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We have performed minimizations of the ordérenergy functional of Ordéjoet al.[Phys. Rev. B51, 1456
(1995] in models of fourfold-coordinated amorphous carbon containing 512 and 4096 atoms using the first-
principle local-orbital Hamiltonian of Sankey and Niklewski. The total time for performing the minimization
can be significantly reduced by directly projecting the initial functions to the occupied subspace of the Hamil-
tonian before applying a conjugate-gradients minimization. In addition, the energies achieved in the minimi-
zation can be significantly lowered by dynamically optimizing the localization regions of the projected func-
tions using a population rather than distance criterion. Furthermore, the projection method also provides an
efficient scheme for the linear-scaling computation of the Fermi energy in semiconductors, which is needed for
the computation of the projected functions as well as for the evaluation of several otheNofutectionals.
[S0163-182608)01344-7

[. INTRODUCTION tion can actually be performed by replacing the inverse over-
lap matrix with some odd-order Taylor expansion such as
The development of computational techniques forS 1~2—S. Furthermore, it is also possible to connect both
molecular-dynamic$MD) simulations, which scale linearly schemes by minimizing the energy with respect to the
with the number of atoms in the system has become a verglensity-matrix elementand the basis function&*
fruitful area of current research. For instance, these methods The representation of the band-structure energy as the
expanded the scope of first-principles total-energy computatrace over the density and Hamiltonian operators also allows
tions to systems containing up to a few thousand atoms. Sewa nonvariational computation df,s. This can be accom-
eral scientifically fascinating and technologically promising plished by means of an explicit polynomi@hebysheyrep-
model systems have been considered so far, including giamésentation of the density operator, which is derived by an
single-shell fullerenes, multishell fullerenes, tubular systemsanalogous expansion of the Fermi-Dirac distribution function
huge complicated molecules such as the DNA as well agt a certain appropriate temperature parameter. This so-called
large  amorphous tetrahedrally-coordinated ~ modeFermi-operator expansion or projection methhis latter
structured— term was chosen according to the projection property of the
Most of the linear-scaling computations presented so faflensity operator at zero temperafur@as originally devel-
were based on the variational minimization of a given energyPed by Goedecker and co-workeréor orthonormal tight-

functional. This functional is constructed in such a way that0inding-like Hamiltonians. Recently, we have publisftesl
it has a global or at least a local minimum at the correcideneralization of this method to the case of overlapping lo-

calized basis states, in which the density operator is repre-

one-particle ground-state energy of the given Hamiltonian. 4 b f the S |
However, there exist two basically different approaches for_Sente y means of the “contra-covariant” or upper-lower

the derivation of such an energy functional. The first schemédexed Hamiltonian matriti=S"'H. (Here,H andS are
represents the band-structure energy as the trage the ordinary Hermitian Ham|Iton|an_and overlap matrices in
=Tr[pH] over the density and Hamiltonian operator, in the local basis chosenThis matrixH can be computed ef-
which case the minimization has to provide the matrix eleficiently in a linear-scaling way by solving linear systems of
ments of the density operator in some basis of localizegquationsSH=H within localized regions of space.
orbitals®>~’ In the second approach, the trace is performed Because the projection method is nonvariational, trace
over the Hamiltonian operator alone, but this has to be doneomputations can be done without the need of providing any
within a basis of Wannier-like states that span the occupiegarticular “initial-guess” functions or matrices. This is a
subspace of the Hamiltoni&n® These functionals minimize particular advantage compared to those functional-
the trace over the matrix produst *H, whereH andSare  minimization techniques that start from approximations of
the Hamiltonian and overlap matrices with respect to theseertain Wannier-like states in the system. Especially in dis-
Wannier-like states. Here it is important that the minimiza-ordered systems such initial functions are likely to be far
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away from the final variational solutions. The minimization larger LOC regions in the projection, which are reduced to
of the energy functional at the beginning of an MD simula-optimal regions of the desired size after the orthonormaliza-
tion is therefore often the bottleneck in these computationstion process.
Another advantage of the projection method compared to all One potential problem of using the projection method
variational schemes for nonorthogonal basis states is that thwithin electronic-structure computations is that the polyno-
former method scales linearly also with the number of atomsnial construction of the density operator requires the knowl-
within the localization(LOC) regions'’ This is due to the edge of the extreme band edges and the Fermi erigsdgr
fact that no matrix elements between different projectedhe given problem. Furthermore, any information about the
functions have to be computed. This may be important whemand gap, such as the density of defect states in the gap and
larger LOC regions are needed to increase the accuracy dlfie size of the HOMO-LUMO gap, is desirable to define an
orderN schemes. Furthermore, the projection method whemptimum temperature parameter in the Fermi distribution
using the original basis states is directly applicable to sysfunction® Whereas the extreme band edges are easily and
tems with arbitrary coordination numbers. accurately obtainable in a linear-scaling way with a Lanczos
On the other hand, the nonvariational character of theroceduré? and the size and position of the inner gap and
projection method may restrict the pure application of thisthe defect states can be ascertained by more elaborate Lanc-
method within MD simulations. The reason for this is thatzos, recursion, or maximum-entropy scherffes, it turns
the performance of the projections in a certain time step camsut that the accurate linear-scaling determination of the
not draw advantage from the projections done in previous-ermi energy in semiconductors is a more difficult, ill-
steps. All matrix-vector multiplications involved in the poly- conditioned problem. This is due to the fact tigtin semi-
nomial representation of times a certain function have to conductors lies in a region of low density of stat&0S),
be performed in each MD step anew, even though the finavhich means that small errors in the DOS or integration
projected functions may change only slightly. It is thereforeroutines may result in inaccuracies of the order of the gap
desirable to connect the projection method with a variationawidth in the predicted values dir. Of course, if the pro-
scheme. jection method is followed by a minimization and as long as
In this paper, we will consider the projection scheme intotal energies are concerned, one may expect that projecting
conjunction with a Wannier-function-based minimization ap-out the complete conduction band will be significant for the
proach. This connection is possible because the projectioccelerated minimization. Nevertheless, if the projection
method also allows to compute Wannier-like functions bymethod is used to compute local quantities such as local-
applying the density operator to selected initial functions.charge densities and forces, an accurate valug-ahay be
These projected functions can then be used as new initidmportant. Furthermore, apart from the projection method,
functions in the minimization of the energy functional. We many linear-scaling implementations that are based on rep-
will show that this direct projection of initial functions to the resenting the occupied subspace by an overdimensional
occupied subspace, followed by an approximate orthonorbasis'*>**require an estimate of the Fermi energy. We will
malization of the projected functions, results in more effi-therefore discuss a few schemes that are candidates for the
cient functional-minimization schemes. The orthonormalizalinear-scaling determination dEc. As we will show, the
tion, of course, breaks the linear scaling of the projectionProjection method itself provides the most powerful ap-
method with respect to the size of the LOC regions, but, aproach for theO(N) computation ofEg in semiconductors.
we will see, this fact is not very relevant due to the small

number of orthonormalization steps neededs(). Further- , 'AccE| ERATION OF FUNCTIONAL MINIMIZATIONS
more, the projection as well as the orthonormalization allows
a straightforward definition oflynamicalLOC regions for In the following, we present first-principles computations

the Wannier-like states, which are based on a populatiodone with the Harris-functional local-orbital Hamiltonian de-
rather than distance criterion. With these dynamical regiongijived by Sankey and Niklewsk?: We first consider a model
the projection method results in a significant acceleration anfbr amorphous tetrahedrally-coordinated carbon containing
improvement of the accuracy of functional-minimization 512 atoms, which was originally generated by Djordjevic
schemes. This connection of a projection with a variationakt al?® This model was subsequently relaxed by Drabold and
technique therefore allows to significantly reduce the “initial Ordejm®* using the Sankey-Niklewski Hamiltonian, which
MD step” problem mentioned above. On the other hand, weesulted in a completely fourfold-coordinated network with a
will also see that the subsequent functional minimization im-HOMO-LUMO gap of 4.3 eV.

proves the results obtained in the projection method by re- For the computations presented in Fig. 1, we did not use
ducing errors incurred due to the confinement of the matrixany localization restrictions for the Wannier-like functions,

H or the numerical representation of the density operator. Which allows us to compare the “intrinsic” properties of the
However, this paper will not yet address the question ofminimization schemes used. The figure shows the relative
how to find optimal initial functions for the projection in deviation of the energy functiondfi (derived by Mauri
general systems. Instead, we will consider disorderet al'®and Ordejo et al'!) from the correct band-structure
fourfold-coordinated systems where physically reasonablenergyEg? within different stages of the minimization pro-
initial functions can easily be obtained. We then compare theess. The dashed lines represent the pure conjugate-gradient
efficiency and accuracy of projection and variational (CG) minimizatiorf® of the energy functional whereas in the
schemes with respect to these functions. As we will showgase of the solid lines a projecti@®) and orthonormaliza-
the most efficient minimization of the energy functional for ation (O) is used prior to the CG treatment of the functional.
given size of the LOC regions can be obtained by usingn both cases, we started from the same initial functions that
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FIG. 2. Minimization of the energy functiongRef. 11 in a

FIG. 1. Minimization of the energy functionaRef. 11 in a 512-atom model of tetrahedrally coordinated amorphous carbon

512-atom .model . .tetrz.ihedrally goordlnaFed amorph‘ous Ca.rbo?Ref. 23 with localization restrictions. Main plot and inset as in
(Ref. 23 without localization restrictions. Main plot, relative devia-

. . ) Fig. 1. D lin r nj -gradi€@) minimization of
tion of the functional from the correct band-structure energy; inset 9 otted lines, pure conjugate-grad ) ation o

. . . . 0lhe functional; dashed and solid lines, minimization consisting of
relative difference of two consecutive functional values. Dashe - . L
: . . L . projection(P), orthonormalizatioO), and CG minimization, start-
lines, pure conjugate-gradie(@G) minimization of the functional;

o A o L ing from different sizes of the localizatiofbOC) regions. The P
solid lines, minimization consisting of projectidR), orthonormal- and CG parts of the minimizations have been done with fixed LOC
ization (O), and CG minimization. Also indicated are the CPU P

times (Ref. 26 needed for the different procedures. reglons Whlle.dqnng th.e orthopormallzatlon thege reglons were dy-
namically optimized without significantly changing their size. For

orientation, the CPU time&Ref. 26 needed are also indicated.

were taken from the normalized but nonorthogonal bonding
combinations of hybrid orbitals pointing into the bond direc- ao|sg note in the inset of Fig. 1 that the minimum-energy
tions. Within the projections for this system, we used thestate in both computations was reached at a relative change
exact Fermi energy as obtained by direct diagonalization ofy, the energy functional of 1C.
the Hamiltonian. Furthermore, we used the vaftre 1/KT Figure 2 depicts the corresponding results in the presence
=100 (with respect to the Chebyshev interfat 1,1]) and  of LOC regions for the Wannier-like functions. These local-
150 Chebyshev polynomials in the expansionpofThese ization restrictions are necessary to obtain a linear-scaling
values have been chosen larger than necessary in order to ggbcedure. Comparing this figure with the previous one, the
conclusions applicable also to systems with smaller gapseader will immediately notice that the presence of such
According to the error analysis presented in Ref. 16, theeOC regions results in a much less accurate approach to the
relative error inE ¢ for our system due to these parameters iscorrect band-structure energy. In the pure CG computation
of the order of 10°. represented by the dotted line we used fixed LOC regions,

As can be seen in Fig. 1, the direct CG minimization ofwhich included all the atoms within four bond steps from a
the energy functional leads to a saturated state very close t@entral bond. In the given system, this leads to regions con-
the exact band-structure energy after about 50 CG steptaining, on average, 115 atoms. The projection computation
Considering now the procedure that involves projection andndicated by the dashed lines in Fig. 2 started from the same
orthonormalization, first note that the abscissa of the leftLOC regions. However, in the approximate ordéror-
hand part of the figure was chosen such that its length corthonormalization of the projected functiofissing five Law-
responds to the CPU time needed relative to the time of thdin iteration3, we allowed a reshaping of these LOC regions
CG iterations?® An interesting fact is that the projection to include atoms that acquired significant weigimeasured
alone does not lead to a noticeable reduction in the funcas Mulliken’s net population in the orthonormalization
tional value. This is caused by the property of the energyrocess-®?’ The number of atoms in the LOC regions, on the
functional to overestimate the energy of nonorthonormabther hand, was permitted to increase only slightly, resulting
states. However, a subsequent orthonormalization of the prén 118 atoms on average. Note again, as in Fig. 1, that per-
jected states leads to an abrupt drop in the functional valudorming a few orthonormalization steps on the projected
(The orthonormalization was performed with four first-orderfunctions leads to a very steep reduction of the functional
Lowdin iterations'® which reduced the maximum remaining value. The important new point, however, is that the dynami-
overlap value to 4 107°.) The CG minimization using these cally redefined LOC regions are now much better capable of
orthonormalized states achieves the saturated energy statescribing the Wannier-like functions in the system than the
after about 20 iterations. This also minimizes the total CPUoriginal regions. This can be seen from the fact that the CG
time needed. The connection of the CG technique with aminimization of the energy functional using these new LOC
projection and orthonormalization scheme therefore resultsegions results in a significantly lower energy. This is espe-
in a more efficient minimization of the energy functional. cially important considering the very slow minimization of
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the energy functional after the first50 CG iterations. The In the presence of LOC regions, the relative deviation of
use of (approximately orthonormalized projected functions two consecutive functional values alone is no longer a good
within the CG scheme now not only increases the efficiencycriterion for the accuracy achieved in the CG minimization.
of the minimization but also improves the accuracy of theThis is a direct consequence of the variational restrictions
energy values and the quality of the Wannier-like functionsimposed due to the LOC regions and does not necessarily
obtained. imply that a particular computation has been trapped in a
Dynamical LOC regions can be introduced in a straight-local energy minimum. This latter possibility has recently
forward manner whenever the localized functions are iterabeen discussed by some authtr§®but the use of an accu-
tively obtained by repeatedly multiplying them with the rate projection scheme is one way to reduce the chance for
Hamiltonian or overlap matricé8. Such multiplications, such a trappind® Our result as discussed above is that the
which are performed in the projection as well as orthonor-increase in the variational freedom by selecting optimum at-
malization procedures, repeatedly create nonzero weights @fms for LOC regions of a given size is of primary impor-
these functions outside their current LOC regions. This camance for achieving more accurate CG minimizations. Con-
be used to define new LOC regions according to theseidering the band-structure energy, such a scheme allows one
weights instead of using any fixed distance criterion. Furtherto perform relatively few CG iterations and thus to obtain a
more, such dynamical regions are naturally capable of dismore efficientand simultaneously more accurate representa-
tinguishing between different “kinds™ of Wannier-like func- tion of the occupied subspace. For nonvariational quantities
tions such as those originating from or 7-like states or, as such as forces it is essential that the computations, which
in the functional of Kimet al,"® from s- or p-like valence include projection and dynamical LOC regions also lead to
orbitals. In our scheme, using dynamical LOC regions in thesmaller relative deviations of the functional values as shown
orthonormalization has the advantage that the additional nun the inset of Fig. 2. These computations therefore converge
merical effort related to sorting the weights and updating thewithin fewer CG steps. This reduction in the relative devia-
localization and overlap index matrices is small compared taions is particularly important taking the slow decay of these
the total computational time because of the small number ofalues in Fig. 2 into account. We therefore expect a signifi-
orthonormalization steps. cant reduction in the number of CG iterations also for force
To test the effect of using more flexible functions alsocomputations. This, however, needs to be confirmed by fur-
within the projections, we used a different approach in thisher investigations.
work. The linear scaling of the numerical effort of the pro-  Here, we have also investigated our projection scheme
jection scheme with respect to the size of the LOC regionsvithin the functional minimization for the huge “amorphous
allows one to use larger, but fixed regions within the projecdiamond” model containing 4096 atoms, which was gener-
tions and to reduce them to the desired size after the orated by the same grodp.For this model, the exact band-
thonormalization process. The results of this procedure aretructure energy and the position of the Fermi energy cannot
indicated by the solid line in Fig. 2. The reduction of the be computed by a diagonalization routine. In Table I, we
LOC regions leads to an increase of the functional value, opresent computations in which we applied the Fermi energy
course, but the energies obtained in a subsequent minimizaeturned by an accurate projection procedure as described in
tion are again lower than the values achieved in the previousec. Ill A. This computation took 15 (Ref. 31) and yielded
schemes. Note that the time effort for these projections anghe Fermi energf-= — 2.8 eV (with a remaining systematic
orthonormalizations within larger LOC regions is still small inaccuracy of about 0.05 éVConsidering the DOS obtained
compared to accomplishing a significant number of CG it-by Reder et al®® for the same system and with the same
erations. Hamiltonian?? this value forEg lies in the middle of the
We emphasize here that this procedure of reducing largeargest gap between defect states found between the sigma
LOC regions assumes that smaller LOC regions for theyands in this system. According to the results of this dynami-
Wannier-like functions are needed within any subsequengal projection procedure, we could use the same valueg for
treatment of these functions. For instance, this would be th@nd the number of Chebyshev polynomials as applied to the
case if larger LOC regions lead to prohibitive CPU timess12-atom model.
when a certain minimum relative change of the functional  Qur results are summarized in Table I. Note that the same
value is requiredas in force computationslf total energies  conclusions that have been discussed for the smaller model
are the primary concern, one would directly minimize thecan also be drawn from this table. Starting with a projection
energy functional after the orthonormalization or, when thecalculation that uses about 200 atoms in the LOC regions
functional evaluation becomes too expensive for large LOGfive bond steps, middle part of Tablg &nd reducing these
regions, use a pure projection computation. Furthermore, ouegions after the orthonormalization, the functional value af-
computations also showed that the initial CG iterations alter three CG iterations has almost reached the value obtained
ways result in a noticeable reduction of the functional valueafter 200 iterations in the pure CG schettupper part of
even when projected functions are used. This is a consefable |). Employing more CG steps, of course, gives a better
quence of the fact that the functional minimization reducesapproximation of the band-structure energy. The relative
errors remaining in the projection scheme due to the confinechange of the functional value achieved after 200 CG itera-
ment of the matrixH or the numerical representation of the tions in the pure minimization (1410 ‘) has been reached
density operator. Whenever Wannier-like functions are to bafter half as many steps in the method, which includes pro-
computed and the LOC regions used are not too large, thiection. The latter method, which ends up with essentially the
performance of at least a few CG iterations after the projecsame number of atoms in the LOC regions, again turns out to
tion and orthonormalization is therefore recommended. be faster as well as more accurate. If total energies are con-
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TABLE I. Different procedures for the minimization of the en- —54.85
ergy functional(Ref. 11 in a 4096-atom model of tetrahedrally pure CG
coordinated amorphous carbgRef. 23 starting from the same 114 atoms

bond-centered initial functions and using localizatib@®C) restric-

tions. Upper part, pure CG minimization; middle part, minimization

using reduced projected functions; lower part, minimization using
unreduced projected functions. The average number of atoms in the  Efct

LOC regions, the energy value of the functional, the relative change (V) average number of atoms in
of the functional value, and the elapsed CPU tifRef. 31 are 15 dynamical LOC regions:
given after generation of the initial functiodNIT), projection(P), o 115
approximate orthonormalizatiofON), reduction of the LOC re- 1%6117115 115 1(1)41161151%5
gions(RED), and the specified number of conjugate-gradient itera- o ©° o 1016 1%7 o °
tions. The projections were done using the Fermi enefgy pcomect
=—28eV. —54.861— : : LF : :
—-6.0 —-50 —40 -30 -20 -1.0 00
Atoms Energy Relative CPU trial Ep in projection (eV)
Iter. in LOC (eV) change (h) )
FIG. 3. Dependence of the band-structure energy valua- in
INIT —43.750 0.0 C4096(Ref. 23 obtained after 50 CG minimization iterations of the
1 114 —51.7880 1.5%10° % 0.3 energy functionalRef. 1) on the parameteEr chosen within a
2 114 —52.0488 2.%10°2 0.7 preceding projection computation of Wannier-like initial functions.
3 114 —53.8063 1.6¢102 11 For each computation, we have also indicated the average number
50 114 538511 1.6¢10°6 18 of atoms obtained within the dynamical definition of localization

regions applied during the orthonormalization of the projected func-

_ —7
;88 Ej :igg;g ii 1877 36 tions. The solid dot describes the corresponding energy value ob-
oo ' 72 tained without performing a projection computation and using fixed
INIT —43.750 0.0 LOC regions. The arrow marks the position of the correct Fermi
P 201 —43.931 4.0 energy.
ON 205 —54.8571 5.8 L .
RED 116 54,8367 58 projection scheme. In Fig. 3, we have done several compu-
1 116 —54.8485 2 %10-4 6'1 tations with different trial Fermi energies in the projection
’ ' _ ' for the same 4096-atom model and applied the scheme pre-
2 116 —54.8520 6.%X107° 6.4 - :
3 : : e ) sented in the middle part of Table I. Plotted are the values of
116 —54.8535 2'7“077 6.7 the energy functional after 50 subsequent CG iterations.
50 116 —54.8584 2.X 1077 23 These values approximately describe the differences in the
100 116 —54.8590 1.410 40 energy values when approaching the saturated states as in
INIT —43.750 0.0 Fig. 2. We have also indicated the average number of atoms
P 201 —43.931 4.0 in the ITOC regions obtained from th_e dynamical orthonor-
ON 205 _ 548571 5.8 malization. These numbers were adjusted to be not smaller
B _s5 than but close to the number of 114 atoffeur bond steps
1 205 54.8583 2.410 7.3 ; LT
g used in the pure CG minimizatidi.
2 205 —54.8594 2.X10 8.9 . . . . .
3 205 548604 1&10°5 10 Let us first mention that the relatively small differences in
10 205 —54.8623 1.3< 10-6 2 the number of atoms in the LOC regions, as a careful look at

Fig. 3 reveals, still have a noticeable influence on the func-
tional values achieved. This emphasizes our conclusion of
cerned only, one may omit the reduction of the LOC regionsusing as large LOC regions as reasonably possible through-
and perform a few minimization steps of the orthonormal-out the scheme. The main result of Fig. 3, however, is that
ized projected functions. This is shown in the lower part ofthe differences in most of the “projectiefCG” computa-
Table | where we directly applied the orthonormalized func-tions shown are about one order of magnitude smaller than
tions as computed above. When comparing these results, al$ioe difference to the pure CG minimizati¢solid dot in Fig.
note that the energy reduction in the first CG iterations afteB). Having a coarse estimate of the Fermi energy within the
the orthonormalization becomes smaller for larger LOC re-band gap therefore proves to be sufficient to achieve a sig-
gions, i.e., when the energies obtained are already closer wficant improvement of the band-structure energy using a
the correct ground-state energy. Using this scheme with 1preceding projection computatiofNote that the edges of the
CG iterations, we obtained our minimum-energy value forvalence and conduction bands as computed in Ref. 30 are
the given system after 22 h CPU time. Let us finally emphasituated at about 5 and—1 eV, while defects states exist at
size here that, to our knowledge, this is the first computatiombout —4 and —2 eV, On the other hand, the minimum
of Eys in such a large system with use of the Sankey-energies in Fig. 3 have been obtained for trial Fermi energies
Niklewski Hamiltonian?? close to the correct on@t —2.8 eV). This is an expected

In Sec. lll, we will discuss methods for the linear-scaling result. Placing the Fermi energy above its correct value in-
computation of the Fermi energy. Here, however, let us increases the contributions from unoccupied states remaining
vestigate how sensitive the observed decrease in the funt the projection. Decreasingg below the correct value,
tional value is dependent on the chosen valueHpiin the  however, increases the linear dependence of the obtained
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projected functions. This leads to greater overlap values be-
tween these functions and again increases the value of the
energy functional. It is clear that this effect for total energies
is relatively weak when the position & is wrong by a few
defect states, but it will become more serious whenEhe
parameter chosen approaches or is even situated within the 100+
bands. Also, as already emphasized in the IntrodL_Jction, ON€  (iebyshey
may expect that the knowledge of the exact Fermi energy iS  jierations
important when local quantities such as forces are concerned.

1501

In this case, the wrong occupation of a localized state may 501
appreciably influence quantities within the region of this
state. Due to these reasons, we want to discuss some meth-
ods that can be used for the linear-scaling computation of 0 | . : : |
Ee. —50 —40 30 —20 —1.0
trial Fermi energy (eV)
Ill. ORDER-N COMPUTATION OF THE FERMI ENERGY FIG. 4. Number of Chebyshev iterations needed to obtain a

stable differencéas described in Sec. Il Ybetween the number of

As we have emphasized above, it is somewhat difficult tc_)electrons estimated at the indicated trial Fermi enerffiep (1)]

obtain an accurate estimat'ion of the Fermi gnergy in SeMiznd the correcNg, for the 4096-atom model of tetrahedrally coor-
conductors by a linear-scaling method. This is related to thg;,4teq amorphous carbdRef. 23.
fact thatEg itself is a purely global quantity. Since an ap-

proximation ofEg is necessary to perform a projection cal- _ i i o
culation, we want to summarize here our results for thd"d too many iterations will reduce the efficiency of the

orderN computation ofEg. As to our experience, the high- Scheme. We therefore propose a technique that dynamically
est efficiency for computin§r can be obtained by applying increases the number of Chebyshev iterations as necessary.
the projection method itself. We also want to discuss brieflyThis can be done by using the Chebyshev approximation of
our results for using a quadrature recursion method with adF (E) as an expansion, which can be broken off as soon as a
justed first moments. Furthermore, we will add a few com-sufficiently accurate value fd¥g(Et) with Ef set to the trial
ments about factorization methods, which, though beingnergyE; has been found. For this method, it suffices to

quite efficient in certain cases, are, in general, Q¢N). have a stable sign of the deviation N§(E) from the cor-
rect number of electrons. The termination of the Chebyshev
A. Projection method expansion is possible due to tfrmore or lessfast decay of

An orderN estimate of the Fermi energy can be obtainedthe Chebyshev coefficients and the property of the Cheby-

by the projection method itself. Recall that the number of> '€ Polynomials to deviate least from zero. For each
electrons in a system is given By Chebyshev iteration, the matrix-vector multiplicatiodg,

are done simultaneously for all local orbitdls,), the sum
~ of the diagonal elements of the Chebyshev vectors is stored,
Ne=Tr{p]=2> p%, (1) and the current value ofly(E;) is computed. When ap-
“ proaching the correct Fermi energy, the number of Cheby-
Wherepaﬁ are the elements of the contra-covariant or upperSheV iterations ngeded to achieve a relatively stable differ-
lower indexed density matrig=2 F(H) in the original local enceNe(Er) —Ng increases. . _
basis H=S 'H. and F(E) being the Fermi-distribution The price that has to be paid for this m_ethod is to store
f N L . . : . . two Chebyshev vectors for all valence orbitald\(4n car-
unction. This allows an iterative process in which a trial bor) simultaneously. This results in somewhat increased
value forEr is successively improved. For the efficient per- Y-

formance of this process note that the Chebyshev vectors dﬁemory reqwrer_nents_ compared to the CG minimization of
not depend on the Fermi energy. This enables one to conin€ €nergy functional itseff. _
pute columns of several density matrices simultanecifsly. e applied this scheme to the 4096-atom model used in
Furthermore, as pointed out by Goedeckesjnce evalua- Sec. Il starting from_the initial energy mter\_/[al— 5.0,—_ 1.0]_

tion of Eq. (1) only requires knowledge of the diagonal ele- eV for the trial Fermi energy. After four weighted bisection
ments of the Chebyshev vectors, the orbital sums of theséerations, we obtained the estimag~ —2.80 eV with a
elements can be stored and then used repeatedly for all nefiral systematic energy uncertainty of abati0.05 eV. As
essary Chebyshev expansions. This, in principle, solves thaentioned in Sec. Il, this value & lies in the middle of the
problem of computind=r. However, without knowledge of largest gap between defect states in this system as computed
the Fermi energy and, consequently, the HOMO-LUMO gapby Rader et al. In Fig. 4, we depicted the energy value cho-

it is not clear at the outset which value for the temperaturesen and the number of Chebyshev iterations needed in each
parameter and how many Chebyshev iterations should bef these iterations. Note that the relatively large HOMO-
used. Due to the sensitivity of the estimate Bf on the LUMO gap in this systentsituated between about4 and
accuracy of the computational scheme, using too smooth a2 eV) has been identified after two bisection iterations
distribution function or too few Chebyshev iterations mayalready. The iterations can therefore be terminated earlier if
result in significant errors iEg. On the other hand, perform- an accurate DOS structure is taken into account.
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The computation just mentioned used an extended range 0
for the matrixH and yielded the final result after 15 h of
CPU time?! Using the same cutdff for H andH, the itera- N
tions converged ot~ —2.75+ 0.1 eV after about 7 h. This
is practically equivalent to the result presented above. 64

4.
B. Recursion method

All methods that compute the total electronic DOS in a 21
system with a given number of electrons are, in principle, i
capable of providing an approximation fag. However, the 0; T R F 00 o1

explicit numerical integration of a DOS as obtained, e.g., by
maximum-entropy schemes is not a recommended procedure
because this integration ineVitably introduces additional in- FIG. 5. Distribution of estimates for the Fermi energy in a 512-
accuracies. Both the calculation of the DOS, which naturallyatom model of tetrahedrally coordinated amorphous car(sef.
is a more structured quantity than its integral as well as the3a) obtained by the recursion method with random initial vectors,
integration routine require very high numerical accuracy tousing the Hamiltonian of Ref. 42. The numbers in parentheses de-
locate Eg within the low-DOS gap region. In many cases, note the highest moment used in the conjugate-gradient adjustment
small errors in these procedures give rise to wrong locationsf the initial vectors. Each single estimate was derived by summing
of Er somewhere in the band tails. Another problem with partial continued fractions over 32points. The correct Fermi en-
orderN spectral methods comes from the fact that all these&rgy is at—0.1406 H as indicated.
methods require the repeated use of random vectors to obtain S ) )
the total DOS or related quantitié:>’ The sensitivity in the Each distribution in Fig. 5 was obtained by computing the
computation ofE implies that the Fermi energies derived Fermi energy within 280 recursion cycles. In each cygje
with these vectors usually spread freely throughout the gap/as derived 3from the total continued fracti¢@F) obtained
region even if the DOS itself is already well converged. by summing® over 32k points and starting from different

To minimize the problems when integrating a DOS, werandom initial vectors. These initial vectors were _constructed
used the widely known recursion method developed by Hayby randomly taking 1's ane- 1's as the orbital entrie®: %
dock and co-workef8 associated with a Gaussian quadra-(Another frequently applied choice consists in taking the or-
ture proceduré®®® which allows to obtain the integrated bital coefficients from a Gaussian distribution with unit
DOS directly from the recursion coefficients. Whereas thisvariance?*®) In each recursion run, we computed 40 pairs
quadrature method is still capable of providing sufficientlyof CF coefficients, which turned out to be sufficient com-
well-resolved localized states within the gap as well as varPared with the variations due to the random vectors.
Hove singularities in the bands, the bands returned in amor- The dotted line in Fig. 5 gives the distribution of thg
phous systems are naturally rather smd8tAn alternative ~ estimates when the random vectors are normalized @ly
scheme is the kernel po|yn0mia| method as deve|oped byhls has to be Compared with the dashed and solid lines that
Silver and co-workef®35%in which the integrated DOS represent the cor.responding distributions when adjgsting the
can be obtained directly by evaluating the coefficients of 4'St (1) and the first and second momei(s3, respectively.
smoothed Chebyshev expansion of the DOS. The |mpr'o'vement in the convergence fr@r) to (1) or(2)is

To improve the convergence of quantities, which are deClearly visible. Note, however, that the inclusion of the sec-

rived by integrating over the DOS, with the number of ran-°"d moment does not significantly change the distribution
dom initial vectors, some authors have proposed to use th%ompared to the first-moment case. This is in agreement with

exactly[in O(N)] calculatable first moments of the DOS to our finding that the second moments of the original random
. S 0, ia-
detect and exclude random vectdey with significantly yectprs vary much lesg@bout 10% compargd to the varia
(k) i tion in the first moments. The reason for this result should be
wrong momentg {9 = (£ H¥£). Drabold and Sankéf used ~ - .
a CG scheme to adjust the momept€) through &) of that the second momexg|H?|£), similar to the normaliza-

each random vector to the corresponding exact momenfion product(£|£), appears as a “square” of a vectbli £),
u®. Varga and KrempasR§ earlier simply omitted all those which reduces the influence of the random signitn Fur-

random vectors that had first moments outside a certain tof"érmore, unlike the first moment, the computation of the
erance interval around.). We compared both schemes second moment requires the non-Hermitian Hamiltonian ma-
with respect to calculations & and found indeed a similar trix H (see Ref. 41 The accuracy in fixing the second mo-
significant improvement when already using this first mo-ment can therefore not be higher than the accuracy achieved
ment only(and the normalization However, in the presence in computingH.

of an overlap matrix for the local-basis states, the CG ap- The final estimate oEg should be derived from the total
proach is much more efficiefit. In Fig. 5, we therefore CF summed over all recursion cycles where this summation
present our results for this method. In order to be able taan be done very efficiently using the quadrature apprdach.
compute a distribution of estimates fBg, we performed a However, the convergence is often better when simply per-
large number of calculations using a simpler non-self-forming an average over the Fermi energies obtained from
consistent local-basis LDA HamiltonidAThe computations the single CF’s. But note, this average is influenced to some
were done in the original 512-atom mod&l. extent by different magnitudes of the DOS below and above

energy (H)
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Er. For the 4096-atom model as mentioned above we obtunately, the factorization that clearly scales@gN®) for
tained the averaged Fermi enerGy~ —3.1 eV after 120 full matrices does not scale linearly even for sparse matrices.
recursion cycles using fouk points. This resulted in 480 The reason is that a stable method witmot close to one of
random initial vectors. Performing three averages over 4¢he extreme band edges requires to apply pivoting tech-
cycles, each yielded quite dispersed estim#te3.4, —2.5,  hiques, which in turn results in more or less serious fill-in of
—3.5) eV, which, however, are all situated within the sameJ. The reader interested in these undoubtedly fascinating
gap®® On the other hand, the dispersion for the correctlymethods should consult Refs. 45 and 46.

summed Fermi energies was even higher4.2, —1.5,

—4.8) eV. These computations took 46(Ref. 31 and were IV. CONCLUSIONS

therefore significantly slower than the projection computa- In thi h h h h L hod
tions reported in Sec. Il A, n this paper, we have shown how the projection metho

We conclude from these results that the number of ranS@n be used to improve ordbr-electronic-structure compu-

dom vectors needed to get converged Fermi energies can j&ions, which are based on the minimization of an energy
quite large if the density of states in the gap region is ver _unctlonal with respect to a set of Wannier-like states. Start-

small. Of course, one may comment again that the computéng from a set of appropriate initial functions, the direct pro-

tion can be significantly abridged if the position of the defectection OT these functions to the O.C(?L.’p'ed subspacg of the
states within the gap is known from an accurate Lanczos o?'.am"tof"a.” and the dynam|cal definition .Of Ipcallzatlon re-
maximum-entropy calculation. In this case, the computatior?ionS Within an approximate orthonormalization of the pro-

can be terminated as soon as the HOMO-LUMO gap ha%ectegl functions appreciably repluces the value of the energy
been identified. unctional. Because the CPU time necessary for the projec-

tion and orthonormalization is small compared to performing

Furthermore, it is important to note that the relative error~" <" '~ . :
in the DOS(in a finite energy intervalobtained by using & Significant number of conjugate-gradient steps, the method
may also serve to accelerate the functional minimization.

random initial vectors decreases with system size a1/ . : . ;

(see the Appendix This effect occurs due to the statistical An optimum reqluctlon of the f_unctlon_al value for a given

averaging of fluctuations in the state coefficients for comput-numb.er of atoms in the I_ocallganon regions can be achleyed

ing the DOS. As a consequence, the integration over contin )y using !arger LOC regions in the projection and red.“C'F‘g

ous bands in the DOS requires fewer random vectors fo ese regions to the Qes_,wed size aftgr t_he orthonormalization.
his procedure maximizes the variational freedom of the

large system sizes. On the other hand, the fluctuations in t ier-like funci f . . f the LOG reai
state coefficients themselves and, hence, the statistical errof$21N1€M-IKe Tunctions for a given size of the regions.
_~ One problem when using the projection method compared

in the weights of isolated states cannot be reduced by in0 straightforward functional-minimization techniques ma

creasing the number of atoms in the system. In other word th tlg i Wt futh Ib q Idl 12 Id . tl'qul f%lh

there is no statistical averaging with increasing system siz € that estimates of the band edges and, in particuiar, of the
ermi energy are necessary to perform the projection. We

for localized states. This affects the correct evaluation o herefore have di 4 two linear-scaling techni with
integrals over the DOS in the gap region. The exact determi- erefore have discusse 0 linéar-scaling techniques

nation of the Fermi energy, i.e., the identification of the high-regard to the accuracy achieved and the CPU time needed

est occupied and lowest unoccupied states, therefore, cann‘gpen computing approximations of the Fermi energy in

be made more efficient in terms of random vectors for |arge§§am|condu_ctors. Especially t.he projection method itself pro-
systems. vides a reliable tool for getting sufficiently accurate Fermi

energies within a minimum of time.
Our results were obtained by performing first-principle

C. Comments on factorization methods linear-scaling computations of the energy functidhkt
within two models of fourfold-coordinated amorphous car-

Let us finally mention a group of methods that allow an .
y grotp bon containing 512 and 4096 atoms.

efficient computation of the Fermi energy but, in general,
have a higher-order scaling th&(N). First, notice that the
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on the number of random vectors. The projected DOS therefore decreases withbut does not depend on the num-
ber of atomaN. This is important for the weight of isolated
_ 2 states in the DOS.

Mo (E) 2| KDl oE~E), To obtain the relative error in a continuous DOS function,
we consider a small but finite energy interddt at energyk,
which contains aboub(E)NdE eigenstates where(E) is
the true DOS. The sum of the state coefficients wittii
can be considered to obey a normal distribution with expec-
tation value and variance approximately given as the sums of
E gm|%>, the mean values and variances of the single coefficients.

© Hence, the expectation value of the random quantity
ne(E)dE follows asé[ ng(E)dE]=n(E)NdE/N=n(E)dE
as it has to be, but the variance in the same quantity is given

with eigenstates); and eigenenergieg; approximates the
total DOS when averaging over different independent ran
dom initial vectors

1
WN

where|<pM> are orthonormalized basis states digare ran-
dom variables, which, in the simplest case, oldgy=*+1

|j)=

with equal probability’®3233The expectation valué&(c;) of by
the state coefficients;=|(®|y;)|? then equals N while 2 2n(E)dE
their variance when averaging oveérrandom vectors is 2 < e _én
given byf® o?[ne(E)dE] n(E)NdEJ - IN
) 12 , 1 z Therefore, we obtain the relative error in a finite DOS inter-
of=e |3 2 KeilwP -5 val
i
12 2 VUZ[%(E)]< 1 |/ 2
=& |35 2 ;D (Wil G ) Eueul i) n(E)  JIN Vn(E)dE
5 5 These results agree with an error discussion given by
<— 3 KileBHe )< —. Skilling®* for the maximum-entropy scheme and by Silver
IN? a7 v . IN? and Raler*® for the kernel polynomial method. The relative

fluctuations in the state coefficients, which do not depend on
N average out in a finite DOS interval and decrease with
\/? increasing system size. By virtue of this statistical effect, the
S \E total computational effort of spectral ordsr-methods can

J even be sublinear for large system siZes.

The relative error in the state coefficients

=
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