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Exact eigenstates of tight-binding Hamiltonians on the Penrose tiling

Przemysław Repetowicz, Uwe Grimm, and Michael Schreiber
Institut für Physik, Technische Universita¨t Chemnitz, D-09107 Chemnitz, Germany

~Received 19 May 1998!

We investigate exact eigenstates of tight-binding models on the planar rhombic Penrose tiling. We consider
a vertex model with hopping along the edges and the diagonals of the rhombi. For the wave functions, we
employ an ansatz, first introduced by Sutherland, which is based on the arrow decoration that encodes the
matching rules of the tiling. Exact eigenstates are constructed for particular values of the hopping parameters
and the eigenenergy. By a generalized ansatz that exploits the inflation symmetry of the tiling, we show that the
corresponding eigenenergies are infinitely degenerate. Generalizations and applications to other systems are
outlined.@S0163-1829~98!03844-2#
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I. INTRODUCTION

The discovery of quasicrystals by Shechtmanet al.1

stimulated wide interest in the physics of these materi
which are intermediate between periodic and random st
tures. Besides icosahedral quasicrystals, which are aper
in all three dimensions of space, also periodically laye
structures with planar quasiperiodic order and noncrysta
graphic rotational symmetries were found, comprisi
dodecagonal,2 decagonal,3 and octagonal4 phases with 12-
fold, tenfold, and eightfold symmetry, respectively. A
though the fundamental question ‘‘where are the atoms
raised, e.g., in Ref. 5, has only been answered partially
date, most structure models of quasicrystals are base
two- or three-dimensional quasiperiodic tilings or their d
ordered versions~random tilings!.

An important and exciting problem in condensed-mat
physics is whether the quasiperiodic structure leads to
and unexpected physical properties. In particular, trans
properties, as, for instance, electric or heat conductance
strongly affected by the nonperiodic order. Indeed, ma
quasicrystalline alloys are characterized by very high val
of electric resistivity, by a negative temperature coefficie
of resistivity, and by a low electronic contribution to th
specific heat, which points to a small density of states at
Fermi energy. It is difficult to explain these striking feature
because a rigorous theory of the electronic structure of q
siperiodic materials does not exist. For want of a sim
analogy of Bloch theory for quasicrystals, one either carr
out numerical calculations for as large clusters as possible
one tries to make exact statements about the electronic w
functions in simple models.

We consider tight-binding models on the two-dimensio
rhombic Penrose tiling.6 Our models are so-called verte
models because we locate the atoms at the vertices o
tiling. Interactions are taken into account only betwe
neighboring vertices connected by edges or by diagonal
the rhombi. In our calculations, we restrict ourselves to
singles-type atomic orbital per vertex. This makes the tran
fer integralst i j independent of the angular orientation a
leads to the following Hamiltonian

H5(
i

u i &« i^ i u1(
i , j

u i &t i j ^ j u, ~1.1!

whereu i & denotes a Wannier state localized at vertexi , and
« i are on-site energies. For the hopping integralst i j , we
PRB 580163-1829/98/58~20!/13482~9!/$15.00
s,
c-
dic
d
-

,’’
to
on
-

r
w
rt
re

y
s
t

e
,
a-
e
s
or
ve

l

he
n
of
a
-

choose six different values 0, 1,d1 , d2 , d3 , andd4 , depend-
ing on the distance of the verticesi and j ~see Fig. 1!. Here,
t i j 51 for vertices connected by an edge of the tiling,t i j
5d1 (d2) for the long~short! diagonal of the ‘‘fat’’ rhom-
bus,t i j 5d3 (d4) for the long~short! diagonal of the ‘‘thin’’
rhombus, andt i j 50 for vertices not connected by an edge
a diagonal, respectively.

As the Penrose tiling is arguably the most popular amo
the quasiperiodic tilings, it is not surprising that tight-bindin
models defined on the Penrose tiling have been investig
rather thoroughly. Besides the vertex model,7–19 the so-
called center model was considered,20–24 where atoms are
located in the center of the rhombi, and hopping may oc
between adjacent tiles—this is nothing but a vertex mode
the dual graph of the Penrose tiling. However, most res
rely on numerical approaches, and only few exact results
the spectrum of the tight-binding Hamiltonian are known.
particular, so-called ‘‘confined states’’ have been inves
gated in detail, both for the vertex9,14 and the center model.22

These are infinitely degenerate, strictly localized eigensta
corresponding to a particular value of the energy, which
cur as a consequence of thelocal topology of the tiling~see
also Ref. 18!. Furthermore, for a Hamiltonian~1.1! with par-
ticular on-site energies« i chosen according to the verte
type at sitei , the exact self-similar ground state could b
constructed.10 Based on the same idea, several no
normalizable eigenstates of the center model and their m
tifractal properties were obtained exactly.23 These solutions,
restricted to special values of the hopping integrals, w
derived from a suitable ansatz for the eigenfunctions. A
cording to this ansatz, the wave function at a site depe
only on its neighborhood and on a certain integer num
associated to the site, a ‘‘potential,’’ which is derived fro
the matching rules of the Penrose tiling.10

In this paper, we apply the same ansatz to the ver
model on the Penrose tiling. The solution is more comp

FIG. 1. The two types of rhombi in the Penrose tiling and t
assignment of hopping integralsd1 , d2 , d3 , andd4 to their diago-
nals. The hopping integral along the edges is chosen as 1.
13 482 ©1998 The American Physical Society
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PRB 58 13 483EXACT EIGENSTATES OF TIGHT-BINDING . . .
cated than for the center model, where the coordination n
ber ~i.e., the number of neighbors! is always equal to four,
whereas for the vertex model it varies between three
seven, or between 6 and 14 if we include neighbors al
diagonals, respectively. For suitably chosen transfer in
grals, we derive exact eigenstates of the Hamiltonian~1.1!
and analyze their multifractal behavior. As observed for
center model,23 we find that these states are infinitely dege
erate, i.e., for the fixed value of the energy the eigenfu
tions still involve one free parameter. In order to show th
we need to generalize the ansatz exploiting the inflation s
metry of the Penrose tiling.

Our paper is organized as follows. In the subsequent
tion, we discuss the labeling of the rhombi with two kinds
arrows and the associated potentials. In Sec. III, we introd
the ansatz for the wave function and solve the tight-bind
equations for two cases, the first one with« i50 anddiÞ0,
and the second one withdi50 but various on-site energies
A generalized ansatz, based on the inflation symmetry of
tiling, is considered in Sec. IV. In Sec. V, we perform
fractal analysis of the wave functions, i.e., we calculate
generalized dimensions. Finally, we conclude in Sec. VI.

II. EDGE-LABELING AND POTENTIALS

Following de Bruijn,25 we mark the rhombi with single
and double arrows, as shown in Fig. 2. The matching ru
require that arrows on adjacent edges match. Fixing a ce
site O as the origin, we assign to a sitei two integersn( i )
andm( i ), which count the number of single and double a
rows, respectively, along an arbitrary path connecting
origin O and sitei . This is well-defined because, along a
closed path, the total number of single and double arro
vanishes, as can be seen from Fig. 2. We refer to these
gersn( i ) andm( i ) as ‘‘potentials’’ at sitei because they are
integrals of the two vector fields defined by the arrows. T
distributions of the potentials are rather irregular and sh
the following properties.

The single-arrow potentialn( i ) is directly related to the
sumt( i )P$1,2,3,4% of the five-dimensional indices denotin
the translation class of the sitei . It takes only two values:
n( i )50 if t( i )P$2,3% andn( i )51 if t( i )P$1,4% @provided
the origin has translation classt(O)P$2,3%]. The double-
arrow potentialm( i ) is unbounded. Its distribution on a finit
patch is shown in Fig. 3. For a detailed discussion of
distribution, see Ref. 10. The potentialm( i ) is the key ingre-
dient in the construction of exact eigenfunctions of tig
binding Hamiltonians on the Penrose tiling.

III. SOLUTIONS OF THE TIGHT-BINDING EQUATIONS

We want to construct solutions of the tight-binding equ
tions

FIG. 2. Arrow decoration of the Penrose rhombi. Note that o
decoration differs from that used in Refs. 10 and 23 in the direc
of the arrows.
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t i j f j5~E2« i !f i , ~3.1!

where we sum over all neighborsj of the sitei . As an ansatz,
we demand that the wave function amplitudef i at site i
depends solely on the vertex typen( i )P$1,2, . . . ,8% and on
the potentialm( i ). This leads to the following ansatz:

f i5An~ i !b
m~ i !. ~3.2!

The eight vertex types of the Penrose tiling are shown in
top row of Fig. 4. The corresponding eight amplitudesAn

andb are parameters.
We note that the ansatz~3.2! does not form a complete

set, thus we cannot expect to describe the general solutio
Eq. ~3.1! in this way. Nevertheless, as we shall show in wh
follows, we can find particular solutions of the form~3.2! for
the tight-binding Eq.~3.1!, provided the hopping paramete
d1 , d2 , d3 , d4 , and the energyE fulfill certain conditions.

A. The case« i50

For simplicity, we first concentrate on the case with o
site energies« i50. With the ansatz~3.2!, the infinite set of
Eq. ~3.1! reduces to a finite set comprising as many eq
tions as there are second-order vertex types in the tiling.
a second-order vertex type we mean the neighborhood
site up to its second coordination zone. There are 31 diffe
second-order vertex types in the Penrose tiling. These
shown in Fig. 4, grouped together according to the first-or
vertex type of the central site given in the top row. Thu
we have 31 linear equations in the 14 variablesAn

(n51, . . . ,8), b, d1 , d2 , d3 , d4 , andE. As it is straight-
forward to derive the equations from the second-order ve
types of Fig. 4, we refrain from listing them here. Instead,
consider as an example only the second-order vertex type
the first column of Fig. 4, which we show again in Fig.
~rotated by 90°! together with the corresponding values
the potentialm( i ). This yields the following four equations

r
n

FIG. 3. The double-arrow potential for a patch of the Penro
tiling.
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FIG. 4. The eight vertex types of the Penro
tiling ~top row! with the corresponding Vorono
cells ~shaded!, and the corresponding second
order vertex types~below!.
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EA15d4A3b12~A21A3!1d1~A21A51A7!b21

5d4A3b12~A21A3!1d1~A21A51A5!b21

5d4A3b12~A21A3!1d1~A21A71A5!b21

5d4A3b12~A21A3!1d1~A21A71A7!b21, ~3.3!

two of which~the first and the third! are identical because th
corresponding patterns are mirror images of each other.

At first sight, as the number of variables, 14, is mu
smaller than the number of equations, 31, one might exp
that only the trivial solution (f i[0) exists. However, this is
not the case, for suitably chosen values of the hopping
rametersd1 , d2 , d3 , d4 , and the energyE, nontrivial solu-
tions exist, because the equations are not independent. T
this, note that the second-order vertex types within one
umn of Fig. 4 differ only slightly from each other, whic
means that the corresponding equations are also very sim
as can be seen in the example~3.3!. Thus, they can be sub
stantially simplified by subtraction. For example, the diffe
ences between the equations in Eq.~3.3! result in the single
equation

d1~A52A7!50, ~3.4!

which impliesA55A7 ~unlessd1 vanishes!. From the analo-
ct

a-

see
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gous equations for the other vertex types, it turns out that
amplitudesAn( i ) depend only on the translation classt( i ) of
the sitei , rather than on its specific vertex typen( i ). This
means

A15A45A6 ~ tP$1,4%!,
~3.5!

A25A35A55A75A8 ~ tP$2,3%!.

With this, all equations corresponding to second-order ver
types with the same central vertex reduce to a single eq
tion, and one is left with the following eight equations

EA15d4A2b14A213d1A2b21

55A215d1A2b21

52d4A2b13A21d1A2b21,
~3.6!EA25~d1A112A2!b12A112~d21d3!A21A2b21

5A112d2A21~2A21d4A1!b21

5~3d1A115A2!b12A114d3A2

5~4d1A115A2!b1A112d3A2

5~5d1A115A2!b,
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for central vertices of type 1, 4, 6, and 2, 3, 5, 7, 8, resp
tively.

For this system of equations, we obtain three sets of n
trivial solutions, expressed in terms of the parameterb,
which may be chosen freely. Here, we introduce

b6ª
1

b6b21
~3.7!

to abbreviate the formulas below.
Solution (1):The wave function has the form

f i5H ~122b2!bm~ i ! for t~ i !P$1,4%

bm~ i !11 for t~ i !P$2,3%
~3.8!

for transfer integrals and energy given by

d15
1

2
b2 , d252

3

4
b21b2

21,

d352
1

4
b21

1

2
b2

21, d45b2 , ~3.9!

E52
5

2
b2 .

Solution (2):Here,

f i5H bm~ i !11 for t~ i !P$1,4%

bm~ i ! for t~ i !P$2,3%,
~3.10!

with

d152b1 , d25
3

2
b12

1

2
b1

21,

d352S 1

2
1b2Db1 , d45~12b22!b1 , ~3.11!

E55b1 .

Solution (3):Finally,

f i5H bm~ i ! for t~ i !P$1,4%

bm~ i !11 for t~ i !P$2,3%,
~3.12!

FIG. 5. Second-order vertex types corresponding to a cen
vertex of type 1. Here, the encircled numbers denote the ve
types, not the potential.
-

n-

where

d152S 1

2
1b2Db1 , d25

1

4
b12

1

2
b1

21,

d352S 1

4
1b22Db1 , d452b1 , ~3.13!

E5
5

2
b1 .

For each of these solutions, there exists an additional
lution for a slightly generalized ansatz

f̃ i5Ãn~ i !,t~ i !b̃
m~ i ! ~3.14!

that involves the translation classt( i ) at sitei . Note that for
each vertex type there are only two possible valu
t( i )P$1,4% for n( i )P$1,4,6% and t( i )P$2,3% for n( i )
P$2,3,5,7,8%, which were not distinguished in our previou
ansatz@see Eq.~3.5!#. The wave functions differ from the
solutions given in Eqs.~3.8!, ~3.10!, and ~3.12! only by an
alternating sign, which depends on the translation class

f̃ i5~21! t~ i !f i , ~3.15!

and by a sign change in the parameters, i.e.,d̃152d1 , d̃2

52d2 , d̃352d3 , d̃452d4 , and Ẽ52E. Note that the
two models differing by this sign change are not trivial
related, because the hopping parameter along the edge
the tiles does not change its sign—it is always equal to
These six solutions exhaust all nontrivial solutions in ter
of the ansatz~3.14!, but we note that for a given set o
hopping parameters, i.e., for a given Hamiltonian, this yie

al
x

FIG. 6. Wave functions~3.8! for four different valuesb50.1,
0.2, 0.6, and 0.9. On a finite patch ofN516 757 vertices obtained
by sevenfold inflation of a vertex of type 4, the wave function h
been normalized to( i uf i u251. The radii of the circles encode
uf i u2, in units of the edge length they have been chosen asR50
for Nufu2,1022, R51.8 ln(102Nufu2)/ln(104) for 1022<Nufu2

<102 andR51.8 forNufu2.102.
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13 486 PRB 58REPETOWICZ, GRIMM, AND SCHREIBER
at most one single solution. Some examples of the w
functions~3.8! for different values ofb are presented in Fig
6.

B. The case« iÞ0

In order to obtain the eigenstates described above,
introduced parameters in the Hamiltonian~1.1! and deter-
mined them by requiring that the ansatz~3.2! fulfills the
tight-binding equations~3.1!. In Eq. ~1.1!, we already in-
cluded the possibility of site-dependent on-site energies« i .
In the present case, it is natural to choose the on-site ene
« i according to the vertex type of sitei . That is,« i5mn( i )
with eight parametersm1 , . . . ,m8 according to the eight ver
tex types of the Penrose tiling.

Of course, we can perform the same analysis as above
the more general problem—it just amounts to replacing
left-hand side of the first three lines of Eq.~3.6! by
(E2mn)A1 with n51,4,6, and in the remaining five lines b
(E2mn)A2 with n52,3,5,7,8, respectively. We do not sho
the explicit solution of the full problem because it is rath
lengthy. Although the general solution contains a few fr
parameters, for a given Hamiltonian we still find at most o
exact eigenstate.

In order to compare with Sutherland’s result,10 we con-
sider the case without hopping along the diagonals of
rhombi, i.e.,d15d25d35d450. We can express the solu
tions in terms of the three parametersE, b, andgªA2 /A1:

m15E24g, m25E22b2b2122g21,

m35E22b212g21, m45E25g,
~3.16!m55E25b22g21, m65E23g,

m75E25b2g21, m85E25b.

Settingg51 one recovers Sutherland’s solution.10

Taking into account that we have introduced eight para
etersmn in our Hamiltonian, it was almost obvious that s
lutions exist. It would be, however, more interesting to intr
duce additional parameters in the ansatz for the w
function. In this way, one might perhaps be able to obt
several eigenstates of a given Hamiltonian and thus co
closer to the general solution of our problem. This is t
subject of the following section.

IV. GENERALIZED ANSATZ FOR THE
EIGENFUNCTIONS

The Penrose tiling possesses a so-called inflation/defla
symmetry.6,10 In an inflation step, the two types of rhomb
are dissected into smaller pieces that again constitute a rh
bic Penrose tiling, but on a smaller scale with all leng
divided by the golden ratiot5(11A5)/2. The inverse pro-
cedure, in which tiles are combined to form larger tiles,
known as deflation.

The idea now is to generalize the ansatz~3.2! for the wave
function by using the vertex types and potentials of the
flated tiling in addition to those of the original tiling. Eve
more general, one may consider a sequence ofn tilings ob-
tained by successive deflation steps, probing the origina
ing on larger and larger length scales. In this way, we ass
to each vertexi of the original tiling a sequence of intege
$nk( i )%, k50,1, . . . ,n, where nk( i ) specifies the corre
sponding vertex type in thek-fold deflated tiling, withk50
e

e

ies

for
e

r
e
e

e

-

-
e
n
e

e
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m-
s

-
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referring to the original tiling. This leads to the followin
generalized ansatz for the wave function

f i
[n]5A$nk~ i !%)

k50

n

bk
mk~ i ! , ~4.1!

where mk denotes the double-arrow potential in thek-fold
deflated tiling, andbk aren11 free parameters.

It is not completely obvious how to assign the vertex ty
nk( i ) of a sitei in thek-fold deflated tiling. Here, we decide
to use the concept of the Voronoi cell. We are looking fo
Voronoi cell of the deflated tiling that covers the Voron
cell of our sitei in the original tiling completely, or at leas
its largest part. In Fig. 7, we show how the Voronoi cells
the original and the twofold deflated tiling relate to ea
other. If a cell of the original tiling is shared between seve
larger cells, we assign the vertex to the cell with the ma
mum overlap. However, there are still ambiguities wh
overlaps of equal area occur. For instance, let us concen
on the casen52. In the example shown in Fig. 8, one re
ognizes that the cell corresponding to vertex type 1~cf. Fig.
4! may be dissected equally between the cells correspon
to vertex types 2 or 3 of the deflated tiling. In this case,
cannot assign the deflated vertex type unequivocally. Th
fore, we demand that the corresponding terms in the an
~4.1! are equal. In our example, this yields the equat
A2215A321 for the amplitudesAn2n1n0

in the ansatz~4.1!,
labeled by three digits according to the three vertex typ
Considering also the first deflation step, not shown in Fig
one finds another conditionA2225A232.

We now use the ansatz~4.1! to find solutions of the tight-
binding equations. Here, we restrict ourselves to the casn
52. In order to set up the equations, we need to cons
larger patches that can be obtained by twofold inflation
the 31 second-order vertex types of Fig. 4. Each of th
patches then leads to a number of equations. Of the 83 pos-
sible combinations of indicesn2 ,n1 ,andn0 , only 25 occur

FIG. 7. Relation of the Voronoi cells of the Penrose tiling~thin
lines! and their twofold deflation~thick lines!. The eight patches are
obtained by a twofold inflation of the eight vertex types~see Fig. 4!.
The numbers denote the change of the double-arrow potential
respect to the central Voronoi cell.
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in the Penrose tiling. Altogether we have to deal with a s
tem of 97 equations in 32 variables, namely, 25 amplitu
An2n1n0

, three variablesb2 , b1 , andb0 , the four hopping

parametersd1 , d2 , d3 , andd4 , and the energyE. We used
MATHEMATICA ~Ref. 26! to solve this system. As above, w
find three sets of solutions, which we express in terms
b20ªb2b0 andb1 . They have the following form.

Solution (18): The 25 amplitudes, without normalization
are

A2215A32152b20~2b20
2 2b1

2!b0 ,

A2225A3225A2325A5325A7325A8325b20
2 b1b0 ,

A2335A3335b20
2 b0 ,

A1235A4235A6235A1335A6335b20
3 , ~4.2!

A6545A1745A48452b20
2 ~2b20

2 2b1
2!,

A3655A2175A5485A7485A8485b20b1
2b0

2,

A2365A33652~2b20
2 2b1

2!b0
2,

and the transfer integrals and the energy are given by
same expressions~3.9! as for solution~1!, where now

b6ª
b20b1

b20
2 6b1

2
. ~4.3!

In contrast to the amplitudes, the transfer integrals and
energy are hence expressed exclusively in terms ofb20 and
b1 , that is, the hopping parameters and the energy dep
on b2 andb0 only via the productb20.

Solution (28): Here, the amplitudes read

A2215A3215b20
2 b0 ,

A2225A3225A2325A5325A7325A8325b20b1b0 ,

A2335A3335b20b0 ,

A1235A4235A6235A1335A6335b20
2 ~4.4!

A6545A1745A4845b20
3 ,

A3655A2175A5485A7485A8485b1
2b0

2,

A2365A3365b20b0
2,

and the parameters now follow from the expressions~3.11!
for solution ~2! with b1 given by Eq.~4.3! and

bª
b20

2

b1
2

; ~4.5!

thus again they depend onb0 andb2 only via b20.
Solution (38): Finally,

A2215A3215b20b1
2b0 ,

A2225A3225A2325A5325A7325A8325b20
2 b1b0 ,

A2335A3335b20
2 b0 ,

A1235A4235A6235A1335A6335b20
3 , ~4.6!

A6545A1745A4845b20
2 b1

2,

A3655A2175A5485A7485A8485b20b1
2b0

2,

A2365A3365b1
2b0

2,
-
s

f

e

e

nd

where again the transfer integrals and the energy follow fr
the previous expressions~3.13! for solution~3! by replacing
b1 by Eq. ~4.3! andb by Eq. ~4.5!.

These solutions comprise those found in the previous s
tion. Indeed, settingb25b151 (b205b0), we recover the
solutions~3.8!–~3.13!, apart from a common normalizatio
factor b0

2 in the amplitudes. In addition, Eqs.~4.2!–~4.6!
show that the corresponding energy eigenvalues are infin
degenerate. For given values ofb20 andb1 , the Hamiltonian
and the energyE are fixed, but the eigenfunctions still in
volve the free parameterb0 . In other words, each choice o
b2 andb0 with the same product yields an eigenstate to
same eigenvalue. We note that infinite degeneracies in
spectrum were previously observed in tight-binding mod
on the Penrose tilings. One example is given by the confi
degenerate states located at the energyE50 in the vertex
model withd15d25d35d450.14,18 Also some of the criti-
cal, self-similar eigenstates found in the center model app
to be infinitely degenerate.23

It is a question whether a larger number of deflation ste
i.e., a larger value ofn in the ansatz~4.1!, leads to further
solutions of the tight-binding equations. The largern, the
larger is the number of sequences$nk%0<k<n that occur, and
hence the number of independent amplitudes. Indeed, fon
52 we had 25 sequences, forn53 andn54 there are 49
and 104, respectively. One might suspect that in the limin
→`, when the quantity of sequences tends to infinity, ev
site is uniquely determined by its sequence, and hence
should arrive at the complete solution in the limiting cas
However, this is not the case, which follows from the fa
that—looking at it from the opposite point of view—the di
section of a cell under inflation may contain several copies
the same cell type. Therefore, it is doubtful whether larg
values ofn will lead to new wave functions. Forn<4, no
solutions beyond Eqs.~4.2!–~4.6! were found. Nevertheless
this does not prove that further generalizations might not
more rewarding.

FIG. 8. Voronoi cells of a patch of the Penrose tiling~thin lines!
and of its twofold deflation~thick lines!. Shaded cells correspond
ing to vertex type 1 cannot be uniquely assigned to a cell of
deflated tiling.
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V. MULTIFRACTAL ANALYSIS

Already a glimpse at Fig. 6 gives the impression that
wave functions are self-similar. Let us therefore investig
this property more thoroughly. To do this, we have to und
stand the distribution of the double-arrow potentialm on the
tiling. Sutherland10 considered the transformation of sing
and double arrows under twofold inflation, and proved t
the value of the double-arrow potential changes at mos
2l under a 2l -fold inflation.

For definiteness, let us consider a vertex of type 8 that
double arrows pointing outwards in all five directions. In F
9, we show this patch together with its twofold inflation. F
the original patch, the values of the double-arrow poten
are 0 at the center by our choice of normalization, and
elsewhere. In the inflated version, the potential takes va
between 0 and 3~see Fig. 3!. In what follows, we use 2l -fold
inflations of this particular patch for the multifractal analys
In this case, the values of the double-arrow potential gr
linearly with the number of inflation steps. This may be d
ferent if one starts from other initial patches, for examp
starting from vertex type 4 results in a decreasing doub
arrow potential, corresponding to a different choice of t
reference point for the potential in the infinite tiling. We no
that Refs. 10 and 23 used vertex type 4, together with
opposite direction of the arrows, which then also gives
increasing potential.

Following Refs. 23 and 27, we define a partition functi
for the 2l -fold inflated system

G~q,v;2l !ª
1

N2q(i

uf i u2q

Si
v/2

, ~5.1!

whereN is the norm of the wave function on the finite patc
i.e., N25( i uf i u2. Here,Si denotes the area of the Voron
cell of vertexi . For a givenq, there exists a certain numbe
v(q) such that the partition function~5.1! is bounded~from
above and below! in the limit l→`, i.e., it neither vanishes
nor diverges. The generalized dimensions

FIG. 9. A vertex of type 8~gray! together with its twofold
inflation ~black!.
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Dqª
v~q!

q21
~5.2!

completely describe the multifractal properties of the wa
function f.

In an inflation step, the edge lengths of the rhombi a
scaled by a factort21. Therefore, the areaSn

(2l ) of a Voronoi
cell corresponding to vertex typen of the 2l -fold inflated
tiling is given by

Sn
~2l !5t24lSn

~0! . ~5.3!

For simplicity, we restrict our analysis to the ansatz~3.2! for
the wave function. In fact, since only the absolute values
the wave function amplitudes enter in Eq.~5.1!, this also
applies to the solutions~3.15!. Substituting the ansatz into
Eq. ~5.1! yields

G~q,v;2l !5
1

N2q(i

uAn~ i !b
m~ i !u2q

t22lv~Sn~ i !
~0! !v/2

5 (
n51

8 F uAnu2qt2lv

~Sn
~0!!v/2N2q (m50

2l

ubu2qmVn~m;2l !G ,

~5.4!

whereVn(m;2l ) denotes the number of vertices of typen
with potentialm multiplied by the area of the correspondin
Voronoi cell after 2l inflation steps.

In order to calculateVn(m;2l ), we consider the transfor
mation of the Voronoi cells of the eight vertex types unde
twofold inflation ~compare Figs. 4 and 7!. From this, one
derives recursion relations for the distributionsVn(m;2l ) by
counting the number of inflated cells that are covered by
original cell. For example, as shown in the lower right corn
of Fig. 7, the Voronoi cell corresponding to the vertex type
with a potentialm turns into: ~i! one cell of type 8 with
potentialm; ~ii ! five cells of type 2 with potentialm11; and
~iii ! five fractional parts@each with an area fraction of (4
2t)/11'0.216 542] of type-6 cells with potentialm11.
Conversely, a cell of type 8 in the inflated patch may st
from a vertex of type 5, 7, or 8, each of those yielding p
cisely one complete cell of type 8. Considering all vert
types, and computing the fractional areas involved, one
rives at recursion relations

Vn~m;2l 12!5 (
s521

1

(
m51

8

M n,m
~s! Vm~m1s;2l !, ~5.5!

with three 838 matricesM (21), M (0), andM (1). The quan-
tities we need are certain transformsṼn(b;2l ) of Vn(m;2l ),
defined as

Ṽn~b;2l !ª (
m50

2l

bmVn~m;2l ! ~5.6!

@see Eq.~5.4!#. From the recursion relations~5.5!, one finds
that the transformsṼn(b;2l ) for two successive inflation
steps are related by

Ṽn~b;2l 12!5 (
m51

8

M̃ n,m~b!Ṽm~b;2l !, ~5.7!

where the matrixM̃ (b) reads as follows:
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M̃ ~b!5

¨

2116t

59
b

5222t

59
b21

5222t

59
b21

35110t

59
b 0

712t

59
b 0 0

216120t

29
b

95210t

29
b21

3325t

29
b21

220125t

29
b

153210t

29
b21

212115t

29
b

14925t

29
b21 5b21

14026t

31
2b21 7716t

31
b21 5 0

125212t

31
0 0

1 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0

0
71t

11
1

822t

11
b21

1412t

11
0

2025t

11
b21 0

2025t

11
b21

2025t

11
b21

0 1 0 0 0 0 0 0

0 0 0 0 1 0 1 1

©

~5.8!
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~compare Ref. 10!. It is related to the matricesM (s) ~5.5! by

M̃ ~b!5 (
s521

1

b2sM ~s!, ~5.9!

hence the elements ofM (s) are nothing but the coefficient
of b2s of the elements ofM̃ (b).

The asymptotic behavior~for l→`) of Ṽ(b;2l ) is gov-
erned by the eigenvalueV(b) of M̃ (b) with largest modulus

Ṽn~b;2l !;V l~b! f n~b!, ~5.10!

where f (b) is the corresponding eigenvector. For positi
values of b, the largest eigenvalue~in absolute value! is
positive and unique, because the third power ofM̃ (b) is a
positive matrix. Calculating the norm

N25(
i

uf i u25 (
n51

8

uAnu2Ṽn~ ubu2;2l !;V l~ ubu2!,

~5.11!

and substituting the asymptotic behavior ofṼn(b;2l ) into
Eq. ~5.4!

G~q,v;2l !5 (
n51

8 uAnu2qt2lv

~Sn
~0!!v/2N2q

Ṽn~ ubu2q;2l !

;F t2vV~ ubu2q!

Vq~ ubu2!
G l

~5.12!

leads us to the conclusion that the partition functi
G(q,v;2l ) can be bounded if and only if

v~q!5
1

2 lnt
lnFVq~ ubu2!

V~ ubu2q!
G . ~5.13!

In Fig. 10, we present the fractal exponentDq @Eq. ~5.2!# for
several values ofb. For b51, the wave function does no
depend on the potentialm and takes at most four differen
values according to the translation class of the site. In
caseDq is constant. The smallerubu, the faster the wave
function decays, leading to a steeper curveDq as a function
of q.
is

Concerning the matrixM̃ (b) @Eq. ~5.8!#, we remark that
its eigenvalues and eigenvectors are connected to the
quencies of the vertex types, which count how often a cer
vertex type occurs in the Penrose tiling. Indeed, if we seb
51, we obtain a substitution matrix for the inflation rules
the Penrose tiling. Therefore, according to the Perr
Frobenius theorem, the eigenvectorf (1) corresponding to
the eigenvalue with largest modulusV(1) should reproduce
the relative frequencies of the vertex types in the tiling. W
calculated numericallyf (1) and found perfect agreemen
with the known frequencies.28,29

We note that the multifractal analysis can be carried
for the generalized eigenstates~4.2!–~4.6! analogously.
However, it becomes more complicated because we hav
consider the substitution matrix of vertices labeled by
inflated vertex types, which results in a 25325 matrix.

VI. CONCLUSIONS

We constructed exact non-normalizable eigenfunctio
for certain vertex-type tight-binding models on the rhomb
Penrose tiling. In a way, our model is somewhat more re
istic than the vertex model considered usually, because
also allow hopping along the diagonals of the rhombi a
hence for all short distances between vertices. Still, the h
ping parameters and the energy of the states are determ
by the requirement that our particular ansatz~3.2! or ~4.1!
holds, thus we cannot make direct contact to the experim
tal situation.

FIG. 10. The generalized dimensionsDq for several values
of b.
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The construction of eigenstates is based on a potentim
derived from the matching rules of the Penrose tiling t
had been introduced in a similar context previously.10,23 We
consider several generalizations of the ansatz for the w
functions, which show that the eigenstates we found are
finitely degenerate. Further generalizations can be inve
gated in a systematic way, and may lead to a wider clas
accessible wave functions. We hope to report on this, and
the application of this ansatz to other quasiperiodic tig
binding models~particularly for the three-dimensional cas!
in the future.

From the ansatz, it is apparent that the eigenfuncti
~3.8!, ~3.10!, and~3.12! reflect the distribution of the poten
tial m on the lattice. The multifractal analysis of the eige
states, therefore, reduces to the analysis of the distributio
the potential that was already considered by Sutherland.10 It
shows that the particular wave functions given in Eqs.~3.8!,
~3.10!, and ~3.12! are critical, i.e., neither extended nor e
ponentially localized, as typically expected in tw
dimensional quasiperiodic tight-binding models. Of cour
our results only apply for particular eigenstates and do
give information about the nature of the eigenstates in g
eral. At least for the case without hopping along the dia
nals, d15d25d35d450, numerical investigations19 have
confirmed the multifractal character of typical eigenstat
and we have demonstrated here that this may also hold if
includes hopping along diagonals.

Our ansatz~3.2! does not include possible ‘‘ring states
or ‘‘confined states.’’ These are strictly localized states s
e

v.
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ported on a finite number of vertices that exist for the mod
without hopping along the diagonals as a consequence o
local arrangement of tiles.9,14,22 Furthermore, one canno
construct such states by linear combinations of our infinit
degenerate solutions because these have different asymp
behavior. We checked numerically that for finite patch
there are no exact degeneracies at the energies of our
tions, and thus there are no confined states degenerate
our solutions. In general, we do not expect that such st
exist for nonvanishing diagonal hopping elements, beca
they require the cancellation of contributions at all neighb
ing vertices of the support, which is much more difficult
satisfy in this case.

The present work is a generalization of the ideas of Re
10 and 23, and we recover the solutions found
Sutherland10 as a special case. In Ref. 23, the authors c
sidered a center model on the Penrose tiling, where they
found infinitely degenerate critical eigenstates. It is intere
ing to note that all exactly known eigenstates in such mod
including the confined states,9,14,22 appear at energies with
infinite degeneracy. At present, we do not know wheth
there is a deeper reason for this observation.
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