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Effective-mass wave-matching theory for a two-band Wannier system
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In this paper, the effective-mass wave-matching theory for the interface of single tridiagonal band systems
is extended to a two-band Wannier system. Within the context of the effective-mass wave-matching theory, the
four independent coupling parameters of the two coupled tridiagonal bands system are reduced to a single
parameter. The impact of this coupling parameter and also of the transverse energy upon the transmission of
electrons in resonant tunneling diodes in such systems is demonstrated for the case where the two-band model
represents th& and X valleys of the conduction band. A multiband density of states is derived to facilitate the
location in space and energy of both the resonant tunneling’aidesonances and antiresonances. To qualify
the application of this two-band model to real systems, we compare simulation results obtained with the
effective-mass wave-matching theory and a single full-band model, which accounts for long-range interactions.
A reasonable agreement on a wide range of incident energies is demonstrated for a G#es-Als resonant
tunneling diodgRTD) using a noneffective-mass correction and a coupling factor of 0.999. An improved fit is
further obtained by relaxing the backward interband coupling to zero. The two-band model and the interface
wave-matching procedure developed provides a simple yet realistic approach to account for both noneffective-
mass effects and the coupling between thand X or L valleys in the calculation of the transmission and
reflection coefficients of RTD devices. Finally, the impact of interface roughness scattering in the presence of
I'-X coupling is studied and both the destruction and creation of antiresonant structures are observed.
[S0163-182608)04744-4

[. INTRODUCTION In this paper, we focus on the development of an interface
theory for a system consisting of two tridiagonal Wannier
Resonant tunneling diodéRTD’s) have attracted consid- bands. Since Wannier bands are used, the bands must be
erable modeling effortésee Refs. 1 and 2 for an overview decoupled away from the interfaces in the flat band regions.
due to their potential applications in high-speed devicesAt the interfaces, the wave matching introduces a coupling
such as oscillators, amplifiers, harmonic multipliers, andbetween the two-bands, and the effective-mass wave-
logic elements~® One of the challenges in the modeling the matching theory is extended in Sec. Il for this purpose. We
resonant tunneling diodes arises from the fact that resonatiten demonstrate an application of this model where the two
tunneling can take place at very large energies inside thbands represent tHé and X valleys of the conduction band.
conduction band or deep in the forbidden band in the barriA general current definition for coupled multiband system
ers; tunneling is therefore strongly dependent on the fulwill be introduced to calculate the transmitted current in ar-
band-structure of the semiconductors involved. The need tbitrary heterostructures. Note that simple tridiagonal bands
use full-band structures to perform realistic simulations ofare used. Therefore, in the flat band region of the contacts the
these devices, has therefore been recognized and several futands feature a simple cosine dispersion versus the wave
band RTD models have been reportetf However, besides vector that will be fitted to the effective mass for small wave
their added complexity, these full-band models also suffevectors. An efficient noneffective-mass correction will also
from some limitations. For example the nearest-neighbobe introduced in Sec. V. A multiband density of states theory
tight-binding model&*3that rely on nearest-neighbor matrix will be introduced in Sec. IV to analyze the impact of the
elements, fit well with the valence band but do not accuratelynterface coupling on the electron system. To qualify the
represent the conduction baHti’®compared to the pseudo- effective-mass wave-matching theory presented, in Sec. V
potential approac~'" In addition, the accuracy of the we will compare this model with a single full band Wannier
Hamiltonian used for the interface in the tight-binding model accounting for long-range interactions. In regards to
approaché®1? and the long-range generalized Wannierour above discussion on the interface Hamiltonian, we will
picture ¥~ must also be verifiedAb initio local-density  limit this comparison to GaAs-AkGa, /As RTD’s that are
calculation$’ on short- and long-period AlAs/GaAs superlat- made up of very similar semiconductors {AGa,-As and
tices have been used for this purpose, but no such calcul&aAs for which a reasonable approximate full band inter-
tions are yet available for resonant tunneling diodes. face Hamiltonian can be inferred. Finally, we will consider
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in Sec. VI the impact of interface roughness scattering on théhe Hamiltonian consists of several uncoupled tridiagonal
resonances and antiresonances in a test RTD. Wannier bands. At a sita the local band structure of the
bandb is therefore of the form

II. MULTITRIDIAGONAL WANNIER PICTURE

The general Hamiltonian of a multiband tridiagonal sys- 72
tem is = _ M+
E(b.k.n) =Eq(b.n) V() ~ 5z s [1= cotka)]
Ng n+1 n hzki 2
> > H(b,b'n,n’ .k )f(b’,nEKk,) 2mg, (n)’ @
b’=1n"=n-1
:Ef(bynyEikl)y

wherem (n) andmy, (n) are the longitudinal and transverse
whereb is the band indexn the Wannier lattice siteE the  effective masses at site k, the longitudinal wave vector,
total energy,k, the transverse wave vector, affl) the V(n) the electrostatic potential, ari,(b,n) the bottom of
Wannier envelope functiolf. This model represents there- the bandb. Note that(—) in () is used when the minimum
fore a system oNjg tridiagonal Wannier bands and envelopeis atl” and(+) at X. A noneffective-mass correction to this
functions, which are coupled inside the heterostructuregnodel, which can also handle nonspheriXalalleys, will be
However, the coupling of the various bands must vanish irpresented in Sec. V.
the flat band regions of the left and right contact as it is to be
expected for a Wannier band model. As any Hamiltonian,
Hermiticity must be enforced and this implies that we have Ill. EFFECTIVE-MASS WAVE MATCHING

FOR TWO-BAND WANNIER SYSTEM

In this section, we study the extension of the effective-
mass matching technique developed by Kroemer and’zhu
to a system of two coupled Wannier bar{dsand 2 at the
junction of materialsA and B. Coupling between the two
The multiband electron currenlty(n) through the hetero- bands is assumed to take place at the heterointerface.
structures igsee the Appendix We introduce the following simplified notation for the
matrix elements associated with the tridiagonal band of Eq.

(2):

H(b,b",n,n" ,k, )=H*(b’',b,n",n,k,).

JT(n)=% > [i(b,b’,n,n+1)+j(b’,b,n—1n)],
° Ap=H(b,b,ns,np+1)=H(b,b,ny,np—1)

ﬁZ

wherej(b’,b,n’,n) is the elemental current =F 5o
2a°mjy p

j(b",b,n",n)=Im[H(b’,b,n",n,k, ) f*(b’,n",E,k,)
x f(b,n,E k,)]. (2)

Bb:H(b,b,nB,nB+ l):H(b,b,nB,nB_l)

ﬁZ
N 2a’mg &
In the Appendix, it is demonstrated that the Hermiticity of
the Hamiltonian leads to current conservation throughout the
heterostructure. This demonstrates the validity of the pro- h?
posed current definition since the later definition relaxes to Hap,b(N)=H(b,b,nae.Nae K )= prc—
the conventional current definition in the contacts where the A/B,b
bands are decouple@o interband curreint The conserva- ﬁZkf
tion of the current is also verified in the simulator developed. +Ec ap(b)—eV(n) + s———,
Finally, this current definition permits us to define a trans- A/B,bL

mission coefficient from bandto bandj as the transmitted

current in bang in the right contact divided by the incident

current in the band in the left contact. For th&-valley or  wherenyg is a site in materialA/B, myg, the effective

X-valley example selected in this paper we will only considermass in the bant of materialA/B, andE, /g the bottom of

the case where the incident electrons are injected inf'the the bando in material A/B.

valley. Consider the Hamiltonian shown below for a two-band
We shall assume that in the flat-band contacts as well asystem at an interface between materialsnd B located

in each semiconductor region away from a material interfacebetween siten andn+1:
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] | n
A1 Ha1 Aq |
A1 Hai Cp | Ciz  Cyy
Ca1 Hg1 B | Cas Coy
Bi Hg:i B |
' |
H=| - - - - - - - — 4+ - - - - - - - -
|
| Az Haz A
Cs1 Ca2 | Az Haz Cgy
Car Cau | Css Hg2 B
| B, Hg2 B>
| . )

The Wannier equations at the interface are therefore given by — B, f5(1,n) + Cyif a(1,0) + Coaf a(2,0) + Couf g(2,n+ 1)
=0,
Arfa(In=1)+[Ha2(n) = EJfa(1,n) +Cyofg(1,n+1)

+Casfa(2) + Crafe(20+1)=0, — AgfA(2n+1)+ Caf g(2n+1)+ Carfg(1n+1)

+Csifa(1,n)=0,
Bifg(1n+2)+[Hg(n+1)—E]fg(1n+1)+ Cyifa(1n)

+Coafa(2n)+Corifs(2n+1)=0,
23 A(2) + Cauf e ) —B,fg(2n) + Cyaf a(2,0) + Cuof g(1n+1) + Caaf a(10)

=0.

(4)

Afa(2n—1)+[Hpn)—E]fa(2,n)+Csyfg(2n+1)
+Cafg(1,n+1)+ Csifa(1n)=0,

Let us evaluatd 5(1,m) andf,(2,m) for n+1,

C:12 C13
B,fg(2n+2)+[Hgo(n+1)—E]fg(2,n+ 1)+ Cysf a(2,0) fa(ln+1)= A, fg(Ln+1)+ AL fa(2)n)

+Cyfg(An+1)+Cyyfa(1,n)=0, C
N _ _ + -2 fy2n+1), (5)

where theC;; coefficients are the unknown matching coeffi- A1
cients. Using the procedure introduced by Kroemer and
Zhu?! we now extend the wave functions defined in material
A or B across the material boundary. For examplg1,) c c
which is defined at siten and n—1, can be definedex- fa2n+1)= -2 fg(2n+1)+ —2 fg(1,n+1)
tended at siten+1 using Az Az

+ i—?’l fa(1n). (6)
Aifa(ln—1)+[Ha1(n)—E]fa(1n)+Afo(1n+1)=0. 2

Substituting the extended wave functions in the system opmilarly let us evaluaté A(1,m) andf,(2m) for m=n,

Eq. (4) we obtain

1
== — +
LA AL 1)+ Copfa(1n+ 1)+ Cyafa(20) fA(1,n) A [C4B1fa(1,n) = CysCosfg(2n+1)

+Cyfg(2n+1)=0, —Cu3Bofg(2n)+ Collusfe(ln+1)], (7)
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1 G CyBy
fa(2n) =+ [CxB,fg(2,n) —=Cy1Chofg(1n+1) Nzpp=F—=— , (11
A A, A
—Cy1B1fg(1n)+CyuiCosfg(2n+1)], (8
with A:CZJ_C43_ C41C23. A _%_ CZlBZ 12
The effective-mass matching theory applied to a single A, A (12

band with one Fourier coefficient states that the wave func- ’
tions of materialA and B at an interface located between First let us evaluatgA|” from Egs.(10) and(11),
[n,n+1] verifies?

C C
A=— =2 B,A; = — Z4
fa(m)=Afg(m) for m=n,n+1. Cia Cs2

Under such conditions the band is the most transparent sgSing the Hermiticity propertL;;=Cj; and the fact that the
that the transmission coefficient is maximized. To generaliz&0€fficientsA; are real, it results that

this wave-matching technique to a two-band system, we now

require the same linear dependence

B,A,.

|A]?=AA*=A,B;A,B,. (13

Note thatA;B;A,B, must be a positive numhelnspection
fa(1,m)=N\1ofg(1,m)+ N 14fg(2,m), of AlAs, AsSb, InAs, InP, and GaAs barlisreveals that
their conduction bands have a minimumIaand an extre-
mum atX so that the required condition is verified for these
_ materials and their alloys.
FA(2M) = hal5(1M) + haafp(2m), One can easily verifil/ that Eq12) can be derived from
to hold for bothm equaln andn+ 1 across the interface of EQq. (9) using the result obtained fq\|2. Therefore, only
material A andB. three equations are independent in the system of four equa-
Enforcing this linear relationship at+ 1 in Egs.(5) and(6),  tions constituted by9)—(12) and there will remain one arbi-
we must haveC,3=C3;=0. Similarly enforcing this linear trary parameter that will characterize the junction.

relationship an+1 in Egs.(7) and (8), we must haveC,, To pursue the solution of Eq$9)—(11), let us now cal-
=C,,=0. It results that we can write at siteandn+1, culate the amplitude oA in terms of theC;; coefficients,
! A= CyyCas—CarCor=Coy o224, 201 (14
fA(l,n): K [C4gBlfB(l,n)_ngBsz(Z,n)], — 2143 41237 21 A]_B]_ 41 AlBZ' ( )

It results using the Hermiticity property that we have

1
fa(2n)= 31 [~ CaB1fa(1n) = CyBsfa(20)]. _|Cd? ICu?
~AB; AB’

This establishes a relation betwel@y, and|C;,|, namely,

1

(15

C12 Cl4
fA(l,n+ l)= A_1 fB(l,n+1)+ A_l fB(2,n+ 1),

|C14?=A1B, 1 (16)

|C12|2
A1B1 |

_Cx Cas We wish to obtain a real solution for th@&; since the coef-
fa2n+1)= A, fe(ln+ 1)+ A, fe(2n+1). ficients A, are real and a phase shift is without consequence
on the current. Let us now consider two cases.

Case 1A, B4, A,, andB, are negative. Since all th
are negative, the productgA; are also positive. Now since
|C142 must be positive it results from E¢L6) that we have

Now enforcing the invariance of the; coefficient across the
interface results in the following system:

Cio CuBs
Np=7—= : ©) - 2
A1 A 0=<|Cy)*<ABy,
such that in turn we have
Ciu CoBs

R VR (10 0<|CyJ?<A;B,.
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When the coefficienf\; are all negative it is naturdbut not
necessaryto select

Ci4=—|Cud, g

c

and z
£

8

<4

o

=

L

Ci=—[Cyd. é

@

. .. c

Case 2A; andB, are negativeA, andB, are positive. 21

Since the producf;B, is negative and the produét;B; is
positive, the property thd€,, must be positive requires that 10}
we have

0 0.5 1 1.5
energy (eV)

|C12|2>A151>0- FIG. 1. Transmission coefficients versus incident energy ob-
tained using anX-valley dispersions given by(1—coska) (I'-
like). The solid line corresponds to zero couplifmgye-band modgl
a1’he dashed and dotted lines correspond to the transmission prob-
abilities in thel valley andX valley, respectively.

OnceC,, has been selecte@,, is known and the remaining

we are pursuing a solution where the coefficigdsare real
numbers such that it results from EG3) that we must have

A== JA;B1A;B,. SubstitutingA in Egs.(9) and(10) gives In Fig. 3, we have plotted the totél' plusX) transmission
then the final expression for the,; and Ca; coefficients,  cqefficient versus incident energy for various coupling coef-
which depends on the sign df ficients C,,/\A;B; taking the values of Ino coupling,

0.999, 0.995, 0.99, 0.98. For a coupling coefficient of 0.999,
the transmission coefficierftlashed-dotted lineapproaches
Ca3= = C1oVAB/A1By,  Co3=+C1aVB1AL/A1B,. the one-band transmission coefficigsolid line). Clearly,
(17 the coupling and the magnitude of the coupling coefficient

It was verified that the sign ok does not affect the ampli- Plays an important role. In Sec. V, we will use a full-band
tude of the transmission coefficient. It is natural, however, tg"del to establish the coupling strength for a specific hetero-

selectC,; to have the same sign @ andB,. junction. .
Note that in absence of band couplin@6=C,s=0), the In _F!g. 4, we haye .plotted.the. totdr plus X) transmlssmn
coupling theory forC,, and C,; reduces to the effective- coefficient versus incident kinetic energy of ban@"Lin the

mass matching theory developed by Kroemer and?Zfar ~ emitter 1=N,) Ex=E—H (b=1, b'=1, n'=N_, n
uncoupled tridiagonal Wannier bands. =N, ,k,) for various values of the transverse wave vectors

We now present some numerical results demonstratinbr In the T valley, the transverse wave vectors considered

the application of this wave-matching theory to the coupling
between thd and X valleys. The test structure is a RTD 10°
with 7 ML of GaAs spacers, 4 ML of AlAs barriers, and a
14-ML GaAs well. In this calculation, th€ to X disconti- 107
nuities are taken to be 0.48 and0.92 eV for GaAs and
AlAs, respectively. We have plotted in Fig. 1 the transmis-
sion coefficients obtained using &kvalley dispersion given
by A(1—coska) (I' like) and in Fig. 2, the transmission co-
efficients obtained using aX-valley dispersion given by
A(1+coska) (X like). A coupling coefficientC,,/\A1B;
=0.99 is used in Fig. 1. A coupling coefficie@;,/VA,B;
=(0.99) ! is used in Fig. 2.

The solid line corresponds to zero coupling, or equiva-
lently a one-band model. Regular resonant-tunneling trans-
mission peaks are observed to occur around 0.2 and 0.75 eV.

The dashed and dotted lines correspond to the transmissior s L .
0 05 1 1.5

_.
oI
b
T

transmission probability (unitless)
=

probabilities in thel” valley andX valley, respectively. No- ' energy (V)
tice that there are two main features in Figs. 1 and 2 that
deviate from the uncoupled resulsolid line). The FIG. 2. Transmission coefficients versus incident energy ob-

resonance/antiresonance around 0.3 eV is due to couplingined using anX-valley dispersions given by(1+ coska) (X-
through theX valley of AlAs. The resonance/antiresonance|ike). The solid line corresponds to zero couplifome-band mode!

just below 0.5 eV is due to coupling to thevalley of GaAs.  The dashed and dotted lines correspond to the transmission prob-
We will verify this assertion in the next section. abilities in thel valley andX valley, respectively.



transmission probability (unitless)

0 05 1
energy {eV)
FIG. 3. Total(I" plus X) transmission coefficient versus incident
energy for various coupling coefficient taking the values dha
coupling, 0.999, 0.995, 0.99, 0.98.
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IV. MULTIBAND DENSITY OF STATES

To further analyze the simulation results obtained with the
coupling theory derived above, it is useful to introduce a
local density of stateBl(E,n) at the lattice sitan, which will
permit us to locate in both position and energy the reso-
nances and antiresonances present in that quantum structure.
In equilibrium, the local total chargp(n) is related to the
local density of state€DOS) N(E,n) according to

p(h)zf f(E)N(E,n)dE, (18
with f(E) the Fermi-Dirac function. We shall therefore de-
rive the local multiband density functiod(E,n) by calcu-
lating the local total chargpg(n) in equilibrium In general,
the charge distribution in a ballistic quantum system is ob-
tained by summing over all the individual charge distribution
associated with the electrons injected in all the bamdsit
the leftL and rightR contacts,

take the energies of 0, 0.05, 0.1, and 0.15 eV. A coupling
coefficient of 0.99 is used in all the calculations. To demon-
strate that thd” resonance takes place for approximately the
same kinetic energfx=0.21 eV, we have multiplied the
transmission coefficients by the factdis10, 100,1000t0
separate them.

The resonances associated with ¥ealley in both AlAs
and GaAs are seen to shift toward lower kinetic energies. 5
The shift originates from the effective reduction with in- PL/R(X,b'):ﬁ % 3§ f fLr(E)|¢r(k,x,b")[2dk,
creasing transverse wave vectors of theX conduction (2) Ky.L/R
band-edge discontinuity due to the much lower mass iKthe with f ;g the Fermi-Dirac distribution in the left and right
valley compared to thé" valley in both AlAs and GaAs. contacts
Clearly,_the_ resonances/antlre_sonance will not occur at thé In a multiband system the wave functiaf (k,x,b’)
same kinetic energies for various transverse wave vectors, ; . A

) . . ; can be expanded in terms of Wannier functian,n,k, )
This result will be useful when we discuss the impact of
: : . of the bandb,
interface roughness scattering on fheX resonances in Sec.

VI.

p(x)=2, [pL(X,b")+pr(x,b")],
b/

wherep| g are given by

10° , : : : sz/R(k,x,b’)=% > f(b,n,b’,kK)w(b,n,k, ,x),

-7 where we havek=(k, ,k,) with k, either the longitudinal
S wave-vector incident on the leftkk¢,) or right (k, g) flat-

band contact fory, and g, respectively. Note that the
transverse wave vectdr, is translation invariant through out
the device, unlike the contact wave vectéys /r.

Integrating the wave functiog overx in the site interval
[a(n—3),a(n+ 3)] and using the orthogonality of the Wan-
nier functions of different bands together with their approxi-
1 mate locality around a single site, we obtain the following
site average probability of presence:

py
(=]
L

—00

—--0.05 (x10)
0,10 (x100) 1
- - 0.15 (x1000)

transmission probability (unitless)
o

a(n+1/2)

1
|gum(k,n,b")?=— f | (k. x,b")[2dx
a(n—1/2)

-7 L | )
0 0.1 0.2 0.3
Kinetic energy (eV)

0.4 0.5

~ ’ 2
FIG. 4. Total(I" plus X) transmission coefficient versus the in- —Eb: |f(b,n,b ’k)| )
cident kinetic energyey of the I' band for various values of the
transverse wave vectors. In tRevalley the transverse wave vectors We can now rewrite the site average charge distribution as a
considered assume the energies of 0, 0.05, 0.1, and 0.15 eV. summation over the bands and b’ of the various wave-
coupling coefficient of 0.99 is used in all the calculations. function contributions
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p(n)=2>, % [pL(n,b,b")+pgr(n,b,b")],
b!

wherep, ,r(n,b,b") is given by

2
s I AL CIUCLLRTE
(19

It can be verified that the envelogé¢b,n,b’,k) can be re-
lated to the impulse responggb,n,b’,n’,k). For waves
f(,k.) injected in the left contactsite N, ), and for waves
f(,kg) injected in the right contadsite Ng) in bandb’, we
have, respectively,

ﬁUL/R(b,,E,kL)

f(binlblvkL/R):j a

h(b,n,b’,N_/r,E,K,)

for n=Ng or n=N_,

EFFECTIVE-MASS WAVE-MATCHING THEORY FORA. ..
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wherev | g is the velocity of the wave injected from the left
(L) or right (R) contact into the devicev( s are selected to
be positive.

The impulse responsie(b,n,b”,n” E,k,) with total en-
ergy E and transverse wave vector for an excitation at site
n” in bandb” is obtained from the following multiband tridi-
agonal equation:

Ng

> [H_(b,b’,n)h(b’,n—10",n",E,k,)

b'=1
+Ho(b,b’,n.k, )h(b’,n,b".n",E.k,)
+H, (b,b’",n)h(b",n+1b".n",E,k,)]
:Eh(b,n,n”,n”,E,kL)"_5nn//5bb//.

We can now use this identity to rewrite the charge distribu-
tion p_;r(n,b,b") of Eq. 19

2
puR(n.b.b')=WJJfk fLr(E)[f(b,n,b’ k)|*dk
x,L/R

h2v? (b JE.k))
277)3 f J fk Lt UR(E) T (b, n, b Ny k) *dk

1
~z | [ ok [ dE B o B I Ne E R
|
Due to the Hermiticity of the Hamiltonian and the associated 1 (= o
current conservation property, these impulse functions verify =" f_ dE f(E)% Dbfo dE,

the identity

a
—2Imh(b,n,b,n,E k)]

= v (b’ ke )[h(b,n,b’" N E K, )|?
b!

+UR(b’1kX,R)|h(b!n!b,!NR!EikL)|2!

with Kk, . obtained fromE=E(b,ky g/ .k, ,Nr). The
equilibrium charge distribution is obtained fof, (E)

=fr(E)=1(E),

p(n)=>, [; pL<n,b,b'>+pR<n,b,b'>}
b/

2

__Zy %gffdklj_:dEf(E)

a’p

XIm[h(b,n,b,n,E k)]

X Im[h(b,n,b,n,E,E, )],

where we used the cylindrical symmetry to introduge
=#hk?/(2m¥) verifying DydE, =[2/(27)?]dk, with Dy
=m*, /A% the two-dimensional electron gas density of
states in the band.

Using Eq.(18), which relates the local chargdn) to the
local density of state, we identify the local density of states
N(E,n) as

N(E,n)=J:N(E,EL,n)dEL,

with N(E,E, ,n) the partial density of states in the channel
E, given by

1
N(EE, n)=-_— % Dy, Im[h(b,n,b,n,E,E,)].
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G-valley DOS for two band RTD X-valley DOS for two band RTD

-
T

energy (eV)
energy (eV)

5 10 15 20 25 30 35 5 10 15 20 25 30 35
position (sites) position (sites)

FIG. 5. I'-valley density of states is plotted versus longitudinal  FIG. 6. X-valley density of states is plotted versus longitudinal

energy and position for a zero transverse wave vector. The RTRnergy and position for a zero transverse wave vector. The RTD
structure and th dispersion of Fig. 2 are used. structure and th& dispersion of Fig. 2 are used.

We will find more interesting to inspe®(E,E, ,n) rather ~ The X density of states features also an additional resonance
thanN(E) as we found in the heterostructure considered injust above the GaAs well and spacers.
Sec. Ill that the energy resonances and antiresonances canThe multibandl” and X density of states permit therefore
vary rapidly with the perpendicular energy . to identify both the band and spatial origin of the resonance
For the case of a heterostructure consisting of a single flsaand antiresonance resulting from the coupling of trend X
band?? the impulse responde(n,n’,E,E, ) is easily evalu- valleys.
ated to beh(n,n’,E,E,)=—jalfiv(k,), with k, obtained
from E=E(b=1ky k. ,n). Therefore, we have V. COMPARISON WITH A FULL-BAND MODEL
Having introduced the two-band model and extended the
effective-mass matching to such systems we shall now com-
N(EE, )= D, 1 pare this simple two tridiagonal Wannier band system to a
T hu(ky) single full Wannier band model.
The single full Wannier band model used here is an im-
We have verified that our simulator numerically reproduced’roved version of the simulator reported in Ref. 7. This im-
this analytic result. proved §|mulgtor, which can now handle heterostructures of
The multiband density of states formula derived above!Seful size will be reported elsewhéfe. o
will help us now to establish the location and therefore the Along the(100 direction the band structure is written
origin of the resonance and antiresonance in the RTD. For
the purpose of this identification we will plot separately the
impulse response Ifh(b,n,b,n,E,E, )] of each bandvalleys Ny
b <

k.a
E(0=E(ke ki) = 3, Hy(k,)c0 i

> ) (20)

In Fig. 5, theI-valley density of states is plotted versus
longitudinal energy and position for a zero transverse wave
vector. In Fig. 6, theX-valley density of states is plotted with Nyy the number of Fourier harmonics used.
versus longitudinal energy and position for a zero transverse The GaAs, AlAs, and AJ:Ga ;As band structures along
wave vector. Notice that the density of states is zero belovthe (100 direction used in our comparison are shown in Fig.
the X-valley minimum. Only the density of states contribut- 7 for k, =0. Ten Fourier coefficientsl,(0) (N=10) are
ing to the current are shown. The same test RTD structure assed in our test to fit the bands. These Wannier bands GaAs
in Sec. lll is used. and AlAs bands are obtained from a least-square fit of band-

Science and art intersect in tliedensity of states, which structure data obtained using a pseudopotential calcultion.
has the appearance of a humanoid face. Notice the resondmtr the GaAs conduction band we added a small correction
ground statgno node revealed as the bottom-high density to bring theX valley 0.4 eV above thé" valley (its initial
structuresmouth at about 0.2 eV and the first excited state value was 0.318 e\ The Al, :Ga, /As band is obtained us-
(one nodeg as the two-top structureeyes at about 0.75 eV. ing a linear weighted average of the GaAs and AlAs bands.
One also notices a structure located midwagse at about Care was placed in the least-square fit of the band data to
0.3 eV corresponding to the coupling betweenlkhelley of  obtain a very smootX valley by fitting both the band struc-
the GaAs well and theX valley of the AlAs barrier as is ture and its second-order derivatives while maintaining ex-
clearly revealed by th& density of states shown in Fig. 6. actly the mass and band discontinuities atlfhendX points.
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Band Structures of GaAlAs Alloy, AlAs, GaAs: Isq fit 1
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FIG. 8. I" and X transmission coefficients versus incident ener-
gies obtained with the full-single band mod&olid line), the
effective-mass matching theorgdotted ling, and the modified
effective-mass matching theofglashed-dotted line

FIG. 7. Band-structures of AkGa, -As (solid line), GaAs(dot-
ted), and AlAs (dashed-dotted linpeplotted versus the normalized
longitudinal wave vectork, /(27/a)] along the(100 direction for
k, =0.

To account in the coupled-band model for the noneffechoneffective-mass correction, which as we shall see permits
tive mass in both th& andX valleys of the bands shown in the resonances and antiresonances in the coupled-band
Fig. 7 we use an energy- and position-dependent coefficierffiodel to occur at energies similar to those of the full-band
A(b,n,E) in each of the tridiagonal band of dispersion ~model.

E(k,)=A(b,n,E)[1F coska/2)]. For energies for which The interface matrix elements in the full-band model are
the wave is propagating in the valleywave vectork,(b,n) selectgd using an ariphmetic aver&@é:onsideringl the limit
with a zero imaginary pajtA(b,n,E) is selected to be of this approximation, we will only consider here

GaAs-Al G ;As RTD’s, which are made up of very simi-
lar semiconductor§GaAs and A} :Ga, ;As) for which this
E—E,,(n)—eV(n) interfac_e Hamiltonian is a reasonable appro?(imation. _
— : b 7 (21 In Fig. 8, we compare th& and X transmission coeffi-
15 cogRe ke(b,n)Ja/2] cients versus incident energies obtained with the full-single

For energies for which the wave is damped in the vatley band modelsolid line), the effective-mass matching theory
[Wa\/e vector kx(b,n) with a nonzero imaginary pdrt (dOtted I|né. The test structure is a RTD with 7 ML of GaAs

A(b,n,E)=

A(b,n,E) is selected to be spacers, 8 ML of AJGa ;As barriers, and a 8-ML GaAs
well.
I'-X resonances are observed to take place for approxi-
E—E.,(n)—eV(n) mately the same energ_ies_. Some departures are observed,
A(b,n,E)= : (22 however, for the transmission to thevalley above 0.5 eV

1—cosHIm[k(b,n)]a/2}’ and the transmission to tHe valley above 0.8 eV. An im-

Note that the same expression is used for bothIthend ~ Proved model is achieved by resetting the backward coupling
X-damped waves. This originates from the fact that the reafOefficients to zeroa;=Cs,=0) leaving all the other co-
part of complex wave vectdy, is equal torr in the X valley efficients unchanged. The resultihgand X transmission co-
and 0 in thel valley. In both Eqs(21) and(22), k,(b,n) is  efficients(dashed-dotted lingsare now in better agreement

the I and X wave vector associated with the solution of &t high energies. . '
A more detailed comparison of the resonances/

antiresonances is shown in Fig. 9. Clearly the modified
_ _ coupled-band model and the full-band model exhibits the
E=E(kyky)—eVn), 23 same type of resonances indicating that the modified
where E(k, ,k,) is the full-band structure, either GaAs or coupled-band model implements correctly the physical pro-
AlAs corresponding to the material at the lattice sitSince  cesses of thé'- and X-valley coupling.
we use 10 cosine harmonics in the full-band model to pre- The improved fit points toward the limit of applicability
sents the GaAs, AlAs, and MGa, -As band structures, the of the effective-mass matching theory. However, as was
solution of Eq.(23) using analytical continuation leads to 20 pointed out by Kroemer and Zfufor the single-band
complex numbers for the wave vector. Care was thereforgodel, departures from the ideal effect case of the effective-
placed in developing an algorithm automatically sortingmass matching theory are to be expected and the effective-
these roots to identify thE andX roots for use in Eqs(21) mass matching theory provides a reference to measure them.
and(22) (the other roots are evanescent waves with very fast Note that the same couplingyA;B1/C,,=0.999) was
decays. This energy-dependent effective mass implements ased in both casdglotted and dashed-dotted line$his is a
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FIG. 9. Details of thel' and X transmission coefficients for FIG. 10. TOtal(F plUS X) transmission coefficients versus inci-

incident energies around tfie X resonance/antiresonance obtained dent energies obtained with the one-band madetted ling the
using the full-single band modeolid ling), and the modified two-band model without interface roughndgashed ling and the

effective-mass matching theofgashed-dotted line two-band model with interface roughnegsain line).

relatively weak coupling since the single-band interfaceantiresonance observed at 0.3 and 0.5 eV in the two-band
theory is recovered fok/A;B;/Cy,=1. Note also that the Model(dashed lingseems to have been suppressed by inter-
X-valley dispersionsA(1+coska) (X-like) was used since face roughness scatteriglain line). In fact they have con-

the band structures used héwe F|g 7feature a minimum tributed to the inCI’.ease of the tl’ansmission coefficients in
at X. The same coupling parameters were verified to providéhat range of energies. Note that the interface roughness scat-

an excellent fit as well for other GaAs-AlGa, /As struc-  tering process while being an elastic process does deflect the
tures of different barrier and well widths. trajectory of the incident electrons and can therefore convert

the longitudinal energy of the electron into transverse wave-
vector energy?* We have seen in Sec. lll that the location of
VI. IMPACT OF INTERFACE ROUGHNESS the I'-X resonance/antiresonance varied rapidly with the
' : transverse wave vector. The origindl-X resonances/
In real RTD’s, the interfaces are not perfectly sharp but” <’ :
P y P antiresonances of the two-band mo¢dshed lingcould be

feature instead terraces typically of 1 ML thick and of vari- - .
ous widths. This introduces a random fluctuation of theConsidered to have been effectively suppressed by the en-

thickness of the barrier and well of the RTD. We demon_semble averaging effect of the interface roughness scattering
strate here the impact of interface roughness by calculatinBrO:eSS_' . ff s th f X
the ensemble average transmission coefficient following the AN Interesting effect is the appearance o

procedure described in Refs. 23 and 24. In that proceduréesonance/antiresonance structure around 0.15 eV. This fine

interface roughness is treated as a virtual phase-breakir%rucwre was verified to survive to two sequential scattgring
scattering process and each scattering event is assumed tofJ@ceSses. Thé'-X resonance/antiresonance clearly arises
uncorrelated. For this purpose the self energy associated wiffl?™ the resonant coupling of thé incident wave with the
the scattering process is added to bothErend X Hamilto- X—;cattered waves generatgd via the interface roughness scat-
nians. Current is verified to be conserved. Each scattere&?:’”ng process. The scattering process plays then the role of
wave is calculated using the multiband impulse response dél€ coupling coefficient. Again the occurrence of theX
veloped in Sec. IV. The scattered waves are therefore alsgSonance at lower energies is made possible by the effective
submitted to the interface coupling theory developed in thidoWering of theI'-X conduction-band-edge discontinuities
paper. for the Ia_rge_ transverse wave vectors qf the scattered waves
In Fig. 10 we compare the totdl plus X) transmission involved in interface roughness scattering.
coefficients versus incident energies obtained with the one-
band modeldotted ling the two-band model without inter-
face roughnesgdashed ling and the two-band model with VIl CONCLUSION
interface roughnedglain line). The test RTD structure is the We have presented in this paper the extension of the
same as in Sec. lll. effective-mass wave-matching theory developed by Kroemer
Interface roughness is seen to strongly impact the transand Zhi#! to a two-tridiagonal-bands Wannier system. The
mission coefficient. First the two normal resonant tunnelingfour independent coupling parameters of the two coupled
peaks at 0.3 and 0.75 eV exhibited by the one-band modétidiagonal bands system were found to reduce to a single
(dotted ling are seen to have been shifted to lower energieparameter. The impact of this coupling parameter upon the
due to the self energy associated with theX coupling transmission of electron in resonant tunneling diodes was
(dashed lingand even more so by interface roughness scatstudied for the case where this two-band system is applied to
tering (plain ling). In addition, the I'-X resonance/ the modeling of thd” and X valleys of a conduction band.
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A general multiband density of states was derived to fa- ) )
cilitate the location in space and energy of both the resonarftR—R*)=2 {Im[H(b,b’,n,n—1)f*(b,n)f(b’,n—1)]

tunneling resonances and the antiresonances. A general defi- b
nition of current in a multiband system was also established +Im[H(b,b",n,n)f*(b,n)f(b’,n)]
to calculate the transmitted coefficients.
The application of this interface theory to a realistic situ- +Im[H(b,b’,n,n+1)f*(b,n)f(b’,n+1)]}=0.

ation was investigated by comparing simulation results obt et us now introduce the elemental current

tained with the two tridiagonal-band interface theory and a

single full-band model, which accounts for long-range inter- ;(p ' n n')=— a Im[H(b,b’,n,n")f*(b,n)f(b’,n")].

actions. A reasonable agreement was demonstrated for h

GaAs-Ab Ga 7As resonant tunneling diod¢RTD’s) using  These elemental currents verify the conservation property,

a noneffective-mass correction and a coupling factor of

0.999. An improved fit was further obtained by relaxing the - %' [i(b,b",n,n—1)+](b,b’,n,n)+j(b,b’,n,n+1)].

backward interband coupling to zero. The modified coupling b’

theory still only depends on a single-coupling parameter. (A1)
The resulting interface wave-matching model developedrne current definition is now identified to be

provides a simple yet realistic approach to account for both

noneffective-mass effects and the coupling betweenIthe Jr(n)=J_(n=1n)+J,(n,n+1),
and X or L valleys in the calculation of the transmission and
reflection coefficients of RTD devices. The simplicity of the J+(n,n+1)=z E j(b,b",n,n+1),
model makes also possible the study of the impact of mul- b b’
tiple sequential scattering processes such as interface rough-
ness scattering upon such multiband systems. The two-band J_(n—1n)=2> > j(b’,b,n—1n).
Wannier model and the interface theory could also be poten- b b
tially applied to other material or band systems. Let us now prove the current conservation. First, we note
that we have
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APPENDIX: MULTIBAND CURRENT DEFINITION > > jb,b’,n,n—1)+j(b,b’,n,n)+j(b,b",n,n+1)
AND CONSERVATION Y

In this appendix we establish a multiband definition of =0. (A2)
current and demonstrate its conservation. This is done belowhijs reduces to
for a general tridiagonal system. Consider the equation sat-

isfied by the envelope function of the bahd > b’ ,b,n—1n)=> > j(b,b’,n,n+1).
b o b b
Z [H(b,b",n,n=1)f(b",n=1)+H(b,b",n,n)f(b’,n) Now using the Hermiticity of the Hamiltonian, the elemental
b currents one easily verifies the identity(b’,b,n’,n)
+H(b,b’,n,n+1)f(b’,n)]=Ef(b,n). =—j(b,b’,n,n"). It results in the following identity
Multiplying this equation byf* (b,n), we obtain the new ; , _
quantity R % bz j(b,b%,n,m)=0.

Equation(A2) reduces then to
R=2, [H(b,b’,n,n—1)f*(b,n)f(b’,n—1)
i S S ik bn-1m=3 3 j(b,b’,n,n+1),
+H(b,b",n,n)f*(b,n)f(b’,n)+H(b,b’,n,n by b
* ' _ 2 which demonstrates the current conservation throughout the
1 (b,mf(b",n+1)]=Elf(b,m)[" heterostructures. Note finally that this definition of current
Using the HermiticityH(b,b’,n,n")=H(b’,b,n’,n)* we reduces to the conventional definition of current in a Wan-

derive nier band in the contacts where the bands are decoupled.
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