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Stacking faults in group-IV crystals: An ab initio study

Peter Käckell, Jürgen Furthmu¨ller, and Friedhelm Bechstedt
Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller-Universita¨t, Max-Wien-Platz 1, 07743 Jena, Germany

~Received 24 February 1998!

Intrinsic and extrinsic stacking faults along the@111# direction in cubic SiC, Si, and C are studied within a
first-principles scheme based on density-functional theory and the local-density approximation. In contrast to
stacking fault energies for Si and C, we find them to be negative for SiC, possibly one part of the explanation
for the large variety of hexagonal and rhombohedral polytypes. The formation energies are compared with
experimental and theoretical data available and the chemical trends are derived for the geometrical changes.
The electronic structure is calculated for the energetically favorable stacking faults in SiC.
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It is a well-known fact that among materials crystallizin
in a close-packed structure there are several showing a
dency to deviate from the rules of building their lattice
creating a stacking fault. Sometimes it happens that th
deviations become a rule themselves. Then stacking fa
are repeated periodically and a polytype is formed, which
course, can be considered as a faultless structure with a
period and new translational symmetry.

From the materials showing polytypism, SiC is the mo
important example due to the large variety of stable po
types actually observed. More than 200 polytypes of SiC
known. Furthermore, stacking faults play a crucial role
the mobility of dislocations.1,2 In contrast to other defect
like dislocations or vacancies, no bonds are broken and
energy differences are expected to be very small compare
the unfaulted structures. Hence it is rather difficult to calc
late the stacking-fault energies accurately. Only a few
tempts were made to study stacking faults with fir
principles methods. Chouet al. calculated their formation
energies, the atomic structure, and the accompanying e
tronic states for silicon.3 Denteneer used a first-principle
method to calculate the total energies for several polytyp4

and extracted the stacking-fault energies for Si, C, and
from an ANNNI ~axial next-nearest neighbor Ising! model.5

In this paper, we study the stacking faults in SiC, Si, a
C, crystallizing in zinc-blende or diamond structure, with
the scheme of density-functional theory~DFT! in the local-
density approximation ~LDA !.6,7 For the exchange
correlation energy, the data of Ceperley and Alder8 in the
parametrization of Perdew and Zunger9 have been used. Th
electron-ion interaction is described with norm-conserv
ab initio pseudopotentials of Bachelet-Hamann-Schlu¨ter
type10 in the Kleinman-Bylander factorization.11 The carbon
pseudopotential has been modified slightly to allow a low
cutoff Ecut for the plane-wave basis-set.12 Convergency is
reached for SiC atEcut534 Ry,12,13 for Si at Ecut520 Ry,
and for C atEcut542 Ry.14 Based on a method to study th
structural properties of different SiC polytypes,13 we derive
the formation energies for the stacking faults. The deviati
of the atomic positions in the faulted planes are obtained
relaxing the atoms according to vanishing Hellman
Feynman forces. Finally, an interesting aspect in associa
with defects is the existence of electronic states within
PRB 580163-1829/98/58~3!/1326~5!/$15.00
n-

se
lts
f

rge

t
-
re
r

he
to
-
t-
-

c-

s
C

d

g

r

s
y
-
n

e

fundamental gap, which is also investigated for the most
vorable faults. The single-particle energies are identifi
with the solutions of the Kohn-Sham equations.

Generally, stacking faults represent irregularities in t
otherwise perfect stacking sequence. However, the num
of bonds remains unchanged, i.e., in the materials under
sideration the tetrahedral coordination is not destroy
Stacking faults in fcc crystals occur if the stacking seque
differs from the cubic close-packed one. . . ABCABC . . .
along the@111# direction. In crystals with zinc-blende o
diamond structure actually the stacking
AA8BB8CC8AA8BB8CC8— every second layer is place
on top of the first layer with a separation equal to the bo
length. The distance between neighbored atomic planes
longing to different bilayers, e.g., betweenA8 andB, equals
one-third of the bond length. Keeping the convention
mind that A,B,C shall denote a bilayer of the two atom
belonging to one unit cell, we can abbreviate the cubic sta
ing sequence withABC. This sequence is repeated infinitel
Other polytypes have different stacking sequences to be
peated, like the hexagonal onesAB (2H, wurtzite),
ABCB(4H), or ABCACB(6H).

The most common stacking faults in cubic materials
the intrinsic and extrinsic stacking faults~ISF and ESF! to
which we will restrict the studies. The ISF can be thought
as removingone double layer from the infinite stacking s
quence, for example, by condensation of vacancies. Ano
physical process generating an ISF is a plastic glide cau
by shear stress applied to the crystal. The resulting stac
sequence is . . .ABCA/CABC . . . , if a double layerB is
removed, as for instance shown in Fig. 1. The ESF on
other hand can be thought ofadding a double layer to the
stacking sequence, for example by the condensation of in
stitials. The resulting stacking sequence in this case
. . . ABCA/C/BCABC. . . ~cf. Fig 1!. Another interpreta-
tion of the occurrence of the stacking faults is related to
twist of the three equivalent bonds between two bilayers
180°. Then, besides staggered~cubic! layers also eclipsed
~hexagonal! bilayers appear.

The calculations of the stacking fault energies at z
temperature were performed within a Car-Parrinello-like m
leculardynamic approach.15,16 Within this method, atomic
1326 © 1998 The American Physical Society



r

t

PRB 58 1327STACKING FAULTS IN GROUP-IV CRYSTALS: AN . . .
FIG. 1. Stacking sequences fo
an ideal fcc structure~left panel!,
fcc with ISF ~middle panel!, and
fcc with ESF~right panel!. A,B,C
represent the three inequivalen

positions within a (11̄0) plane of
a unit cell.
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and electronic degrees of freedom are optimized simu
neously. The atoms~ions! are relaxed according to th
Hellmann-Feynman forces until they vanish within the n
merical accuracy~approximately 1024 Å!. The structure is
simulated within a supercell approach. On the (111) pla
the stacking fault therefore corresponds to an infinite pla
defect as in reality. In the@111# direction the stacking fault is
repeated after a certain number of double layers. There
we must assure that there are enough well-stacked do
layers in the supercell to avoid interactions between
faulted layers.

For the calculations we use a repeated arrangemen
supercells of hexagonal symmetry with the third axis (c)
along the @111# direction. Supercells of the type (
13n)H (n50,1,2, . . . ) or (413m)H (m50,1,2, . . . ) are
possible for the description of ISF and ESF, respective
The almost vanishing~artificial! interactions between stack
ing faults have been investigated by varying the super
size. After careful tests of the convergency with respec
the energies and the atomic coordinates, we found unit c
containing eight (n51) double layers for the ISF
(ABC/BCABC) and seven (m51) for the ESF
(AB/A/CABC) ~see Fig. 1! to be sufficient. However, for
the calculation of the stacking-fault energies we have
compare with the total energies of unfaulted structures. S
the Brillouin zone integration is replaced by a summat
over six specialk points of Chadi-Cohen type,17 one has to
take special care that the calculations for faulted and
faulted supercells are performed under equivalent conditio
For different cell sizes, this could be covered by equival
sets ofk points with respect to the sampling of the Brillou
zone. Another possibility is to represent faulted and u
faulted systems in supercells of the same size. The sma
unit for the unfaulted zinc-blende structure in the@111# di-
rection consists of three double layers. Therefore, the su
cell for the ISF must contain at least 833524 bilayers, and,
respectively, the supercell for the ESF 733521 bilayers.
The stacking fault energies themselves are finally obtai
by subtracting the total energies of the two large-super
calculations from each other, which is expected to can
most of the systematic failures of the calculational metho

The one-dimensional character of the stacking differe
in polytypes and periodic arrangement of ISF/ESF superc
suggests a description within the ANNNI model, where t
i th cubic~hexagonal! bilayer is represented by a pseudosp
up s i511 ~down s i521). Neglecting interactions with
more than two spins involved, the total energy per Si-C p
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of a nH supercell arrangement can be written as

E5E02
1

n (
i 51

n

(
j 51

`

Jjs is i 1 j , ~1!

where j runs over the interacting bilayers andE0 is an en-
ergy independent of the bilayer stacking.

Restricting the interactions on not more than betwe
third-nearest neighbors, the total energies of only four sta
ing sequences—for instance, of the four polytypes 3C, 2H,
4H, and 6H—have to be calculated by a first-principle
method to determine the three interaction parametersJ1, J2,
andJ3 as well as the energyE0. This has been widely done
for silicon carbide,4,5,18–20but also for Si and C restricting to
second-nearest-neighbor interaction.4,20 The energy represen
tation ~1! also allows the calculations of the formation e
ergy DEISF/ESF of a stacking fault per one atom in a two
dimensional unit cell perpendicular to thec axis. One finds

DEISF54J114J214J3 , DEESF54J118J218J3 .
~2!

The stacking-fault energiesg ISF/ESFper unit area follow from
DEISF/ESFby division with the areaA3a0

2/4 of one atom in a
(111) plane. For the cubic lattice constant we use the th
retical valuesa054.29 Å ~SiC!, a055.38 Å ~Si!, and a0
53.53 Å ~C!.

The results of ourab initio calculations for SiC and for
the pure elements Si and C are listed in Table I. We comp
them with otherab initio calculations for Si~Ref. 3! and

TABLE I. Comparison of first-principles stacking-fault energie
g ISF/ESF for different group-IV materials with other theoretical o
experimental data available. The energies are in mJ/m2.

This work
Chouet al.

~Ref. 3! Experimental
ANNNI
~Ref. 20!

Si ISF 38 33 69a 47
ESF 20 26 60a 36

C ISF 318 — 300
ESF 254 — 279b 253

SiC ISF 23.4 — 14
ESF 228 — 2.5c 26

aFöll and Carter~Ref. 21!.
bPirouzet al. ~Ref. 22!.
cMaedaet al. ~Ref. 23! for 6H.
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experimental data21–23 as well as with the ANNNI calcula-
tions by Denteneer20 for all three materials. The error in th
total energy resulting from the finite plane-wave basis
and the Brillouin-zone sampling by a very limited number
k points can be estimated to be about 0.001 eV per a
pair. This results in possible relative errors of 10%~ESF! and
20% ~ISF! for Si, 4% for diamond and 25%~ESF! for SiC.
In the case of the ISF in SiC, the formation energy a
proaches the numerical accuracy.

The overall agreement concerning the magnitude of
formation energies is quite reasonable. In the case of Si,
absolute values from bothab initio calculations are some
what smaller than the experimental ones. A more accu
quantity might be defined by the ratio of intrinsic and extr
sic stacking-fault energies, which can be accessed exp
mentally on one sample.21 With 1.960.6 this value is over-
estimated in our calculation compared to the experime
value of about 1.1560.09. For diamond, the stacking-fau
energies are considerably larger than for silicon and the r
tive errors naturally smaller. Experimentally, the stackin
fault energy for C was determined by Pirouzet al.22 with
279641 mJ m22, without distinguishing between ESF an
ISF. Both of the calculated values are within the error of
experimental ones, and also the mean value of the calcul
values of 286 mJ m22 compares well with this value. Nev
ertheless, the agreement between the calculated stac
fault energies with the experimental values is quite go
taking into consideration the complicated procedures to
tract such energies experimentally.

Common for Si and C is that their stacking fault energ
are definitely positive, which is in agreement that polytyp
of these materials are not observed under ambient conditi
In the limit of pure-covalent bonding they crystallize with
the diamond structure. For SiC on the other hand, we
negative values for both ISF and ESF. However, since
result for the ISF approaches the numerical accuracy in
case, it should be taken with care. But considering the c
mon polytypes 6H and 4H, the ESF should play a mor
important role since its stacking sequence is closer to
corresponding bulk stacking sequences than that of the
The energy of the ESF is definitely negative and theref
causes the cubic zinc-blende polytype 3C not to be the domi-
nant structure among the polytypes. Comparing the res
for SiC with experimental data, Maeda has found 2.56 0.9
mJm22.23 However, this value was obtained for stackin
faults in a 6H polytype and a temperature of about 1600°
Since 6H is preferred over 3C at this temperature, a positiv
sign of the stacking-fault energy is expected.

The accuracy of our total-energy calculations for t
stacking faults in the critical case of SiC is characterized
Table II by the comparison of different ANNNI models
Their parameters are derived from various different to
energy calculations.4,13,19,24 The stacking-fault energies ar
derived from expressions~2!. From the total energies in
previous paper of ours13 but also from those of othe
authors4,18,24 we have calculated the parameters of t
ANNNI model including next-nearest- and third-neare
neighbor interactions. First, we observe that the interacti
between third-nearest neighbors play only a minor role. S
ond, we see that in our calculations both of the stacking-fa
energies are small, but definitely negative. The results c
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pare very well with the data of Cheng, Heine, and Need18

For the other two data sets, onlygESF is negative and also
much smaller, whereasg ISF is of the same magnitude bu
possesses the opposite sign.

For the faulted structures, the Hellmann-Feynman for
are calculated in the neighborhood of the faults and are
timized simultaneously with the electronic structure optim
zation. In Table III we present the calculated vertical dev
tions from the equilibrium positions determined by the cub
structures for Si, C, and SiC. From the point of symmet
the deviations in Si and C add up to zero, whereas this is
necessarily the case in SiC. In case of the ESF, the mo
ment of the silicon atoms is as follows: The vertical bo
length of the two double layers where the stacking direct
changes is stretched somewhat~this holds also for the ISF!
and the vertical bond length of the added layer in betwee
shortened. The lateral bond lengths to the added layer ma
remain unchanged. The deviations for diamond are v

TABLE II. ANNNI model and stacking-fault energies for SiC
The interaction parametersJi are in meV/Si-C pair, the energie
EI/ESF are also given in meV. The stacking-fault energiesg ISF/ESF

are obtained by normalizing the values with the area of the
perpendicular to the stacking direction. They are given in mJ/m2.

2nd NN 3rd NN ~Ref. 4! ~Ref. 24! ~Ref. 18!

J1 0.86 1.18 4.35 4.80 2.33
J2 22.34 22.34 22.57 22.93 23.49
J3 20.32 20.45 0.25

DEISF 25.90 25.90 7.12 5.68 23.64
DEESF 215.24 216.53 23.16 27.84 216.60

g ISF 211.8 211.8 13.8 11.1 27.1
gESF 230.6 233.2 26.1 215.4 232.3

TABLE III. Vertical deviations in the faulted structures from th
atomic positions in the unfaulted cubic structure~in 1023Å! for Si,
C, and SiC. The stacking in the unit cells used for the optimizat

is indicated by the atomic positions in the (112)̄ plane. In case of
SiC filled ~open! circles indicate Si~C! atoms. Six~four! atomic
layers around the additional~missing! A bilayer are allowed to relax
for the ESF~ISF!.

ESF Si C SiC ISF Si C SiC

s s

d d

s s 16.7 16.8 14.2
d d 21.7 10.7 10.8

s 15.0 14.0 14.8 s 11.7 20.7 11.2
d 28.1 28.6 20.5 d 26.7 26.8 20.7

s 24.1 27.4 21.1 s

d 14.1 17.4 21.9 d

s 18.1 18.6 14.3 s

d 25.0 24.0 10.2 d

s

d
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similar and of the same magnitude~somewhat larger any
way, according to a scaling with the lattice constant! and
sign as for silicon.

For the ESF the situation in SiC is similar, even if th
atoms move partially in the same direction. A major diffe
ence, however, is the tiny stretching of the vertical bond
the added layer. Since all three vertical bond lengths
stretched, the lateral ones have to be shortened. This
nomenon is the same as observed for the hexagonal p
types of SiC.13,25 Furthermore, the mean deviation, or mo
strictly, the mean value of the magnitude of all deviatio
for SiC is only about 35% of the mean deviation for Si
both cases, ESF and ISF. This implies that the strain on
bonds in SiC caused by the faults can be released much m
easily than in Si or C, or, that there is not as much strain
in Si or C.

Finally, we investigate the electronic structure for the E
and ISF, but only for SiC because of the energetical fav
ization. We compare it with that of ideal zinc-blende SiC
determine possible defect states within the fundamental
due to the stacking faults. To determine the projected b
structure of the perfect crystal in the plane perpendicula
the cubic@111# direction, we have calculated the bands in
extended hexagonal unit cell. The eigenvalues for the fau
structures are plotted along high-symmetry lines in the tw
dimensional hexagonal Brillouin zone together with the p
jected band structure of the ideal structure in Fig. 2. In agr
ment with the enlargement of the indirect energy gaps in
hexagonal polytypes, defect-related bound states appear
close to the band edges. The occupied defect bands ca
distinguished from the perfect bands only for the ISF in
region betweenG andM , and partially also betweenM and
K. At the G point, we find occupied defect states abo
23 meV slightly above the valence-band maximum~VBM !
for both structures. This is near the calculated natu
valence-band offset of 21 meV between 6H and 3C SiC.26

On the other hand, the situation close to the VBM is simi
to the case of pure Si.3 The conduction-band minimum
~CBM! and therefore the gap energy is not lowered by
stacking faults as expected, since from all polytypes 3C has
the smallest gap. However, for the ISF a rather pronoun
defect-state band is observed around theK point. It could be
related to the pure hexagonal stacking around the fau
From the 2H polytype we know that for pure hexagon
stacking the conduction-band minimum at theK point of the
hexagonal Brillouin zone comes remarkably down in ener

In conclusion, we have performed first-principles calcu
tions of the properties of intrinsic and extrinsic stacki
faults in cubic Si, C, and SiC. The agreement of the stack
s
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fault energies with other theoretical and experimental dat
reasonable. In contrast to Si and C, we find negative stac
fault energies for SiC, indicating the favoring of more he
agonal polytypes over zinc-blende SiC. The defect sta
lower the energy gap by only about 20 meV, which is co
parable to the band offset of 6H SiC to 3C SiC.

This work was supported by the Sonderforschungsbere
196 ~Project No. A08! of the Deutsche Forschungsgemei
schaft.

FIG. 2. Electronic structures for extrinsic~upper! and intrinsic
~lower! stacking faults in SiC. The shaded area corresponds to
band structure of the perfect crystal projected onto the tw
dimensional Brillouin zone of an ideal (111) plane. The defe
bands are marked with dashed lines. Bulk and supercell band s
tures are aligned using the corresponding electronic potentials.
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26P. Käckell, B. Wenzien, and F. Bechstedt, Phys. Rev. B50,
10 761~1994!.


