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Acoustoelectric effect in nanostructures: Role of quasimomentum balance

V. L. Gurevich and V. I. Kozub
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~Received 16 January 1998; revised manuscript received 23 July 1998!

In a recent paper giant quantum oscillations of acoustoelectric current under gate voltage variation were
predicted for ballistic transport in nanowires. In particular, it was shown that the oscillations should exist
provided that the sound frequencyv exceeds a certain threshold valuev th and no acoustoelectric effect exists
for v,v th . The result seems to be in contradiction with a simple energy and quasimomentum balance
considerations that in the bulk case lead to the so-called Weinreich relation for the acoustoelectric current. We
discuss this paradox in detail and prove it to be related to the very nature of ballistic transport. We develop a
theory of the acoustoelectric effect forv,v th assuming that the transport is not purely collisionless.
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An acoustic wave propagating in a semiconductor crea
a net drag of the electrons and hence a dc acoustoele
currentJ or, if the circuit is disconnected, a dc acoustoele
tric potential differenceV. The acoustoelectric effect is
second-order effect in terms of the strength of coupling
tween the sound and electrons. Recently this effect was
sidered for the interaction of an ordinary three-dimensio
~3D! traveling sound wave with one-dimensional~1D! bal-
listic electrons.1 As is well known, the conductance of suc
an electron system is a steplike function of the Fermi le
position2,3 ~which can be monitored by the gate voltage!.
Each step corresponds to the inclusion of a new mode
transverse quantization to the conduction process and h
height ofG052e2/h. As for the acoustoelectric currentJ, in
the lowest approximation it has to be expressed in terms
time average of a bilinear product of the components of e
tic displacements or their derivatives. The purpose of
present paper is to investigate theoretically acoustoele
effect in nanowires where, apart from the electron-sound
teraction, there is also a weak scattering of the conduc
electrons.

The acoustoelectric currentJ is a result of the drag of the
electrons due to absorption of the ultrasonic phonons a
due to the spatial quantization, it exhibits giant quantum
cillation as a function of the Fermi level position that can
monitored by the gate voltage. This phenomenon is sim
to giant quantum oscillations of the ultrasonic absorption i
magnetic field4 in bulk samples where due to a system
Landau levels analogous oscillations can be observed in
course of magnetic field variation. An important feature
the predicted effect in nanostructures is vanishing of
acoustoelectric current for acoustic frequencies below
threshold value1

v th52mw2/\. ~1!

Here m and w are the electron effective mass and sou
velocity, respectively.
PRB 580163-1829/98/58~19!/13088~6!/$15.00
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Keeping in mind that the corresponding acoustic abso
tion does not vanish forv,v th , one sees a contradictio
with the physical picture known for the acoustoelectric effe
in the bulk structures. For the latter the acoustoelectric c
rent densityj is known to obey the well-known Weinreic
relation:5

j 5M
GS

w
. ~2!

HereM is the electron mobility,G is the acoustic absorption
coefficient (1/G has units of length!, and S is the acoustic
intensity. As is easily seen,GS is the total rate of absorption
of the acoustic energy density by electrons and thusGS/w is
the rate of quasimomentum transfer from the acoustic w
to the electrons per one second per unit volume. Thus
drag~acoustoelectric! current is directly related to the quas
momentum transfer and, in general, the acoustoelectric
rent is expected to exist whenever the ultrasound is abso
by the conduction electrons and therefore the quasimom
tum transfer is nonzero.

In contrast, for the ballistic case considered in Ref. 1,
the sound of comparatively low frequencies, the drag curr
vanishes even if the acoustic absorption, and therefore
quasimomentum transfer from the acoustic flux to electro
is nonzero. At first the result seems to be paradoxical.
what follows we show that the paradox is a direct con
quence of the ballistic nature of the transport. We will al
show that an inclusion of a weak additional~‘‘background’’!
scattering leads to a nonvanishing drag current. Howeve
the scattering is weak the Weinreich relation is not restor
One gets instead a new relation between the acoustic
and acoustoelectric current density@see below Eqs.~27!,
~28!, and~35!#.

Following the approach used in Ref. 1, we begin by g
ing a brief review of the main results exhibiting the parado
We represent the ultrasound as a flux of phonons with
same frequencyvq and wave vectorq. The phonons are
assumed to propagate in the bulk of the sample, i.e., to
13 088 ©1998 The American Physical Society
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three dimensional~3D!. The nanostructure in the form of
quantum wire of a constant cross section is oriented al
the x axis. This means that in the course of electron-phon
collisions thex component of the quasimomentum is co
served whereasqy and qz are not because the electrons a
confined iny andz directions.

We will assume that the direction of phonon propagati
i.e., their wave vectorq, is also parallel to thex axis. Then
the energy and quasimomentum conservation law takes
form

en~p!1\vq5en~p1\q!. ~3!

Hereen(p)5en(0)1p2/2m is an energy of electron belong
ing to a one-dimensional~1D! subband~channel!, n is the
quantum number of transverse quantization,en(0) is the po-
sition of thenth level of transverse quantization,p is the x
component of electron quasimomentum, while the phon
frequency is vq5wq where w is the sound velocity.
p5mw2\q/2, andp1\q5mw1\q/2 are the solutions o
Eq. ~3! where we have omitted the indexx for the phonon
wave vectorq. The quasimomentum transfer from phono
to electrons,\q, is expected to bring about an acoustoele
tric currentJ across the nanowire.

The initial and final quasimomenta of electrons taki
part in such transitions are completely determined by Eq.~3!.
Such transitions occur if the initial electron state is eith
within a thermal layer near the Fermi level~if \vq!kBT) or
within a layer of width\vq betweenmn2\vq andmn ~as-
suming that\vq@kBT), where mn5m2en(0), m being
the chemical potential.

Consider, for instance, the case\vq@kBT. When in the
course of gate voltage variation both the initial and fin
states appear occupied or unoccupied the acoustoelectric
rent drops. With further change in the gate voltage an e
tron with its initial state belonging to another subbandn8
moves into the layer betweenmn82\vq and mn8 , which
leads~provided that its final state is outside the layer, i.e.
unoccupied! to an increase in acoustoelectric current. T
results in the giant quantum oscillation of acoustoelec
current as a function of the gate voltage.

In the absence of sound, the distribution function of el
trons, f pn , is simply the Fermi function,f (F)(e), where
e5en(p) is the electron energy. Allowing for a weak inte
action between electrons and the ultrasonic phonons re
in f n5 f (F)(en)1D f n with D f satisfying the equation

v
]D f

]x
5I @ f #. ~4!

Here v5]en /]p is the electron velocity~which does not
depend explicitly on the quantum numbern). I @ f # is the
electron-phonon collision term. We have dropped from
right-hand side of Eq.~4! the terme(]Df/]x)(] f (F)/]p)
~whereDf is the time averaged electrostatic potential! as it
gives no contribution to the current. We will drop the 1
subband~channel! indexn wherever it will not create confu
sion.

We start with the analysis of the simplest boundary c
dition D f 50, which is satisfied atx57L/2 for p.0
g
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(p,0), respectively.~Below we will consider a more gen
eral boundary condition.! For p.0 (p,0), respectively,
the solution of Eq.~4! is

D f ~x!5~x6L/2!
1

v
I @ f #. ~5!

Here x50 lies at the midpoint of a conductor of a tot
length L. D f (x) is proportional to 1/v. This is physically
natural as for the ballistic transport the nonequilibrium p
of the distribution function relaxes because the conduct
electrons leave the quantum wire in the course of their m
tion. The smaller thex componenet of the electron velocity
the slower the relaxation. The explicit form of the collisio
term reads~we assume that only transitions within one 1
electron band are allowed by the energy and quasimom
tum conservation!

I @ f #5E dp8

2p\E d2q'

~2p!2
W~ f 82 f !N

3@d~«82«2\vq!1d~«82«1\vq!#, ~6!

whereN is the phonon distribution function~we have dis-
carded 1 sinceN@1), W is the coefficient of electron-
phonon interaction introduced in Ref. 1. For the deformat
potential interaction we have

Wq5pL2q2/rvq , ~7!

whereL is the deformation potential constant for the phon
branch in consideration andr is the mass density. For th
unscreened piezoelectric interaction

Wqa5
p

rvq
F4pebq,lqn l~q,a!

«qq
G2

. ~8!

Here b i ,ln is the tensor of piezoelectric moduli~which is
symmetric in the last two indices!, « i l is the tensor of dielec-
tric susceptibility,n l(q,a) is the polarization vector~i.e., a
unit vector along the elastic displacementu) of the phonon
with wave vectorq, belonging to the brancha. Index q
indicates the projection of a tensor on theq direction.

The total current is given by

J52e(
n
E

2`

` dp

2p\
vD f np~x!, ~9!

whereD f np(x) is given by Eq.~5!. The integrand in Eq.~9!
is proportional to electron group velocityv5p/m whereas
D f np(x) according to Eq.~5! is proportional tov21. As a
result we have

J52eL(
n
E

0

` dp

2p\
I @ f #22eL(

n
E

2`

0 dp

2p\
I @ f #

14ex(
n
E

2`

` dp

2p\
I @ f #. ~10!

The last term in Eq.~10! vanishes since collisions do no
change the total number of electrons.
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The integrations in Eq.~6! are in fact over the three com
ponents of the phonon wave vector. The 3D phonon dis
bution functionNk can be presented in the form

Nk5@~2p!3S/\w2k#d~3!~k2q!, ~11!

whereS is the sound intensity. For the electron distributi
function D f we have Eq.~5! with

I 5A@d~p2p2!2d~p2p1!#. ~12!

Here

p1,25mw7\q/2 ~13!

and

A5
SWm

~\vq!2
~ f mw2\q/2

~F! 2 f mw1\q/2
~F! !. ~14!

Inserting Eq.~11! into Eq. ~6! and making use of Eq.~10!
one gets for\q.2mw

J5
emSWL

2p\3vq
2 (n

@ f ~F !~e~2 !2mn!2 f ~F !~e~1 !2mn!#,

~15!

wheree (6)5(\q/26mw)2/2m, and we remind thatmn5m
2en(0).

Taking into account thed-function structure of the colli-
sion term@Eq. ~12!# one can check explicitly the fact that th
electron-phonon collisions conserve the number of electr

F]n

]t G
coll

52(
n
E

2`

` dp

2p\
I @ f #

5(
n
E

0

` dp

p\
I @ f #1(

n
E

2`

0 dp

p\
I @ f #50. ~16!

Since the integrand of Eq.~10! is proportional to the sum
of delta functions one can write

(
n

S E
0

` dp

2p\
I @ f #2E

2`

0 dp

2p
I @ f # D

5
1

2
2

1

\q(n
E

2`

` dpp

2p\
I @ f #5

1

2\q

]P
]t

where]P/]t is the overall rate of quasimomentum trans
from the phonon flux to electrons. Correspondingly, one g
the following relation between the acoustoelectric curr
and the rate of quasimomentum transfer to the electrons

J5
eL

\q

]P
]t

. ~17!

This is a sort of Weinreich relation for 1D electron
~and 3D phonons! while the factoreL/\q plays a role of the
‘‘effective mobility.’’ As \q/m is of the order of the velocity
of electrons interacting with the acoustic wave the ‘‘effecti
i-

s

r
ts
t

relaxation time’’ mL/\q appears to be of the order of th
time of flight of an electron across the nanostructure, as m
be indeed expected for the ballistic structures.

However, for \q,2mw ~or v,v th) the situation dif-
fers drastically. Indeed, when\q,2mw and therefore both
mw2\q/2 andmw1\q/2 are positive thed functions do
not contribute to the integral

E
2`

0 dp

p\
I @ f #

in Eq. ~16!. So we are left with

F]n

]t G
coll

5
J

eL
52(

n
E

0

` dp

2p\
I @ f #. ~18!

In view that the integral~18! should vanish because the co
lisions conserve the concentration of electrons, one sees
the acoustoelectric current, which is proportional to the sa
integral, should also vanish.

Yet the rate of quasimomentum transfer in this case
given by

dP
dt

52(
n
E

0

` dp

2p\
pI@ f #5

Aq

p
. ~19!

One sees that this quantity~directly related to the number o
acoustic quanta absorbed by electrons! does not vanish, un-
like the current. Thus we arrive at a contradiction with t
physics of quasimomentum balance discussed above.
resolution of the contradiction is related to the very nature
the ballistic transport.

On the one hand, forv,v th , the electron-phonon colli-
sions do not change the direction of electron quasimom
tum. Thus only the electrons penetrating into the wire fro
one of the reservoirs~say, the ‘‘left’’ one! are coupled to the
phonons while those penetrating from the ‘‘right’’ on
are insensitive to the sound. Therefore we have the bou
ary problem formulated only for the ‘‘left’’ boundary a
x52L/2. On the other hand, the total number of the ele
trons passing through this boundary is evidently not affec
by the acoustic wave. Therefore, the current of the ‘‘lef
electrons is completely controlled by the correspond
boundary condition keeping it equal to a countercurrent
the ‘‘right’’ electrons.

This situation can be described in different words. T
transitions due to the absorptions of acoustic quanta are
lowed only between the electrons with positive velociti
(v.0). The contribution of each such electron to the curr
is, on the one hand,proportional to v. On the other hand, it
is proportional to the time it spends within the quantum wi
which is inversely proportionalto v. As a result, it isv
independent and the absorption of ultrasonic quanta does
change the current although it enhances the total elec
quasimomentumP.

While the total current vanishes, the acoustic wave d
affect the local concentration of the electrons. Indeed, as
be obtained from Eq.~5!:
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Dn5S x1
L

2D Sm2W

\q~\vq!2F S mw

\q D 2

2
1

4G21

3(
l

@ f ~F !~e~2 !2m l !2 f ~F !~e~1 !2m l !#. ~20!

Here we neglect the screening effects. If the latter w
strong and supported the neutrality of the system, one wo
expect a formation of the screening electrostatic field whi
in its turn, would create a nonzero acoustoelectric curren

If, in addition to the interaction with the acoustic wav
one takes into account other scattering processes wher
conduction electrons take part one will get a nonzero aco
toelectric current. To begin with, we will consider the sim
plest form of elastic processes, i.e. the reflection of electr
at both ends of the quantum wire~cf. with Ref. 6 where
scattering by a long-range potential due to the edges of
channel has been considered!. The reflection coefficients will
be assumed the same at both ends of the wire and wil
denotedR1 andR2 for p1 andp2 , respectively. The role o
such processes is particularly interesting for\q/2mw,1
where without these processes one getsJ50. Let us turn to
this case. In other words, let us assume thatp1 and p2 are
positive.

The transport equation~4! can be now rewritten@with
account of Eq.~12!# as

v
]D f p

]x
5A@d~p2p2!2d~p2p1!#. ~21!

The boundary condition atx52L/2 now has the form

D f p5RD f 2p , ~22!

so that the solution of Eq.~21! is

D f p5R~p!D f 2p1S x1
L

2Dm

p
A@d~p2p2!2d~p2p1!#.

~23!

Below we will assume thatp.0, so that the distribution
function for the negative values ofp we will denote by
f (2p).

Now, the boundary condition atx5L/2 has the form

D f 2p5RD f p . ~24!

Making use of Eq.~23! one can write Eq.~24! as

D f 2p5R2D f 2p2RL
m

p
A@d~p2p2!2d~p2p1!#,

~25!

so that

D f 2p52L
m

p
AF R2

12R2
2
d~p1p2!2

R1

12R1
2
d~p1p1!G ,

~26!

whereR1,25R(p1,2). We remind thatD f 2p is not perturbed
directly by the acoustic wave.
e
ld
,

the
s-

s

e

e

As is mentioned above, positive values ofp give no con-
tribution to the acoustoelectric current. The contribution
p,0 is given by

J5eE
2`

0 2dp

2p\
D f 2p

~we will assume that only one 1D electron band can cont
ute to the acoustoelectric current and will drop summat
over n in such expressions!. Making use of Eq.~26! we get

J5L
eSWm

p\3v2
q
~ f mw2\q/2

~F! 2 f mw1\q/2
~F! !S R1

12R1
2

2
R2

12R2
2D .

~27!

This equation represents giant quantum oscillations of
acoustoelectric current whose amplitude is smaller than
the collisionless case@Eq. ~15!# by the factor

R1

12R1
2

2
R2

12R2
2

.

It is also interesting to consider an asymmetric case wh
the reflection coefficient for the electrons withp,0 is zero
at x52L/2 and is nonvanishing andp dependent only at
x5L/2. Then one has

J5L
eSWm

p\3v2
q
~ f mw2\q/2

~F! 2 f mw1\q/2
~F! !~R12R2!, ~28!

where R1,2 are the values of the electron reflection coef
cients forx5L/2 and quasimomentap1 andp2 , respectively.
In the same manner one can consider a more general
where the scatterer has some intermediate coordinatex0
within the quantum wire.

Thus we see that even additional scattering of a simp
form results in an acoustoelectric current though the We
reich relation in its usual form does not hold for this cas
We also have physical considerations that in a nonlinear c
where the sound intensity is so high that there is no dir
proportionality between the intensity and acoustoelectric c
rent one can expect the existence of acoustoelectric cur
even for\q,2mw. The nonlinear case, however, deserve
special treatment~cf. with Refs. 7 and 8!.

Let us now consider another limiting case where the nu
ber of scatterers is large enough while their spatial distri
tion along the channel is uniform, which corresponds to
standard expression for the collision integral. The transp
equation~4! can be now rewritten@with account of Eq.~12!#
as

v
]D f

]x
1D f ~p!E dp8

2p\
Ppp82E dp8

2p\
Pp8pD f ~p8!

5A@d~p2p2!2d~p2p1!#. ~29!

Here Pp8p is the probability of elastic scattering from
statep to statep8, while the quantitiesp1,2 are introduced
above. Here we assume the scatterers to be short-range
We would like also to note that for the purely 1D case t
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probabilitiesPp8p actually describe the backscattering wi
p852p and thusPp8p[P(upu)d(p81p).

The second term on the left-hand side of Eq.~29! is the
so-called ‘‘out’’ term of the collision operator that can b
presented asD f p /tp, where

1

tp
[

P~ upu!
2p\

~30!

is the electron relaxation time due to elastic collisions. T
third term on the left-hand side of Eq.~29! is the ‘‘in’’ term.

The boundary conditions will be assumed to have the s
plest form, namely,

D f ux57L/250

for p.0 andp,0, respectively.
Assuming the elastic scattering to be weak we will u

iterations to solve Eq.~29!. In the first approximation
one neglects the elastic scattering. For the casep1.0 and
p2.0 one has, for the region2L/2,x,L/2 with regards to
the ‘‘zero’’ boundary condition atx52L/2,

D f 15S x1
L

2DAF 1

v2
d~p2p2!2

1

v1
d~p2p1!G . ~31!

Now we make the next iteration in the scattering pro
abilities Pp8p . We will have contributions proportional to
the ‘‘out’’ and ‘‘in’’ terms, respectively. The ‘‘out’’ contri-
bution naturally has the same structure as the perturba
and is quadratic inx:

D f 2
~out!~p!52

1

2S x1
L

2D 2 A

tp
F 1

v2
2 d~p2p2!2

1

v1
2 d~p2p1!G .

~32!

The ‘‘in’’ contribution is related only to negative value
of v ~because one deals with a backscattering of electr
with positive values of the initial velocity!. Thus the bound-
ary condition should be formulated forx5L/2 and one fi-
nally obtains

D f 2
~ in!~2p!5

A

2tFL22S x1
L

2D 2G@d~p2p2!2d~p2p1!#.

~33!

To calculate the current related toD f 2 one should multi-
ply this quantity byv and sum overp. For the contribution
of the ‘‘in’’ term one can change the variable in this integr
tion p→2p, and the term}(x1L/2)2 is seen to cancel ou
the contribution of the ‘‘out’’ term.

Thus

J5
eLSWm

2~\vq!2
~ f mw2\q/2

~F! 2 f mw1\q/2
~F! !E

0

` v
tp

3F 1

v1
2d~p2p1!2

1

v2
2 d~p2p2!G 2dp

2p\
. ~34!
e

-

e

-

on
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-

We write Eq.~34! in this form to emphasize that in this cas
the acoustoelectric current is proportional to the relaxat
rate rather than to the relaxation time as is the case in Re
Physically this means that here@as above—see Eq.~28!# the
acoustoelectric current is determined by a single elastic s
tering event.

Making use of thed functions in the integrand one ca
present Eq.~34! in the following final form:

J5
eSWmL

2p\3vq
2
~ f mw2\q/2

~F! 2 f mw1\q/2
~F! !LS 1

t1v1
2

1

t2v2
D ,

~35!

wheret1,25t(p1,2). The productsL/t iv i should be consid-
ered as small parameters of our theory.

It is interesting to compare our results with those obtain
by Shiltonet al.9 where the acoustoelectric current in the 1
channel~and the corresponding giant quantum oscillatio
effect! was examined. For the nonballistic casevt i,L
~wheret i is the relaxation time with respect to the impuri
scattering introduced in Ref. 9! the final result is proportiona
to t i ~i.e., to the mobilityM) and does not vanish for an
acoustic frequency. Such behavior is typical for a situat
described by the Weinreich relation.5 However, for the bal-
listic or ‘‘almost’’ ballistic situationvt i.L, a nonvanishing
current is also predicted in Ref. 9 for all the acoustic frequ
cies, which is in disagreement with our results. In our op
ion, this difference is related to the fact that in Ref. 9 t
inverse relaxation operator approximation was extended
the ballistic situation~namely, a concept of ‘‘escape rate
;v/L was used!. We believe that the very nature of th
ballistic transport may be not always compatible with the u
of this approximation. We stress that the pure ballistic tra
port is related to a boundary condition problem that, as w
shown, for the low acoustic frequencies results invanishing
of the current.

In summary, we have analyzed acoustoelectric curren
a nanowire under the quasiballistic conductance regi
While for comparatively large frequencies in the absence
electron scattering the current obeys a sort of relation de
mined by the quasimomentum conservation, for compa
tively low sound frequencies the current vanishes~in the ab-
sence of screening! despite the nonzero quasimomentu
transfer from the acoustic flux to the electrons. This parad
is shown to be related to the very nature of the ballis
transport where for small frequencies the sound wave
pears to be coupled only to electrons entering the struc
from one of the two reservoirs connected by the nanostr
ture, the total electron flux being fixed by the boundary co
dition. We have shown that the effect of weak scatter
leads to the restoration of the acoustoelectric current for
low-frequency limit. An explicit equation for the acousto
electric current is obtained for this case. In this case too
predict giant quantum oscillations of the acoustoelectric c
rent.

The existence of such an effect is, in essence, base
the conservation laws for the energy andx component of the
quasimomentum in the electron-phonon interaction. The
fore it should exist not only for the 3D bulk sound but al
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for the 2D surface acoustic waves interacting with a quan
wire near the surface of the sample~cf. with Ref. 9!. The
effect can be used for detection of the ultrasound, for inv
tigation of the electron spectrum in microstructures, a
~which could prove to be one of the most interesting ap
cations! for investigation of ‘‘background’’ scattering o
et

.
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the electrons in nanostructures.
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