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Effective-mass wave-matching theory for a two-band Wannier system
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In this paper, the effective-mass wave-matching theory for the interface of single tridiagonal band systems
is extended to a two-band Wannier system. Within the context of the effective-mass wave-matching theory, the
four independent coupling parameters of the two coupled tridiagonal bands system are reduced to a single
parameter. The impact of this coupling parameter and also of the transverse energy upon the transmission of
electrons in resonant tunneling diodes in such systems is demonstrated for the case where the two-band model
represents theG andX valleys of the conduction band. A multiband density of states is derived to facilitate the
location in space and energy of both the resonant tunneling andG-X resonances and antiresonances. To qualify
the application of this two-band model to real systems, we compare simulation results obtained with the
effective-mass wave-matching theory and a single full-band model, which accounts for long-range interactions.
A reasonable agreement on a wide range of incident energies is demonstrated for a GaAs-Al0.3Ga0.7As resonant
tunneling diode~RTD! using a noneffective-mass correction and a coupling factor of 0.999. An improved fit is
further obtained by relaxing the backward interband coupling to zero. The two-band model and the interface
wave-matching procedure developed provides a simple yet realistic approach to account for both noneffective-
mass effects and the coupling between theG and X or L valleys in the calculation of the transmission and
reflection coefficients of RTD devices. Finally, the impact of interface roughness scattering in the presence of
G-X coupling is studied and both the destruction and creation of antiresonant structures are observed.
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I. INTRODUCTION

Resonant tunneling diodes~RTD’s! have attracted consid
erable modeling efforts~see Refs. 1 and 2 for an overview!
due to their potential applications in high-speed devic
such as oscillators, amplifiers, harmonic multipliers, a
logic elements.3–5 One of the challenges in the modeling th
resonant tunneling diodes arises from the fact that reso
tunneling can take place at very large energies inside
conduction band or deep in the forbidden band in the ba
ers; tunneling is therefore strongly dependent on the
band-structure of the semiconductors involved. The nee
use full-band structures to perform realistic simulations
these devices, has therefore been recognized and severa
band RTD models have been reported.6–11 However, besides
their added complexity, these full-band models also su
from some limitations. For example the nearest-neigh
tight-binding models8–13 that rely on nearest-neighbor matr
elements, fit well with the valence band but do not accura
represent the conduction band,14–15compared to the pseudo
potential approach.16–17 In addition, the accuracy of the
Hamiltonian used for the interface in the tight-bindin
approaches10–12 and the long-range generalized Wann
picture7,18–20 must also be verified.Ab initio local-density
calculations17 on short- and long-period AlAs/GaAs superla
tices have been used for this purpose, but no such calc
tions are yet available for resonant tunneling diodes.
PRB 580163-1829/98/58~19!/13103~12!/$15.00
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In this paper, we focus on the development of an interfa
theory for a system consisting of two tridiagonal Wann
bands. Since Wannier bands are used, the bands mus
decoupled away from the interfaces in the flat band regio
At the interfaces, the wave matching introduces a coupl
between the two-bands, and the effective-mass wa
matching theory is extended in Sec. II for this purpose. W
then demonstrate an application of this model where the
bands represent theG andX valleys of the conduction band
A general current definition for coupled multiband syste
will be introduced to calculate the transmitted current in
bitrary heterostructures. Note that simple tridiagonal ba
are used. Therefore, in the flat band region of the contacts
bands feature a simple cosine dispersion versus the w
vector that will be fitted to the effective mass for small wa
vectors. An efficient noneffective-mass correction will al
be introduced in Sec. V. A multiband density of states the
will be introduced in Sec. IV to analyze the impact of th
interface coupling on the electron system. To qualify t
effective-mass wave-matching theory presented, in Sec
we will compare this model with a single full band Wanni
model accounting for long-range interactions. In regards
our above discussion on the interface Hamiltonian, we w
limit this comparison to GaAs-Al0.3Ga0.7As RTD’s that are
made up of very similar semiconductors (Al0.3Ga0.7As and
GaAs! for which a reasonable approximate full band inte
face Hamiltonian can be inferred. Finally, we will consid
13 103 ©1998 The American Physical Society
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in Sec. VI the impact of interface roughness scattering on
resonances and antiresonances in a test RTD.

II. MULTITRIDIAGONAL WANNIER PICTURE

The general Hamiltonian of a multiband tridiagonal sy
tem is

(
b851

NB

(
n85n21

n11

H~b,b8n,n8,k'! f ~b8,n,E,k'!

5E f~b,n,E,k'!,

whereb is the band index,n the Wannier lattice site,E the
total energy,k' the transverse wave vector, andf ( ) the
Wannier envelope function.19 This model represents there
fore a system ofNB tridiagonal Wannier bands and envelo
functions, which are coupled inside the heterostructu
However, the coupling of the various bands must vanish
the flat band regions of the left and right contact as it is to
expected for a Wannier band model. As any Hamiltoni
Hermiticity must be enforced and this implies that we ha

H~b,b8,n,n8,k'!5H* ~b8,b,n8,n,k'!.

The multiband electron currentJT(n) through the hetero-
structures is~see the Appendix!

JT~n!5(
b

(
b8

@ j ~b,b8,n,n11!1 j ~b8,b,n21,n!#,

where j (b8,b,n8,n) is the elemental current

j ~b8,b,n8,n!5Im@H~b8,b,n8,n,k'! f * ~b8,n8,E,k'!

3 f ~b,n,E,k'!#. ~1!

In the Appendix, it is demonstrated that the Hermiticity
the Hamiltonian leads to current conservation throughout
heterostructure. This demonstrates the validity of the p
posed current definition since the later definition relaxes
the conventional current definition in the contacts where
bands are decoupled~no interband current!. The conserva-
tion of the current is also verified in the simulator develop
Finally, this current definition permits us to define a tran
mission coefficient from bandi to bandj as the transmitted
current in bandj in the right contact divided by the inciden
current in the bandi in the left contact. For theG-valley or
X-valley example selected in this paper we will only consid
the case where the incident electrons are injected in thG
valley.

We shall assume that in the flat-band contacts as we
in each semiconductor region away from a material interfa
e

-

s.
n
e
,

e
-
o
e

.
-

r

as
e,

the Hamiltonian consists of several uncoupled tridiago
Wannier bands. At a siten the local band structure of th
bandb is therefore of the form

E~b,k,n!5Ec~b,n!2eV~n!2
\2

2a2mb* ~n!
@16cos~kxa!#

1
\2k'

2

2mb'
* ~n!

, ~2!

wheremb* (n) andmb'
* (n) are the longitudinal and transvers

effective masses at siten, kx the longitudinal wave vector
V(n) the electrostatic potential, andEc(b,n) the bottom of
the bandb. Note that~2! in ~6! is used when the minimum
is at G and ~1! at X. A noneffective-mass correction to thi
model, which can also handle nonsphericalX valleys, will be
presented in Sec. V.

III. EFFECTIVE-MASS WAVE MATCHING
FOR TWO-BAND WANNIER SYSTEM

In this section, we study the extension of the effectiv
mass matching technique developed by Kroemer and Zh21

to a system of two coupled Wannier bands~1 and 2! at the
junction of materialsA and B. Coupling between the two
bands is assumed to take place at the heterointerface.

We introduce the following simplified notation for th
matrix elements associated with the tridiagonal band of
~2!:

Ab5H~b,b,nA ,nA11!5H~b,b,nA ,nA21!

57
\2

2a2mA,b*
,

Bb5H~b,b,nB ,nB11!5H~b,b,nB ,nB21!

57
\2

2a2mB,b*
, ~3!

HA/B,b~n!5H~b,b,nA/B ,nA/B ,k'!5
\2

a2mA/B,b*

1Ec,A/B~b!2eV~n!1
\2k'

2

2mA/B,b'
*

,

where nA/B is a site in materialA/B, mA/B,b the effective
mass in the bandb of materialA/B, andEc,A/B the bottom of
the bandb in materialA/B.

Consider the Hamiltonian shown below for a two-ba
system at an interface between materialsA and B located
between siten andn11:
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H5

l

� � � u

A1 HA,1 A1 u

A1 HA,1 C12 u C13 C14

C21 HB,1 B1 u C23 C24

B1 HB,1 B1 u

� � � u

2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2

u � � �

u A2 HA,2 A2

C31 C32 u A2 HA,2 C34

C41 C42 u C43 HB,2 B2

u B2 HB,2 B2

u � � �

m

n

fi-
n

ria

o

The Wannier equations at the interface are therefore give

A1f A~1,n21!1@HA,1~n!2E# f A~1,n!1C12f B~1,n11!

1C13f A~2,n!1C14f B~2,n11!50,

B1f B~1,n12!1@HB,1~n11!2E# f B~1,n11!1C21f A~1,n!

1C23f A~2,n!1C24f B~2,n11!50,
~4!

A2f A~2,n21!1@HA,2~n!2E# f A~2,n!1C34f B~2,n11!

1C32f B~1,n11!1C31f A~1,n!50,

B2f B~2,n12!1@HB,2~n11!2E# f B~2,n11!1C43f A~2,n!

1C42f B~1,n11!1C41f A~1,n!50,

where theCi j coefficients are the unknown matching coef
cients. Using the procedure introduced by Kroemer a
Zhu21 we now extend the wave functions defined in mate
A or B across the material boundary. For example,f A(1,)
which is defined at siten and n21, can be defined~ex-
tended! at siten11 using

A1f A~1,n21!1@HA,1~n!2E# f A~1,n!1A1f A~1,n11!50.

Substituting the extended wave functions in the system
Eq. ~4! we obtain

2A1f A~1,n11!1C12f B~1,n11!1C13f A~2,n!

1C14f B~2,n11!50,
by

d
l

f

2B1f B~1,n!1C21f A~1,n!1C23f A~2,n!1C24f B~2,n11!

50,

2A2f A~2,n11!1C34f B~2,n11!1C32f B~1,n11!

1C31f A~1,n!50,

2B2f B~2,n!1C43f A~2,n!1C42f B~1,n11!1C41f A~1,n!

50.

Let us evaluatef A(1,m) and f A(2,m) for n11,

f A~1,n11!5
C12

A1
f B~1,n11!1

C13

A1
f A~2,n!

1
C14

A1
f B~2,n11!, ~5!

f A~2,n11!5
C34

A2
f B~2,n11!1

C32

A2
f B~1,n11!

1
C31

A2
f A~1,n!. ~6!

Similarly let us evaluatef A(1,m) and f A(2,m) for m5n,

f A~1,n!5
1

D
@C43B1f B~1,n!2C43C24f B~2,n11!

2C23B2f B~2,n!1C23C42f B~1,n11!#, ~7!
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f A~2,n!5
1

D
@C21B2f B~2,n!2C21C42f B~1,n11!

2C41B1f B~1,n!1C41C24f B~2,n11!#, ~8!

with D5C21C432C41C23.
The effective-mass matching theory applied to a sin

band with one Fourier coefficient states that the wave fu
tions of materialA and B at an interface located betwee
@n,n11# verifies21

f A~m!5l f B~m! for m5n,n11.

Under such conditions the band is the most transparen
that the transmission coefficient is maximized. To genera
this wave-matching technique to a two-band system, we n
require the same linear dependence

f A~1,m!5l12f B~1,m!1l14f B~2,m!,

f A~2,m!5l32f B~1,m!1l34f B~2,m!,

to hold for bothm equaln andn11 across the interface o
materialA andB.
Enforcing this linear relationship atn11 in Eqs.~5! and~6!,
we must haveC135C3150. Similarly enforcing this linear
relationship atn11 in Eqs.~7! and ~8!, we must haveC24
5C4250. It results that we can write at siten andn11,

f A~1,n!5
1

D
@C43B1f B~1,n!2C23B2f B~2,n!#,

f A~2,n!5
1

D
@2C41B1f B~1,n!2C21B2f B~2,n!#.

f A~1,n11!5
C12

A1
f B~1,n11!1

C14

A1
f B~2,n11!,

f A~2,n11!5
C32

A2
f B~1,n11!1

C34

A2
f B~2,n11!.

Now enforcing the invariance of thel i j coefficient across the
interface results in the following system:

l125
C12

A1
5

C43B1

D
, ~9!

l145
C14

A1
52

C23B2

D
, ~10!
e
-

so
e
w

l325
C32

A2
52

C41B1

D
, ~11!

l345
C34

A2
5

C21B2

D
. ~12!

First let us evaluateuDu2 from Eqs.~10! and ~11!,

D52
C23

C14
B2A152

C41

C32
B1A2 .

Using the Hermiticity propertyCi j 5Cji* and the fact that the
coefficientsAi are real, it results that

uDu25DD* 5A1B1A2B2 . ~13!

Note thatA1B1A2B2 must be a positive number. Inspection
of AlAs, AsSb, InAs, InP, and GaAs bands16 reveals that
their conduction bands have a minimum atG and an extre-
mum atX so that the required condition is verified for the
materials and their alloys.

One can easily verify that Eq.~12! can be derived from
Eq. ~9! using the result obtained foruDu2. Therefore, only
three equations are independent in the system of four e
tions constituted by~9!–~12! and there will remain one arbi
trary parameter that will characterize the junction.

To pursue the solution of Eqs.~9!–~11!, let us now cal-
culate the amplitude ofD in terms of theCi j coefficients,

D5C21C432C41C235C21

DC12

A1B1
1C41

DC14

A1B2
. ~14!

It results using the Hermiticity property that we have

15
uC12u2

A1B1
1

uC14u2

A1B2
. ~15!

This establishes a relation betweenuC14u and uC12u, namely,

uC14u25A1B2F12
uC12u2

A1B1
G . ~16!

We wish to obtain a real solution for theCi j since the coef-
ficientsAi are real and a phase shift is without conseque
on the current. Let us now consider two cases.

Case 1.A1 , B1 , A2 , andB2 are negative. Since all theAi
are negative, the productsAiAj are also positive. Now since
uC14u2 must be positive it results from Eq.~16! that we have

0<uC12u2<A1B1 ,

such that in turn we have

0<uC14u2<A1B2 .
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When the coefficientAi are all negative it is natural~but not
necessary! to select

C1452uC14u,

and

C1252uC12u.

Case 2.A1 andB1 are negative;A2 andB2 are positive.
Since the productA1B2 is negative and the productA1B1 is
positive, the property thatuC14u must be positive requires tha
we have

uC12u2>A1B1>0.

OnceC12 has been selected,C14 is known and the remaining
coefficients can then be calculated as follow. First note t
we are pursuing a solution where the coefficientsCi j are real
numbers such that it results from Eq.~13! that we must have
D56AA1B1A2B2. SubstitutingD in Eqs.~9! and~10! gives
then the final expression for theC43 and C23 coefficients,
which depends on the sign ofD,

C4356C12AA2B2 /A1B1, C2357C14AB1A2 /A1B2.
~17!

It was verified that the sign ofD does not affect the ampli
tude of the transmission coefficient. It is natural, however
selectC43 to have the same sign asA2 andB2 .

Note that in absence of band coupling (C135C2350), the
coupling theory forC12 and C43 reduces to the effective
mass matching theory developed by Kroemer and Zhu21 for
uncoupled tridiagonal Wannier bands.

We now present some numerical results demonstra
the application of this wave-matching theory to the coupl
between theG and X valleys. The test structure is a RT
with 7 ML of GaAs spacers, 4 ML of AlAs barriers, and
14-ML GaAs well. In this calculation, theG to X disconti-
nuities are taken to be 0.48 and20.92 eV for GaAs and
AlAs, respectively. We have plotted in Fig. 1 the transm
sion coefficients obtained using anX-valley dispersion given
by A(12coska) ~G like! and in Fig. 2, the transmission co
efficients obtained using anX-valley dispersion given by
A(11coska) ~X like!. A coupling coefficientC12/AA1B1

50.99 is used in Fig. 1. A coupling coefficientC12/AA1B1
5(0.99)21 is used in Fig. 2.

The solid line corresponds to zero coupling, or equiv
lently a one-band model. Regular resonant-tunneling tra
mission peaks are observed to occur around 0.2 and 0.75
The dashed and dotted lines correspond to the transmis
probabilities in theG valley andX valley, respectively. No-
tice that there are two main features in Figs. 1 and 2 t
deviate from the uncoupled result~solid line!. The
resonance/antiresonance around 0.3 eV is due to coup
through theX valley of AlAs. The resonance/antiresonan
just below 0.5 eV is due to coupling to theX valley of GaAs.
We will verify this assertion in the next section.
at

o
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-

-
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at

ng

In Fig. 3, we have plotted the total~G plusX! transmission
coefficient versus incident energy for various coupling co
ficients C12/AA1B1 taking the values of 1~no coupling!,
0.999, 0.995, 0.99, 0.98. For a coupling coefficient of 0.9
the transmission coefficient~dashed-dotted line! approaches
the one-band transmission coefficient~solid line!. Clearly,
the coupling and the magnitude of the coupling coefficie
plays an important role. In Sec. V, we will use a full-ban
model to establish the coupling strength for a specific hete
junction.

In Fig. 4, we have plotted the total~G plusX! transmission
coefficient versus incident kinetic energy of band 1~G! in the
emitter (n5NL) EK5E2H (b51, b851, n85NL , n
5NL ,k') for various values of the transverse wave vect
k' . In the G valley, the transverse wave vectors conside

FIG. 1. Transmission coefficients versus incident energy
tained using anX-valley dispersions given byA(12coska) ~G-
like!. The solid line corresponds to zero coupling~one-band model!.
The dashed and dotted lines correspond to the transmission p
abilities in theG valley andX valley, respectively.

FIG. 2. Transmission coefficients versus incident energy
tained using anX-valley dispersions given byA(11coska) ~X-
like!. The solid line corresponds to zero coupling~one-band model!.
The dashed and dotted lines correspond to the transmission p
abilities in theG valley andX valley, respectively.
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take the energies of 0, 0.05, 0.1, and 0.15 eV. A coupl
coefficient of 0.99 is used in all the calculations. To demo
strate that theG resonance takes place for approximately
same kinetic energyEK50.21 eV, we have multiplied the
transmission coefficients by the factors~1,10, 100,1000! to
separate them.

The resonances associated with theX valley in both AlAs
and GaAs are seen to shift toward lower kinetic energ
The shift originates from the effective reduction with i
creasing transverse wave vectors of theG-X conduction
band-edge discontinuity due to the much lower mass in thX
valley compared to theG valley in both AlAs and GaAs.
Clearly, the resonances/antiresonance will not occur at
same kinetic energies for various transverse wave vec
This result will be useful when we discuss the impact
interface roughness scattering on theG-X resonances in Sec
VI.

FIG. 3. Total~G plusX! transmission coefficient versus incide
energy for various coupling coefficient taking the values of 1~no
coupling!, 0.999, 0.995, 0.99, 0.98.

FIG. 4. Total~G plus X! transmission coefficient versus the in
cident kinetic energyEK of the G band for various values of the
transverse wave vectors. In theG valley the transverse wave vecto
considered assume the energies of 0, 0.05, 0.1, and 0.15 e
coupling coefficient of 0.99 is used in all the calculations.
g
-
e

s.

e
rs.
f

IV. MULTIBAND DENSITY OF STATES

To further analyze the simulation results obtained with
coupling theory derived above, it is useful to introduce
local density of statesN(E,n) at the lattice siten, which will
permit us to locate in both position and energy the re
nances and antiresonances present in that quantum struc
In equilibrium, the local total charger(n) is related to the
local density of states~DOS! N(E,n) according to

r~n!5E f ~E!N~E,n!dE, ~18!

with f (E) the Fermi-Dirac function. We shall therefore d
rive the local multiband density functionN(E,n) by calcu-
lating the local total charger(n) in equilibrium. In general,
the charge distribution in a ballistic quantum system is o
tained by summing over all the individual charge distributi
associated with the electrons injected in all the bandsb8 at
the left L and rightR contacts,

r~x!5(
b8

@rL~x,b8!1rR~x,b8!#,

whererL/R are given by

rL/R~x,b8!5
2

~2p!3 R R E
kx,L/R

f L/R~E!ucL/R~k,x,b8!u2dk,

with f L/R the Fermi-Dirac distribution in the left and righ
contacts.

In a multiband system the wave functioncL/R(k,x,b8)
can be expanded in terms of Wannier functionsw(b,n,k')
of the bandb,

cL/R~k,x,b8!5(
b

(
n

f ~b,n,b8,k!w~b,n,k' ,x!,

where we havek5(kx ,k') with kx either the longitudinal
wave-vector incident on the left (kx,L) or right (kx,R) flat-
band contact forcL and cR , respectively. Note that the
transverse wave vectork' is translation invariant through ou
the device, unlike the contact wave vectorskx,L/R .

Integrating the wave functionc overx in the site interval
@a(n2 1

2 ),a(n1 1
2 )# and using the orthogonality of the Wan

nier functions of different bands together with their appro
mate locality around a single site, we obtain the followi
site average probability of presence:

ucL/R~k,n,b8!u25
1

a E
a~n21/2!

a~n11/2!

uc~k,x,b8!u2dx

.(
b

u f ~b,n,b8,k!u2.

We can now rewrite the site average charge distribution a
summation over the bandsb and b8 of the various wave-
function contributions
A
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r~n!5(
b8

(
b

@rL~n,b,b8!1rR~n,b,b8!#,

whererL/R(n,b,b8) is given by

rL/R~n,b,b8!5
2

~2p!3 E E E
kx,L

f L/R~E!u f ~b,n,b8,k!u2dk.

~19!

It can be verified that the envelopef (b,n,b8,k) can be re-
lated to the impulse responseh(b,n,b8,n8,k). For waves
f (,kL) injected in the left contact~site NL), and for waves
f (,kR) injected in the right contact~site NR) in bandb8, we
have, respectively,

f ~b,n,b8,kL/R!5 j
\vL/R~b8,E,k'!

a
h~b,n,b8,NL/R ,E,k'!

for n<NR or n>NL ,
te
ri
wherevL/R is the velocity of the wave injected from the le
~L! or right ~R! contact into the device (vL/R are selected to
be positive!.

The impulse responseh(b,n,b9,n9,E,k') with total en-
ergyE and transverse wave vectork' for an excitation at site
n9 in bandb9 is obtained from the following multiband tridi
agonal equation:

(
b851

NB

@H2~b,b8,n!h~b8,n21,b9,n9,E,k'!

1H0~b,b8,n,k'!h~b8,n,b9,n9,E,k'!

1H1~b,b8,n!h~b8,n11,b9,n9,E,k'!#

5Eh~b,n,n9,n9,E,k'!1dnn9dbb9 .

We can now use this identity to rewrite the charge distrib
tion rL/R(n,b,b8) of Eq. 19
rL/R~n,b,b8!5
2

~2p!3 E E E
kx,L/R

f L/R~E!u f ~b,n,b8,k!u2dk

5
2

~2p!3 E E E
kx ,L/R

f L/R~E!
\2vL/R

2 ~b8,E,k'!

a2 uh~b,n,b8,NR/L ,k!u2dk

5
1

a2

2

~2p!3 E E dk'E
2`

`

dE fL/R~E!\vL/R~b8,E,k'!uh~b,n,b8,NR/L ,E,k'!u2.
of

tes

el
Due to the Hermiticity of the Hamiltonian and the associa
current conservation property, these impulse functions ve
the identity

2
a

\
2 Im@h~b,n,b,n,E,k'!#

5(
b8

vL~b8,kx,L!uh~b,n,b8,NL ,E,k'!u2

1vR~b8,kx,R!uh~b,n,b8,NR ,E,k'!u2,

with kx,R/L obtained from E5E(b,kx,R/L ,k' ,NL/R). The
equilibrium charge distribution is obtained forf L(E)
5 f R(E)5 f (E),

r~n!5(
b8

F(
b

rL~n,b,b8!1rR~n,b,b8!G
52

2

a (
b

2

~2p!3 E E dk'E
2`

`

dE f~E!

3Im@h~b,n,b,n,E,k'!#
d
fy 52

1

ap E
2`

`

dE f~E!(
b

DbE
0

`

dE'

3Im@h~b,n,b,n,E,E'!#,

where we used the cylindrical symmetry to introduceE'

5\k'
2 /(2mb* ) verifying DbdE'5@2/(2p)2#dk' with Db

5m* b /\2p the two-dimensional electron gas density
states in the bandb.

Using Eq.~18!, which relates the local charger(n) to the
local density of state, we identify the local density of sta
N(E,n) as

N~E,n!5E
0

`

N~E,E' ,n!dE' ,

with N(E,E' ,n) the partial density of states in the chann
E' given by

N~E,E' ,n!52
1

ap (
b

Db Im@h~b,n,b,n,E,E'!#.



i

fl

e

v
th
F
he

s
av
d
rs

lo
t-
e

n
ty
te

.

nce

e
ce

the
om-
o a

m-
m-

of

ig.

aAs
nd-
n.
tion

-
ds.
a to
-
ex-

a
T

al
TD

13 110 PRB 58PATRICK ROBLIN, PAUL SOTIRELIS, AND J. GENE CAO
We will find more interesting to inspectN(E,E' ,n) rather
thanN(E) as we found in the heterostructure considered
Sec. III that the energy resonances and antiresonances
vary rapidly with the perpendicular energyE' .

For the case of a heterostructure consisting of a single
band,22 the impulse responseh(n,n8,E,E') is easily evalu-
ated to beh(n,n8,E,E')52 ja/\v(kx), with kx obtained
from E5E(b51,kx ,k' ,n). Therefore, we have

N~E,E'!5
D1

p

1

\v~kx!
.

We have verified that our simulator numerically reproduc
this analytic result.

The multiband density of states formula derived abo
will help us now to establish the location and therefore
origin of the resonance and antiresonance in the RTD.
the purpose of this identification we will plot separately t
impulse response Im@h(b,n,b,n,E,E')# of each band~valleys!
b.

In Fig. 5, theG-valley density of states is plotted versu
longitudinal energy and position for a zero transverse w
vector. In Fig. 6, theX-valley density of states is plotte
versus longitudinal energy and position for a zero transve
wave vector. Notice that the density of states is zero be
the X-valley minimum. Only the density of states contribu
ing to the current are shown. The same test RTD structur
in Sec. III is used.

Science and art intersect in theG density of states, which
has the appearance of a humanoid face. Notice the reso
ground state~no node! revealed as the bottom-high densi
structures~mouth! at about 0.2 eV and the first excited sta
~one node! as the two-top structure~eyes! at about 0.75 eV.
One also notices a structure located midway~nose! at about
0.3 eV corresponding to the coupling between theG valley of
the GaAs well and theX valley of the AlAs barrier as is
clearly revealed by theX density of states shown in Fig. 6

FIG. 5. G-valley density of states is plotted versus longitudin
energy and position for a zero transverse wave vector. The R
structure and theX dispersion of Fig. 2 are used.
n
can

at

s

e
e
or

e

e
w
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ant

The X density of states features also an additional resona
just above the GaAs well and spacers.

The multibandG andX density of states permit therefor
to identify both the band and spatial origin of the resonan
and antiresonance resulting from the coupling of theG andX
valleys.

V. COMPARISON WITH A FULL-BAND MODEL

Having introduced the two-band model and extended
effective-mass matching to such systems we shall now c
pare this simple two tridiagonal Wannier band system t
single full Wannier band model.

The single full Wannier band model used here is an i
proved version of the simulator reported in Ref. 7. This i
proved simulator, which can now handle heterostructures
useful size will be reported elsewhere.20

Along the ^100& direction the band structure is written

E~k!5E~kx ,k'!5 (
p51

NW

Hp~k'!cosS pkxa

2 D , ~20!

with NW the number of Fourier harmonics used.
The GaAs, AlAs, and Al0.3Ga0.7As band structures along

the ^100& direction used in our comparison are shown in F
7 for k'50. Ten Fourier coefficientsHp(0) (NW510) are
used in our test to fit the bands. These Wannier bands G
and AlAs bands are obtained from a least-square fit of ba
structure data obtained using a pseudopotential calculatio16

For the GaAs conduction band we added a small correc
to bring theX valley 0.4 eV above theG valley ~its initial
value was 0.318 eV!. The Al0.3Ga0.7As band is obtained us
ing a linear weighted average of the GaAs and AlAs ban
Care was placed in the least-square fit of the band dat
obtain a very smoothX valley by fitting both the band struc
ture and its second-order derivatives while maintaining
actly the mass and band discontinuities at theG andX points.

l
D

FIG. 6. X-valley density of states is plotted versus longitudin
energy and position for a zero transverse wave vector. The R
structure and theX dispersion of Fig. 2 are used.
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To account in the coupled-band model for the noneff
tive mass in both theG andX valleys of the bands shown i
Fig. 7 we use an energy- and position-dependent coeffic
A(b,n,E) in each of the tridiagonal bandb of dispersion
E(kx)5A(b,n,E)@17cos(kxa/2)#. For energies for which
the wave is propagating in the valleyb @wave vectorkx(b,n)
with a zero imaginary part#, A(b,n,E) is selected to be

A~b,n,E!5
E2Ec,b~n!2eV~n!

17cos@Re@kx~b,n!#a/2#
. ~21!

For energies for which the wave is damped in the valleb
@wave vector kx(b,n) with a nonzero imaginary part#,
A(b,n,E) is selected to be

A~b,n,E!5
E2Ec,b~n!2eV~n!

12cosh$Im@kx~b,n!#a/2%
. ~22!

Note that the same expression is used for both theG- and
X-damped waves. This originates from the fact that the r
part of complex wave vectorkx is equal top in theX valley
and 0 in theG valley. In both Eqs.~21! and~22!, kx(b,n) is
the G andX wave vector associated with the solution of

E5E~kx ,k'!2eV~n!, ~23!

where E(kx ,k') is the full-band structure, either GaAs o
AlAs corresponding to the material at the lattice siten. Since
we use 10 cosine harmonics in the full-band model to p
sents the GaAs, AlAs, and Al0.3Ga0.7As band structures, the
solution of Eq.~23! using analytical continuation leads to 2
complex numbers for the wave vector. Care was there
placed in developing an algorithm automatically sorti
these roots to identify theG andX roots for use in Eqs.~21!
and~22! ~the other roots are evanescent waves with very
decays!. This energy-dependent effective mass implemen

FIG. 7. Band-structures of Al0.3Ga0.7As ~solid line!, GaAs~dot-
ted!, and AlAs ~dashed-dotted line! plotted versus the normalize
longitudinal wave vector@kx /(2p/a)# along thê 100& direction for
k'50.
-

nt

al

-

re

st
a

noneffective-mass correction, which as we shall see perm
the resonances and antiresonances in the coupled-
model to occur at energies similar to those of the full-ba
model.

The interface matrix elements in the full-band model a
selected using an arithmetic average.20 Considering the limit
of this approximation, we will only consider her
GaAs-Al0.3Ga0.7As RTD’s, which are made up of very simi
lar semiconductors~GaAs and Al0.3Ga0.7As) for which this
interface Hamiltonian is a reasonable approximation.

In Fig. 8, we compare theG and X transmission coeffi-
cients versus incident energies obtained with the full-sin
band model~solid line!, the effective-mass matching theor
~dotted line!. The test structure is a RTD with 7 ML of GaA
spacers, 8 ML of Al0.3Ga0.7As barriers, and a 8-ML GaAs
well.

G-X resonances are observed to take place for appr
mately the same energies. Some departures are obse
however, for the transmission to theX valley above 0.5 eV
and the transmission to theG valley above 0.8 eV. An im-
proved model is achieved by resetting the backward coup
coefficients to zero (C235C3250) leaving all the other co-
efficients unchanged. The resultingG andX transmission co-
efficients~dashed-dotted lines! are now in better agreemen
at high energies.

A more detailed comparison of the resonanc
antiresonances is shown in Fig. 9. Clearly the modifi
coupled-band model and the full-band model exhibits
same type of resonances indicating that the modifi
coupled-band model implements correctly the physical p
cesses of theG- andX-valley coupling.

The improved fit points toward the limit of applicabilit
of the effective-mass matching theory. However, as w
pointed out by Kroemer and Zhu21 for the single-band
model, departures from the ideal effect case of the effect
mass matching theory are to be expected and the effec
mass matching theory provides a reference to measure th

Note that the same coupling (AA1B1/C1250.999) was
used in both cases~dotted and dashed-dotted lines!. This is a

FIG. 8. G andX transmission coefficients versus incident en
gies obtained with the full-single band model~solid line!, the
effective-mass matching theory~dotted line!, and the modified
effective-mass matching theory~dashed-dotted line!.
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relatively weak coupling since the single-band interfa
theory is recovered forAA1B1/C1251. Note also that the
X-valley dispersionsA(11coska) ~X-like! was used since
the band structures used here~see Fig. 7! feature a minimum
at X. The same coupling parameters were verified to prov
an excellent fit as well for other GaAs-Al0.3Ga0.7As struc-
tures of different barrier and well widths.

VI. IMPACT OF INTERFACE ROUGHNESS

In real RTD’s, the interfaces are not perfectly sharp b
feature instead terraces typically of 1 ML thick and of va
ous widths. This introduces a random fluctuation of t
thickness of the barrier and well of the RTD. We demo
strate here the impact of interface roughness by calcula
the ensemble average transmission coefficient following
procedure described in Refs. 23 and 24. In that proced
interface roughness is treated as a virtual phase-brea
scattering process and each scattering event is assumed
uncorrelated. For this purpose the self energy associated
the scattering process is added to both theG andX Hamilto-
nians. Current is verified to be conserved. Each scatte
wave is calculated using the multiband impulse response
veloped in Sec. IV. The scattered waves are therefore
submitted to the interface coupling theory developed in t
paper.

In Fig. 10 we compare the total~G plus X! transmission
coefficients versus incident energies obtained with the o
band model~dotted line! the two-band model without inter
face roughness~dashed line!, and the two-band model with
interface roughness~plain line!. The test RTD structure is th
same as in Sec. III.

Interface roughness is seen to strongly impact the tra
mission coefficient. First the two normal resonant tunnel
peaks at 0.3 and 0.75 eV exhibited by the one-band mo
~dotted line! are seen to have been shifted to lower energ
due to the self energy associated with theG-X coupling
~dashed line! and even more so by interface roughness s
tering ~plain line!. In addition, the G-X resonance/

FIG. 9. Details of theG and X transmission coefficients fo
incident energies around theG-X resonance/antiresonance obtain
using the full-single band model~solid line!, and the modified
effective-mass matching theory~dashed-dotted line!.
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antiresonance observed at 0.3 and 0.5 eV in the two-b
model~dashed line! seems to have been suppressed by in
face roughness scattering~plain line!. In fact they have con-
tributed to the increase of the transmission coefficients
that range of energies. Note that the interface roughness
tering process while being an elastic process does deflec
trajectory of the incident electrons and can therefore con
the longitudinal energy of the electron into transverse wa
vector energy.24 We have seen in Sec. III that the location
the G-X resonance/antiresonance varied rapidly with
transverse wave vector. The originalG-X resonances/
antiresonances of the two-band model~dashed line! could be
considered to have been effectively suppressed by the
semble averaging effect of the interface roughness scatte
process.

An interesting effect is the appearance of aG-X
resonance/antiresonance structure around 0.15 eV. This
structure was verified to survive to two sequential scatter
processes. TheG-X resonance/antiresonance clearly aris
from the resonant coupling of theG incident wave with the
X-scattered waves generated via the interface roughness
tering process. The scattering process plays then the ro
the coupling coefficient. Again the occurrence of theG-X
resonance at lower energies is made possible by the effe
lowering of the G-X conduction-band-edge discontinuitie
for the large transverse wave vectors of the scattered wa
involved in interface roughness scattering.

VII. CONCLUSION

We have presented in this paper the extension of
effective-mass wave-matching theory developed by Kroem
and Zhu21 to a two-tridiagonal-bands Wannier system. T
four independent coupling parameters of the two coup
tridiagonal bands system were found to reduce to a sin
parameter. The impact of this coupling parameter upon
transmission of electron in resonant tunneling diodes w
studied for the case where this two-band system is applie
the modeling of theG andX valleys of a conduction band.

FIG. 10. Total~G plus X! transmission coefficients versus inc
dent energies obtained with the one-band model~dotted line! the
two-band model without interface roughness~dashed line!, and the
two-band model with interface roughness~plain line!.
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A general multiband density of states was derived to
cilitate the location in space and energy of both the reson
tunneling resonances and the antiresonances. A general
nition of current in a multiband system was also establis
to calculate the transmitted coefficients.

The application of this interface theory to a realistic si
ation was investigated by comparing simulation results
tained with the two tridiagonal-band interface theory and
single full-band model, which accounts for long-range int
actions. A reasonable agreement was demonstrated
GaAs-Al0.3Ga0.7As resonant tunneling diodes~RTD’s! using
a noneffective-mass correction and a coupling factor
0.999. An improved fit was further obtained by relaxing t
backward interband coupling to zero. The modified coupl
theory still only depends on a single-coupling parameter

The resulting interface wave-matching model develop
provides a simple yet realistic approach to account for b
noneffective-mass effects and the coupling between thG
andX or L valleys in the calculation of the transmission a
reflection coefficients of RTD devices. The simplicity of th
model makes also possible the study of the impact of m
tiple sequential scattering processes such as interface ro
ness scattering upon such multiband systems. The two-b
Wannier model and the interface theory could also be po
tially applied to other material or band systems.
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APPENDIX: MULTIBAND CURRENT DEFINITION
AND CONSERVATION

In this appendix we establish a multiband definition
current and demonstrate its conservation. This is done be
for a general tridiagonal system. Consider the equation
isfied by the envelope function of the bandb,

(
b8

@H~b,b8,n,n21! f ~b8,n21!1H~b,b8,n,n! f ~b8,n!

1H~b,b8,n,n11! f ~b8,n!#5E f~b,n!.

Multiplying this equation byf * (b,n), we obtain the new
quantityR

R5(
b8

@H~b,b8,n,n21! f * ~b,n! f ~b8,n21!

1H~b,b8,n,n! f * ~b,n! f ~b8,n!1H~b,b8,n,n

11! f * ~b,n! f ~b8,n11!#5Eu f ~b,n!u2.

Using the Hermiticity H(b,b8,n,n8)5H(b8,b,n8,n)* we
derive
i

-
nt
efi-
d

-
-

a
-
for

f

g

d
h

l-
gh-
nd
n-

f
w
t-

~R2R* !5(
b8

$Im@H~b,b8,n,n21! f * ~b,n! f ~b8,n21!#

1Im@H~b,b8,n,n! f * ~b,n! f ~b8,n!#

1Im@H~b,b8,n,n11! f * ~b,n! f ~b8,n11!#%50.

Let us now introduce the elemental current

j ~b,b8,n,n8!52
a

\
Im@H~b,b8,n,n8! f * ~b,n! f ~b8,n8!#.

These elemental currents verify the conservation propert

05(
b8

@ j ~b,b8,n,n21!1 j ~b,b8,n,n!1 j ~b,b8,n,n11!#.

~A1!

The current definition is now identified to be

JT~n!5J2~n21,n!1J1~n,n11!,

J1~n,n11!5(
b

(
b8

j ~b,b8,n,n11!,

J2~n21,n!5(
b

(
b8

j ~b8,b,n21,n!.

Let us now prove the current conservation. First, we n
that we have

J2~n21,n!5J1~n,n11!.

We therefore need to demonstrate thatJ2(n21,n) or
J1(n,n11) is conserved from site to site. For this purpo
we sum over the bands Eq.~A1!,

(
b

(
b8

j ~b,b8,n,n21!1 j ~b,b8,n,n!1 j ~b,b8,n,n11!

50. ~A2!

This reduces to

(
b

(
b8

j ~b8,b,n21,n!5(
b

(
b8

j ~b,b8,n,n11!.

Now using the Hermiticity of the Hamiltonian, the element
currents one easily verifies the identityj (b8,b,n8,n)
52 j (b,b8,n,n8). It results in the following identity

(
b

(
b8

j ~b,b8,n,n!50.

Equation~A2! reduces then to

(
b

(
b8

j ~b8,b,n21,n!5(
b

(
b8

j ~b,b8,n,n11!,

which demonstrates the current conservation throughout
heterostructures. Note finally that this definition of curre
reduces to the conventional definition of current in a Wa
nier band in the contacts where the bands are decoupled
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