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The theory of the preroughening transition of an unreconstructed surface, and the ensuing disordered flat
(DOF) phase, is formulated in terms of interacting steps. Finite terraces play a crucial role in the formulation.
We start by mapping the statistical mechanics of interadtipgand dowhn steps onto the quantum mechanics
of two species of one-dimensional hard-core bosons. The effect of finite terraces translates into a number-non-
conserving term in the boson Hamiltonian, which does not allow a description in terms of fermions, but leads
to a two-chain spin problem. The Heisenberg spin-1 chain is recovered as a special limiting case. The global
phase diagram is rich. We find the DOF phase is stabilized by short-range repulsions of like steps. On-site
repulsion of up-down steps is essential in producing a DOF phase, whereas an off-site attraction between them
is favorable but not required. Step-step correlation functions and terrace width distributions can be directly
calculated with this methodS0163-182808)02540-3

. INTRODUCTION surface, with a stronger, compag¢tl 10] direction, and a
softer [001] direction. In the strongly anisotropic limit, the
The surface roughening transition and the nature of theéransfer matrix problem for the system of steps can be
rough phase are theoretically very well understood by a vamapped onto the imaginary-time evolution of a system of
riety of approaches ranging from phenomenological descripguantum particles in one dimension, the imaginary time be-
tions, based on the sine-Gordon model, to microscopic soliding the preferred direction in which the steps fr?° This is
on-solid (SOS models! a well known mapping, heavily exploited, for instance, in the
The preroughening transitiof’R) and the ensuing disor- theory of uniaxial commensurate-to-incommensurate transi-
dered flat phaséDOF), both predicted several years ago by tions of adsorbate®:*
Rommelse and den Nifshave also been studied and char- Following a line of thought initiated by Ref. 13, Balents
acterized within certain restricted solid-on-sol{fRSOS  and Kardar applied the full machinery of the theory of inter-
models3~° Although the physics behind these models, andacting fermions in one dimension to explore the possible
the ingredients stabilizing the DOF phase, have been digphase diagrams of generipX 1) reconstructed anisotropic
cussed in some detall, it is still useful to explore this subjecsurface§.6 In their approach, steps of double height are for-
from a different, and perhaps more physically appealing, perbidden(as energetically too expensjyavhile up and down
spective. The RSOS models, in particular, do not directlymonoatomic steps are mapped onto spin-1/2 fermions in 1D,
emphasize steps, terraces, and kinks, which on the othelescribedin the continuum limit by the Hamiltoniah®
hand are very crucial actors in these transitions. This need is
made more urgent by the recent experimental evidences
for preroughening on rare gas solid11) surfaces®!! H=, j dx;//:r,( _ Z(g)Z(_M) .
which calls for a detailed reinvestigation of the step-step o 2
interactions or the reconstructive tendencie®? crucial to
obtain a DOF phase. +> J dx dX'n,(X)V, . (x—=x)n,(x"). (1)
In the context of roughening, Villain and Vilfah¥, 4 oo’
den Nijs!® and Balents and Kardaf,for the case of recon-
structed surfaces, and Villain, Grempel, and Lapujouldde, Here vy is the inverse line tension of a stey,, (x) is an
for the case of vicinal surfaces, have shown that a morénteraction between steps, and the remaining notation is stan-
phenomenological approach based on working directly wittdard. This Hamiltonian describes infinite steps, traversing the
steps yields a very direct picture of the physics involved. entire length of the sample, as the number of particles is
Anisotropic surfaces, in particular, have a definite direc-conserved by thémaginary-timg dynamics. In reality, steps
tion of stronger bonding along which a step tends to runpn surfaces can lead to finite defects by forming loGpss,
kinks on such steps, involving the breaking of strong bondsfinite terraces on the surfacé>® The order of the recon-
are energetically expensive. THELOQ) face of fcc noble met-  structionp, dictates, through the symmetry of the different
als(Au,Pt,Ag . . .) is a physical realization of an anisotropic ground states, the form of the “loop” terms that are
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allowed®®For a (px 1) reconstructed surface, the Hamil-
tonianH has to be supplemented with a term of the type

p-1
HLOOP:)\I dxl:lno IJIT(X‘F ka.)l//i(X‘i‘ka)‘i‘HC , (2)

wherea is a cutoff distance of the order of the lattice con-
stant. Balents and Kardar argued, by power counting, that the
effect of finite terraces, i.e., the introduction Bf gop, is
irrelevant forp>2, marginal forp=2, and strongly relevant
for p=1. They went on by addressing in detail tpe=2 FIG. 1. Scheme of a surface with up)(and down () steps.
case, of relevance to th@ 10 missing-row reconstructed The heights of the terraces are explicitly indicated. The other sym-
facet of Au(see also Ref. 15 for closely related work on thebols refer to the Boltzmann weights considerég:(cost of a kink,
p=2 case. However, the unreconstructeg£1) case was o (cost of a terrace creatipns,, (cost of a step crossingV/ and
not pursued further. .Vl .(interactions between parallel and opposite Stepg black dots
The approach we take in the present paper is similar ifidicate where terraces are created or destroyed.
spirit. Our specific goal, however, is to address the question
of the presence of a DOF phase, and the preroughening tran- The present work is concerned with the case of a low-
sition, for unreconstructed surfaces. Thus, in the classificandex unreconstructed surface. Extensions to the case of vici-
tion introduced above, we are now interested in detail in théhals, for which the long-range nature of the step-step inter-
p=1 case. Technically, this leads, as we shall see, to signifiactions is an essential ingredient, are left to a future study.
cant differences with respect, for instance, to Ref. 16, and to Our main goals in working out this type of approach to
a new phase diagram quite different from e 1 cases. PR are the following(a) to build a formulation providing a
The crucial point is that fop=1 the loop termgsee Eq. More direct access to the physics of PR, which is somewhat
(2)] are of the BCS-like form fdx(;(X) ¢ (x)+H.c.), hidden in the RSOS formglationﬁp) to explore more di-
i.e., a strongly relevant one-body piece. This might appear akgctly the role of step-step interactioris) to study step-step
just a minor complication, at first glance, since quadraticcorrelation functions and terrace width distributions, not
terms can be easi|y diagona"zed by a Bogo|iubov transforava“able so far. As it turns out, we have found that this
mation. Closer consideration, however, leads to reconsidetPProach is quite successful on all three accounts.
the whole mapping. Fermionic minus signs have no role The paper is organized as follows. In Sec. Il we present in
Whatsoever in the mapping of a Ciassicai Statisticai mechardetail the classical statistical mechanics model of interacting
ics problem. The natural statistics to use is always théteps, which is then mapped onto the corresponding one di-
bosonic. In the present case, a hard-core constraint will bE'ensional(1D) quantum model of hard-core bosons in Sec.
necessary, in order to implement the appropriate Configurd“. In Sec. IV we consider in detail the Spin-l I|m|t, obtained
tional space(for instance, the noncrossing constraint for by setting the on-site step-step repulsion to infinity, and then
steps of the same typdn a one-dimensional quantum prob- Map the general case to a problem of two spin-1/2 Heisen-
lem, the choice of the statistics is, quite often, not a bigberg chains. Section V contains a summary of bosonization
prob|em' as we can transform, by a Wigner-Jordan transforplus finite-size Scaling calculations done in order to extract
mation, hard-core bosons into fermions, with a transformedhe phase diagram of the model. Section VI summarizes the
Hamiltonian that has exactly the same fofamly boundary relevant order parameters and correlation functions investi-
conditions have to be considered Carem”!n our case, gated In Sec. VIl we present our re-SUItS for the overall phase
however' pairing terms of the tym,TaH—l,l , which (See d|agram of the model. Section VIl illustrates our results for

below) are essential to describe finite terraces, do not tranghe step-step correlations and the terrace width distributions.
form into simple fermionic BCS-like terms, and become Finally, Sec. IX contains a discussion of the results and some

nonlocal after a Wigner-Jordan transformation. This will conclusive remarks.
force us to work with hard-core bosons.

Our approach, in summary, is as follows. We assume, as Il MODEL
in Ref. 16, that the only relevant extended defects are mono- '
atomic steps, which can be eithep or down Steps of the We assume the only relevant extended defects involved in

same kind are forbidden to cross, while steps of differenthe surface PR transition to be steps, which can be either
types can cross. Moreover, steps interact with each othegr down These steps interact with each other, they can have
have kinks, and can form finite terraces on the surface. Thedénks, and they can form finite terraces on the surface. Figure
steps are then mapped onto world lines of hard-core bosoris shows a schematic picture of a surface with steps.

in one dimension. Kinks on the steps correspond to hopping Our model will be defined on a square lattice, and we will
terms in the quantum Hamiltonian. Pairs of up-down stepsssume the steps to run preferentially in one directtbe

that are created and annihilated to form finite terraces on theertical direction in Fig. 1L The steps are only allowed to
surface, give number-non-conserving terms in the quanturmake simple nearest-neighbor kinks. Steps running in the
Hamiltonian?® Pairwise interactions between the steps arehorizontal direction are assumed to be energetically expen-
taken into account by corresponding two-body terms in thesive and neglected. Hence, our surface is, by construction,
guantum model. very highly anisotropic.



PRB 58

STRIP:

o1 Sex

j+1

———
L

INTERACTING HARD-CORE BOSONS AND SURFAE. ..

13153

This relationship is established by means of the path integral
formalism. In particular, the up and down steps are math-
ematically equivalent to the world lines of spin-up and spin-
down hard-core bosons, and the preferential direction in
which the steps run plays the role of time in the quantum
problem. The hard-core condition is imposed in order to

FIG. 2. Schematic representation of a kink, the beginning of dMplément the noncrossing condition for steps of the same
size-1 terrace, a size-0 terrace, and a step crossing betweep strifyPe, @ physically justified restriction, in view of the large

and stripj +1 and the relative energetic costs.

energetic cost of double-step regions. The noncrossing con-
straint for steps of the same type would be automatically

We define the model by assigning its transfer matrixsatisfied by the Pauli principle if we were to deal with spin-

alongy. Denoting by|S(j)) and|S(j + 1)) the configuration
of the jth and ( + 1)th horizontal strips, we have

(S(j+D|71S()))
=exp[ —,3( SN + sNYI*D

+

j,jt+1 j,j+1
2 OTNEITT o NG >+vstep.ste; } (3

where g is the inverse temperature, atgke also Fig. 2(i)

ds represents the energy cdper unit length of a step run-
ning along they-direction;NY) is the number of steps in the
strip j; (i) 8«N{U1"Y is the energy cost oN{" ") kinks
between strig andj+1; (iii)or N{'* 1) is the energy cost
for the creation oN{' %) terraces of “sizes between strip

j andj+1 [we will always assums=1, or 0(see Fig. 2];
(iv) 9o, NUJ ™1 is the energy associated to the crossing o
N{,1*Y pairs of opposite steps between siriandj +1; (v)
Veep-step= VI+V*, with VI and V- describing, respectively,

the interaction between steps of the same kind and of th

opposite kind. Fov!, we assume a generic repulsive inter-
action

vi=> 2 vllL—ini,ank,aa

o k>i

(4)

with V'L_i possibly possessing an elastic long-range tail of

the form ~|k—i| =2 Heren; ;(}, is 1 if there is a step up
(down) at sitei. Similarly, we assum&* to be given by

Vl:VéZ nmni,ﬁg gi Vi iNi oM - )
The sign of the terms iV, particularly at short range,
depends on microscopic details and need not be specified
this stage.

If we assume periodic boundary conditionsyidirection,
i.e., [S(Ny+1))=[S(1)), the partition function of this sys-
tem is

Z= lim Tr7.

Ny—>oo

(6)

IIl. QUANTUM MODEL

It is well known that, in the strong anisotrogpr time-
continuum limit, many D dimensional classical problems
can be mapped onfd — 1 dimensional quantum problert.

1/2 fermions(see below for more comments on the problem
of quantum statistigs
We consider the following quantum Hamiltonian:

H=—tY (af jai,1,+H.c)— uN -t}
io

x> (al.al +H.c)-t1 > (af ,al 17+ H.c)
|

i,o

T T _
_texz ai+1;ai,u—a-i+l,a'ai,(r+z z VE‘—ini,u’nj,(r

i,o o >
L L
+Vo 2 MmN+ 2 2 VisinieNj o
i o j>i

with a; , representing the destruction operator for a spin
hard-core boson and witN=N;+N, the total number of

articles. We will work in the subspadé¢; =N, , for a low-
index surface(For a vicinal surface of anglé, we would
have (N, —N;)=Ltans.)

Within a path-integral approach, it can be shdfvthat
fhe ground-stateproperties of this quantum Hamiltonian cor-
respond to theemperatureproperties of the classical step
model, whose transfer matrix is given by E8), in the large
anisotropy limit. Specifically, the classical parameters turn
out to be given by

@)

etl=e 8%, ¢ té’l: e

EIEX: efﬁ!sex, 6(_/*") :ﬁ§S! EVI(HJT):B’\V/I(H;T) ,
®

where € is the Trotter discretization time for the quantum
path integral.

The mapping is asymptotically correct only in the limit
€—0. This(a) implies, clearly, astrong anisotropy limifor
fHe classical problem antb) does not allow a straightfor-
ward identification of a classical low- or high-temperature
limit. Indeed, if all the parameters of the quantum problem
are of order one, taking—0 or B—~ makes Eq.8) in-
compatible with the requirement that the left-hand side
should be a small quantitfof ordere). In other words, the
mapping is justified so long as

Kinetic couplings= ( ) O>T

>(55,V, .. .)=Potential couplings,

and nothing can be said, in principle, about the infinite tem-
perature limit. This should be always kept in mind when
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considering the infinite temperature limit from the quantum /
model point of view(see, e.g., Sec. VIIB b/
It is also worth stressing that tiihard-core boson statis- /
tics of thea operators in the Hamiltonian is crucial to the —H
nature of the phases and transition lines in the phase dia-
gram. Indeed, unlike other terms in the Hamiltonian, the ter-
race creation terms cannot be translated into sinipée,
local) fermionic BCS-like terms by a Jordan-Wigner trans-
formation. In such instances, the correct statistics to use iS FACETED

FLAT
204 (Disordered Singlet)

t
1%order

1%order e
@

Tsing .-~

undoubtedly the bosonic one, as fermionic minus signs do (Ferro Ordered) 91 REC.
not appear in a classical statistical mechanics problem. This ¢ttt (Neel)
point seems to be not always appreciated in the literafure. (Ha it
We now make contact with previous work in the context T o o T oy
1

of surface physics. The model in E7), with t,,=0 and
to,=0, has been considered, in its continuum version, by FIG. 3. Phase diagram for the spin-1 Heisenberg ctiéf. 3.
Balents and Karddf (See also Refs. 12 and 15 for related Here and in the following we consider only negative values of the
work.) In the absence df* terms, particles are taken to be chemical potentiajs that are relevant for the surface physics prob-
fermions. The emphasis of Ref. 16 was gmx(1) recon- lem. Lines(a) and(b) are discussed in the text.

structed surfaces, particularly wifih=2. The effect of finite
terraces, i.e., closed loops of steps, was argued to be irrel-
evant forp>2, marginal forp=2, and strongly relevant for
p=1.1® The unreconstructedp= 1) case, however, was not
pursued at all. As just argued, the=1 case cannot be tack- A nonzerot,, term, when present, translates into a quartic
led in terms of fermions. The effect of the finite terraces onspin term

an unreconstructed surface — theterms in Eq.(7) — is

one of the points addressed in detail in the present work.

Moreover, we show that restricting the analysis to a simple 4 _
Hubbard-type on-site interaction does not lead to the full _teXZ [(SHA(S 1)+ H.cl,
richness of the phase diagram; nearest-neighbor interactions

are essential in order to stabilize, for instance, a DOF phase.
and will be shown to be relevant in stabilizing the rough

phase for finite repulsivé/”l. The phase diagram for this
special case, in the surface physics relevant regiqu= D
A. Vg=0o: Mapping to a spin-1 chain >0, can be directly borrowed from the literatur&"

For a special choice of the parameters, the model in Eq. The Heisenberg spin-1 chain was also obtained by another

(7) reduces to a well-studied problem. Consider the case ifPute, hamely, by the quantum mapping of RSOS models, by
which both V! and V* are truncated to nearest neighbors, den Nijs and Rommelse, who gave a very detailed dlSCLéSSIOﬂ
VL =Vi'a, .. nthe i ninic on-i epsionof 51 Suoce s mepitalon of e afrer pes
opposite stepsyo . The limit Vo enforces, in ab- J,>0 ige it corresponds toF;epuIsi\)xé‘l and attractivevy
\?vevarrlcear?gegllswgogglr; Si[?llrnege Csiz?;goggf rsi?g pevsrﬁghst;gscgisee Eq.11)]. The latter condition is, however, not crucial,

: 0 ; o as we shall see later on. The flatness of the DOF phase is
easily map onto apin-1lvariable as follows: directly related to the Haldane gap in the spin-1 chdfrthe
interactions are much bigger than the cost of a unit of step
[J,>D, see line(a) in Fig. 3], at low temperaturef.e., for
largeJ,/J,,) the system will reconstruct into an ordered se-

=t} =3, tex=0 Vi==Vi=J,,—u=D. (11

(12)

IV. CANONICAL TRANSFORMATIONS

stepup a ,|0)=[S7=+1),

nostep [0)=[S/=0), (9 quence of up-down stepéhe Neel phase of the spin-1
chain. By increasing temperatusee., loweringJ,/J,,) the
step down a{l|0>=|8f=—1>. system undergoes an Ising transition to a DOF phase, in

which the positional order of the up-down sequence of steps
It is then straightforward to show that all possible matrix s lost? If the cost of the unit step is larger than the interac-
elements oH in Eq. (7) coincide exactly with those of the tions, [J,<D, see line(b) in Fig. 3], the low-temperature
spin-1 Heisenberg chain, phase is flat, and th@rerougheningtransition to the DOF
phase has nonuniversal exponehts.
oy b If we impose the conditioWy—c without assuming Eq.
Hieis= — 72. (S'SiytH.C) (11), what we are considering is always a three-state-per-site
problem, but the resulting Hamiltonian does not have the
7oz 72 simple bilinear form(10) in terms of the spin-1 operators.
+‘]22i S‘S'+1+DZ (S (10 We will refer to this general case asspin-1 chain The
specific case in Eq(10) will be referred to asHeisenberg
if the following parameter choice is made: spin-1 chain
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B. General case: Mapping to two spin-1/2 chains bosonization techniques. This was done by Strong and Millis

In order to study the model in Eq7) for more general for the'case of two couplgd sEin—lL/Z Heisenberg chains, i.e.,
parameter values, in particular fgg +, it is convenient to alspemLaI case OzfsE‘ﬁlB) with t; =V1 =0, 1¢,=0,h=0, and

abandon the spin-1 representation and map onto a problem ¥p =2to = —Jk .** The procedure can be easily extended to

two coupled spin-1/2 chains, where the total number of stateQUr case. Introducing symmetric and antisymmetric combi-
per rung is four, instead of three. Introducing the usual spinfations of the bosonic phase field®, s and 0, s,

1/2 representation for each of the two species of hard-corevhich represent the bosonic soundlike excitations of the sys-

bosons, tem in the gapless phase, the low-energy Hamiltonian reads
al (=S M=t He S e (g L ve. V2K (V. )2
. . . = o v ) tK, a
and performing ar rotation for theS; ; spins around the a=SA 4T Ka( ) (VOn.a)
axis, which amounts to a particle-hole transformation for the
down bosons$,— S, andS; ,— — S ,, one can rewrite the 1
Hamiltonian (7) as the following model of two spin-1/2 (ma)? dx{cod Oy a){A+Blcod20,9)
chains @=1,2 denoting the chajrwith opposite magnetic
fields: +¢0920; )]} +Cco420;5)+Dcog20;4)},

o o wherea is a short distance cutoff, andl, B, C, andD are
H=—t % (SaSi1.THC) coupling-dependerfbut cutoff independehtconstants.
' Let us conside#rihe!\ sector first. TheA secto\%an be
gapless only if YK, >2 and, simultaneously, VK,>2.
+V”l§ S'ZvaSTZJrlva“Lhzi (S~ S This is, of course, impossible. Thus, thesector flows to
' strong coupling and develops a g&p.
The Hamiltonian for theS sector, renormalized by the&

1 + o— N Z Z
_tOZ (S|’15i'2+H.c.)—VoEi S.iSi2 sector, will be of the form
_ 1
_tiz (Si-',—a I+1,E+H'C')_Vi,z SIZ,QSZ-FI,E HS: E dX _(V®J,S)2 + KS(V("DNys)Z
l,a ha v KS
_texZ (8511518515, H.C), (13 - ( VS)ZI dxcog20; ).
ma

where, for simplicity, we have considered only interaction

terms up to nearest neighbors and we have omitted the codhe cosine term is relevant and opens up a gap wlgn
stant [V (q=0)+Vl(g=0)] [with VI®)(q) we denote <1. Thus the system undergoes a Kosterlitz-Thou(&39
the Fourier transforms of the potentials, awtf*)(q=0)  transition whenKs—1. As discussed in the following sec-
=21V‘-‘(fi)]- The magnetic fielch is related to the chemical tions, this is associated with a roughening transition.
potentjial,u in the following way: If the symmetric sector flows to the free Klein-Gordon
Hamiltonian(i.e., the Luttinger modglin some range of pa-

h=—pu+i[V(q=0)+Vl(g=0)] rameters, the low-energy spectrum of the two chainsLfor
N Ll —oo, will have the form of a spinless Luttinger model de-
=—p+(Vol2+ Vi +V)). scribing symmetric excitations. Expressifigy, s in terms

Notice that after the spin rotation, performed to get a stanpf bosonic creation operators we can wfte

dard S;'S, coupling between the chains starting from the

tot i 77
aja bcz)son terzm, the signs of the" terms are all c.hanged, Ho=veD |Q|blbk + I(UNN§+0JJ§), (14)
sinceS; ,—— S/ ,. For the same reason, the chemical poten- k
tial terms transform into opposite magnetic fields for the two .
chains. The conditiofN;=N, reads, after the canonical \z/avr?;rceuNrrSe?]?j; So a;er;:loerssyn}rsnter:relcr:ﬁgtrcr)]:;ﬁieetl d”gg?j?}?)\se_
transformation, as zero total magnetization for the spins, . P s 24
Z(Siz +Szz):022 rOC|ty,UN:U5/Ks, anvaZstS.

i1 9, . In order to computey, we note that the simplest charge
excitation not involving the current part consists of adding

V. LOW-ENERGY HAMILTONIAN FROM two particles to the system. Thus we have
FINITE-SIZE DIAGONALIZATION

With a well-defined quantum spin chain problem at hand,
it is standard practice to study its phase diagram by a com-
bination of field-theoretical arguments and finite-size exact
diagonalization data. To computev;, notice that if a magnetic flu® is concat-

At weak coupling, a standard field-theory approach toenated with the ring, the current part of the energy spectrum
one-dimensional quantum systems consists in applyings modified in this way:

L
on(L)=—[E(AN=2)—E(0)].
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T , T 2 A Neel phase will be signaled by a nonzero staggered mag-
T vds— gl Jst A netization\V, while A\ is zero in the rough, DOF and flat
4L 4L d, ohases
(P is the elementary flux quantymTherefore, (iv) Theflatness order parametedefined by
L J’E(D) 1 r
L = - = i _— I Z
vy(L) 87 (/D) F Lll_rleZ ex |77j21 s

Finally, vs can be computed from F has a nonzero value only in the ordered flat ph@sehe

DOF phase the exponential fluctuates between 1-aha@sr

L g
vs(L)=E[E(k=2w/L)—E(o)] is increaseyd
whereE(0) is the ground state energy afidk=27/L) is Flat Rough DOF Nel
the energy of the lowest excited state of momentidm Ks gapped >1 gapped gapped
s - Gy <o okg  <w <o
As a consequenc&s can be equivalently computed from (for larger) . —zsln(r)
the finite-size  extrapolation of vy(L)/vg(L), of Gu(r) 0 " (D ()

ve(L)/vn(L), orof yus(L)/vn(L). If the finite-size data are
compatible with a Luttinger-liquid picture, i.e., with a spec-
trum of the form(14), then these three extrapolations should =0 =0 =0 #0
converge, as —, to a single value. F >0 0 0 0

(for larger)

Vl. ORDER PARAMETERS VIl. OVERALL PHASE DIAGRAM

We now define the order parameters and correlation func- Our model, even if the interactions are truncated to first

tions we have to congider in order to St“qy the phase di"’_‘grarﬁ]eighbors, contains many parameters. Rather than trying to
of our model. We will basically deal with four correlation describe the phase diagram in an exhaustive form, we wil

functions, whose behavior in the different phases is sUmmag, ;s our discussion on a few questions that we consider
rized in our quasitable.

. . ) . . quite relevant with respect to treurface physicinterpreta-

() The Zhelg_ht-helght correlation defined by Gn(r)  tion of our model. This will lead us to consider in detail
=((h;—ho)*), diverges logarithmically as some special planes cut through the phase diagram, and will
also give us an idea of its global structure.

Gi(r)= %In(r)Jr o Let us consider, once again, the Heisenberg spin-1 phase

2 diagram in Fig. 3. From the surface physics point of view, it

_ ) - S presents some unpleasant features: since the increasing tem-
in the rough phase, witk=1, while it remains limited inthe  perature curve, for a given surface, is a line through the
flat, Neel, and DOF phas€S.At the roughening transitio{  origin [the origin corresponds to the infini®point; cf. Eq.
takes the universal value of'£° This gives a simple crite- (g)], every “surface” with repulsive interaction between
rion for determining whether a phase is rough or not. In faCtsteps of the same kind/@l>0) has a preroughening transi-
the coefficientk coincides with the Luttinger exponefs (o 4t finite temperature, and no rough phase at fifit®n
for the symmetric sectdf, which can be extracted by finite- 0 ey hand, it/} is attractive there is only roughening.

S'Zzif’(_ﬁ:g'gtﬁ; eﬁ%?:e?ﬁ%?]nﬁjzgtifn di?i(r?‘edsz%. V. In relation to these problems, we will discuss the follow-
9 d ing main questions(a) Is the attractiveV; term between

r-1 opposite sign steps essential in order to stabilize a DOF

G(r)=— < Séexp( i 7.,2 S_Z) 33>_ phase?b) Is there a choice of the parameters for which our

= model can describe a surface with a finite roughening tem-

(We introduced the notatio =n;; —n;, .) The phase factor pera’:]ure?(c) How d oe; the greser;}ce olr gbsence tha fprr(]e -

contributes a plugminug sign if there are an evefodd rctJug imngttranst[tlon tetphen O? fhe re_taltlve t?]trefngt mo r;t ©
number of steps between site 0 and sitén the DOF and in step-step interactions to the cost per unit length of a sep?

the Neel phases, a step down) is preferentially followed

What is the role of the opposite step on-site repuldign In
by a step dowr(up). In these configurationsG,(r) gets a the following we address these points directly.
contribution equal to 1 every time sites 0 andre occupied

by a step. Thus, in the DOF phase and in thesNghase A. Role of attraction between opposite steps:
G4(r) decays exponentially to the square of the mean density Spin-1 chain with V1 =0.
of steps. In order to explore the different roles of the two interac-
(iii) The staggered magnetizationefined by tions Vi andV} , we have first studied the effect of a repul-
1 sive VI, keepingV; =0. For the time being, we still work
— L Z QZ - -
N= lim E; (—1)(SES)). with the spin-1 condition, i.e., we impose an infinite on-site

repulsion of opposite stepd/§ = ).

[
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FIG. 4. Qualitative phase diagram for a spin-1 chain with .
=tl=1, t,,=0, Vi =0. or
[ (b)

For this choice of parameters, we do not find any point 15 | th=1 -
with Vﬂ>0 in which the finite-size data might indicate a ]
vanishing gap. This is compatible with the results of den Nijs
and Rommelse about the location of the KT transition in the
Heisenberg spin-1 phase diagramihe system undergoes a
roughening transition only at infinite temperature. [

In Fig. 4 we draw a qualitative phase diagram for values 05
of the parameterg. and VI which are relevant for surface [
physics(i.e., positive energy cost for a step, and repulsive
interaction between steps of the same kirlit is quite re- o v v
markable how the DOF phase survives the turning off of the 0 0.05 0.1 0.15 0.2
attraction between steps of the same kind. As a matter of 1/L
fact, takingV; =0 leads to the disappearance of the recon- S o
structed(Néel) phase from the physically interesting region  F!G- 6. (&) Finite-size charge excitation gaps for the tWer

. ing i 1 = ;
of the phase diagram, and, therefore, to an even larger Do‘g‘a'ﬂsd'r:_ Eq.(19 athO__ Oa tf =1 etmo_l fhotrl_varlous V":"”ets(;ﬁ' .
phase.(We will further discuss the roles dﬁ and Vﬁ in ashed lines are obtained from straight finés constructed so as 1o

s . . ass through the=6 andL =8 points. The extrapolation to zero is
stabilizing the DOF phase later in this sectjon. Eemarkablyggood(b) Finite-sizepcharge excitatic?n gaps fgr=0,
t: =tl=1 (dashed ling andt} =0, t; =tl=1 (solid line). The solid
B. Infinite or finite roughening temperature: The role of te, and dashed straight lines are constructed ag@jinNotice the re-
In order to discuss the point concerning the rougheningn@rkable smallness of size corrections.
temperature, we observe that, s>, the kinetic terms
tend to be the only relevant pieces of the Hamiltonian, seés completely equivalent to one witt /tl=1/7.
Eg. (8). Thus, we now consider the model in absence of In Fig. 6@ we plot the finite-size gaps as a function of
potential terms V), and for zero chemical potentigl. For  the system sizé for t;=0, and different values ofi/tH
the time being, we also takg,=0. The crucial role of the between 0 and 1. Given the negligible curvature of the
tex-term will be discussed afterwards. In this case, thestraight-line fits, the data seem to suggest that the gap ex-
Hamiltonian reduces to that of two coupléd’ chains: trapolates to O in all cases. In Fig. 7 we plot the finite-size
value of the Luttinger exponeiis, determined as explained
H= -t (8°.5 . +He) -5 (5'.5,+H.c) in Sec. VIIB. The data foﬂ(slconfirm the scenario of a
e VThatitla DTS N0 4 1,1,2 0 T gaplesgi.e., rough system. Notice that s seems to extrapo-
late to values larger than 1, indicating a rough phase that
ﬂf% (Sfa ~ L+H.C). (15 \s/r‘l(.)uld survive to the turning on of a suitably small repulsive
' We now address this point in more detail. Consider the
Notice that exchanging! with t; is simply equivalent to t; =t case(with t;=0), in whichKg seems to extrapolate
renaming the sites (20) to (2i,0) and vice versa. This is to the largest value. Denoting by
illustrated pictorially in Fig. 5. Thus, a model with/t'=r

E(AN=2)-E,
I

S
i-1,2 i,2 i+1,2  i+2,2 i-1,2 il i+1,2  i+2,1 (s’)’

S = :><1><:><1 with s,s’' =+ 1, the four possible configurations at each site,
we can define the following four states:

) wel(5)

i-1,1 il i+1,1 i+2,1 i-1,1 1,2 i+l i+2,2

FIG. 5. The duality mapping for tw&XY chains, see Eq.15).
Dotted, solid, and dashed lines denote, respectivgly!, andts |T>:‘

+
couplings. The duality survives also in presencé/gf. +1




13158 ALESSANDRO LAIO, GIUSEPPE SANTORO, AND ERIO TOSATTI PRB 58

———
115 [ . ',
[ ] i (A)
1 =1 45=0 ] 5]
- ti=1.0
= 8 075
L i - ° 05
s> 1.05 [ o 9 . N
DY [ o o © 025 10 ©).
[
8 A a & 4 00
A A ]
03]
0.95 [ = N
0 0.05 0.1 0.15 0.2 , , : T
1.0 2.0 3.0
1/L V,

FIG. 7. Luttinger exponerKs for the same parameters of Fig.
6(a). As argued in the textsee Sec. VII B, Kg should converge to
1 for L—o0 and the apparent extrapolation to values larger than 1 i

very likely due to finite-size effects.
1
has a rough phase for high enoughin order to show this,

0.)=— +
0=75 ‘ >
It is now straightforward to verify that, at each site, the state\évgsa?g fnfjh(elg)i eisenberg spin-1 Hamiltoniat, aterm, see

|0_) is decoupled from the three remaining ones. The

HamiltonianH can then be considered a spin-1 Hamiltonian

acting on the subspace spanned by the three dthxe$| ), —tex [(SHAS )% +H.cl,

and|0,). As it can be checked by explicitly calculating all '

matrix elementsH, when restricted within this subspace, with teX:tH:JXy_ Figure 8 shows the phase diagram for this
coincides with the Heisenberg spin-1 Hamiltonian a&d  case. Qualitatively, it is very similar to the Heisenberg spin-1
and J,=2tl. As argued by den Nijs and Rommefséhe  case(see Fig. 3 except for small values of the potentials,
location of the KT transition in the Heisenberg spin-1 phasewvhere thet,, term changes the structure of the phase dia-
diagram is, very likely, exactly at,=0. Thus, two coupled gram. In fact, foru=0 we observe a gapless phase extend-
XY chains witht; =tl andtg =0 have & actually equal to ing for positive values o¥/}, up toV}~0.4: this is demon-

1, and what we see in Fig. 7 is only due, very likely, to strated in Fig. 9 were we plot the Luttinger exponéty
finite-size effects.

FIG. 8. Qualitative phase diagram for a Heisenberg spin-1 chain
with exchange term, iet; =tl=te,=1,Vi=—Vi. Lines(A), (B),
and(C) are discussed in the text.

We will now demonstrate that, if we allow for the possi-

+1 > ) bility of step-crossing events,,> 0, the gapless phase sur-

-1

-1

+1 vives the turning on of a positiv\a’H , and every “surface”

The effect of turning ortg , while keeping; =0, leads to L L L L L
a completely different picture. In this case, qu)r:t” the I s ]
system is gapped, as suggested by the finite-size data of Fig. 12 [ et m ]
6(b). The physical reason for the different behavior of the B e : o J
andty terms can be understood by considering the limiting = B z o ° i
cases of large values for these parameters.tfore, the <_, 1 g v
ground state tends to ha@, ) at each site, with a large gap 3 Pt V=00 o ° * 1
(of ordertg) to other exited states. Fof—o (att;=0), on N 1
the other hand, the system reduces, by the previously de- L, V,;O:R etict o1 ]
scribed duality property, to two uncoupledY chains, and 08 L e: w-0s6 b i
must, therefore, be gapless. | . wvi—o7 VI=—Vi, =0 |

The previous considerations lead us to conjecture that for i |
any choice oft; (as long asty=0), two XY chains are ol Lo i bl
gapless and haviés=1. On the contrary, turning ot} , at Y 0.05 0.1 0.15 0.2
t; =0, immediately opens up a gap. These conclusions have 1/L

important consequences on the stability of the rough phase. g\ 9. Finite-size Luttinger exponeitts along the linex=0,
SIHCGKS attaInS, at beSt, the mal’glna| Value Of 1, tumlng Onfor the Heisenberg Spin_l Chain p|us exchange td{@.extrapo_
any positiveV”1 immediately opens up a gap, and the roughiates to values larger than 1 faﬂ<0.4. Dashed lines are only
phase is confined to infinite temperature. guides to the eye.
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FIG. 10. Qualitative phase diagram for a spin-1 chain wtth L ]

=l =te=1,Vi= fv“l/lo. Line(A) describes a situation where the ]

cost of a ste@s is larger than the interactions, and only roughening 0 P S S N OO

is found. Line(B) describes a situation whei®; is smaller than 0 0.05 0.1 0.15 0.2

1/L

FIG. 11. Finite-size values of the flatness order paramé&ter
along the linew=0. This finding is in accord with bosoniza- (open symbolsand of the DOF correlation functioB(L/2) (full
tion: thet,, term, unlike thet" terms, increasei$s and leads  symbolg at the Heisenberg isotropic point, for decreasing values of
to a stabilization of the rough phase. Indeed, for 86® Vg . The system appears to be DOF for all positive value¥pf

|\~/f|, and roughening is preceded by PR.

chains it is easy to show that, up to lowest ordetdp The dashed lines are only guides to the eye.
Kee14+ Lex the interaction energy between steps of the sameﬂkda
S_ . . . e .
g r2t! surface can havéi) only roughening(caseA), or (ii) first

preroughening and then rougheniiigase B). Now, with

Another remarkable feature of the phase diagram in Fig. &= —VQ/lO, the “critical ratio” (58/9!)““, below which

is tr)lat,hat variance WiTh thfe ordinary Hei?enberg case (h preroughening is possible is of the order of 1/10, much
=0), the temperature line for a given “surface” crosses the : L_ I v i

. . . . smaller then in the/; = — V) case[where s/V})qir=1].
DOF region only if the cost of a stepjs, is sufficiently Given the fact thatds is typically the largest “diagonal”

small as compared to the interaction between stéps\We  energy, this implies that a physical temperature trajectory
have illustrated this by sketching in Fig. 8 temperature linesyill be, most likely, in the region where only roughening
for three different situations. For the case labefedhe en- occurs. If, and how, |ong-range interactions m|ght Change
ergy cost of a step is high with respect to the interactionthis picture is an interesting and open problem.

energy between steps, and there is no preroughening. In the

case labeled B§S/VH1 is smaller, and a DOF phase is present D. Role of opposite-step on-site repulsion: Finite/

at intermediate temperatures. Finally, for c&ehe interac-

tion between steps is the most relevant energy, and the |0V\6
temperature phase is<2 reconstructed.

At last, we want to discuss briefly what happens to the
OF phase if we allow double occupation of a site, i.e., if we
do not take the limit/;—. To demonstrate that the restric-
tion to Vy=co is not crucial, we consider the cas‘,é‘l
=-Vi=1,tl=tf =1, with V} finite. If V§—o the system
is an Heisenberg spin-1 chain at the isotropic point, corre-

We now want to discuss in some detail what happens isponding to a DOF phasdn Fig. 11 we plot the finite-size
we leave the conditiovi = — VI, without going to the ex-  values of the flatness order paramefetopen symbolsand
treme cas&/; =0, discussed in Sec. VIl A. We illustrate this of the DOF correlation functio®4(L/2) (full symbolg for
by choosingVy = —V”lllo, while keepingtexzt”zl and decreasing values of, . The data suggest that the system
Vg = (infinite on-site repulsion of opposite ste¢pThis  remains DOF all the way down g, ~0. We have verified
choice of parameters describes a class of surfaces in whichat a similar scenario is found if we turn on thg term or
the attraction between steps of opposite kind is much smalles small| »|. Thus, our finite-size data suggest that the spin-1
than the repulsion between steps of the same kind. condition (Vg=) is not essential in order to stabilize a

In Fig. 10 we plot the phase diagram for this choice of DOF phase.
parameters. The system is &®rdered for very large values
of VI ; the value of the ratiov}/| V| determines the location
of the DOF-Nel phase boundarysee Fig. 8 and Fig. 4;
recall that, forv; =0, the Nel phase is absent for physical ~ Correlation functions involving steps can be calculated
values ofu). The most relevant comment to the phase diaiumerically, for a given finite size, at any point in the phase
gram in Fig. 10 regards the conditions upon which the temdiagram of our model. We will discuss here two correlation
perature trajectories of an actual surface model cross the préinctions, i.e., step-step correlations and terrace width distri-
roughening line. It is clear, in fact, that depending on thebutions. Letng be the average density of steps of a single
ratio between the cost of a stéper unit length 65 and, say, speciegup or down. In generalng is always different from

C. Presence or absence of preroughening:
Role of interactions versus step line tension

VIIl. STEP-STEP CORRELATIONS
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5 ] =1 and u=—2, pentagons The flat case results are very
] simple: bothN'" andN'! converge exponentially fagwith

t=ti=1 ’ a very short correlation lengkto the large distance limit of
\ Vi=-vi ] 1. In the rough phase, instead, we have verified that the ap-
[ ! ] proach to 1 shows a power-law tail. This is easy to prove.
ORlY Voo VI==05. =0 (Rough) - Rewrite firstN'? in terms of density and “spin” correla-
ol oot #=0 (DOF) | tions:

1 —H=2  (Flat) ]

1
NT7(r) = ——[(none) +(S58)], (18)
4ng

u ] where the+ and — signs apply, respectively, to=1 and

1 o=|, n=nj;+tn;, and §=n;;—n; ;. Within a

. bosonization approachithe operators; and S’ involve (af-

ter particle-hole transformation for the boson$ only the
antisymmetric and symmetric sectors, respectively. The an-
tisymmetric sector is always gappéske discussion in Sec.

V and Ref. 23, so that density-density correlations are ex-
ponential. In the rough phase, however, the symmetric sector
. is gapless, an8*— S correlations have a uniform power-law

N tail of the form

N"(r)

Ks
(mr)?

T (S5 =~ — 19

4 6 which is precisely the term responsible for the logarithm in
the height-height correlation functioB(r)=((h,—hg)?).?®
FIG. 12.N'! (above andN'! (below), at three different points 1he DOF case results, finally, show a different behavior,
in the phase diagram of the Heisenberg spin-1 chain: a rough cadith a sizeable oscillating component of the correlations.
(JZ:VL:—VQ:—O.S, D=-u=0, triangle3, a DOF case J,  This behavior, however, reflects only a short-range effect,
=Vt=-Vl=1, and D=—px=0, squares and a flat one J, caused by the neighboring reconstructédel) phase: the
=Vvt=-Vi=1, and D=—u=2, pentagons Lines are only oscillating part has to decrease to zero at largsince no
guides to the eye. breaking of translational symmetry occurs in the DOF
phasé
zero, even in the flat phase, since we do not discriminate We finally discuss briefly the behavior of the distributions
between steps that traverse the entire sample and steps tlwhtterrace sizegfor simplicity, once again, in the Heisenberg
form loops (i.e., finite terraces Step-step correlations are spin-1 casg While, in principle, it is important to know
defined as follows: what the probability is for the surface to be flat over a dis-
tancer, this quantity has never been calculated so far.
1 1 Let us consider, first, the behavior &'! in the rough
N'?(r)=—(step(0)stef’(r))=—(No Nr.o), (16)  phase. Figure 1) is a plot of the logarithm oP'! versus a
Ns Ns scaled distance r&r, for several points taken inside the
with ¢=1,|. If translational symmetry is not broken, we rough phase of the Heisenberg spin-1 phase diagram. We
must have, at large distancé$|”(r —)—1. The distribu- observe that the general behaviorffr) is exponential in
tion of terrace sizegalong thex direction only) is the prob-  the size of the terrace,
ability of having two steps a distangeapart without any i
other step in between. There are two different kind of ter- P(r)~e "%,

races we can look at: those delimited by two steps of thg\ng that a good collapse is obtained for all data if the dis-
same type, and those between two different steps. Thus, Wgncer is scaled to the average separation between two steps,
define 1/(2ng), i.e.,Ax1/(2ng). The scattering of the data for the
largestr’s is due to finite-size effects. The behavior of
N > 17 PTT(r) is found to be qualitatively similar.
nale In the DOF phase we find that the terrace size distribution
probability is again exponential with size, but nowdoes
where, againg="1,]. The string operator in square bracketsnot scale with the density of steps, as it did instead in the
enforces the absence of additional steps between Orand rough phase. Figure 13 illustrates the behavior d?(r) at
Figure 12 illustrates the behavior df'" andN'!, at three a DOF point, corresponding to the isotropic Heisenberg point
different points in the phase diagram of the Heisenber@f the spin-1 chainP(r) at a rough point is also reported for
spin-1 chain: a rough caself=—0.5, ©=0, triangle$, a  comparison. We observe that, as anticipated, the behavior of
DOF case J,=1 and u=0, squares and a flat one J, P! is, once again, exponential m(i.e., the “DOF check-

r—1

]1;[1 (1-n;)(1-n;)

To 1
P (I’)=—2 nOYT
Ng
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. ‘ L L L I parent then the usual microscopic RSOS-model description.

0 [ ‘ _ Our model allows, in principle, the description of a real sur-

X g full : V{=-Vi=-025 | face and, in perspective, one could test it with realistic step-
T e :":_"‘,'f:_'g; step interactions.

“\.m ' 1 We have tackled our problem of interacting steps by map-

2T S ] ping it, in a well-known way, onto a one dimensional quan-

“ng tum problem of interacting hard-core bosons. Although this

"&.,‘_o,% o 1 mapping is exact only in the strong anisotropy limit, it can
‘M‘_ o ©

4 (a DR provide very useful information about the phases and the

T T nature of the transitions also in more general instances.
0 1 2 3 4 Moreover, some realistic cases, suci{HB) surfaces of fcc
r*(2ng) metals, are actually quite anisotropic.

The quantum Hamiltonian, see H{), contains standard
27V v T v v v T v T T ] .
1 Vi=-Vi=-05 S ] terms, such as nearest-neighbor hoppgescribing kinks on
i (Rough) ctr ] the stepy potential termsdescribing interactions between
Vi=-Vi=l 1 ] steps, and chemical potentidtost per unit length of a stgp
(DOF) © : 1t ] as well as terms describin@) terrace creation/annihilation
(through BCS-like number nonconserving teymand (ii)
opposite step crossing events. The latter two terms are cru-
cial, in many ways.

Terrace terms are important to describe correctly the uni-
versality classes of the relevant transitions. This is known in
® o . . the literature?’*%> put never explored in detail in the
0 5 4 6 present context. Moreover, in our case, the terrace terms also

r force us to work with hard-core bosons, as the standard
. ) Wigner-Jordan transformation to fermions does not lead to a

FIG. 13. (3 In(P'") versus the scaled distanceg at various simple local fermionic Hamiltonian. This point is sometimes
points in thfz roughﬂ phase of the Heisenberg spin-1 chain; full SYMyverlooked in the literaturé®
bols: J,=V' ==V} =-0.25D=-x=0,01,0.203; empty sym- " rpe term describing the crossing of opposite steps is im-
b°|S”'_JZ_V - __Vl_ __0'5’ D= _“_0’0'%’0'4’ Sth‘rTSJZ_V _ portant in order to stabilize a gaple§=., rough phase for
—Vi=—0.75D=-=00.102,03b) P'"andP ", inlogarith- & repulsive interactions between steps of the same kind.
mic scale, at two different points in the phase diagram of the_ .~ . . -

Heisenberg spin-1 chain: a DOF cash+V' = —Vi=1, andD h|s,_|n turn, leads to a finite roughening temperature for the

=—u=0, squares and a rough casel{=V*+=-V|=-0.5,D Clas_s,l(_:al model. . o R

— — =0, triangles. Full and empty symbols correspond 5" _ Finite-size exact d|agonal|zat|c_)ns anq bosonization tech-
niques have been used to unveil the richness of the phase

and P!, respectively. ! ch n ! _
diagram. In the limit oV — <0 and for a particular choice of
erboard” has no typical length! Superimposed on the lead- parametersthe potenti("lalls, for instance, are truncated to first
: H _ _\ /L
ing exponential, the DOF case results show a strong oscillaf?€!9hbors and set w;=—Vy), the model maps exactly
ing short range component which is again due to théonto the Heisenberg spin-1 chain Hamiltonian. The latter

neighboring reconstructegNeel) phase. Two more features Was also obtained, by den Nrfijfs and Rommelse as the quan-
are worth noticing. First, compared to the rough c&é(r) UM mapping of RSOS modefsi presents a DOF phase for

is larger in the DOF case far=1, and then substantially Vﬂ> 0, but does not describe, in that case, a surface with a
smaller for larger values af (and decreasing with a larger finite temperature rougheningOn the other hand, i} is
exponent Second, in the DOF cage!!(r) is one order of attractive there is only roughening _ _

magnitude smaller thaR'!(r), while the difference is much ~ Taking the Heisenberg chain as a starting point, we have
smaller in the rough case. These features are reasonable fi¢n explored the phase diagram for other choices of param-
view of the diluted antiferromagnetic ordering of steps, typi-€ters, obtaining results that we _belleve to be relevant with
cal of the DOF phase. respect to the surface physics interpretation of our model.

Experimentally, terrace size distributions could in the fu-Summarizing, we have seen the following.

ture be extracted, e.g., from scanning tunneling microscopy (1) The Heisenberg spin-1 restrictiovi; = —V7 is not
(STM) data?® crucial in stabilizing the DOF phase. In particular, we ob-

serve a DOF phase even gy =0 (see Sec. VII A. More-
over, a DOF phase is present not only fé§= (spin-1
case but also wherVy is finite, as long as it is positive.

In this paper we have presented and discussed a statistical (2) If we add to the Heisenberg spin-1 Hamiltoniam.a
mechanics model for studying the possible phase transitiori€rm, we observe a gapless phase extending for positive val-
of an ideal, unreconstructed surface. The elementary objectges ofv”l. Every surface has a rough phase for high enough
upon which the model is based are the natural extended dd- This is true also for other choices of the potentigse
fects of an unreconstructed surface, i.e., steps and terrace3ec. VII Q. Moreover, if we do not include in the Hamil-
This starting point is, in our opinion, physically more trans- tonian thet,, term, the rough phase does not survive when

In(P,(r))

»

>4

In(P(r))

IX. SUMMARY AND CONCLUSIONS
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one turns on a/"1>0 (see Sec. VIIB. Thus, the opposite steps can be calculated in a quite straightforward way. The
step crossing term isrucial in order to obtain a model de- main one, never studied so far, which we have considered, is
scribing, at least at a coarse grained level, a physical surfacthe terrace size distribution. Here we find simply an expo-
(3) The relative values of the interactions and of the coshentially decreasing probability for increasing size. This re-
per unit length of a step decide whether a surface has a stabillt should be amenable to experimental testing, for example
DOF phase for a certain range Bf The temperature trajec- by STM; (v) in view of the additional simplicity of step
tory crosses the DOF region only if the cost of a séapis ~ models, it should be feasible, in the future, to study the role

sufficiently small as compared M\l (see Fig. 8 Given the of long-range interactions, a problem without hope of solu-

fact that dg is typically the largest “diagonal” energy, this tion within RSOS models.
implies that a physical temperature trajectory will often be in

a region where only roughening occurs.
In conclusion, we have found thé) a model based on
steps can describe prerougheni®R), as well as roughen-
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