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We have performed minimizations of the order-N energy functional of Ordejo´n et al. @Phys. Rev. B51, 1456
~1995!# in models of fourfold-coordinated amorphous carbon containing 512 and 4096 atoms using the first-
principle local-orbital Hamiltonian of Sankey and Niklewski. The total time for performing the minimization
can be significantly reduced by directly projecting the initial functions to the occupied subspace of the Hamil-
tonian before applying a conjugate-gradients minimization. In addition, the energies achieved in the minimi-
zation can be significantly lowered by dynamically optimizing the localization regions of the projected func-
tions using a population rather than distance criterion. Furthermore, the projection method also provides an
efficient scheme for the linear-scaling computation of the Fermi energy in semiconductors, which is needed for
the computation of the projected functions as well as for the evaluation of several other order-N functionals.
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I. INTRODUCTION

The development of computational techniques
molecular-dynamics~MD! simulations, which scale linearly
with the number of atoms in the system has become a v
fruitful area of current research. For instance, these meth
expanded the scope of first-principles total-energy comp
tions to systems containing up to a few thousand atoms. S
eral scientifically fascinating and technologically promisi
model systems have been considered so far, including g
single-shell fullerenes, multishell fullerenes, tubular syste
huge complicated molecules such as the DNA as well
large amorphous tetrahedrally-coordinated mo
structures.1–4

Most of the linear-scaling computations presented so
were based on the variational minimization of a given ene
functional. This functional is constructed in such a way th
it has a global or at least a local minimum at the corr
one-particle ground-state energy of the given Hamiltoni
However, there exist two basically different approaches
the derivation of such an energy functional. The first sche
represents the band-structure energy as the traceEbs

5Tr@ r̂Ĥ# over the density and Hamiltonian operator,
which case the minimization has to provide the matrix e
ments of the density operator in some basis of locali
orbitals.5–7 In the second approach, the trace is perform
over the Hamiltonian operator alone, but this has to be d
within a basis of Wannier-like states that span the occup
subspace of the Hamiltonian.8–13These functionals minimize
the trace over the matrix productS21H, whereH andS are
the Hamiltonian and overlap matrices with respect to th
Wannier-like states. Here it is important that the minimiz
PRB 580163-1829/98/58~20!/13472~10!/$15.00
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tion can actually be performed by replacing the inverse ov
lap matrix with some odd-order Taylor expansion such
S21'22S. Furthermore, it is also possible to connect bo
schemes by minimizing the energy with respect to
density-matrix elementsand the basis functions.14

The representation of the band-structure energy as
trace over the density and Hamiltonian operators also allo
a nonvariational computation ofEbs. This can be accom-
plished by means of an explicit polynomial~Chebyshev! rep-
resentation of the density operator, which is derived by
analogous expansion of the Fermi-Dirac distribution funct
at a certain appropriate temperature parameter. This so-c
Fermi-operator expansion or projection method~this latter
term was chosen according to the projection property of
density operator at zero temperature!, was originally devel-
oped by Goedecker and co-workers15 for orthonormal tight-
binding-like Hamiltonians. Recently, we have published16 a
generalization of this method to the case of overlapping
calized basis states, in which the density operator is re
sented by means of the ‘‘contra-covariant’’ or upper-low
indexed Hamiltonian matrixH̄5S21H. ~Here,H and S are
the ordinary Hermitian Hamiltonian and overlap matrices
the local basis chosen.! This matrix H̄ can be computed ef
ficiently in a linear-scaling way by solving linear systems
equationsSH̄5H within localized regions of space.

Because the projection method is nonvariational, tra
computations can be done without the need of providing
particular ‘‘initial-guess’’ functions or matrices. This is
particular advantage compared to those function
minimization techniques that start from approximations
certain Wannier-like states in the system. Especially in d
ordered systems such initial functions are likely to be
13 472 ©1998 The American Physical Society
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away from the final variational solutions. The minimizatio
of the energy functional at the beginning of an MD simu
tion is therefore often the bottleneck in these computatio
Another advantage of the projection method compared to
variational schemes for nonorthogonal basis states is tha
former method scales linearly also with the number of ato
within the localization~LOC! regions.17 This is due to the
fact that no matrix elements between different projec
functions have to be computed. This may be important w
larger LOC regions are needed to increase the accurac
order-N schemes. Furthermore, the projection method w
using the original basis states is directly applicable to s
tems with arbitrary coordination numbers.

On the other hand, the nonvariational character of
projection method may restrict the pure application of t
method within MD simulations. The reason for this is th
the performance of the projections in a certain time step c
not draw advantage from the projections done in previ
steps. All matrix-vector multiplications involved in the poly
nomial representation ofr̂ times a certain function have t
be performed in each MD step anew, even though the fi
projected functions may change only slightly. It is therefo
desirable to connect the projection method with a variatio
scheme.

In this paper, we will consider the projection scheme
conjunction with a Wannier-function-based minimization a
proach. This connection is possible because the projec
method also allows to compute Wannier-like functions
applying the density operator to selected initial functio
These projected functions can then be used as new in
functions in the minimization of the energy functional. W
will show that this direct projection of initial functions to th
occupied subspace, followed by an approximate orthon
malization of the projected functions, results in more e
cient functional-minimization schemes. The orthonormali
tion, of course, breaks the linear scaling of the project
method with respect to the size of the LOC regions, but
we will see, this fact is not very relevant due to the sm
number of orthonormalization steps needed ('5). Further-
more, the projection as well as the orthonormalization allo
a straightforward definition ofdynamicalLOC regions for
the Wannier-like states, which are based on a popula
rather than distance criterion. With these dynamical regio
the projection method results in a significant acceleration
improvement of the accuracy of functional-minimizatio
schemes. This connection of a projection with a variatio
technique therefore allows to significantly reduce the ‘‘init
MD step’’ problem mentioned above. On the other hand,
will also see that the subsequent functional minimization
proves the results obtained in the projection method by
ducing errors incurred due to the confinement of the ma
H̄ or the numerical representation of the density operato

However, this paper will not yet address the question
how to find optimal initial functions for the projection i
general systems. Instead, we will consider disorde
fourfold-coordinated systems where physically reasona
initial functions can easily be obtained. We then compare
efficiency and accuracy of projection and variation
schemes with respect to these functions. As we will sh
the most efficient minimization of the energy functional for
given size of the LOC regions can be obtained by us
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larger LOC regions in the projection, which are reduced
optimal regions of the desired size after the orthonormali
tion process.

One potential problem of using the projection meth
within electronic-structure computations is that the polyn
mial construction of the density operator requires the kno
edge of the extreme band edges and the Fermi energyEF for
the given problem. Furthermore, any information about
band gap, such as the density of defect states in the gap
the size of the HOMO-LUMO gap, is desirable to define
optimum temperature parameter in the Fermi distribut
function.16 Whereas the extreme band edges are easily
accurately obtainable in a linear-scaling way with a Lancz
procedure,18 and the size and position of the inner gap a
the defect states can be ascertained by more elaborate L
zos, recursion, or maximum-entropy schemes,20,21 it turns
out that the accurate linear-scaling determination of
Fermi energy in semiconductors is a more difficult, i
conditioned problem. This is due to the fact thatEF in semi-
conductors lies in a region of low density of states~DOS!,
which means that small errors in the DOS or integrat
routines may result in inaccuracies of the order of the g
width in the predicted values ofEF . Of course, if the pro-
jection method is followed by a minimization and as long
total energies are concerned, one may expect that projec
out the complete conduction band will be significant for t
accelerated minimization. Nevertheless, if the project
method is used to compute local quantities such as lo
charge densities and forces, an accurate value ofEF may be
important. Furthermore, apart from the projection meth
many linear-scaling implementations that are based on
resenting the occupied subspace by an overdimensi
basis5,13,14require an estimate of the Fermi energy. We w
therefore discuss a few schemes that are candidates fo
linear-scaling determination ofEF . As we will show, the
projection method itself provides the most powerful a
proach for theO(N) computation ofEF in semiconductors.

II. ACCELERATION OF FUNCTIONAL MINIMIZATIONS

In the following, we present first-principles computatio
done with the Harris-functional local-orbital Hamiltonian d
rived by Sankey and Niklewski.22 We first consider a mode
for amorphous tetrahedrally-coordinated carbon contain
512 atoms, which was originally generated by Djordjev
et al.23 This model was subsequently relaxed by Drabold a
Ordejón24 using the Sankey-Niklewski Hamiltonian, whic
resulted in a completely fourfold-coordinated network with
HOMO-LUMO gap of 4.3 eV.

For the computations presented in Fig. 1, we did not
any localization restrictions for the Wannier-like function
which allows us to compare the ‘‘intrinsic’’ properties of th
minimization schemes used. The figure shows the rela
deviation of the energy functionalEbs

fct ~derived by Mauri
et al.10 and Ordejo´n et al.11! from the correct band-structur
energyEbs

(0) within different stages of the minimization pro
cess. The dashed lines represent the pure conjugate-gra
~CG! minimization25 of the energy functional whereas in th
case of the solid lines a projection~P! and orthonormaliza-
tion ~O! is used prior to the CG treatment of the function
In both cases, we started from the same initial functions t
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were taken from the normalized but nonorthogonal bond
combinations of hybrid orbitals pointing into the bond dire
tions. Within the projections for this system, we used
exact Fermi energy as obtained by direct diagonalization
the Hamiltonian. Furthermore, we used the valueb51/kT
5100 ~with respect to the Chebyshev interval@21,1#) and
150 Chebyshev polynomials in the expansion ofr̂. These
values have been chosen larger than necessary in order t
conclusions applicable also to systems with smaller ga
According to the error analysis presented in Ref. 16,
relative error inEbs for our system due to these parameters
of the order of 1026.

As can be seen in Fig. 1, the direct CG minimization
the energy functional leads to a saturated state very clos
the exact band-structure energy after about 50 CG st
Considering now the procedure that involves projection a
orthonormalization, first note that the abscissa of the l
hand part of the figure was chosen such that its length
responds to the CPU time needed relative to the time of
CG iterations.26 An interesting fact is that the projectio
alone does not lead to a noticeable reduction in the fu
tional value. This is caused by the property of the ene
functional to overestimate the energy of nonorthonorm
states. However, a subsequent orthonormalization of the
jected states leads to an abrupt drop in the functional va
~The orthonormalization was performed with four first-ord
Löwdin iterations,16 which reduced the maximum remainin
overlap value to 431025.! The CG minimization using thes
orthonormalized states achieves the saturated energy
after about 20 iterations. This also minimizes the total C
time needed. The connection of the CG technique wit
projection and orthonormalization scheme therefore res
in a more efficient minimization of the energy functiona

FIG. 1. Minimization of the energy functional~Ref. 11! in a
512-atom model of tetrahedrally coordinated amorphous car
~Ref. 23! without localization restrictions. Main plot, relative devia
tion of the functional from the correct band-structure energy; in
relative difference of two consecutive functional values. Das
lines, pure conjugate-gradient~CG! minimization of the functional;
solid lines, minimization consisting of projection~P!, orthonormal-
ization ~O!, and CG minimization. Also indicated are the CP
times ~Ref. 26! needed for the different procedures.
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Also note in the inset of Fig. 1 that the minimum-ener
state in both computations was reached at a relative cha
in the energy functional of 1028.

Figure 2 depicts the corresponding results in the prese
of LOC regions for the Wannier-like functions. These loca
ization restrictions are necessary to obtain a linear-sca
procedure. Comparing this figure with the previous one,
reader will immediately notice that the presence of su
LOC regions results in a much less accurate approach to
correct band-structure energy. In the pure CG computa
represented by the dotted line we used fixed LOC regio
which included all the atoms within four bond steps from
central bond. In the given system, this leads to regions c
taining, on average, 115 atoms. The projection computa
indicated by the dashed lines in Fig. 2 started from the sa
LOC regions. However, in the approximate order-N or-
thonormalization of the projected functions~using five Löw-
din iterations!, we allowed a reshaping of these LOC regio
to include atoms that acquired significant weight~measured
as Mulliken’s net population! in the orthonormalization
process.16,27The number of atoms in the LOC regions, on t
other hand, was permitted to increase only slightly, result
in 118 atoms on average. Note again, as in Fig. 1, that
forming a few orthonormalization steps on the project
functions leads to a very steep reduction of the functio
value. The important new point, however, is that the dyna
cally redefined LOC regions are now much better capable
describing the Wannier-like functions in the system than
original regions. This can be seen from the fact that the
minimization of the energy functional using these new LO
regions results in a significantly lower energy. This is es
cially important considering the very slow minimization o

n

t,
d

FIG. 2. Minimization of the energy functional~Ref. 11! in a
512-atom model of tetrahedrally coordinated amorphous car
~Ref. 23! with localization restrictions. Main plot and inset as
Fig. 1. Dotted lines, pure conjugate-gradient~CG! minimization of
the functional; dashed and solid lines, minimization consisting
projection~P!, orthonormalization~O!, and CG minimization, start-
ing from different sizes of the localization~LOC! regions. The P
and CG parts of the minimizations have been done with fixed L
regions while during the orthonormalization these regions were
namically optimized without significantly changing their size. F
orientation, the CPU times~Ref. 26! needed are also indicated.
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the energy functional after the first'50 CG iterations. The
use of ~approximately! orthonormalized projected function
within the CG scheme now not only increases the efficie
of the minimization but also improves the accuracy of t
energy values and the quality of the Wannier-like functio
obtained.

Dynamical LOC regions can be introduced in a straig
forward manner whenever the localized functions are ite
tively obtained by repeatedly multiplying them with th
Hamiltonian or overlap matrices.28 Such multiplications,
which are performed in the projection as well as orthon
malization procedures, repeatedly create nonzero weigh
these functions outside their current LOC regions. This
be used to define new LOC regions according to th
weights instead of using any fixed distance criterion. Furth
more, such dynamical regions are naturally capable of
tinguishing between different ‘‘kinds’’ of Wannier-like func
tions such as those originating froms- or p-like states or, as
in the functional of Kimet al.,13 from s- or p-like valence
orbitals. In our scheme, using dynamical LOC regions in
orthonormalization has the advantage that the additional
merical effort related to sorting the weights and updating
localization and overlap index matrices is small compared
the total computational time because of the small numbe
orthonormalization steps.

To test the effect of using more flexible functions al
within the projections, we used a different approach in t
work. The linear scaling of the numerical effort of the pr
jection scheme with respect to the size of the LOC regi
allows one to use larger, but fixed regions within the proj
tions and to reduce them to the desired size after the
thonormalization process. The results of this procedure
indicated by the solid line in Fig. 2. The reduction of th
LOC regions leads to an increase of the functional value
course, but the energies obtained in a subsequent minim
tion are again lower than the values achieved in the prev
schemes. Note that the time effort for these projections
orthonormalizations within larger LOC regions is still sma
compared to accomplishing a significant number of CG
erations.

We emphasize here that this procedure of reducing la
LOC regions assumes that smaller LOC regions for
Wannier-like functions are needed within any subsequ
treatment of these functions. For instance, this would be
case if larger LOC regions lead to prohibitive CPU tim
when a certain minimum relative change of the functio
value is required~as in force computations!. If total energies
are the primary concern, one would directly minimize t
energy functional after the orthonormalization or, when
functional evaluation becomes too expensive for large L
regions, use a pure projection computation. Furthermore,
computations also showed that the initial CG iterations
ways result in a noticeable reduction of the functional va
even when projected functions are used. This is a con
quence of the fact that the functional minimization reduc
errors remaining in the projection scheme due to the confi
ment of the matrixH̄ or the numerical representation of th
density operator. Whenever Wannier-like functions are to
computed and the LOC regions used are not too large,
performance of at least a few CG iterations after the pro
tion and orthonormalization is therefore recommended.
y

s

-
-

-
of
n
e
r-
s-

e
u-
e
o
of

s

s
-
r-
re

f
a-
s
d

-

er
e
nt
e

l

e
C
ur
l-
e
e-
s
e-

e
he
-

In the presence of LOC regions, the relative deviation
two consecutive functional values alone is no longer a go
criterion for the accuracy achieved in the CG minimizatio
This is a direct consequence of the variational restrictio
imposed due to the LOC regions and does not necess
imply that a particular computation has been trapped i
local energy minimum. This latter possibility has recen
been discussed by some authors,11,13 but the use of an accu
rate projection scheme is one way to reduce the chance
such a trapping.15 Our result as discussed above is that t
increase in the variational freedom by selecting optimum
oms for LOC regions of a given size is of primary impo
tance for achieving more accurate CG minimizations. C
sidering the band-structure energy, such a scheme allows
to perform relatively few CG iterations and thus to obtain
more efficientand simultaneously more accurate represen
tion of the occupied subspace. For nonvariational quanti
such as forces it is essential that the computations, wh
include projection and dynamical LOC regions also lead
smaller relative deviations of the functional values as sho
in the inset of Fig. 2. These computations therefore conve
within fewer CG steps. This reduction in the relative dev
tions is particularly important taking the slow decay of the
values in Fig. 2 into account. We therefore expect a sign
cant reduction in the number of CG iterations also for for
computations. This, however, needs to be confirmed by
ther investigations.

Here, we have also investigated our projection sche
within the functional minimization for the huge ‘‘amorphou
diamond’’ model containing 4096 atoms, which was gen
ated by the same group.23 For this model, the exact band
structure energy and the position of the Fermi energy can
be computed by a diagonalization routine. In Table I,
present computations in which we applied the Fermi ene
returned by an accurate projection procedure as describe
Sec. III A. This computation took 15 h~Ref. 31! and yielded
the Fermi energyEF522.8 eV~with a remaining systematic
inaccuracy of about 0.05 eV!. Considering the DOS obtaine
by Röder et al.30 for the same system and with the sam
Hamiltonian,22 this value forEF lies in the middle of the
largest gap between defect states found between the s
bands in this system. According to the results of this dyna
cal projection procedure, we could use the same values fob
and the number of Chebyshev polynomials as applied to
512-atom model.

Our results are summarized in Table I. Note that the sa
conclusions that have been discussed for the smaller m
can also be drawn from this table. Starting with a project
calculation that uses about 200 atoms in the LOC regi
~five bond steps, middle part of Table I!, and reducing these
regions after the orthonormalization, the functional value
ter three CG iterations has almost reached the value obta
after 200 iterations in the pure CG scheme~upper part of
Table I!. Employing more CG steps, of course, gives a be
approximation of the band-structure energy. The relat
change of the functional value achieved after 200 CG ite
tions in the pure minimization (1.431027) has been reache
after half as many steps in the method, which includes p
jection. The latter method, which ends up with essentially
same number of atoms in the LOC regions, again turns ou
be faster as well as more accurate. If total energies are
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cerned only, one may omit the reduction of the LOC regio
and perform a few minimization steps of the orthonorm
ized projected functions. This is shown in the lower part
Table I where we directly applied the orthonormalized fun
tions as computed above. When comparing these results,
note that the energy reduction in the first CG iterations a
the orthonormalization becomes smaller for larger LOC
gions, i.e., when the energies obtained are already clos
the correct ground-state energy. Using this scheme with
CG iterations, we obtained our minimum-energy value
the given system after 22 h CPU time. Let us finally emp
size here that, to our knowledge, this is the first computa
of Ebs in such a large system with use of the Sanke
Niklewski Hamiltonian.22

In Sec. III, we will discuss methods for the linear-scali
computation of the Fermi energy. Here, however, let us
vestigate how sensitive the observed decrease in the f
tional value is dependent on the chosen value forEF in the

TABLE I. Different procedures for the minimization of the en
ergy functional~Ref. 11! in a 4096-atom model of tetrahedrall
coordinated amorphous carbon~Ref. 23! starting from the same
bond-centered initial functions and using localization~LOC! restric-
tions. Upper part, pure CG minimization; middle part, minimizati
using reduced projected functions; lower part, minimization us
unreduced projected functions. The average number of atoms in
LOC regions, the energy value of the functional, the relative cha
of the functional value, and the elapsed CPU time~Ref. 31! are
given after generation of the initial functions~INIT !, projection~P!,
approximate orthonormalization~ON!, reduction of the LOC re-
gions~RED!, and the specified number of conjugate-gradient ite
tions. The projections were done using the Fermi energyEF

522.8 eV.

Atoms Energy Relative CPU
Iter. in LOC ~eV! change ~h!

INIT 243.750 0.0
1 114 251.7880 1.531021 0.3
2 114 252.9488 2.231022 0.7
3 114 253.8063 1.631022 1.1
50 114 253.8511 1.631026 18
100 114 254.8526 3.131027 36
200 114 254.8539 1.431027 72

INIT 243.750 0.0
P 201 243.931 4.0

ON 205 254.8571 5.8
RED 116 254.8367 5.8

1 116 254.8485 2.231024 6.1
2 116 254.8520 6.331025 6.4
3 116 254.8535 2.731025 6.7
50 116 254.8584 2.531027 23
100 116 254.8590 1.431027 40

INIT 243.750 0.0
P 201 243.931 4.0

ON 205 254.8571 5.8
1 205 254.8583 2.431025 7.3
2 205 254.8594 2.131025 8.9
3 205 254.8604 1.831025 10
10 205 254.8623 1.331026 22
s
-
f
-
lso
r
-
to
0

r
-
n
-

-
c-

projection scheme. In Fig. 3, we have done several com
tations with different trial Fermi energies in the projectio
for the same 4096-atom model and applied the scheme
sented in the middle part of Table I. Plotted are the values
the energy functional after 50 subsequent CG iteratio
These values approximately describe the differences in
energy values when approaching the saturated states
Fig. 2. We have also indicated the average number of at
in the LOC regions obtained from the dynamical orthon
malization. These numbers were adjusted to be not sma
than but close to the number of 114 atoms~four bond steps!
used in the pure CG minimization.27

Let us first mention that the relatively small differences
the number of atoms in the LOC regions, as a careful look
Fig. 3 reveals, still have a noticeable influence on the fu
tional values achieved. This emphasizes our conclusion
using as large LOC regions as reasonably possible throu
out the scheme. The main result of Fig. 3, however, is t
the differences in most of the ‘‘projection1CG’’ computa-
tions shown are about one order of magnitude smaller t
the difference to the pure CG minimization~solid dot in Fig.
3!. Having a coarse estimate of the Fermi energy within
band gap therefore proves to be sufficient to achieve a
nificant improvement of the band-structure energy usin
preceding projection computation.~Note that the edges of th
valence and conduction bands as computed in Ref. 30
situated at about25 and21 eV, while defects states exist a
about 24 and 22 eV.! On the other hand, the minimum
energies in Fig. 3 have been obtained for trial Fermi energ
close to the correct one~at 22.8 eV!. This is an expected
result. Placing the Fermi energy above its correct value
creases the contributions from unoccupied states remai
in the projection. DecreasingEF below the correct value
however, increases the linear dependence of the obta

FIG. 3. Dependence of the band-structure energy value ina-
C4096~Ref. 23! obtained after 50 CG minimization iterations of th
energy functional~Ref. 11! on the parameterEF chosen within a
preceding projection computation of Wannier-like initial function
For each computation, we have also indicated the average num
of atoms obtained within the dynamical definition of localizatio
regions applied during the orthonormalization of the projected fu
tions. The solid dot describes the corresponding energy value
tained without performing a projection computation and using fix
LOC regions. The arrow marks the position of the correct Fe
energy.
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projected functions. This leads to greater overlap values
tween these functions and again increases the value o
energy functional. It is clear that this effect for total energ
is relatively weak when the position ofEF is wrong by a few
defect states, but it will become more serious when theEF
parameter chosen approaches or is even situated within
bands. Also, as already emphasized in the Introduction,
may expect that the knowledge of the exact Fermi energ
important when local quantities such as forces are concer
In this case, the wrong occupation of a localized state m
appreciably influence quantities within the region of th
state. Due to these reasons, we want to discuss some m
ods that can be used for the linear-scaling computation
EF .

III. ORDER-N COMPUTATION OF THE FERMI ENERGY

As we have emphasized above, it is somewhat difficul
obtain an accurate estimation of the Fermi energy in se
conductors by a linear-scaling method. This is related to
fact thatEF itself is a purely global quantity. Since an a
proximation ofEF is necessary to perform a projection ca
culation, we want to summarize here our results for
order-N computation ofEF . As to our experience, the high
est efficiency for computingEF can be obtained by applyin
the projection method itself. We also want to discuss brie
our results for using a quadrature recursion method with
justed first moments. Furthermore, we will add a few co
ments about factorization methods, which, though be
quite efficient in certain cases, are, in general, notO(N).

A. Projection method

An order-N estimate of the Fermi energy can be obtain
by the projection method itself. Recall that the number
electrons in a system is given by16

Nel5Tr@ r̂#5(
a

ra
a , ~1!

wherera
b are the elements of the contra-covariant or upp

lower indexed density matrixr̄52 F(H̄) in the original local
basis, H̄5S21H, and F(E) being the Fermi-distribution
function. This allows an iterative process in which a tr
value forEF is successively improved. For the efficient pe
formance of this process note that the Chebyshev vector
not depend on the Fermi energy. This enables one to c
pute columns of several density matrices simultaneous29

Furthermore, as pointed out by Goedecker,18 since evalua-
tion of Eq. ~1! only requires knowledge of the diagonal el
ments of the Chebyshev vectors, the orbital sums of th
elements can be stored and then used repeatedly for all
essary Chebyshev expansions. This, in principle, solves
problem of computingEF . However, without knowledge o
the Fermi energy and, consequently, the HOMO-LUMO g
it is not clear at the outset which value for the temperat
parameter and how many Chebyshev iterations should
used. Due to the sensitivity of the estimate ofEF on the
accuracy of the computational scheme, using too smoo
distribution function or too few Chebyshev iterations m
result in significant errors inEF . On the other hand, perform
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ing too many iterations will reduce the efficiency of th
scheme. We therefore propose a technique that dynamic
increases the number of Chebyshev iterations as neces
This can be done by using the Chebyshev approximation
F(E) as an expansion, which can be broken off as soon
sufficiently accurate value forNel(ET) with EF set to the trial
energyET has been found. For this method, it suffices
have a stable sign of the deviation ofNel(ET) from the cor-
rect number of electrons. The termination of the Chebys
expansion is possible due to the~more or less! fast decay of
the Chebyshev coefficients and the property of the Che
shev polynomials to deviate least from zero. For ea

Chebyshev iteration, the matrix-vector multiplicationsH̄wa

are done simultaneously for all local orbitalsuwa&, the sum
of the diagonal elements of the Chebyshev vectors is sto
and the current value ofNel(ET) is computed. When ap
proaching the correct Fermi energy, the number of Che
shev iterations needed to achieve a relatively stable dif
enceNel(ET)2Nel increases.

The price that has to be paid for this method is to st
two Chebyshev vectors for all valence orbitals (4N in car-
bon! simultaneously. This results in somewhat increas
memory requirements compared to the CG minimization
the energy functional itself.31

We applied this scheme to the 4096-atom model used
Sec. II, starting from the initial energy interval@25.0,21.0#
eV for the trial Fermi energy. After four weighted bisectio
iterations, we obtained the estimateEF'22.80 eV with a
final systematic energy uncertainty of about60.05 eV. As
mentioned in Sec. II, this value ofEF lies in the middle of the
largest gap between defect states in this system as comp
by Röder et al. In Fig. 4, we depicted the energy value ch
sen and the number of Chebyshev iterations needed in
of these iterations. Note that the relatively large HOM
LUMO gap in this system~situated between about24 and
22 eV! has been identified after two bisection iteratio
already. The iterations can therefore be terminated earlie
an accurate DOS structure is taken into account.

FIG. 4. Number of Chebyshev iterations needed to obtai
stable difference~as described in Sec. III A! between the number o
electrons estimated at the indicated trial Fermi energies@Eq. ~1!#
and the correctNel for the 4096-atom model of tetrahedrally coo
dinated amorphous carbon~Ref. 23!.
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The computation just mentioned used an extended ra
for the matrix H̄ and yielded the final result after 15 h o
CPU time.31 Using the same cutoff16 for H andH̄, the itera-
tions converged onEF'22.7560.1 eV after about 7 h. This
is practically equivalent to the result presented above.

B. Recursion method

All methods that compute the total electronic DOS in
system with a given number of electrons are, in princip
capable of providing an approximation forEF . However, the
explicit numerical integration of a DOS as obtained, e.g.,
maximum-entropy schemes is not a recommended proce
because this integration inevitably introduces additional
accuracies. Both the calculation of the DOS, which natura
is a more structured quantity than its integral as well as
integration routine require very high numerical accuracy
locate EF within the low-DOS gap region. In many case
small errors in these procedures give rise to wrong locati
of EF somewhere in the band tails. Another problem w
order-N spectral methods comes from the fact that all th
methods require the repeated use of random vectors to o
the total DOS or related quantities.32–37The sensitivity in the
computation ofEF implies that the Fermi energies derive
with these vectors usually spread freely throughout the
region even if the DOS itself is already well converged.

To minimize the problems when integrating a DOS, w
used the widely known recursion method developed by H
dock and co-workers20 associated with a Gaussian quad
ture procedure,38,39 which allows to obtain the integrate
DOS directly from the recursion coefficients. Whereas t
quadrature method is still capable of providing sufficien
well-resolved localized states within the gap as well as
Hove singularities in the bands, the bands returned in am
phous systems are naturally rather smooth.40 An alternative
scheme is the kernel polynomial method as developed
Silver and co-workers30,35,36 in which the integrated DOS
can be obtained directly by evaluating the coefficients o
smoothed Chebyshev expansion of the DOS.

To improve the convergence of quantities, which are
rived by integrating over the DOS, with the number of ra
dom initial vectors, some authors have proposed to use
exactly @in O(N)# calculatable first moments of the DOS
detect and exclude random vectorsuj& with significantly
wrong momentsmj

(k)5^juĤkuj&. Drabold and Sankey37 used
a CG scheme to adjust the momentsmj

(0) through mj
(2) of

each random vector to the corresponding exact mom
m (k). Varga and Krempasky´33 earlier simply omitted all those
random vectors that had first moments outside a certain
erance interval aroundm (1). We compared both scheme
with respect to calculations ofEF and found indeed a simila
significant improvement when already using this first m
ment only~and the normalization!. However, in the presenc
of an overlap matrix for the local-basis states, the CG
proach is much more efficient.41 In Fig. 5, we therefore
present our results for this method. In order to be able
compute a distribution of estimates forEF , we performed a
large number of calculations using a simpler non-se
consistent local-basis LDA Hamiltonian.42 The computations
were done in the original 512-atom model.23
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Each distribution in Fig. 5 was obtained by computing t
Fermi energy within 280 recursion cycles. In each cycleEF
was derived from the total continued fraction~CF! obtained
by summing43 over 32k points and starting from differen
random initial vectors. These initial vectors were construc
by randomly taking 1’s and21’s as the orbital entries.20,32,33

~Another frequently applied choice consists in taking the
bital coefficients from a Gaussian distribution with un
variance.34,35! In each recursion run, we computed 40 pa
of CF coefficients, which turned out to be sufficient com
pared with the variations due to the random vectors.

The dotted line in Fig. 5 gives the distribution of theEF
estimates when the random vectors are normalized only~0!.
This has to be compared with the dashed and solid lines
represent the corresponding distributions when adjusting
first ~1! and the first and second moments~2!, respectively.
The improvement in the convergence from~0! to ~1! or ~2! is
clearly visible. Note, however, that the inclusion of the se
ond moment does not significantly change the distribut
compared to the first-moment case. This is in agreement w
our finding that the second moments of the original rand
vectors vary much less~about 10%! compared to the varia
tion in the first moments. The reason for this result should
that the second moment^juĤ2uj&, similar to the normaliza-
tion product^juj&, appears as a ‘‘square’’ of a vectorĤuj&,
which reduces the influence of the random signs inuj&. Fur-
thermore, unlike the first moment, the computation of t
second moment requires the non-Hermitian Hamiltonian m
trix H̄ ~see Ref. 41!. The accuracy in fixing the second mo
ment can therefore not be higher than the accuracy achie
in computingH̄.

The final estimate ofEF should be derived from the tota
CF summed over all recursion cycles where this summa
can be done very efficiently using the quadrature approac38

However, the convergence is often better when simply p
forming an average over the Fermi energies obtained fr
the single CF’s. But note, this average is influenced to so
extent by different magnitudes of the DOS below and abo

FIG. 5. Distribution of estimates for the Fermi energy in a 51
atom model of tetrahedrally coordinated amorphous carbon~Ref.
23! obtained by the recursion method with random initial vecto
using the Hamiltonian of Ref. 42. The numbers in parentheses
note the highest moment used in the conjugate-gradient adjust
of the initial vectors. Each single estimate was derived by summ
partial continued fractions over 32k points. The correct Fermi en
ergy is at20.1406 H as indicated.
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EF . For the 4096-atom model as mentioned above we
tained the averaged Fermi energyEF'23.1 eV after 120
recursion cycles using fourk points. This resulted in 480
random initial vectors. Performing three averages over
cycles, each yielded quite dispersed estimates~23.4, 22.5,
23.5! eV, which, however, are all situated within the sam
gap.30 On the other hand, the dispersion for the correc
summed Fermi energies was even higher:~24.2, 21.5,
24.8! eV. These computations took 46 h~Ref. 31! and were
therefore significantly slower than the projection compu
tions reported in Sec. III A.

We conclude from these results that the number of r
dom vectors needed to get converged Fermi energies ca
quite large if the density of states in the gap region is v
small. Of course, one may comment again that the comp
tion can be significantly abridged if the position of the defe
states within the gap is known from an accurate Lanczo
maximum-entropy calculation. In this case, the computat
can be terminated as soon as the HOMO-LUMO gap
been identified.

Furthermore, it is important to note that the relative er
in the DOS~in a finite energy interval! obtained by using
random initial vectors decreases with system size as 1AN
~see the Appendix!. This effect occurs due to the statistic
averaging of fluctuations in the state coefficients for comp
ing the DOS. As a consequence, the integration over cont
ous bands in the DOS requires fewer random vectors
large system sizes. On the other hand, the fluctuations in
state coefficients themselves and, hence, the statistical e
in the weights of isolated states cannot be reduced by
creasing the number of atoms in the system. In other wo
there is no statistical averaging with increasing system
for localized states. This affects the correct evaluation
integrals over the DOS in the gap region. The exact deter
nation of the Fermi energy, i.e., the identification of the hig
est occupied and lowest unoccupied states, therefore, ca
be made more efficient in terms of random vectors for lar
systems.

C. Comments on factorization methods

Let us finally mention a group of methods that allow
efficient computation of the Fermi energy but, in gener
have a higher-order scaling thanO(N). First, notice that the
number of positive, negative, and zero eigenvalues of
generalized eigenvalue problemHC5«SC with the indefi-
nite Hermitian matrixH and the positive definite matrixS
equal the corresponding numbers of eigenvalues of the
trix H. This can be seen by converting the general prob
to the ordinary oneS21/2HS21/2(S1/2C)5«(S1/2C) and ap-
plying Sylvester’s law of inertia.44 The Fermi energy can
therefore be derived by means of an iterative process c
puting the number of negative eigenvalues of the shif
equation (H2mS)C5(«2m)SC. This number can be ob
tained without explicitly computing the eigenvalues by p
forming a factorization of the matrixJ[H2mS5LTL T,
whereL is a unit lower triangular matrix andT is a tridiago-
nal matrix, which in the most efficient factorization metho
is even block diagonal. Applying Sylvester’s law again, t
number of negative eigenvalues ofJ equals the number o
negative eigenvalues ofT, which is easily accessible. Unfor
b-
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tunately, the factorization that clearly scales asO(N3) for
full matrices does not scale linearly even for sparse matric
The reason is that a stable method withm not close to one of
the extreme band edges requires to apply pivoting te
niques, which in turn results in more or less serious fill-in
J. The reader interested in these undoubtedly fascina
methods should consult Refs. 45 and 46.

IV. CONCLUSIONS

In this paper, we have shown how the projection meth
can be used to improve order-N electronic-structure compu
tations, which are based on the minimization of an ene
functional with respect to a set of Wannier-like states. Sta
ing from a set of appropriate initial functions, the direct pr
jection of these functions to the occupied subspace of
Hamiltonian and the dynamical definition of localization r
gions within an approximate orthonormalization of the pr
jected functions appreciably reduces the value of the ene
functional. Because the CPU time necessary for the pro
tion and orthonormalization is small compared to perform
a significant number of conjugate-gradient steps, the met
may also serve to accelerate the functional minimization

An optimum reduction of the functional value for a give
number of atoms in the localization regions can be achie
by using larger LOC regions in the projection and reduc
these regions to the desired size after the orthonormaliza
This procedure maximizes the variational freedom of
Wannier-like functions for a given size of the LOC region

One problem when using the projection method compa
to straightforward functional-minimization techniques m
be that estimates of the band edges and, in particular, of
Fermi energy are necessary to perform the projection.
therefore have discussed two linear-scaling techniques
regard to the accuracy achieved and the CPU time nee
when computing approximations of the Fermi energy
semiconductors. Especially the projection method itself p
vides a reliable tool for getting sufficiently accurate Fer
energies within a minimum of time.

Our results were obtained by performing first-princip
linear-scaling computations of the energy functional10,11

within two models of fourfold-coordinated amorphous ca
bon containing 512 and 4096 atoms.
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APPENDIX

In this appendix, we will give a simple derivation for th
dependence of the relative error in a total normalized D
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on the number of random vectors. The projected DOS

nF~E!5(
i

z^Fuc i& z2 d~E2Ei !,

with eigenstatesc i and eigenenergiesEi approximates the
total DOS when averaging over different independent r
dom initial vectors

uF j&5
1

AN
(
m

z j m uwm&,

whereuwm& are orthonormalized basis states andz j m are ran-
dom variables, which, in the simplest case, obeyz j m561
with equal probability.20,32,33The expectation valueE(ci) of
the state coefficientsci5 z^Fuc i& z2 then equals 1/N while
their variance when averaging overJ random vectors is
given by40

s i
25ES U1J (

j

J

z^F j uc i& z22
1

NU2D
5ES U 1

JN (
j

J

(
mÞn

^c i uz j mwm&^z j nwnuc i&U2D
<

2

JN2 (
mÞn

z^c i uwm& z2 z^wnuc i& z2<
2

JN2
.

The relative error in the state coefficients

As i
2

ci
<A2

J

v.

.

.

,

.

-

therefore decreases withJ but does not depend on the num
ber of atomsN. This is important for the weight of isolate
states in the DOS.

To obtain the relative error in a continuous DOS functio
we consider a small but finite energy intervaldE at energyE,
which contains aboutn(E)NdE eigenstates wheren(E) is
the true DOS. The sum of the state coefficients withindE
can be considered to obey a normal distribution with exp
tation value and variance approximately given as the sum
the mean values and variances of the single coefficie
Hence, the expectation value of the random quan
nF(E)dE follows asE@nF(E)dE#5n(E)NdE/N5n(E)dE
as it has to be, but the variance in the same quantity is gi
by

s2@nF~E!dE#<n~E!NdE
2

JN2
5

2n~E!dE

JN
.

Therefore, we obtain the relative error in a finite DOS inte
val:

As2@nF~E!#

n~E!
<

1

AJN
A 2

n~E!dE
.

These results agree with an error discussion given
Skilling34 for the maximum-entropy scheme and by Silv
and Röder35 for the kernel polynomial method. The relativ
fluctuations in the state coefficients, which do not depend
N average out in a finite DOS interval and decrease w
increasing system size. By virtue of this statistical effect,
total computational effort of spectral order-N methods can
even be sublinear for large system sizes.35
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36R. N. Silver, H. Röder, A. F. Voter, and J. D. Kress, J. Compu

Phys.124, 115 ~1996!; R. N. Silver and H. Ro¨der, Phys. Rev. E
56, 4822~1997!.

37D. A. Drabold and O. F. Sankey, Phys. Rev. Lett.70, 3631
~1993!.

38C. M. M. Nex, J. Phys. A11, 653 ~1978!; Comput. Phys. Com-
mun.34, 101 ~1984!.

39S. Glanville, A. T. Paxton, and M. W. Finnis, J. Phys. F18, 693
~1988!.

40U. Stephan, Ph.D. thesis, Technische Universita¨tChemnitz-
Zwickau, 1995, available under http://archiv.tu-chemni
de/pub/1996/0007/.

41We compute the random-vector moments^juĤkuj& in the follow-
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