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Interacting hard-core bosons and surface preroughening
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The theory of the preroughening transition of an unreconstructed surface, and the ensuing disordered flat
~DOF! phase, is formulated in terms of interacting steps. Finite terraces play a crucial role in the formulation.
We start by mapping the statistical mechanics of interacting~up and down! steps onto the quantum mechanics
of two species of one-dimensional hard-core bosons. The effect of finite terraces translates into a number-non-
conserving term in the boson Hamiltonian, which does not allow a description in terms of fermions, but leads
to a two-chain spin problem. The Heisenberg spin-1 chain is recovered as a special limiting case. The global
phase diagram is rich. We find the DOF phase is stabilized by short-range repulsions of like steps. On-site
repulsion of up-down steps is essential in producing a DOF phase, whereas an off-site attraction between them
is favorable but not required. Step-step correlation functions and terrace width distributions can be directly
calculated with this method.@S0163-1829~98!02540-5#
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I. INTRODUCTION

The surface roughening transition and the nature of
rough phase are theoretically very well understood by a
riety of approaches ranging from phenomenological desc
tions, based on the sine-Gordon model, to microscopic so
on-solid ~SOS! models.1

The preroughening transition~PR! and the ensuing disor
dered flat phase~DOF!, both predicted several years ago
Rommelse and den Nijs,2 have also been studied and cha
acterized within certain restricted solid-on-solid~RSOS!
models.3–9 Although the physics behind these models, a
the ingredients stabilizing the DOF phase, have been
cussed in some detail, it is still useful to explore this subj
from a different, and perhaps more physically appealing, p
spective. The RSOS models, in particular, do not direc
emphasize steps, terraces, and kinks, which on the o
hand are very crucial actors in these transitions. This nee
made more urgent by the recent experimental eviden
for preroughening on rare gas solid~111! surfaces,10,11

which calls for a detailed reinvestigation of the step-s
interactions,8 or the reconstructive tendencies,5,6,9 crucial to
obtain a DOF phase.

In the context of roughening, Villain and Vilfan,12–14

den Nijs,15 and Balents and Kardar,16 for the case of recon
structed surfaces, and Villain, Grempel, and Lapujoulad17

for the case of vicinal surfaces, have shown that a m
phenomenological approach based on working directly w
steps yields a very direct picture of the physics involved.

Anisotropic surfaces, in particular, have a definite dire
tion of stronger bonding along which a step tends to r
kinks on such steps, involving the breaking of strong bon
are energetically expensive. The~110! face of fcc noble met-
als ~Au,Pt,Ag, . . . ! is a physical realization of an anisotrop
PRB 580163-1829/98/58~19!/13151~12!/$15.00
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surface, with a stronger, compact,@11̄0# direction, and a
softer @001# direction. In the strongly anisotropic limit, th
transfer matrix problem for the system of steps can
mapped onto the imaginary-time evolution of a system
quantum particles in one dimension, the imaginary time
ing the preferred direction in which the steps run.18–20This is
a well known mapping, heavily exploited, for instance, in t
theory of uniaxial commensurate-to-incommensurate tra
tions of adsorbates.20,19

Following a line of thought initiated by Ref. 13, Balen
and Kardar applied the full machinery of the theory of inte
acting fermions in one dimension to explore the possi
phase diagrams of generic (p31) reconstructed anisotropi
surfaces.16 In their approach, steps of double height are fo
bidden~as energetically too expensive!, while up and down
monoatomic steps are mapped onto spin-1/2 fermions in
described~in the continuum limit! by the Hamiltonian16

H 5 (
s

E dxcs
† S 2

g

2
]x

22m Dcs

1(
ss8

E dx dx8ns~x!Vss8~x2x8!ns8~x8!. ~1!

Here g is the inverse line tension of a step,Vss8(x) is an
interaction between steps, and the remaining notation is s
dard. This Hamiltonian describes infinite steps, traversing
entire length of the sample, as the number of particles
conserved by the~imaginary-time! dynamics. In reality, steps
on surfaces can lead to finite defects by forming loops~i.e.,
finite terraces! on the surface.13,16 The order of the recon-
structionp, dictates, through the symmetry of the differe
ground states, the form of the ‘‘loop’’ terms that a
13 151 ©1998 The American Physical Society
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allowed.13,16 For a (p31) reconstructed surface, the Ham
tonianH has to be supplemented with a term of the type

HLOOP5lE dxF )
k50

p21

c↑~x1ka!c↓~x1ka!1H.c.G , ~2!

wherea is a cutoff distance of the order of the lattice co
stant. Balents and Kardar argued, by power counting, tha
effect of finite terraces, i.e., the introduction ofHLOOP, is
irrelevant forp.2, marginal forp52, and strongly relevan
for p51. They went on by addressing in detail thep52
case, of relevance to the~110! missing-row reconstructed
facet of Au~see also Ref. 15 for closely related work on t
p52 case!. However, the unreconstructed (p51) case was
not pursued further.

The approach we take in the present paper is simila
spirit. Our specific goal, however, is to address the ques
of the presence of a DOF phase, and the preroughening
sition, for unreconstructed surfaces. Thus, in the classifi
tion introduced above, we are now interested in detail in
p51 case. Technically, this leads, as we shall see, to sig
cant differences with respect, for instance, to Ref. 16, an
a new phase diagram quite different from thep.1 cases.

The crucial point is that forp51 the loop terms@see Eq.
~2!# are of the BCS-like forml*dx(c↑(x)c↓(x)1H.c.),
i.e., a strongly relevant one-body piece. This might appea
just a minor complication, at first glance, since quadra
terms can be easily diagonalized by a Bogoliubov trans
mation. Closer consideration, however, leads to recons
the whole mapping. Fermionic minus signs have no r
whatsoever in the mapping of a classical statistical mech
ics problem. The natural statistics to use is always
bosonic. In the present case, a hard-core constraint wil
necessary, in order to implement the appropriate config
tional space~for instance, the noncrossing constraint f
steps of the same type!. In a one-dimensional quantum prob
lem, the choice of the statistics is, quite often, not a
problem, as we can transform, by a Wigner-Jordan trans
mation, hard-core bosons into fermions, with a transform
Hamiltonian that has exactly the same form~only boundary
conditions have to be considered carefully!. In our case,
however, pairing terms of the typeai ,↑ai 11,↓ , which ~see
below! are essential to describe finite terraces, do not tra
form into simple fermionic BCS-like terms, and becom
nonlocal after a Wigner-Jordan transformation. This w
force us to work with hard-core bosons.

Our approach, in summary, is as follows. We assume
in Ref. 16, that the only relevant extended defects are mo
atomic steps, which can be eitherup or down. Steps of the
same kind are forbidden to cross, while steps of differ
types can cross. Moreover, steps interact with each ot
have kinks, and can form finite terraces on the surface. Th
steps are then mapped onto world lines of hard-core bos
in one dimension. Kinks on the steps correspond to hopp
terms in the quantum Hamiltonian. Pairs of up-down ste
that are created and annihilated to form finite terraces on
surface, give number-non-conserving terms in the quan
Hamiltonian.20 Pairwise interactions between the steps
taken into account by corresponding two-body terms in
quantum model.
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The present work is concerned with the case of a lo
index unreconstructed surface. Extensions to the case of
nals, for which the long-range nature of the step-step in
actions is an essential ingredient, are left to a future stud

Our main goals in working out this type of approach
PR are the following:~a! to build a formulation providing a
more direct access to the physics of PR, which is somew
hidden in the RSOS formulations;~b! to explore more di-
rectly the role of step-step interactions;~c! to study step-step
correlation functions and terrace width distributions, n
available so far. As it turns out, we have found that th
approach is quite successful on all three accounts.

The paper is organized as follows. In Sec. II we presen
detail the classical statistical mechanics model of interac
steps, which is then mapped onto the corresponding one
mensional~1D! quantum model of hard-core bosons in Se
III. In Sec. IV we consider in detail the spin-1 limit, obtaine
by setting the on-site step-step repulsion to infinity, and th
map the general case to a problem of two spin-1/2 Heis
berg chains. Section V contains a summary of bosoniza
plus finite-size scaling calculations done in order to extr
the phase diagram of the model. Section VI summarizes
relevant order parameters and correlation functions inve
gated. In Sec. VII we present our results for the overall ph
diagram of the model. Section VIII illustrates our results f
the step-step correlations and the terrace width distributio
Finally, Sec. IX contains a discussion of the results and so
conclusive remarks.

II. MODEL

We assume the only relevant extended defects involve
the surface PR transition to be steps, which can be eitheup
or down. These steps interact with each other, they can h
kinks, and they can form finite terraces on the surface. Fig
1 shows a schematic picture of a surface with steps.

Our model will be defined on a square lattice, and we w
assume the steps to run preferentially in one direction~the
vertical direction in Fig. 1!. The steps are only allowed t
make simple nearest-neighbor kinks. Steps running in
horizontal direction are assumed to be energetically exp
sive and neglected. Hence, our surface is, by construct
very highly anisotropic.

FIG. 1. Scheme of a surface with up (↑) and down (↓) steps.
The heights of the terraces are explicitly indicated. The other s
bols refer to the Boltzmann weights considered:dK ~cost of a kink!,
dT ~cost of a terrace creation!, dex ~cost of a step crossing!, Vi and
V' ~interactions between parallel and opposite steps!; the black dots
indicate where terraces are created or destroyed.
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We define the model by assigning its transfer mat
alongy. Denoting byuS(j )& anduS(j 11)& the configuration
of the jth and (j 11)th horizontal strips, we have

^S~ j 11!uTuS~ j !&

5expF2bS dSNS
~ j !1dKNK

~ j , j 11!

1 (
s50,1

dTs
NTs

~ j , j 11!1dexNex
~ j , j 11!1Vstep-stepD G , ~3!

whereb is the inverse temperature, and~see also Fig. 2! ~i!
dS represents the energy cost~per unit length! of a step run-
ning along they-direction;NS

( j ) is the number of steps in th
strip j ; ~ii ! dKNK

( j , j 11) is the energy cost ofNK
( j , j 11) kinks

between stripj and j 11; ~iii !dTs
NTs

( j , j 11) is the energy cos

for the creation ofNTs

( j , j 11) terraces of ‘‘size’’s between strip

j and j 11 @we will always assumes51, or 0 ~see Fig. 2!#;
~iv!dexNex

( j , j 11) is the energy associated to the crossing
Nex

( j , j 11) pairs of opposite steps between stripj and j 11; ~v!
Vstep-step5Vi1V', with Vi andV' describing, respectively
the interaction between steps of the same kind and of
opposite kind. ForVi, we assume a generic repulsive inte
action

Vi5(
s

(
k. i

Ṽk2 i
i ni ,snk,s , ~4!

with Vk2 i
i possibly possessing an elastic long-range tail

the form 'uk2 i u22. Here ni ,↑(↓) is 1 if there is a step up
~down! at sitei . Similarly, we assumeV' to be given by

V'5Ṽ0
'(

i
ni ,↑ni ,↓1(

s
(
k. i

Ṽk2 i
' ni ,snk,s̄ . ~5!

The sign of the terms inV', particularly at short range
depends on microscopic details and need not be specifie
this stage.

If we assume periodic boundary conditions iny direction,
i.e., uS(Ny11)&5uS(1)&, the partition function of this sys
tem is

Z 5 lim
Ny→`

TrTNy. ~6!

III. QUANTUM MODEL

It is well known that, in the strong anisotropy~or time-
continuum! limit, many D dimensional classical problem
can be mapped ontoD21 dimensional quantum problems.18

FIG. 2. Schematic representation of a kink, the beginning o
size-1 terrace, a size-0 terrace, and a step crossing betweenj
and stripj 11 and the relative energetic costs.
f

e

f

at

This relationship is established by means of the path inte
formalism. In particular, the up and down steps are ma
ematically equivalent to the world lines of spin-up and sp
down hard-core bosons, and the preferential direction
which the steps run plays the role of time in the quant
problem. The hard-core condition is imposed in order
implement the noncrossing condition for steps of the sa
type, a physically justified restriction, in view of the larg
energetic cost of double-step regions. The noncrossing c
straint for steps of the same type would be automatica
satisfied by the Pauli principle if we were to deal with spi
1/2 fermions~see below for more comments on the proble
of quantum statistics!.

We consider the following quantum Hamiltonian:

H52t i(
i ,s

~ai ,s
† ai 11,s1H.c.!2mN̂ 2t0

'

3(
i

~ai ,↑
† ai ,↓

† 1H.c.!2t1
'(

i ,s
~ai ,s

† ai 11,s̄
† 1H.c.!

2tex(
i ,s

ai 11,s̄
† ai ,s

† ai 11,sai ,s̄ 1(
s

(
j . i

Vj 2 i
i ni ,snj ,s

1V0
'(

i
ni↑ni↓1(

s
(
j . i

Vj 2 i
' ni ,snj ,s̄ ~7!

with ai ,s representing the destruction operator for a spins

hard-core boson and withN̂5N̂↑1N̂↓ the total number of

particles. We will work in the subspaceN̂↑5N̂↓ , for a low-
index surface.~For a vicinal surface of anglef, we would

have (N̂↓2N̂↑)5Ltanf.)
Within a path-integral approach, it can be shown18 that

theground-stateproperties of this quantum Hamiltonian co
respond to thetemperatureproperties of the classical ste
model, whose transfer matrix is given by Eq.~3!, in the large
anisotropy limit. Specifically, the classical parameters tu
out to be given by

e t i5e2bdK, e t0,1
' 5e2bdT0,1,

e tex5e2bdex, e~2m!5bdS , eVi 2 j
~ i ,' !5bṼi 2 j

~ i ,' ! ,
~8!

where e is the Trotter discretization time for the quantu
path integral.

The mapping is asymptotically correct only in the lim
e→0. This ~a! implies, clearly, astrong anisotropy limitfor
the classical problem and~b! does not allow a straightfor
ward identification of a classical low- or high-temperatu
limit. Indeed, if all the parameters of the quantum proble
are of order one, takingb→0 or b→` makes Eq.~8! in-
compatible with the requirement that the left-hand s
should be a small quantity~of ordere). In other words, the
mapping is justified so long as

Kinetic couplings5~dK ,dT0
, . . . !@T

@~dS ,Ṽ, . . . !5Potential couplings,

and nothing can be said, in principle, about the infinite te
perature limit. This should be always kept in mind wh

a
ip
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considering the infinite temperature limit from the quantu
model point of view~see, e.g., Sec. VII B!.

It is also worth stressing that the~hard-core! boson statis-
tics of thea operators in the Hamiltonian is crucial to th
nature of the phases and transition lines in the phase
gram. Indeed, unlike other terms in the Hamiltonian, the t
race creation terms cannot be translated into simple~i.e.,
local! fermionic BCS-like terms by a Jordan-Wigner tran
formation. In such instances, the correct statistics to us
undoubtedly the bosonic one, as fermionic minus signs
not appear in a classical statistical mechanics problem. T
point seems to be not always appreciated in the literatur28

We now make contact with previous work in the conte
of surface physics. The model in Eq.~7!, with tex50 and
t0,1
' 50, has been considered, in its continuum version,
Balents and Kardar.16 ~See also Refs. 12 and 15 for relate
work.! In the absence oft' terms, particles are taken to b
fermions. The emphasis of Ref. 16 was on (p31) recon-
structed surfaces, particularly withp52. The effect of finite
terraces, i.e., closed loops of steps, was argued to be i
evant forp.2, marginal forp52, and strongly relevant fo
p51.16 The unreconstructed (p51) case, however, was no
pursued at all. As just argued, thep51 case cannot be tack
led in terms of fermions. The effect of the finite terraces
an unreconstructed surface — thet' terms in Eq.~7! — is
one of the points addressed in detail in the present w
Moreover, we show that restricting the analysis to a sim
Hubbard-type on-site interaction does not lead to the
richness of the phase diagram; nearest-neighbor interac
are essential in order to stabilize, for instance, a DOF ph

IV. CANONICAL TRANSFORMATIONS

A. V0
'5`: Mapping to a spin-1 chain

For a special choice of the parameters, the model in
~7! reduces to a well-studied problem. Consider the cas
which both Vi and V' are truncated to nearest neighbo
Vj 2 i

i ,' 5V1
i ,'d j ,i 11 , in the limit of infinite on-site repulsion of

opposite steps,V0
'→`. The limit V0

'→` enforces, in ab-
sence oftex , a noncrossing condition for opposite steps
well, and allows only three states per site, which we c
easily map onto aspin-1variable as follows:

step up ai ,↑
† u0&5uSi

z511&,

no step u0&5uSi
z50&, ~9!

step down ai ,↓
† u0&5uSi

z521&.

It is then straightforward to show that all possible mat
elements ofH in Eq. ~7! coincide exactly with those of the
spin-1 Heisenberg chain,

HHeis52
Jxy

2 (
i

~Si
1Si 11

2 1H.c.!

1Jz(
i

Si
zSi 11

z 1D(
i

~Si
z!2, ~10!

if the following parameter choice is made:
ia-
r-

is
o
is

t

y

el-

n

k.
e
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e.

q.
in
,

s
n

t i5t1
'5Jxy ,tex50 ,V1

i 52V1
'5Jz ,2m5D. ~11!

A nonzerotex term, when present, translates into a quar
spin term

2tex(
i

@~Si
1!2~Si 11

2 !21H.c.#, ~12!

and will be shown to be relevant in stabilizing the rou
phase for finite repulsiveV1

i . The phase diagram for thi
special case, in the surface physics relevant region2m5D
.0, can be directly borrowed from the literature.3,21

The Heisenberg spin-1 chain was also obtained by ano
route, namely, by the quantum mapping of RSOS models
den Nijs and Rommelse, who gave a very detailed discus
of the surface physics interpretation of the different phas3

The region in which a DOF phase is stabilized is found
Jz.0, i.e., it corresponds to repulsiveV1

i and attractiveV1
'

@see Eq.~11!#. The latter condition is, however, not crucia
as we shall see later on. The flatness of the DOF phas
directly related to the Haldane gap in the spin-1 chain.3 If the
interactions are much bigger than the cost of a unit of s
@Jz@D, see line~a! in Fig. 3#, at low temperatures~i.e., for
largeJz /Jxy) the system will reconstruct into an ordered s
quence of up-down steps~the Néel phase of the spin-1
chain!. By increasing temperature~i.e., loweringJz /Jxy) the
system undergoes an Ising transition to a DOF phase
which the positional order of the up-down sequence of st
is lost.3 If the cost of the unit step is larger than the intera
tions, @Jz!D, see line~b! in Fig. 3#, the low-temperature
phase is flat, and the~preroughening! transition to the DOF
phase has nonuniversal exponents.3

If we impose the conditionV0
'→` without assuming Eq.

~11!, what we are considering is always a three-state-per-
problem, but the resulting Hamiltonian does not have
simple bilinear form~10! in terms of the spin-1 operators
We will refer to this general case as aspin-1 chain. The
specific case in Eq.~10! will be referred to asHeisenberg
spin-1 chain.

FIG. 3. Phase diagram for the spin-1 Heisenberg chain~Ref. 3!.
Here and in the following we consider only negative values of
chemical potentialm that are relevant for the surface physics pro
lem. Lines~a! and ~b! are discussed in the text.
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B. General case: Mapping to two spin-1/2 chains

In order to study the model in Eq.~7! for more general
parameter values, in particular forV0

'Þ`, it is convenient to
abandon the spin-1 representation and map onto a proble
two coupled spin-1/2 chains, where the total number of sta
per rung is four, instead of three. Introducing the usual sp
1/2 representation for each of the two species of hard-c
bosons,

ai ,↑~↓ !
† 5Si ,1~2!

1 , ni ,↑~↓ !5Si ,1~2!
z 1 1

2 ,

and performing ap rotation for theSi ,2 spins around thex
axis, which amounts to a particle-hole transformation for
down bosons,Si ,2

6→Si ,2
7 andSi ,2

z →2Si ,2
z , one can rewrite the

Hamiltonian ~7! as the following model of two spin-1/2
chains (a51,2 denoting the chain! with opposite magnetic
fields:

H 5 2t i(
i ,a

~Si ,a
1 Si 11,a

2 1H.c.!

1V1
i (

i ,a
Si ,a

z Si 11,a
z 1h(

i
~Si ,1

z 2Si ,2
z !

2t0
'(

i
~Si ,1

1 Si ,2
2 1H.c.!2V0

'(
i

Si ,1
z Si ,2

z

2t1
'(

i ,a
~Si ,a

1 Si 11,ā
2 1H.c.!2V1

'(
i ,a

Si ,a
z Si 11,ā

z

2tex(
i

~Si 11,1
1 Si ,1

2 Si 11,2
1 Si ,2

2 1H.c.!, ~13!

where, for simplicity, we have considered only interacti
terms up to nearest neighbors and we have omitted the
stant 1

4 @V'(q50)1Vi(q50)# @with Vi(')(q) we denote
the Fourier transforms of the potentials, andVi(')(q50)
5( jVj 2 i

i(')] . The magnetic fieldh is related to the chemica
potentialm in the following way:

h52m1 1
2 @V'~q50!1Vi~q50!#

52m1~V0
'/21V1

'1V1
i !.

Notice that after the spin rotation, performed to get a st
dard S1

1S2
2 coupling between the chains starting from t

a↑
†a↓

† boson term, the signs of theV' terms are all changed
sinceSi ,2

z →2Si ,2
z . For the same reason, the chemical pot

tial terms transform into opposite magnetic fields for the t

chains. The conditionN̂↑5N̂↓ reads, after the canonica
transformation, as zero total magnetization for the sp
( i(Si ,1

z 1Si ,2
z )50.22

V. LOW-ENERGY HAMILTONIAN FROM
FINITE-SIZE DIAGONALIZATION

With a well-defined quantum spin chain problem at ha
it is standard practice to study its phase diagram by a c
bination of field-theoretical arguments and finite-size ex
diagonalization data.

At weak coupling, a standard field-theory approach
one-dimensional quantum systems consists in apply
of
es
-
re

e

n-

-

-

s,

,
-
t

o
g

bosonization techniques. This was done by Strong and M
for the case of two coupled spin-1/2 Heisenberg chains,
a special case of Eq.~13! with t1

'5V1
'50, tex50, h50, and

V0
'52t0

'52JK .23 The procedure can be easily extended
our case. Introducing symmetric and antisymmetric com
nations of the bosonic phase fields,QN,

A
S and QJ,

A
S,23,24

which represent the bosonic soundlike excitations of the s
tem in the gapless phase, the low-energy Hamiltonian re

H 5 (
a5S,A

va

4pE dx F 1

Ka
~¹QJ,a!21Ka~¹QN,a!2G

2
1

~pa!2E dx $cos~QN,A!$A1B@cos~2QJ,S!

1cos~2QJ,A!#% 1Ccos~2QJ,S!1Dcos~2QJ,A!% ,

wherea is a short distance cutoff, andA, B, C, andD are
coupling-dependent~but cutoff independent! constants.

Let us consider theA sector first. TheA sector can be
gapless only if 1/AKA.2 and, simultaneously, 2AKA.2.
This is, of course, impossible. Thus, theA sector flows to
strong coupling and develops a gap.23

The Hamiltonian for theS sector, renormalized by theA
sector, will be of the form

HS 5
vS

4pE dx F 1

KS
~¹QJ,S!2 1 KS~¹QN,S!2G

2
VS

~pa!2E dx cos~2QJ,S!.

The cosine term is relevant and opens up a gap whenKS
,1. Thus the system undergoes a Kosterlitz-Thouless~KT!
transition whenKS→1. As discussed in the following sec
tions, this is associated with a roughening transition.

If the symmetric sector flows to the free Klein-Gordo
Hamiltonian~i.e., the Luttinger model! in some range of pa-
rameters, the low-energy spectrum of the two chains, foL
→`, will have the form of a spinless Luttinger model d
scribing symmetric excitations. ExpressingQJ(N),S in terms
of bosonic creation operators we can write24

HS 5 vS(
k

uqubk
†bk 1

p

4L
~vNNS

21vJJS
2!, ~14!

whereNS andJS are the symmetric sector total number (N)
and current (J) operators,vS is the renormalized sound ve
locity, vN5vS /KS , andvJ5KSvS .24

In order to computevN , we note that the simplest charg
excitation not involving the current part consists of addi
two particles to the system. Thus we have

vN~L !5
L

p
@E~DN52!2E~0!#.

To computevJ , notice that if a magnetic fluxF is concat-
enated with the ring, the current part of the energy spectr
is modified in this way:
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p

4L
vJJS

2→
p

4L
vJS JS14

F

F0
D 2

(F0 is the elementary flux quantum!. Therefore,

vJ~L !5
L

8p

]2E~F!

]~F/F0!2
.

Finally, vS can be computed from

vS~L !5
L

2p
@E~k52p/L !2E~0!#

whereE(0) is the ground state energy andE(k52p/L) is
the energy of the lowest excited state of momentumk
52p/L.

As a consequence,KS can be equivalently computed from
the finite-size extrapolation of vJ(L)/vS(L), of
vS(L)/vN(L), or of AvJ(L)/vN(L). If the finite-size data are
compatible with a Luttinger-liquid picture, i.e., with a spe
trum of the form~14!, then these three extrapolations shou
converge, asL→`, to a single value.

VI. ORDER PARAMETERS

We now define the order parameters and correlation fu
tions we have to consider in order to study the phase diag
of our model. We will basically deal with four correlatio
functions, whose behavior in the different phases is sum
rized in our quasitable.

~i! The height-height correlation, defined by Gh(r )
5^(hr2h0)2&, diverges logarithmically as

Gh~r !5
2K

p2
ln~r !1 . . .

in the rough phase, withK>1, while it remains limited in the
flat, Néel, and DOF phases.25 At the roughening transition,K
takes the universal value of 1.1,15 This gives a simple crite-
rion for determining whether a phase is rough or not. In fa
the coefficientK coincides with the Luttinger exponentKS
for the symmetric sector,16 which can be extracted by finite
size scaling of exact diagonalization data~cf. Sec. V!.

~ii ! The string correlation function, defined by3

Gs~r !52K S0
zexpS ip(

j 51

r 21

Sj
zDSr

zL .

~We introduced the notationSi
z5ni↑2ni↓ .) The phase factor

contributes a plus~minus! sign if there are an even~odd!
number of steps between site 0 and siter . In the DOF and in
the Néel phases, a step up~down! is preferentially followed
by a step down~up!. In these configurations,Gs(r ) gets a
contribution equal to 1 every time sites 0 andr are occupied
by a step. Thus, in the DOF phase and in the Ne´el phase
Gs(r ) decays exponentially to the square of the mean den
of steps.15

~iii ! The staggered magnetization, defined by

N5 lim
L→`

1

L(
j

~21! j^S0
zSj

z&.
c-
m

a-

t,

ity

A Néel phase will be signaled by a nonzero staggered m
netizationN, while N is zero in the rough, DOF and fla
phases.

~iv! The flatness order parameter, defined by3

F5 lim
L→`

1

L(
r

K expS ip(
j 51

r

Sj
zD L .

F has a nonzero value only in the ordered flat phase~in the
DOF phase the exponential fluctuates between 1 and21 asr
is increased!.

Flat Rough DOF Ne´el

KS gapped .1 gapped gapped
Gh(r )
~for large r!

,`
→

2KS

p2
ln(r)

,` ,`

Gs(r )
~for large r!

→0 →0 →^(Sz)2& →^(Sz)2&

N 50 50 50 Þ0
F .0 0 0 0

VII. OVERALL PHASE DIAGRAM

Our model, even if the interactions are truncated to fi
neighbors, contains many parameters. Rather than tryin
describe the phase diagram in an exhaustive form, we
focus our discussion on a few questions that we cons
quite relevant with respect to thesurface physicsinterpreta-
tion of our model. This will lead us to consider in deta
some special planes cut through the phase diagram, and
also give us an idea of its global structure.

Let us consider, once again, the Heisenberg spin-1 ph
diagram in Fig. 3. From the surface physics point of view
presents some unpleasant features: since the increasing
perature curve, for a given surface, is a line through
origin @the origin corresponds to the infiniteT point; cf. Eq.
~8!#, every ‘‘surface’’ with repulsive interaction betwee
steps of the same kind (V1

i .0) has a preroughening trans
tion at finite temperature, and no rough phase at finiteT. On
the other hand, ifV1

i is attractive there is only roughening.
In relation to these problems, we will discuss the follow

ing main questions.~a! Is the attractiveV1
' term between

opposite sign steps essential in order to stabilize a D
phase?~b! Is there a choice of the parameters for which o
model can describe a surface with a finite roughening te
perature?~c! How does the presence or absence of a p
roughening transition depend on the relative strength of
step-step interactions to the cost per unit length of a step?~d!
What is the role of the opposite step on-site repulsionV0

' . In
the following we address these points directly.

A. Role of attraction between opposite steps:
Spin-1 chain with V1

'50.

In order to explore the different roles of the two intera
tions V1

' andV1
i , we have first studied the effect of a repu

sive V1
i , keepingV1

'50. For the time being, we still work
with the spin-1 condition, i.e., we impose an infinite on-s
repulsion of opposite steps (V0

'5`).
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For this choice of parameters, we do not find any po
with V1

i .0 in which the finite-size data might indicate
vanishing gap. This is compatible with the results of den N
and Rommelse about the location of the KT transition in
Heisenberg spin-1 phase diagram.3 The system undergoes
roughening transition only at infinite temperature.

In Fig. 4 we draw a qualitative phase diagram for valu
of the parametersm and Vi which are relevant for surfac
physics~i.e., positive energy cost for a step, and repuls
interaction between steps of the same kind!. It is quite re-
markable how the DOF phase survives the turning off of
attraction between steps of the same kind. As a matte
fact, takingV1

'50 leads to the disappearance of the rec
structed~Néel! phase from the physically interesting regio
of the phase diagram, and, therefore, to an even larger D
phase.~We will further discuss the roles ofV1

' and V1
i in

stabilizing the DOF phase later in this section.!

B. Infinite or finite roughening temperature: The role of tex

In order to discuss the point concerning the roughen
temperature, we observe that, asT→`, the kinetic terms
tend to be the only relevant pieces of the Hamiltonian,
Eq. ~8!. Thus, we now consider the model in absence
potential terms (V), and for zero chemical potentialm. For
the time being, we also taketex50. The crucial role of the
tex-term will be discussed afterwards. In this case,
Hamiltonian reduces to that of two coupledXY chains:

H5 2t i(
i ,a

~Si ,a
1 Si 11,a

2 1H.c.!2t0
'(

i
~Si ,1

1 Si ,2
2 1H.c.!

2t1
'(

i ,a
~Si ,a

1 Si 11,ā
2 1H.c.!. ~15!

Notice that exchangingt i with t1
' is simply equivalent to

renaming the sites (2i ,s) to (2i ,s̄) and vice versa. This is
illustrated pictorially in Fig. 5. Thus, a model witht1

'/t i5t

FIG. 4. Qualitative phase diagram for a spin-1 chain witht1
'

5t i51, tex50, V1
'50.

FIG. 5. The duality mapping for twoXY chains, see Eq.~15!.
Dotted, solid, and dashed lines denote, respectively,t1

' , t i, and t0
'

couplings. The duality survives also in presence ofV0
' .
t

s
e

s

e

e
of
-

F

g

e
f

e

is completely equivalent to one witht1
'/t i51/t.

In Fig. 6~a! we plot the finite-size gaps as a function
the system sizeL for t0

'50, and different values oft1
'/t i

between 0 and 1. Given the negligible curvature of t
straight-line fits, the data seem to suggest that the gap
trapolates to 0 in all cases. In Fig. 7 we plot the finite-s
value of the Luttinger exponentKS , determined as explaine
in Sec. VII B. The data forKS confirm the scenario of a
gapless~i.e., rough! system. Notice thatKS seems to extrapo
late to values larger than 1, indicating a rough phase
should survive to the turning on of a suitably small repuls
V1

i .
We now address this point in more detail. Consider

t1
'5t i case~with t0

'50), in which KS seems to extrapolate
to the largest value. Denoting by

~s8
s

!,

with s,s8561, the four possible configurations at each si
we can define the following four states:

u↑&5US 11

11D L , u↓&5US 21

21D L ,

FIG. 6. ~a! Finite-size charge excitation gaps for the twoXY
chains in Eq.~15! at t0

'50, t i51, and for various values oft1
' .

Dashed lines are obtained from straight lines constructed so a
pass through theL56 andL58 points. The extrapolation to zero i
remarkably good.~b! Finite-size charge excitation gaps fort0

'50,
t1
'5t i51 ~dashed line!, andt1

'50, t0
'5t i51 ~solid line!. The solid

and dashed straight lines are constructed as in~a!. Notice the re-
markable smallness of size corrections.
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u06&5
1

A2
S US 11

21D L 6US 21

11D L D .

It is now straightforward to verify that, at each site, the st
u02& is decoupled from the three remaining ones. T
HamiltonianH can then be considered a spin-1 Hamiltoni
acting on the subspace spanned by the three statesu↑&, u↓&,
and u01&. As it can be checked by explicitly calculating a
matrix elements,H, when restricted within this subspac
coincides with the Heisenberg spin-1 Hamiltonian at Jz50
and Jxy52t i. As argued by den Nijs and Rommelse,3 the
location of the KT transition in the Heisenberg spin-1 pha
diagram is, very likely, exactly atJz50. Thus, two coupled
XY chains witht1

'5t i andt0
'50 have aKS actually equal to

1, and what we see in Fig. 7 is only due, very likely,
finite-size effects.

The effect of turning ont0
' , while keepingt1

'50, leads to
a completely different picture. In this case, fort0

'5t i the
system is gapped, as suggested by the finite-size data of
6~b!. The physical reason for the different behavior of thet1

'

and t0
' terms can be understood by considering the limit

cases of large values for these parameters. Fort0
'→`, the

ground state tends to haveu01& at each site, with a large ga
~of ordert0

') to other exited states. Fort1
'→` ~at t0

'50), on
the other hand, the system reduces, by the previously
scribed duality property, to two uncoupledXY chains, and
must, therefore, be gapless.

The previous considerations lead us to conjecture that
any choice oft1

' ~as long ast0
'50), two XY chains are

gapless and haveKS51. On the contrary, turning ont0
' , at

t1
'50, immediately opens up a gap. These conclusions h
important consequences on the stability of the rough ph
SinceKS attains, at best, the marginal value of 1, turning
any positiveV1

i immediately opens up a gap, and the rou
phase is confined to infinite temperature.

FIG. 7. Luttinger exponentKS for the same parameters of Fig
6~a!. As argued in the text~see Sec. VII B!, KS should converge to
1 for L→` and the apparent extrapolation to values larger than
very likely due to finite-size effects.
e
e

e
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We will now demonstrate that, if we allow for the poss
bility of step-crossing events,tex.0, the gapless phase su
vives the turning on of a positiveV1

i , and every ‘‘surface’’
has a rough phase for high enoughT. In order to show this,
we add to the Heisenberg spin-1 Hamiltonian atex term, see
Eqs.~7! and ~12!,

2tex(
i

@~Si
1!2~Si 11

2 !21H.c.#,

with tex5t i5Jxy . Figure 8 shows the phase diagram for th
case. Qualitatively, it is very similar to the Heisenberg spin
case~see Fig. 3!, except for small values of the potential
where thetex term changes the structure of the phase d
gram. In fact, form50 we observe a gapless phase exte
ing for positive values ofV1

i , up toV1
i '0.4: this is demon-

strated in Fig. 9 were we plot the Luttinger exponentKS

is

FIG. 8. Qualitative phase diagram for a Heisenberg spin-1 ch
with exchange term, i.e.,t1

'5t i5tex51, V1
i 52V1

' . Lines~A!, ~B!,
and ~C! are discussed in the text.

FIG. 9. Finite-size Luttinger exponentKS along the linem50,
for the Heisenberg spin-1 chain plus exchange term.KS extrapo-
lates to values larger than 1 forV1

i ,0.4. Dashed lines are only
guides to the eye.
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along the linem50. This finding is in accord with bosoniza
tion: thetex term, unlike thet' terms, increasesKS and leads
to a stabilization of the rough phase. Indeed, for twoXY
chains it is easy to show that, up to lowest order intex ,

KS511
tex

8p2t i
.

Another remarkable feature of the phase diagram in Fi
is that, at variance with the ordinary Heisenberg casetex
50), the temperature line for a given ‘‘surface’’ crosses t
DOF region only if the cost of a step,dS , is sufficiently

small as compared to the interaction between steps,Ṽ1
i . We

have illustrated this by sketching in Fig. 8 temperature lin
for three different situations. For the case labeledA, the en-
ergy cost of a step is high with respect to the interact
energy between steps, and there is no preroughening. In

case labeled B,dS /Ṽ1
i is smaller, and a DOF phase is prese

at intermediate temperatures. Finally, for caseC, the interac-
tion between steps is the most relevant energy, and the
temperature phase is 231 reconstructed.

C. Presence or absence of preroughening:
Role of interactions versus step line tension

We now want to discuss in some detail what happen
we leave the conditionV1

'52V1
i , without going to the ex-

treme caseV1
'50, discussed in Sec. VII A. We illustrate th

by choosingV1
'52V1

i /10, while keepingtex5t i51 and
V0

'5` ~infinite on-site repulsion of opposite steps!. This
choice of parameters describes a class of surfaces in w
the attraction between steps of opposite kind is much sma
than the repulsion between steps of the same kind.

In Fig. 10 we plot the phase diagram for this choice
parameters. The system is Ne´el ordered for very large value
of V1

i ; the value of the ratioV1
i /uV1

'u determines the location
of the DOF-Néel phase boundary~see Fig. 8 and Fig. 4
recall that, forV1

'50, the Néel phase is absent for physic
values ofm). The most relevant comment to the phase d
gram in Fig. 10 regards the conditions upon which the te
perature trajectories of an actual surface model cross the
roughening line. It is clear, in fact, that depending on t
ratio between the cost of a step~per unit length! dS and, say,

FIG. 10. Qualitative phase diagram for a spin-1 chain witht1
'

5t i5tex51, V1
'52V1

i /10. Line~A! describes a situation where th
cost of a stepdS is larger than the interactions, and only rougheni
is found. Line ~B! describes a situation wheredS is smaller than

uṼ1
'u, and roughening is preceded by PR.
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the interaction energy between steps of the same kindṼ1
i , a

surface can have~i! only roughening~caseA!, or ~ii ! first
preroughening and then roughening~case B!. Now, with

V1
'52V1

i /10, the ‘‘critical ratio’’ (dS /Ṽ1
i )crit , below which

preroughening is possible is of the order of 1/10, mu

smaller then in theV1
'52V1

i case@where (dS /Ṽ1
i )crit'1].

Given the fact thatdS is typically the largest ‘‘diagonal’’
energy, this implies that a physical temperature traject
will be, most likely, in the region where only roughenin
occurs. If, and how, long-range interactions might chan
this picture is an interesting and open problem.

D. Role of opposite-step on-site repulsion: FiniteV0
'

At last, we want to discuss briefly what happens to t
DOF phase if we allow double occupation of a site, i.e., if w
do not take the limitV0

'→`. To demonstrate that the restric
tion to V0

'5` is not crucial, we consider the caseV1
i

52V1
'51, t i5t1

'51, with V0
' finite. If V0

'→` the system
is an Heisenberg spin-1 chain at the isotropic point, cor
sponding to a DOF phase.3 In Fig. 11 we plot the finite-size
values of the flatness order parameterF ~open symbols! and
of the DOF correlation functionGs(L/2) ~full symbols! for
decreasing values ofV0

' . The data suggest that the syste
remains DOF all the way down toV0

''0. We have verified
that a similar scenario is found if we turn on thetex term or
a smallumu. Thus, our finite-size data suggest that the spi
condition (V0

'5`) is not essential in order to stabilize
DOF phase.

VIII. STEP-STEP CORRELATIONS

Correlation functions involving steps can be calculat
numerically, for a given finite size, at any point in the pha
diagram of our model. We will discuss here two correlati
functions, i.e., step-step correlations and terrace width dis
butions. LetnS be the average density of steps of a sing
species~up or down!. In generalnS is always different from

FIG. 11. Finite-size values of the flatness order parameteF
~open symbols! and of the DOF correlation functionGs(L/2) ~full
symbols! at the Heisenberg isotropic point, for decreasing values
V0

' . The system appears to be DOF for all positive values ofV0
' .

The dashed lines are only guides to the eye.
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zero, even in the flat phase, since we do not discrimin
between steps that traverse the entire sample and steps
form loops ~i.e., finite terraces!. Step-step correlations ar
defined as follows:

N↑s~r !5
1

nS
2 ^step↑~0!steps~r !&5

1

nS
2 ^n0,↑nr ,s&, ~16!

with s5↑,↓. If translational symmetry is not broken, w
must have, at large distances,N↑s(r→`)→1. The distribu-
tion of terrace sizes~along thex direction only!! is the prob-
ability of having two steps a distancer apart without any
other step in between. There are two different kind of t
races we can look at: those delimited by two steps of
same type, and those between two different steps. Thus
define

P↑s~r !5
1

nS
2K n0,↑F )

j 51

r 21

~12nj ,↑!~12nj ,↓!Gnr ,sL , ~17!

where, again,s5↑,↓. The string operator in square bracke
enforces the absence of additional steps between 0 anr .
Figure 12 illustrates the behavior ofN↑↑ and N↑↓, at three
different points in the phase diagram of the Heisenb
spin-1 chain: a rough case (Jz520.5, m50, triangles!, a
DOF case (Jz51 and m50, squares!, and a flat one (Jz

FIG. 12. N↑↓ ~above! andN↑↑ ~below!, at three different points
in the phase diagram of the Heisenberg spin-1 chain: a rough
(Jz5V'52V1

i 520.5, D52m50, triangles!, a DOF case (Jz

5V'52V1
i 51, and D52m50, squares!, and a flat one (Jz

5V'52V1
i 51, and D52m52, pentagons!. Lines are only

guides to the eye.
te
that

-
e
we

g

51 andm522, pentagons!. The flat case results are ver
simple: bothN↑↑ andN↑↓ converge exponentially fast~with
a very short correlation length! to the large distance limit of
1. In the rough phase, instead, we have verified that the
proach to 1 shows a power-law tail. This is easy to pro
Rewrite first N↑s in terms of density and ‘‘spin’’ correla-
tions:

N↑s~r !5
1

4nS
2 @^n0nr&6^S0

zSr
z&#, ~18!

where the1 and 2 signs apply, respectively, tos5↑ and
s5↓, ni5ni ,↑1ni ,↓ , and Si

z5ni ,↑2ni ,↓ . Within a
bosonization approach,23 the operatorsni andSi

z involve ~af-
ter particle-hole transformation for the↓ bosons! only the
antisymmetric and symmetric sectors, respectively. The
tisymmetric sector is always gapped~see discussion in Sec
V and Ref. 23!, so that density-density correlations are e
ponential. In the rough phase, however, the symmetric se
is gapless, andSz2Sz correlations have a uniform power-law
tail of the form

^S0
zSr

z& 5 2
KS

~pr !2
1 •••, ~19!

which is precisely the term responsible for the logarithm
the height-height correlation functionG(r )5^(hr2h0)2&.25

The DOF case results, finally, show a different behavi
with a sizeable oscillating component of the correlatio
This behavior, however, reflects only a short-range effe
caused by the neighboring reconstructed~Néel! phase: the
oscillating part has to decrease to zero at larger , since no
breaking of translational symmetry occurs in the DO
phase.2

We finally discuss briefly the behavior of the distributio
of terrace sizes~for simplicity, once again, in the Heisenber
spin-1 case!. While, in principle, it is important to know
what the probability is for the surface to be flat over a d
tancer , this quantity has never been calculated so far.

Let us consider, first, the behavior ofP↑↓ in the rough
phase. Figure 13~a! is a plot of the logarithm ofP↑↓ versus a
scaled distance 2nSr , for several points taken inside th
rough phase of the Heisenberg spin-1 phase diagram.
observe that the general behavior ofP(r ) is exponential in
the size of the terracer ,

P~r !'e2r /l,

and that a good collapse is obtained for all data if the d
tancer is scaled to the average separation between two st
1/(2nS), i.e., l}1/(2nS). The scattering of the data for th
largest r ’s is due to finite-size effects. The behavior
P↑↑(r ) is found to be qualitatively similar.

In the DOF phase we find that the terrace size distribut
probability is again exponential with size, but nowl does
not scale with the density of steps, as it did instead in
rough phase. Figure 13~b! illustrates the behavior ofP(r ) at
a DOF point, corresponding to the isotropic Heisenberg po
of the spin-1 chain.P(r ) at a rough point is also reported fo
comparison. We observe that, as anticipated, the behavio
P↑s is, once again, exponential inr ~i.e., the ‘‘DOF check-

se
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erboard’’ has no typical length!!. Superimposed on the lead
ing exponential, the DOF case results show a strong osci
ing short range component which is again due to
neighboring reconstructed~Néel! phase. Two more feature
are worth noticing. First, compared to the rough case,P↑↓(r )
is larger in the DOF case forr 51, and then substantially
smaller for larger values ofr ~and decreasing with a large
exponent!. Second, in the DOF caseP↑↑(r ) is one order of
magnitude smaller thanP↑↓(r ), while the difference is much
smaller in the rough case. These features are reasonab
view of the diluted antiferromagnetic ordering of steps, ty
cal of the DOF phase.

Experimentally, terrace size distributions could in the
ture be extracted, e.g., from scanning tunneling microsc
~STM! data.26

IX. SUMMARY AND CONCLUSIONS

In this paper we have presented and discussed a statis
mechanics model for studying the possible phase transit
of an ideal, unreconstructed surface. The elementary ob
upon which the model is based are the natural extended
fects of an unreconstructed surface, i.e., steps and terra
This starting point is, in our opinion, physically more tran

FIG. 13. ~a! ln(P↑↓) versus the scaled distance 2nSr at various
points in the rough phase of the Heisenberg spin-1 chain; full s
bols: Jz5V'52V1

i 520.25,D52m50,0.1,0.2,0.3; empty sym
bols: Jz5V'52V1

i 520.5, D52m50,0.2,0.4; stars:Jz5V'5

2V1
i 520.75,D52m50,0.1,0.2,0.3.~b! P↑↓ andP↑↑, in logarith-

mic scale, at two different points in the phase diagram of
Heisenberg spin-1 chain: a DOF case (Jz5V'52V1

i 51, andD
52m50, squares!, and a rough case (Jz5V'52V1

i 520.5, D
52m50, triangles!. Full and empty symbols correspond toP↑↓

andP↑↑, respectively.
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parent then the usual microscopic RSOS-model descript
Our model allows, in principle, the description of a real su
face and, in perspective, one could test it with realistic st
step interactions.

We have tackled our problem of interacting steps by m
ping it, in a well-known way, onto a one dimensional qua
tum problem of interacting hard-core bosons. Although t
mapping is exact only in the strong anisotropy limit, it ca
provide very useful information about the phases and
nature of the transitions also in more general instanc
Moreover, some realistic cases, such as~110! surfaces of fcc
metals, are actually quite anisotropic.

The quantum Hamiltonian, see Eq.~7!, contains standard
terms, such as nearest-neighbor hopping~describing kinks on
the steps!, potential terms~describing interactions betwee
steps!, and chemical potential~cost per unit length of a step!,
as well as terms describing~i! terrace creation/annihilation
~through BCS-like number nonconserving terms!, and ~ii !
opposite step crossing events. The latter two terms are
cial, in many ways.

Terrace terms are important to describe correctly the u
versality classes of the relevant transitions. This is known
the literature,27,16,15 but never explored in detail in the
present context. Moreover, in our case, the terrace terms
force us to work with hard-core bosons, as the stand
Wigner-Jordan transformation to fermions does not lead t
simple local fermionic Hamiltonian. This point is sometim
overlooked in the literature.28

The term describing the crossing of opposite steps is
portant in order to stabilize a gapless~i.e., rough! phase for
finite repulsive interactions between steps of the same k
This, in turn, leads to a finite roughening temperature for
classical model.

Finite-size exact diagonalizations and bosonization te
niques have been used to unveil the richness of the ph
diagram. In the limit ofV0

'→` and for a particular choice o
parameters~the potentials, for instance, are truncated to fi
neighbors and set toV1

i 52V1
'), the model maps exactly

onto the Heisenberg spin-1 chain Hamiltonian. The lat
was also obtained, by den Nijs and Rommelse as the qu
tum mapping of RSOS models;3 it presents a DOF phase fo
V1

i .0, but does not describe, in that case, a surface wi
finite temperature roughening.~On the other hand, ifV1

i is
attractive there is only roughening!.

Taking the Heisenberg chain as a starting point, we h
then explored the phase diagram for other choices of par
eters, obtaining results that we believe to be relevant w
respect to the surface physics interpretation of our mo
Summarizing, we have seen the following.

~1! The Heisenberg spin-1 restrictionV1
i 52V1

' is not
crucial in stabilizing the DOF phase. In particular, we o
serve a DOF phase even forV1

'50 ~see Sec. VII A!. More-
over, a DOF phase is present not only forV0

'5` ~spin-1
case! but also whenV0

' is finite, as long as it is positive.
~2! If we add to the Heisenberg spin-1 Hamiltonian atex

term, we observe a gapless phase extending for positive
ues ofV1

i . Every surface has a rough phase for high enou
T. This is true also for other choices of the potentials~see
Sec. VII C!. Moreover, if we do not include in the Hamil
tonian thetex term, the rough phase does not survive wh
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one turns on aV1
i .0 ~see Sec. VII B!. Thus, the opposite

step crossing term iscrucial in order to obtain a model de
scribing, at least at a coarse grained level, a physical surf

~3! The relative values of the interactions and of the c
per unit length of a step decide whether a surface has a s
DOF phase for a certain range ofT. The temperature trajec
tory crosses the DOF region only if the cost of a stepdS is

sufficiently small as compared toṼ1
i ~see Fig. 8!. Given the

fact thatdS is typically the largest ‘‘diagonal’’ energy, this
implies that a physical temperature trajectory will often be
a region where only roughening occurs.

In conclusion, we have found that~i! a model based on
steps can describe preroughening~PR!, as well as roughen
ing; ~ii ! the steps must be treated as hard-core bosons ra
than fermions;~iii ! the qualitative role of step-step intera
tions in driving PR, known already from RSOS models,
recovered in this picture;~iv! correlation functions involving
-

e.
t
ble

er

steps can be calculated in a quite straightforward way. T
main one, never studied so far, which we have considere
the terrace size distribution. Here we find simply an exp
nentially decreasing probability for increasing size. This
sult should be amenable to experimental testing, for exam
by STM; ~v! in view of the additional simplicity of step
models, it should be feasible, in the future, to study the r
of long-range interactions, a problem without hope of so
tion within RSOS models.
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