t+i(p—k)-r], where The phonoriton is a coherent admixture of excitons, photons,
E(Y), PLY), and ®(") are the constant positive-frequency and LO phonons which occurs in a spectral vicinity of the
amplitudes. In order to simplify Eq$1a—(1c), we treat the anti-Stokes resonance,+ o of the pump polariton. The
one-dimensional geometry witR,||P and k|p||x axes(see underlying physical picture of the phonoritons is the follow-
Fig. 2. For example, macroscopic equatioi®)—(1c) can  ing one. The incoming probe light creates resonantly an ex-
be applied to the one-dimensional geometry of Raman scatiton with momentunp. The excitonp undergoes a stimu-
tering in CdS or CdSe if, in additio®,|PL c andxL c. Here, lated Raman transition to the pump polaritetnwith an
c is the main crystallographic axis of these uniaxial semiconemission of the LO phonon with the wave vecir k. In
ductors. turn, the created LO phonon can be reabsorbed by excitons
For the one-dimensional geometry, one gets from Eqsof the pump (macroscopig polariton and gives rise to
(1@—(1c¢) the phonoriton dispersion equation the inverse process. Within the phonoriton picture the se-

2 e
w?+2i "yxw—wtz—ﬁwt,a—}( p2— Cjbwz)[(w—wk)z
X

€ph €p
pZ_Esz) +Ezw29§

)

is proportional to the concentratidty, of the virtual coherent
%xcitons induced by the pump light. The concentratignis
given through the intensiti, of the pump light by
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imaginary terms in Eqg(2). For the counterpropagating con-
figuration, the probe wave of frequenay induces two fre-
quency degenerate phonoritons with wave vegq(s) and
p,(w) of branches 1 and 2, respectively. The phonoriton
amplitudes decrease with propagation, according to the
damping. For forwardscattering, when the macroscopic po-
lariton and the probe light copropagate, the phonoritons with
wave vectorsps(w) and ps(w) of branches 3 and 4 are
excited. The sectors of anomalous dispersion of branches 1
and 3 correspond to the pump-induced sfdée Fig. 3. For
branch 1(backscatteringthe split is considerably more de-
veloped in comparison with that of branchf8rwardscatter-
ing).
With decreasing pump intensity,— 0 the upper sectors
of branches 2 and 4 and branches 1 and 3 evolve to the upper
and lower polariton dispersions, respectively, while the
lower sectors of branches 2 and 4 yield the LO-phonon dis-
persion calculated from the frequenay,, i.e., a horizontal
10 15 line w,+Qq. The phonoriton modification of the initial LO-
5 phonon term is accompanied by a finite LO-phonon mass,
Wave vecfor (10°cm’) because according to Ed3) Q*(p—k)x|M, p(p—K)|?

FIG. 3. The phonoriton dispersion curves for the concentration“(p_k)z' _The f'_n'te pump-lnduced mass can be estimated
Ny=5x 10%m 3 of virtual excitonsk induced by the coherent [rom the dispersion equatiof?) as
pump light. The following CdS parameters are used in the numeri-
cal evaluations#w,=2.552 eV,%w,;=1.9 meV, a,=28 A, m, o ot Qo(w?— w?)
=0.2my, my=my, =0.7My, ep=£s=9.3, ande,,=5.81. The Mph=Mph(lo, @)= — -2 )
frequency of the pump lightpump polariton corresponds td w @iNo
=2.515 eV, i.e.i(w+Qy— w;))=1meV. The phonoriton disper-
sion branches 1-23-4) refer to the backscatteringorwardscatter-

w-wy (meV)

Simultaneously, one gets a pump-induced renormalization
ing) interaction of the counterpropagatirigopropagating probe of the bare exciton mas,. This renprmallzgtlon can he
and pump polaritonsp,_; 5~ Re(Ps—1 25 @)} (solid lines 1-4 easily seen for the monochromayc spat|all%/+)|nhomo—
and pi/;123f|m{pi:l‘2’3’;(’w’)} (dotted lines t—4*). The damp- 9eneous waves of Egs(la—(1c), i.e., for E'"/(r,t)
ing constants are given byy*=0.01 meV andi y*"=0.1 meV. =ED(nexpiot), PU(rt)=P(r)exp(-int), and
OH(r,) =02, (r)exd—i(w—wt]. With substitution of

quence “excitonp— excitonk+LO phononp—k—exciton  &(*)(r) from Eq. (10 in Eg. (1b), the initial macroscopic
p—---” is a coherent process. The coherent phonon-equations reduce to
mediated oscillations between the probe and pump waves
result in the development of a split at the anti-Stokes reso-
nance of the pump polariton, i.e., at frequenrgy+ Q. This
picture is similar to the polariton one. The phonoriton eigen-
waves are a generalization of Hopfield’s concept to three-
particle coherent interactions. _ , hoy fio, _

According to dispersion equatid®), there are two basic —0?=2i Y o+ of - woA- —(V=ik)2|PL(r)
parametersQ). and Q(p—k) characterizing the exciton- X M
photon interaction and the pump-induced Raman transitions, = w2BELT)(r) (6b)
respectively. With decreasing pump intenditythe Raman tee ’
coupling Q(p—k)—0 and the phonoritop decouples into
the polaritonp and LO phononp—Kk. An increase of the
damping processes, i.ey* and y"", also relaxes the phon-
oriton picture. Becaus®(p—Kk) is proportional to the value
|p—k| of the transferred phonon momentum, the largest
phonoriton split atw,+Qy occurs for the backscattering
configuration when the pump and probe light counterpropa-
gate(see Figs. 1 and)2

The phonoriton dispersion calculated with E@) for The extrema of the pump-induced LO-phonon dispersion
No=5X10%m2 in CdS is plotted in Fig. 3. The corre- with MSf of Eq. (5) and of the additional excitonic disper-
sponding Mott factorNOasz.l is still considerably less sion with Mﬁﬁ of Eq. (7) refer to the same poirk (wave
than unity. Because the dispersion equafi@nis fourth or-  vector of the pump polaritonin momentum space. For the
der with respect to the wave vectpr there are four phon- well-separated Raman and excitonic resonances, i.e., when
oriton dispersion branches 1-4. In order to classify the distw,+Q¢— o= o, one gets from Eqg5) and (7) the ap-
persion branches we preserve the finite damping, i.e., thproximate relationship

4
EL(N=— 0P, (68

€p
—2(1)2+A
C

where the pump-induced effective mad§" is given by
MZT=M3 (1, 0)

= W[(w_wk)2+ 2i P w—w)—QFl. (7)
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M1, 0=+ Q)= —ME (15, 0=w,)

Qg
= NOLZ(wk+QO_wI)'

®)
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second oneS, of Eq. (11b characterizes a “mechanical”
flow due to the translational motion of excitons of the probe
wave. Finally, the vecto, | o of Eq. (110 describes a flow

of coherent LO phonons generated in the stimulated Raman
transitions of excitons of the probe wave into the pump po-

According to Eq(8), the sign of the pump-induced effective
LO-phonon mass depends upon the position of the Ram
resonancew, + (), with respect to the exciton level,. The
assumed proportionality of the matrix eIemeM;( ph(p k)

to |p—k|, which gives rise to flnltd\/lg and M is valid
provided thaip—k|a,<1. This inequality holds for the op-
tical range of Fig. 3.

lariton k. With decreasing pump intensity, the fluxS_ o
a@isappears. Physically, the three contributionStoriginate
from the three componenigxciton, photon, and LO pho-
non of the phonoriton. Both, the excitonic flu®, and the
pump-induced phonon flug,. o slow down the energy
propagation of the probe wave.
The total energy densitW is given by

Ill. THE POYNTING THEOREM FOR A CRYSTAL
VIRTUALLY EXCITED BY PUMP LIGHT

W= W‘}/+ WX+ WLO+ WX-LO f

1
——[ep(E-EC)+HTLHO,

W, =1 (129

The Poynting theorem is a continuity relation between the
time rate of change of the stored electromagnetic energy, the
outgoing flow of energy, and its dissipation. In our case, the
energy theorem clarifies a structure and an origin of the en-
ergy flow of a probe wave coupled with the pump polariton
through the LO-phonon-assisted Raman interaction. The en-
ergy theorem is formulated within the macroscopic Egs.
(1a—(1¢). Mainly, we are interested in the total energy flux
S of the probe wave, because conservation of its normal

1

[gp*)
awlp ot

gP)
gt

+wt2P(+).P(*)

+

. (pr<+>)-(v><P<—>)},

X

(12b

QAVOH)) . (V) +

d d
) =vp)
tV(b ) <0tV<D )

component at a surface of the virtually excited polar semi- Lo™ 4
conductor is a natural constraint for any set of the boundary p p
conditions. i _ (+>) (=) —j (_ (—))
+i Vo (VO i Vo
In order to get the energy theorem, one starts from the @ gt ( ) mlo ot
well-known consequence of Maxwell's equations
c 1 JE  oH P (VO , (129
4n v (EXHIF ] ook Gt He et amE 2o =0, "
9 __Lr (). P axrf —i :
W, 0= 8 B{V[P Py 'expl —iwgt+ik-r)]

whereH is the magnetic field of the light. Substituting an
expression foE in terms ofP andA® from Eq.(1b) into the
term 47E- 0P/ gt of Eq. (9) and performing some vector al-
gebra, which involves Eqlc), we derive

VO +H.cl. (120)
Here, W, and W, are the densities of the electromagnetic

spectively. The density of the phonon eneidl, of Eq.
(120 refers to the LO-phonon frequen€y, calculated from
the frequency wy, of the pump polariton, i.e.,W, g
=(pl4)(Qo+ w,)2ul™) - u), Physically, this is because in
the stimulated Raman decay “probe wavepump polariton
+ LO phonon” the phonon energg(), is accompanied by
the “hidden” energy# wy which refers to the pump polar-

IW
—+V.S+0=0,

pn (10

whereW is the density of a total stored energy, is the
energy dissipation rate, arilis the total energy flux given

by

S=S,+S+Suo0. S,= [E IxH® +H.c], iton. Finally, W, 5 is the energy density of the exciton-
167 phonon coupling induced by the macroscopic polariton.
(113 The energy dissipation raf@ is
ho [oP) X [gPH) gP(7)
- _ X pr(+) — Y / . php (+)
> 4thMx[ T : 0=l T [T 22 Vq)
(+) P J G
+(V-P )T-f—H.C., (11b . qu)(—) +iwy EVq)(+) (V)
L 1/2 P( )
Si.l0= 8w,8( P P<+>)Vc1> P +Hel. (119 —Iwk( V(- >> (VO . (13

According to Egs(113—(110), the total energy flux consists The incoherent scattering of excitons proportionalytoand
of three components. The first o is an electromagnetic the decay of LO phonons given by"" contribute to the
flux given by the Poynting vector of the probe wave. Theenergy dissipation. Similarly to the teri, o of Eq. (120),

energy and of the energy of the excitonic polarization, re-
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the phonon dissipation term of E(.3) refers to the effective w? w? A

energyi(Qo+ 0 )>%Q,, due to the presence of the pump | P°— CT) E(D)+(p2—8bgz') E+(p)—€zwzp+(p)=0,

polariton. (159
An energy fluxS,,, which corresponds to the phonon

energy densityV, o given by Eq.(120), does not contribute f o,

to the total fluxS because the group velocity of LO phonons, ( 02— 0= 2iY'o+ M—pz) P_(p)— Bw’E.(p)

unperturbed by the pump polariton, is equal to zero. The x

energy fluxS,, o of the coherent LO phonons originates - hog 1

from a pump-induced finite mada® [see Eq(5)]. With the —2w/pL(p+K)?PL D (p+K) + N 27

pump intensityl ,— 0, the polariton system decouples from X

the LO-phonon one. In this case, E¢$1a, (11b) and Egs. _ P\ (@
(129, (12b) are identical to those derived in Ref. 8. X|ipP?+ X _“’t\/;L PEJK)
1 ad\©
IV. EXCITONIC SPECTRA OF THE PHONON-MEDIATED X—li(p+ k)<I>(0)+ —) =0, (15b
OPTICAL STARK EFFECT m X
The PMOSE changes the reflectivifransmissivity of [(0— wy)?+2i yph(w—wk)—ﬂ(z)]q)+(p+ k)
the probe light from a crystal. These modifications refer to
the Raman resonanae,+ (), and follow dynamically the 2L (=)
- : : : ; + Pox’P+(p)=0. (150
intensityl  of the pump light. In order to find the PMOSE in \/;wt:B 0

the transient excitonic spectra, one needs to analyze how the

incident probe light reflects, propagates, and transmits in andere, a Fourier transforrt [F=E(")(p), P(*)(p), and
from a crystal in the presence of a pump polariton. In thed(*)(p+Kk)] is treated a§¥=F , + F_, whereF , has poles
present paper, we apply a recently developed wave-vectoonly in the upper half complep=p’+ip” plane which can
space methdd to macroscopic phonoriton Egd.a—(1c). A be shown to be those of the semiconductoe(Q), while F _
macroscopicapproach is used, i.e., Eqda—(1c) are sup- has poles only in the lower half-plane which can be attrib-
posed to be valid up to an abrupt crystal boundagyat uted to the incident and reflected probe lightxat0. The
x=0 (see Fig. 2 No changes of the parameters of Egs.surface values of the excitonic polarizati®® and of the
(1a—(1c) due to the surface effects are assumed. Derived O-phonon potentiakb(® and their first-order derivatives
quantities such as the susceptibility are affected near the sufap/x)(® and (@E®/9x)(® are defined by F©
face by the nonlocal interactions. Since these effects occur i [ **F(p)dp and @F/x)O=["ZipF(p)dp (F=P,d),

a surface layer that is narrow compared to a wavelegth, theyespectively. These quantities are still unknown at this point

arise naturally as surface distributions of fields in the longi the derivation. Equationd5a—(15¢) in momentum space

wavelength or macroscopic theory. We consider a normagre equivalent to Eq(14) (x<0) and Egs.(1a—(1o) (x

incidence of the probe light on the crystal from a spatially> o) in real space.

nondispersive mediee.g., from air or vacuum The functional form of the electric field in wave vector
The wave-vector-space meth8dwhich was originally space is given &}

developed to calculate an excitonic reflectiransmissioh

within the polariton picture, operates in momentum space Eo[ 1 r

and yields the reflection and transmission coefficients with- E_(p)=-— 2wi{p—w/c+i6+ Dt wictis)

out any explicit use of the boundary conditions. Being ap-

plied to the macroscopic phonoriton equations, this method [ ¢ ¢

allows us to find the reflection coefficienfw) and the par- E.(p)= o)1 4 2 | (16)
tial transmission coefficients () of the probe light. The 27i[p—p; " P—p2

coefficientst, , describe how the transmitted intensity of the whereE, is the amplitude of the incident light ang— +0.
probe wave is shared between the two frequency-degeneratgistituting in Eq(153 the expressions ob . (p+k) and

phonoritonsp; (w) and py(w). _ P.(p) in terms ofE. (p) found from Eqgs(15b),(150), one
In the wave-vector-space method, the macroscopic Eqgets

(1a—(10), which are valid forx=0, are supplemented by the
wave equation 1+r—t;—t,=0, (179

(w/c)(1—r)—t1p;—t,p,=0, (17

EC)(r,t)=0, (14

1 52 A
2 at2

Alt1(PaPs+ PaPa+ PaPa) +ta(P1P3+ P1Pa+ P3Ps)]

which descrit_)es_the incident and reflected probe light at —B(ty+1,)— C(typs+top,) + Da,=0, (179
x=<0. A combination of Eq(14) for x<0 and Eqs(1a—(1¢)
for x=0 is given in terms of the step functidn(x). Then,
for the considered one-dimensional geometry, a Fourier
transform [ 7% . . . exp(—ipx)dx of Eq. (14) and Egs.(1la)—
(1c) yields Here,

—A(t1pa+1,p1)papat B(typy+topy) +iDay =0.
(179
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B=—[(0— w)?+2i "N 0— ) — 05](0?+2i yP o — w?)

(18b

ﬁwt
My

)[(w—wk)2+ 2i PN w— ) — Q3]+ 2L %Ny,
(189

+27k2L°Nyw;

C=4#kL?Nyw;, (180

. 8u? ) )
D=—7 0f(0—w)?+2i1 Y (0—w)—Qg], (180

C
1[. P\ Ol fw, 1 (oP\©
a1=wt\/;LPE,I);[Ik(D(O)+ &) - M, E(W )
(18¢
1 fiwy 1
_ (+) Zgp(0) _ 2t = p(0)
a,=wp/pLPY, —0 M 5P (18f)

After the treatment described above, Efj59 reduces to a
cubic polynomial of the variabl@. Equations(178—(170d

originate from the requirement that this polynomial is iden-

tical to zero and thap is arbitrary(for details of the method
see Ref. 2% This procedure implies thatandt, , are inde-
pendent of the variablp. Formally, five unknown variables
r, ty,, andea;y,enter four coupled Eqg1l7a—(17d.
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Equations(178—(170d and Eq.(21) are five coupled lin-
ear equations which completely define the reflectivitghe
partial transmission coefficients ,, and the surface terms
a1 ,. Then, the surface valueB®, (9P/ax)©@, &),
and (®/9x)© can be found from Eqg18e,(18f) and Egs.
(19). The solution of Eqs(17a—(17d) and(21) yields P(®)
=0 and

A—B

r(w)zm,

(23
whereA andB are given by

w

A=l

c

Equations(23) and (24) with the phonoriton wave vectors

P1.=P1Aw) given by Eq.(2) describe the PMOSE in re-
flectivity.

Sb 2
(P11 p2), B=(p1pz+gzw)- (24

V. DISCUSSION

The transient excitonic spectra of the PMOSE depend on
the boundary conditions for the macroscopic phonoriton Egs.
(1@—(19). In our case, the Maxwell equations yield the con-
tinuity of the tangential components of the electric and mag-
netic fields of the probe light at:>>°

E('):E(”)| H('):H(”)| (25)
T T log T 7 log

From Eg. (150 one gets the relationships between theThe Maxwellian boundary condition®5) refer to the wave
surface values of the phonon potential and excitonic polarequation(1a), but are not used explicitly in the wave-vector-

ization and their first-order spatial derivatives:

opP\©
ikP<°>+(—> }
X

aPp\ (@
—) =nv(w)

PO = nv(w)P(O), ( ™

(19
where
— (No)= L(2ﬁN0>1’2
7T 08 wiBp
v(w)=v(w)+iv(w)
05
(w- 00?2 yM0-w)-02 (20
Taking into account Eqgs.(19) and the definition

PO=**p(p)dp, one derives from Eqg15b) and(150:

2i

B} [t Lo 4 N
(3p2—P1)

a2= ~ ~ = +~
m(3P2— Pl)\ P2—P1 P2—P2

1
(21

wherep; andp, are the solutions of the quadratic equation

Ap?+Cp+B=A(p—py)(p—p,)=0. (22)

space method. Because the incident probe light induces two
frequency-degenerate phonoritons of the same direction of
propagation(along thex-axis), Egs.(25) should be supple-
mented by an additional boundary condition. The problem of
the ABC's is well-known in polariton optics®*%2* The
nonlocal dispersion of phonoritons stems both from the finite
exciton masdM, and from the wave vector dependence of
the Raman interaction. Therefore, it might be expected that
in this more general case the ABC deals with the excitonic
polarizationP and the phonon potentidh at the crystal sur-
faceo. The wave-vector-space method yields E@8) and
(24) which correspond to Pekar's ABC:
P|(,0:O. (26)

As recognized in Ref. 9 for polariton optics, the Maxwell-
ian boundary conditiong25) together with an additional
boundary condition should satisfy the energy flux conserva-
tion at the crystal surface. In our case, for a monochro-
matic probe wave withP{"o«cE(Mxexp(iwt+ip-r) and
OMocexgd —i(w—w)t+i(p—k)-r)] the pump-induced
LO-phonon fluxS, , is proportional to the phonon wave
vector p—k) and S ||S |S.pdlp[k. For the analyzed one-
dimensional geometry of the counterpropagating pump and
probe plane waves, one gets from E(fsla—(110

S(x) =ty > ST (x) + [t 2S?(x) +[1t5 S*?(x) + H.c],
(27)
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FIG. 4. The phonon-mediated optical Stark effect in the exci-

tonic reflectivity R=|r(w, w,)|? of CdS. The concentration of vir-
tual coherent excitonk induced by the pump light iNy=5
X 10em ™3 (1,=1.5 GW/cn?).

wheret;_, , are the partial transmission coefficients of the
probe light into the two frequency-degenerate phonoriton
p1(w) andp,(w) and

X[(pi+K)v(w)+(pf +K)v*(w)]

(283

X eXF( - Zpi"X)|x>Oa

C2

sbﬂng
ﬁwt
My

(P1tK) v(w)+(p3 +K)v* ()]

02,
1 CZ

$1(x) = 1(%){(pl+p;>+

2

i 2o

(p1+p3)+2Noh o L?

|

Here, S(=12) are the total energy fluxes of the phonoriton
waves with the real frequenay and the complex wave vec-
tors i1 o= Pi_1,+ipi—1,, S is the interference flux

X 2

&p
(DS)Z—gw

y 1
Qg[

Xexqi(pl_p;)xﬂxzo- (28b)
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FIG. 5. The PMOSE in the excitonic reflectivity versus pump
intensityl 5. The frequencyw, of the pump polariton corresponds to
that of Fig. 3[fw,=2.515 eV, i.e.fi(w+Qo—w)=1 meV].

r, ti—i,, and the phonoriton wave vectops_, , of the

%ispersion Eq.(2) show that Eq.(29) is indeed valid for

ekar's ABC(26).
As it is shown above, Pekar's ABC for the phonoriton
Egs.(1a—(1c) has been generated by the wave-vector-space
method as two condition®|, =P(®=0. This ABC natu-

rally conserves the energy flux of the incident probe light
across the crystal boundary, because according to(Egjb.
and (110 SX|,,Oo<wP|,,0=0 and SX_LO|,,Oa<wP|,,0=0. While

the exciton fluxS, and the pump-induced phonon fl&, o
disappear atrj, the conservation of the total flux stems from
the continuity of the electromagnetic flo®, of the probe
light. The Maxwellian boundary condition25) are respon-
sible for the conservation &, .

The reflectivityR(w, w) =|r|? of the probe light from the
boundary of bulk CdS in the presence of the cw pump light
is plotted in Fig. 4 for the various positions of the anti-Stokes
resonancew, + {,. The development of the PMOSE in re-
flectivity with the increasing pump intensity, is shown in
Fig. 5. The PMOSE of Fig. 5 corresponds to the most com-
plicated case when the pump-induced Raman resonance at
wy+ Qg nearly overlaps with the spectral band of the unper-
turbed excitonic reflection.

VI. CONCLUSIONS

In this paper, we develop the electrodynamics of the
phonon-mediated optical Stark effect for excitons in polar
semiconductors. The following conclusions summarize our
study.

(i) The PMOSE is formulated in terms of three macro-

of the two frequency-degenerate phonoritons, and the COMscopic Egs.(1a—(1¢) which describe the coupled electro-

plex functionv(w)=v'(w)+iv"(w) is given by Eq.(20).
The continuity of the energy flux of the probe light at the
crystal surfacery results in the following condition:

1-|r]?=S(x=0), (29)

where S(x) is given by Eq.(27) [note thatS(x) of Egs.
(27)—(29) is normalized by the incident flux of the probe
light]. The transmission coefficients., , are determined by
Egs. (179,(17b with r of Eq. (23). Equations(179 and
(17b) are equivalent to the Maxwellian boundary conditions
(25). Straightforward substitution of the coefficients

magnetic, excitonic polarization, and LO-phonon fields of
the probe wave in a polar semiconductor in the presence of a
pump polariton. The corresponding three-component phon-
oriton eigenwaves originate from the pump-induced hybrid-
ization of the initial polariton and LO-phonon dispersions.

(i) The Poynting theorem for a crystal virtually excited
by the coherent pump light is derived and applied to the
PMOSE. The total energy flux of the probe wave consists of
the electromagnetic, excitonic, and pump-induced LO-
phonon components.

(iii) In order to develop the optics of the PMOSE, we
apply the wave-vector-space method to the macroscopic
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