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Exact eigenstates of tight-binding Hamiltonians on the Penrose tiling

Przemystaw Repetowicz, Uwe Grimm, and Michael Schreiber
Institut fir Physik, Technische Universtt&€hemnitz, D-09107 Chemnitz, Germany
(Received 19 May 1998

We investigate exact eigenstates of tight-binding models on the planar rhombic Penrose tiling. We consider
a vertex model with hopping along the edges and the diagonals of the rhombi. For the wave functions, we
employ an ansatz, first introduced by Sutherland, which is based on the arrow decoration that encodes the
matching rules of the tiling. Exact eigenstates are constructed for particular values of the hopping parameters
and the eigenenergy. By a generalized ansatz that exploits the inflation symmetry of the tiling, we show that the
corresponding eigenenergies are infinitely degenerate. Generalizations and applications to other systems are
outlined.[S0163-182@08)03844-3

I. INTRODUCTION choose six different values 0, d,, d,, d;, andd,, depend-

: . 1 ing on the distance of the verticeand|j (see Fig. 1 Here,
The discovery of quasicrystals by Shechtmanal. tjj=1 for vertices connected by an edge of the tiling,

stimulated wide interest in the physics of these materials,:dl (d,) for the long(shory diagonal of the “fat” rhom-

which are intermediate between periodic and random strugs ;g t; =ds (d) for the long(shory diagonal of the “thin”
Il

tures. BeS|de§ |cos§1hedral quasicrystals, whlch are ape“Odl‘ﬁombus, and;; =0 for vertices not connected by an edge or
in all three Q|menS|ons of fspape,.also periodically layered; diagonal, respectively.
structures with planar quasiperiodic order and noncrystallo-  As'the Penrose tiling is arguably the most popular among
graphic rotational symmetries were found, comprisingthe quasiperiodic tilings, it is not surprising that tight-binding
dodecagond, decagonaf, and octagondlphases with 12- models defined on the Penrose tiling have been investigated
fold, tenfold, and eightfold symmetry, respectively. Al- rather thoroughly. Besides the vertex motéf the so-
though the fundamental question “where are the atoms?,’talled center model was considerdd®* where atoms are
raised, e.g., in Ref. 5, has only been answered partially téocated in the center of the rhombi, and hopping may occur
date, most structure models of quasicrystals are based dretween adjacent tiles—this is nothing but a vertex model on
two- or three-dimensional quasiperiodic tilings or their dis-the dual graph of the Penrose tiling. However, most results
ordered versiongrandom tilings. rely on numerical approaches, and only few exact results on
An important and exciting problem in condensed-matterthe spectrum of the tight-binding Hamiltonian are known. In
physics is whether the quasiperiodic structure leads to newarticular, so-called “confined states” have been investi-
and unexpected physical properties. In particular, transpodated in detail, both for the vert2X and the center modéf.
properties, as, for instance, electric or heat conductance, ardese are infinitely degenerate, strictly localized eigenstates
strongly affected by the nonperiodic order. Indeed, many:orrespondmg to a particular value of the energy, which oc-
quasicrystalline alloys are characterized by very high valueSUr @ a consequence of tleeal topology of the tiling(see
of electric resistivity, by a negative temperature coefficient‘als0 Ref. 18.* Furtherr_nore, for a Hamlltom'a(rl.l) with par-
of resistivity, and by a low electronic contribution to the ticular on-site ﬁnerglesi c:}osenl aCCOI’dIné“] to the velcrjteg
specific heat, which points to a small density of states at th&/Pe tat ?'tg'o' tBe eéact seﬂ;3|m| ar gro_tén state CO:J €
Fermi energy. It is difficult to explain these striking features constructed. - Based on ‘e same idea, severa’ non-

; . 'normalizable eigenstates of the center model and their mul-
because a rigorous theory of the electronic structure of Ufractal properties were obtained exactfyThese solutions,

siperiodic materials does not exist. For want of a simpléagtricted to special values of the hopping integrals, were
analogy of Bloch theory for quasicrystals, one either carriegjgrived from a suitable ansatz for the eigenfunctions. Ac-
out numerical calculations for as large clusters as possible, Qiording to this ansatz, the wave function at a site depends
functions in simple models. associated to the site, a “potential,” which is derived from
We consider tight-binding models on the two-dimensionalhe matching rules of the Penrose tilit.
rhombic Penrose tiIin@.Our models are so-called vertex In this paper, we apply the same ansatz to the vertex
models because we locate the atoms at the vertices of thodel on the Penrose tiling. The solution is more compli-
tiling. Interactions are taken into account only between
neighboring vertices connected by edges or by diagonals of
the rhombi. In our calculations, we restrict ourselves to a

singles-type atomic orbital per vertex. This makes the trans- V
fer integralst;; independent of the angular orientation and
leads to the following Hamiltonian dy -
3
H:Z |i>8i<i|+i§j: il 1.1 ! !

FIG. 1. The two types of rhombi in the Penrose tiling and the
where|i) denotes a Wannier state localized at veiteand  assignment of hopping integrals, d,, d3, andd, to their diago-
g; are on-site energies. For the hopping integrals we  nals. The hopping integral along the edges is chosen as 1.
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FIG. 2. Arrow decoration of the Penrose rhombi. Note that our
decoration differs from that used in Refs. 10 and 23 in the direction
of the arrows.
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cated than for the center model, where the coordination num-

ber (i.e., the number of neighborss always equal to four,

whereas for the vertex model it varies between three and

seven, or between 6 and 14 if we include neighbors along @

diagonals, respectively. For suitably chosen transfer inte-

grals, we derive exact eigenstates of the Hamiltoriiad)

and analyze their multifractal behavior. As observed for the

center modef? we find that these states are infinitely degen-

erate, i.e., for the fixed value of the energy the eigenfunc-

tions still involve one free parameter. In order to show this,

we need to generalize the ansatz exploiting the inflation sym-

metry of the Penrose tiling. FIG. 3. The double-arrow potential for a patch of the Penrose
Our paper is organized as follows. In the subsequent seging.

tion, we discuss the labeling of the rhombi with two kinds of

arrows and the associated potentials. In Sec. Ill, we introduce

the ansatz for the wave function and solve the tight-binding E tijdj=(E—ei) i, 3.

equations for two cases, the first one witl=0 andd;+#0, .

and the second one wiilh =0 but various on-site energies. Where we sum over all neighbgrsf the sitei. As an ansatz,

A generalized ansatz, based on the inflation symmetry of theve demand that the wave function amplituge at site

tiling, is considered in Sec. IV. In Sec. V, we perform a depends solely on the vertex typéi) €{1,2,...,8 and on

fractal analysis of the wave functions, i.e., we calculate thehe potentiaim(i). This leads to the following ansatz:

generalized dimensions. Finally, we conclude in Sec. VI. ¢i:Av(i)IBm(l)- 3.2

Il. EDGE-LABELING AND POTENTIALS The eight vertex types of the Penrose tiling are shown in the

Following de Bruijn? we mark the rhombi with single 0P row of Fig. 4. The corresponding eight amplitudes
and double arrows, as shown in Fig. 2. The matching rule@nd 3 are parameters.
require that arrows on adjacent edges match. Fixing a certain We note that the ansa(3.2) does not form a complete
site O as the origin, we assign to a sitawo integersn(i) set, thus we cannot expect to describe the general solution of
andm(i), which count the number of single and double ar-Eg. (3.1) in this way. Nevertheless, as we shall show in what
rows, respectively, along an arbitrary path connecting thdollows, we can find particular solutions of the fo@.2) for
origin O and sitei. This is well-defined because, along any the tight-binding Eq(3.1), provided the hopping parameters
closed path, the total number of single and double arrowsl;, d,, d3, ds, and the energ¥ fulfill certain conditions.
vanishes, as can be seen from Fig. 2. We refer to these inte-
gersn(i) andm(i) as “potentials” at site because they are A. The caseg;=0
integrals of the two vector fields defined by the arrows. The
distributions of the potentials are rather irregular and ShOV\éit
the following properties.

The single-arrow potentiai(i) is directly related to the
sumt(i) €{1,2,3,4 of the five-dimensional indices denoting
the translation class of the site It takes only two values:
n(i)=0 if t(i)e{2,3 andn(i)=1 if t(i) €{1,4} [provided
the origin has translation clag$O) €{2,3}]. The double-
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For simplicity, we first concentrate on the case with on-
e energieg;=0. With the ansat£3.2), the infinite set of

Eqg. (3.1) reduces to a finite set comprising as many equa-
tions as there are second-order vertex types in the tiling. By
a second-order vertex type we mean the neighborhood of a
site up to its second coordination zone. There are 31 different
second-order vertex types in the Penrose tiling. These are

. s Il ... shown in Fig. 4, grouped together according to the first-order
arrow potentiam(i) is unbounded. Its distribution on a finite vertex typegof thge cgntral gite given in thg top row. Thus

patch is shown in Fig. 3. For a detailed discussion of th ; ; ; -
distribution, see Ref. 10. The potentia(i) is the key ingre- Q(Nve: rave g)l Bllnsardquatlzns a:;:d ltEheAsl?t i;/asrtlg?éfsm_
dient in the construction of exact eigenfunctions of tight- L B T2 3 A '

S S . orward to derive the equations from the second-order vertex
binding Hamiltonians on the Penrose tiling. types of Fig. 4, we refrain from listing them here. Instead, we
consider as an example only the second-order vertex types in
the first column of Fig. 4, which we show again in Fig. 5

We want to construct solutions of the tight-binding equa-(rotated by 90f together with the corresponding values of
tions the potentiaim(i). This yields the following four equations:

I1l. SOLUTIONS OF THE TIGHT-BINDING EQUATIONS
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FIG. 4. The eight vertex types of the Penrose
tiling (top row) with the corresponding Voronoi
cells (shadegdl and the corresponding second-
order vertex typesbelow).

EA;=d,A38+2(A+As) +di (A +As+A;) B L gous equations for the other vertex types, it turns out that the
_ amplitudesA,;y depend only on the translation clags) of
=d4AsB+2(AxtAg) +di(Axt AstAs) B the sitei, rather than on its specific vertex typéi). This
=dyAzB+2(Ax+Ag) +dy(Ay+ A+ Ag) 1 means
—dAgB+2(Ag+ Ay + (At AT TANBTY (33 Ar=Ag=As  (te{l4),

3.
two of which (the first and the thirdare identical because the Ar=Az=As=A=Ag (te{2,3). @9

corresponding patterns are mirror images of each other. i, this, all equations corresponding to second-order vertex

sm':flgirr?:] :ri]gtf;]té ﬁi&%Zrngfrggi;g;nvsargbl%Sﬁelli’igiﬁt g‘;;:qt pes with the same central vertex reduce to a single equa-
that only the trivial solution ¢;=0) exists. However, this is on, and one is left with the following eight equations

not the case, for suitably chosen values of the hopping paEA;=d,A,B8+4A,+3d,A,87 1

rameterd,, d,, ds, ds, and the energ¥, nontrivial solu- 1

tions exist, because the equations are not independent. To see — SAz+5d1A;8

this, note that the second-order vertex types within one col-  _ -1

umn of Fig. 4 differ only slightly from each other, which 20uAB+ 3R diAB

means that the corresponding equations are also very simil@A,=(d;A; + 2A,) 8+ 2A;+ 2(d,+ d3)A,+ A8 1
as can be seen in the examg®3). Thus, they can be sub-

(3.6

stantially simplified by subtraction. For example, the differ- ~ =A1+2d,A+(2A,+d,A) B 71
ggﬁzfiobnetween the equations in E8}3) result in the single =(3d;A;+5A,) B+ 2A; +4d3A,

di(As—A;)=0, (3.4 =(4d1A;+5A7) B+ A +2d3A,;
which impliesAs=A; (unlessd, vanisheg From the analo- =(5d,A;+5A,)8,
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FIG. 5. Second-order vertex types corresponding to a central ¥
vertex of type 1. Here, the encircled numbers denote the vertex

types, not the potential.
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for central vertices of type 1, 4, 6, and 2, 3, 5, 7, 8, respec-

tively.

trivial solutions, expressed in terms of the parameser
which may be chosen freely. Here, we introduce

1
BBt

to abbreviate the formulas below.
Solution (1): The wave function has the form

(1-2B8%)BMD  for t(i)e{l,4
| pmi+e for t(i)e{2,3
for transfer integrals and energy given by

1 3
dlzzb,, dQZ_Z

bitz

b_+b-1%

1 1,
d3=—Zb_+§b_ y d4=b_,

E= 5b
=—5b_.

Solution (2):Here,

g1
d)i:lﬂm(i)

for t(i)e{1,4
for t(i)e{2,3,
with

-2

by, dy=(1-8"?b,,

dsy= L
3= |5 F8

E=5b, .
Solution (3):Finally,

for t(i)e{1,4

Bm(i)
¢i:[ﬂm<i)+l for t(i) e {2,3},

3.7

(3.9

(3.9

(3.10

(3.11

(3.12

FIG. 6. Wave functiong3.8) for four different values3=0.1,
For this system of equations, we obtain three sets of non@.2, 0.6, and 0.9. On a finite patch &f=16 757 vertices obtained

by sevenfold inflation of a vertex of type 4, the wave function has
been normalized t&;|¢;|?=1. The radii of the circles encode
|#i?, in units of the edge length they have been choseR=a$

for M¢|?<102, R=1.8In(1GM¢|?)/In(10%) for 10 2<N|¢|?
<10? andR=1.8 for M ¢|>>10%.

where

11,
dlz_ b+, dzZZb+_§b+ y

1
Y
2T

dy=— (3.13

1
Z+ﬁ2)b+! d4=_b+!

5
E:§b+ .

For each of these solutions, there exists an additional so-
lution for a slightly generalized ansatz

Gi=A i) 1) B™V (3.19

that involves the translation clasgd) at sitei. Note that for
each vertex type there are only two possible values,
t(i)e{1,4 for v(i)e{l,4,6 and t(i)e{2,3} for w(i)
€{2,3,5,7,8, which were not distinguished in our previous
ansatz[see Eq.(3.5]. The wave functions differ from the
solutions given in Eqs(3.8), (3.10, and(3.12 only by an
alternating sign, which depends on the translation class

bi=(—1)'DVeg;, (3.15

and by a sign change in the parameters, te= —d;, d,
=—d,, d3=—ds, dy=—d,, andE=—E. Note that the

two models differing by this sign change are not trivially
related, because the hopping parameter along the edges of
the tiles does not change its sign—it is always equal to 1.
These six solutions exhaust all nontrivial solutions in terms
of the ansatz(3.14), but we note that for a given set of
hopping parameters, i.e., for a given Hamiltonian, this yields
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at most one single solution. Some examples of the wave
functions(3.8) for different values of3 are presented in Fig.
6.

B. The caseg;#0

In order to obtain the eigenstates described above, we
introduced parameters in the Hamiltonighl) and deter-
mined them by requiring that the ansa®.2) fulfills the
tight-binding equationg3.1). In Eqg. (1.1), we already in-
cluded the possibility of site-dependent on-site energjes
In the present case, it is natural to choose the on-site energies
g; according to the vertex type of site That is, &= u,j
with eight parameterg, . . . ,ug according to the eight ver-
tex types of the Penrose tiling.

Of course, we can perform the same analysis as above for
the more general problem—it just amounts to replacing the
left-hand side of the first three lines of E¢3.6) by
(E— w,)A; with v=1,4,6, and in the remaining five lines by
(E—w,)A, with v=2,3,5,7,8, respectively. We do not show
the explicit solution of the full problem because it is rather
lengthy. Although the general solution contains a few free

parameters, for agen Hamionian e sl nd at most ney, 3, 8015 G O S 1 Eeo DR
exact eigenstate. : gntp

. , _ Obtained by a twofold inflation of the eight vertex tydsse Fig. 4.
. In order to compare with _Sutherland S re_§t9ltwe con The numbers denote the change of the double-arrow potential with
sider the case without hopping along the diagonals of th

Sespect to the central Voronoi cell.
rhombi, i.e.,d;=d,=d;=d,=0. We can express the solu- P
tions in terms of the three paramet&s B, and y:=A,/A;: referring to the original tiling. This leads to the following

pi=E—4y, u,=E—2B8-p t-2y71 generalized ansatz for the wave function
n
_E_op-1_.-1 _E_ i

,U,3—E ZB Y o M E 57! ¢i[n]:A{Vk(i)}H B:]k(l)! (41)
ps=E-58-2y71, ue=E-3y, (18 k=0

—E-58—y L, —E-53. where mk_t_jenotes the double-arrow potential in tkdold

. H Ay He A ) deflated tiling, ang3, aren+ 1 free parameters.
Setting y=1 one recovers Sutherland’s solutith. It is not completely obvious how to assign the vertex type

Taking into account that we have introduced eight paramy, (i) of a sitei in thek-fold deflated tiling. Here, we decided
etersu,, in our Hamiltonian, it was almost obvious that so- to use the concept of the Voronoi cell. We are looking for a
lutions exist. It would be, however, more interesting to intro-Voronoi cell of the deflated tiling that covers the Voronoi
duce additional parameters in the ansatz for the waveell of our sitei in the original tiling completely, or at least
function. In this way, one might perhaps be able to obtairts largest part. In Fig. 7, we show how the Voronoi cells of
several eigenstates of a given Hamiltonian and thus comthe original and the twofold deflated tiling relate to each
closer to the general solution of our problem. This is theother. If a cell of the original tiling is shared between several

subject of the following section. larger cells, we assign the vertex to th_e cell v_vith_ _the maxi-
mum overlap. However, there are still ambiguities when

IV. GENERALIZED ANSATZ FOR THE overlaps of equal area occur. For instance, let us concentrate
EIGENFUNCTIONS on the casen=2. In the example shown in Fig. 8, one rec-

ognizes that the cell corresponding to vertex typefl Fig.

The Penrose tiling possesses a so-called inflation/deflatioy may be dissected equally between the cells corresponding
symmetry>'%In an inflation step, the two types of rhombi to vertex types 2 or 3 of the deflated tiling. In this case, we
are dissected into smaller pieces that again constitute a rhorannot assign the deflated vertex type unequivocally. There-
bic Penrose tiling, but on a smaller scale with all lengthsfore, we demand that the corresponding terms in the ansatz
divided by the golden ratie=(1+/5)/2. The inverse pro- (4.1) are equal. In our example, this yields the equation
cedure, in which tiles are combined to form larger tiles, isAz21=Asz; for the amplitudesA, , , in the ansatz(4.1),
known as deflation. labeled by three digits according to the three vertex types.

The idea now is to generalize the ans@®2) for the wave  Considering also the first deflation step, not shown in Fig. 7,
function by using the vertex types and potentials of the deone finds another conditiof,,,=A,s,.
flated tiling in addition to those of the original tiling. Even ~ We now use the ansaf4.1) to find solutions of the tight-
more general, one may consider a sequence tidings ob-  binding equations. Here, we restrict ourselves to the case
tained by successive deflation steps, probing the original til=2. In order to set up the equations, we need to consider
ing on larger and larger length scales. In this way, we assigtarger patches that can be obtained by twofold inflation of
to each vertex of the original tiling a sequence of integers the 31 second-order vertex types of Fig. 4. Each of these
{v (i)}, k=0,1,...n, where »(i) specifies the corre- patches then leads to a number of equations. Of thpd8-
sponding vertex type in thkefold deflated tiling, withk=0 sible combinations of indices,,v,,and vy, only 25 occur
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in the Penrose tiling. Altogether we have to deal with a sys-
tem of 97 equations in 32 variables, namely, 25 amplitudes
A,,u, v, three variablegs,, 81, and By, the four hopping
parametersl,, d,, d;, andd,, and the energ¥. We used
MATHEMATICA (Ref. 26 to solve this system. As above, we
find three sets of solutions, which we express in terms of
Booi=B2B¢ and B1. They have the following form.

Solution (1): The 25 amplitudes, without normalization,

are
Azo1=Ag21= — Bad 2850~ BT Bo.
A225= Ag20= Azar= Asz:= Ar3o= Agar= B50B1B0.
Az3z=Azzz= Bgoﬁo )
Ar25= Agps= Aszs= A133= Aszs= B30 (4.2
Aess= A174= Aggs= — ,3%0( 2,350_ ﬁi) ,
Azgs=Ag17= Asag= Az45= Agas= BoB183,
Azzs=Aszs= — (285~ B1) BS.

FIG. 8. Voronoi cells of a patch of the Penrose tiliilgin lines
and of its twofold deflatior(thick lines. Shaded cells correspond-

and the transfer integrals and the energy are given by thgy 5 vertex type 1 cannot be uniquely assigned to a cell of the

same expression8.9 as for solution(1), where now

b. i B2oB1
T ot

4.3

deflated tiling.

where again the transfer integrals and the energy follow from
the previous expressiori8.13 for solution(3) by replacing

In contrast to the amplitudes, the transfer integrals and thb. by Eg.(4.3) and 8 by Eg. (4.5).

energy are hence expressed exclusively in termg,gfand

These solutions comprise those found in the previous sec-

B1, that is, the hopping parameters and the energy depertibn. Indeed, settingB,=B1=1 (B20=Bg), We recover the

on B, and B, only via the produciB,g.
Solution (2): Here, the amplitudes read

Az21=Agzx= ,33030 )
A220= Az20= A235= Aszo= A735= Ag3r= B20B1Bo,
A233= Ag33= B20Bo.
A125= Asps= Aszs= A133= Aess= B3 (4.9
Aess=A174=Asgs= B go:
Azes= Ag17= Asag= A725= Agag= B %,351
Azzs=Aszs= B20B5,

and the parameters now follow from the expressi42)
for solution (2) with b, given by Eq.(4.3) and

B:

thus again they depend @&y and 8, only via B.
Solution (3): Finally,

Az21=Ag21= B20B5 B0,
A220= Azp2= A3~ As3s= A73,= Ag3= ﬂgoﬁ 180,
Az3z= Azzz= Bgoﬂo )
A125= Agps= Asas= A133= Aszz= B30 (4.6
Agsa= Ar74= Ayga= B%oﬁ i,
Asgs=Ag17= Asag= Ar45= Agas= B0B185,
Azze=Agze= ﬁiﬁg’

B:= (4.5

solutions(3.8)—(3.13), apart from a common normalization
factor ,BS in the amplitudes. In addition, Eq%$4.2)—(4.6)
show that the corresponding energy eigenvalues are infinitely
degenerate. For given values®f, and 3, the Hamiltonian

and the energ¥ are fixed, but the eigenfunctions still in-
volve the free parametgs,. In other words, each choice of
B, and B, with the same product yields an eigenstate to the
same eigenvalue. We note that infinite degeneracies in the
spectrum were previously observed in tight-binding models
on the Penrose tilings. One example is given by the confined
degenerate states located at the endtgy0 in the vertex
model withd; =d,=d;=d,=0.1*8 Also some of the criti-

cal, self-similar eigenstates found in the center model appear
to be infinitely degeneraté.

It is a question whether a larger number of deflation steps,
i.e., a larger value of in the ansatZ4.1), leads to further
solutions of the tight-binding equations. The larger the
larger is the number of sequendeg}o<k<, that occur, and
hence the number of independent amplitudes. Indeedy for
=2 we had 25 sequences, for=3 andn=4 there are 49
and 104, respectively. One might suspect that in the limit
—oo, when the quantity of sequences tends to infinity, every
site is uniquely determined by its sequence, and hence one
should arrive at the complete solution in the limiting case.
However, this is not the case, which follows from the fact
that—looking at it from the opposite point of view—the dis-
section of a cell under inflation may contain several copies of
the same cell type. Therefore, it is doubtful whether larger
values ofn will lead to new wave functions. Far<4, no
solutions beyond Eqg4.2)—(4.6) were found. Nevertheless,
this does not prove that further generalizations might not be
more rewarding.
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)

g1 (5.2

completely describe the multifractal properties of the wave
function ¢.

In an inflation step, the edge lengths of the rhombi are
scaled by a factor™ . Therefore, the are&?’ of a Voronoi
cell corresponding to vertex type of the 2-fold inflated
tiling is given by

S =745, (5.3

For simplicity, we restrict our analysis to the ansg2) for

the wave function. In fact, since only the absolute values of
the wave function amplitudes enter in Ed.1), this also
applies to the solution§3.15. Substituting the ansatz into
Eq. (5.1 yields

1 A, 8|2

o - 0
N2945 T 2|w(S(V(i)))w/2

FIG. 9. A vertex of type 8(gray together with its twofold

inflation (black). 2

|AV|2q7_2|a) )

- q .

2 (S(O))“’/ZNquE:o 8129V, (m;21) |,
V. MULTIFRACTAL ANALYSIS v

5.4
Already a glimpse at Fig. 6 gives the impression that the 64

wave functions are self-similar. Let us therefore investigaté’vhereVV(m;ZI) denotes the number of vertices of type

this property more thoroughly. To do this, we have to under_Wlth potentialm multiplied by the area of the corresponding

stand the distribution of the double-arrow potentiabn the VolronOIdceII aftelr 2| m;l/atlon. Zslteps. der th f
tiling. Sutherland® considered the transformation of single n order to calculatd/,(m;2l), we consider the transfor-

and double arrows under twofold inflation, and proved thafMation of the Voronoi cells of the eight vertex types under a
' twofold inflation (compare Figs. 4 and).7From this, one

the value of the double-arrow potential changes at most by " . . . oo
P g erives recursion relations for the distributiohig(m;21) by

21 under a 2-fold inflation. . .
For definiteness, let us consider a vertex of type 8 that hagounting the number of inflated cells. that are covgred by the
original cell. For example, as shown in the lower right corner

double arrows pointing outwards in all five directions. In Fig. ¢ Ei h i cell di h
9, we show this patch together with its twofold inflation. For Of F19- 7, the Voronoi cell corresponding to the vertex type 8
ith a potentialm turns into: (i) one cell of type 8 with

the original patch, the values of the double-arrow potential _ - . :
are 0 at the center by our choice of normalization, and 1Potentialm; (ii) five cells of type 2 with potentiah+1; and

elsewhere. In the inflated version, the potential takes valuedil) five fractional partdeach with an area fraction of (4
between 0 and 8ee Fig. 3 In what follows, we use Rfold ~ _ 7)/11~0.216542] of type-6 cells with potentiah+1.
inflations of this particular patch for the multifractal analysis. COnversely, a cell of type 8 in the inflated patch may stem
In this case, the values of the double-arrow potential grow'om & vertex of type 5, 7, or 8, each of those yielding pre-
linearly with the number of inflation steps. This may be dif- CiS€ly one complete cell of type 8. Considering all vertex
ferent if one starts from other initial patches, for example,YP€S, and computing the fractional areas involved, one ar-
starting from vertex type 4 results in a decreasing doublelIVeS at recursion relations

arrow potential, corresponding to a different choice of the 8

reference point for the potential in the infinite tiling. We note V,(m;2l+2)= Z 2 MV, (m+a;20), (5.5
that Refs. 10 and 23 used vertex type 4, together with the o=t el

opposite direction of the arrows, which then also gives arWith three 8<8 matricesM (™, M), andM™). The quan-

increasing potential. tities we need are certain transforMg(3;21) of V,(m;2l),
Following Refs. 23 and 27, we define a partition functiondefined as
for the 2-fold inflated system ol
1ol V,(B;21)=2 BV, (m;2l) (5.6)
; m=0
L(q0;20)=—7> ——, (5. _ _ _
N“9"T S [see Eq.(5.4)]. From the recursion relatior(.5), one finds

that the transformd/,(3;2l) for two successive inflation
whereN is the norm of the wave function on the finite patch, steps are related by

i.e., N2=3;| ¢;|%. Here,S, denotes the area of the Voronoi o

cell of vertexi. For a givenq, there exists a certain number ~ B ~ ~ )

w(qg) such that the partition functio¢b.1) is boundedfrom V(g2 +2)_M2:1 M, (BIV.(B:2D), 5.7
above and beloyin the limit | —0, i.e., it neither vanishes 5

nor diverges. The generalized dimensions where the matriXM (B) reads as follows:
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21+67 52-27 52-27 ., 35+10r 0 7+27 0 0
59 59 P 59 P 59 A 59 A
—16+20r 95-10r 33-57 , —20+25r  153-10r , —12+157 = 149-57 -
29 A 29 A 29 P 29 A 29 P 29 A 29 A A
140-67 1 77+671 125-127
28 B! 5 0 0 0
B 31 31 31
M(B)= 0 0 0 0 0
0 0 1 0 0 0 0 0
7+t 8-271 14+ 27 20-57 20-57 20-57
0 1 0 1 0 1 1
11 11 11 11 11 11
1 0 0
0 1
(5.9
|
(compare Ref. 10 It is related to the matricel® (”) (5.5) by Concerning the matri# () [Eq. (5.8)], we remark that
1 its eigenvalues and eigenvectors are connected to the fre-
M(B)= 2 B M) (5.9 quencies of the vertex types, which count how often a certain
o=—1 ’ vertex type occurs in the Penrose tiling. Indeed, if weBet

(@) ] o =1, we obtain a substitution matrix for the inflation rules in
hence the elements &'’ are nothing but the coefficients the Penrose tiling. Therefore, according to the Perron-

of B~ of the elements o (B8). Frobenius theorem, the eigenvectidrl) corresponding to
The asymptotic behavidifor | —=) of V(B;2l) is gov-  the eigenvalue with largest modul@i1) should reproduce

erned by the eigenvalu® of M with largest modulus the relative frequencies of the vertex types in the tiling. We
y g (B) (B) g calculated numericallyf(1) and found perfect agreement

- : . 28,29
V,(8:2h)~Q'(B)f(B), (5.10  With the known frequencie®;
(:21) (BIT.LB) We note that the multifractal analysis can be carried out
where f(B) is the corresponding eigenvector. For positivefor the generalized eigenstateg4d.2)—(4.6) analogously.
values of 8, the largest eigenvaluén absolute valugis  However, it becomes more complicated because we have to

positive and unique, because the third poweiVtfB) is a consider the substitution matrix of vertices labeled by the
positive matrix. Calculating the norm inflated vertex types, which results in a*225 matrix.

8
N*=2) [i*= 2 |A17V,(|B1%21)~Q'(| B2,
: v=1 We constructed exact non-normalizable eigenfunctions
(5.13 for certain vertex-type tight-binding models on the rhombic
Penrose tiling. In a way, our model is somewhat more real-
istic than the vertex model considered usually, because we

VI. CONCLUSIONS

and substituting the asymptotic behavior Wf(3;21) into

Eq. (54 also allow hopping along the diagonals of the rhombi and
8 A, 2972 hence for all short distances between vertices. Still, the hop-
I'(q,;21)= >, (O”) NG V,(18]%%21) ping parameters and the energy of the states are determined
v=1(S,”) "N by the requirement that our particular ansédz) or (4.1)
v oy 1! holds, thus we cannot make direct contact to the experimen-
T Q8™ (5.12 tal situation.
Q981% D
q
leads us to the conclusion that the partition function 26
I'(g,w;2l) can be bounded if and only if '
2.4
1 Q9%(181% 22
w(Q)= I . (5.13 )
2InT ] Q(B% 20 B=10
In Fig. 10, we present the fractal exponént [Eq. (5.2)] for 18 B0
several values oB. For =1, the wave function does not 1.6 g =04
depend on the potentiah and takes at most four different L4 ool
values according to the translation class of the site. In this '50 s 00 25 50 75 100 133 15Oq
caseD, is constant. The smalldB|, the faster the wave It ) ) ' ’ ) ' '
function decays, leading to a steeper cubyeas a function FIG. 10. The generalized dimensioiiy, for several values

of g. of B.
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The construction of eigenstates is based on a potemtial ported on a finite number of vertices that exist for the models
derived from the matching rules of the Penrose tiling thatwithout hopping along the diagonals as a consequence of the
had been introduced in a similar context previodSI?We  local arrangement of tiles'*?? Furthermore, one cannot
consider several generalizations of the ansatz for the waveonstruct such states by linear combinations of our infinitely
functions, which show that the eigenstates we found are indegenerate solutions because these have different asymptotic
finitely degenerate. Further generalizations can be investhehavior. We checked numerically that for finite patches
gated in a systematic way, and may lead to a wider class ghere are no exact degeneracies at the energies of our solu-
accessible wave functions. We hope to report on this, and ofions, and thus there are no confined states degenerate with
the application of this ansatz to other quasiperiodic tight-yr solutions. In general, we do not expect that such states
binding models(particularly for the three-dimensional case exist for nonvanishing diagonal hopping elements, because
in the future. they require the cancellation of contributions at all neighbor-

From the ansatz, it is apparent that the eigenfunctiongng vertices of the support, which is much more difficult to
(3.8), (3.10, and(3.12) reflect the distribution of the poten- satisfy in this case.

tial mon the lattice. The multifractal analysis of the eigen-  The present work is a generalization of the ideas of Refs.

states, therefore, reduces to the analysis of the distribution afgp and 23, and we recover the solutions found by

the potential that was already considered by Suthenitd.  Sutherland® as a special case. In Ref. 23, the authors con-

shows that the particular wave functions given in E@s8),  sidered a center model on the Penrose tiling, where they also
(3.10, and(3.12 are critical, i.e., neither extended nor ex- found infinitely degenerate critical eigenstates. It is interest-

ponentially localized, as typically expected in two- jngto note that all exactly known eigenstates in such models,
dimensional quasiperiodic tight-binding models. Of coursejncluding the confined stat€s*?? appear at energies with

our results only apply for particular eigenstates and do Nofnfinite degeneracy. At present, we do not know whether
g|Ve information about the nature of the e|genstates n genthere is a deeper reason for this observation.

eral. At least for the case without hopping along the diago-
nals, d;=d,=d3;=d,=0, numerical investigation$ have
confirmed the multifractal character of typical eigenstates,
and we have demonstrated here that this may also hold if one
includes hopping along diagonals. The authors thank M. Baake for discussions and helpful

Our ansatZ3.2) does not include possible “ring states” comments. Financial support from DFG is gratefully ac-
or “confined states.” These are strictly localized states supknowledged.
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