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Acoustoelectric effect in nanostructures: Role of quasimomentum balance
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In a recent paper giant quantum oscillations of acoustoelectric current under gate voltage variation were
predicted for ballistic transport in nanowires. In particular, it was shown that the oscillations should exist
provided that the sound frequeneyexceeds a certain threshold valug and no acoustoelectric effect exists
for w<wy,. The result seems to be in contradiction with a simple energy and quasimomentum balance
considerations that in the bulk case lead to the so-called Weinreich relation for the acoustoelectric current. We
discuss this paradox in detail and prove it to be related to the very nature of ballistic transport. We develop a
theory of the acoustoelectric effect fas<wy, assuming that the transport is not purely collisionless.
[S0163-182608)07040-4

An acoustic wave propagating in a semiconductor creates Keeping in mind that the corresponding acoustic absorp-
a net drag of the electrons and hence a dc acoustoelectrion does not vanish fom<wy,, One sees a contradiction
currentJ or, if the circuit is disconnected, a dc acoustoelec-with the physical picture known for the acoustoelectric effect
tric potential differenceV. The acoustoelectric effect is a in the bulk structures. For the latter the acoustoelectric cur-
second-order effect in terms of the strength of coupling berent densityj is known to obey the well-known Weinreich
tween the sound and electrons. Recently this effect was comelation®
sidered for the interaction of an ordinary three-dimensional
(3D) traveling sound wave with one-dimensiordD) bal- ) I's
listic electrons: As is well known, the conductance of such J= M 2
an electron system is a steplike function of the Fermi level
positiort? (which can be monitored by the gate voltage Here M is the electron mobilityl" is the acoustic absorption
Each step corresponds to the inclusion of a new mode ofoefficient (1I' has units of length and S is the acoustic
transverse quantization to the conduction process and hasj@ensity. As is easily seelS is the total rate of absorption
hEight OfG0= 2e2/h. As for the acoustoelectric curreht in of the acoustic energy density by electrons and Th8&w is
the lowest approximation it has to be expressed in terms of ghe rate of quasimomentum transfer from the acoustic wave
time average of a bilinear product of the components of elastp the electrons per one second per unit volume. Thus the
tic displacements or their derivatives. The purpose of thjrag(acoustoelectriccurrent is directly related to the quasi-
present paper is to investigate theoretically acoustoelectrigjyomentum transfer and, in general, the acoustoelectric cur-
effect in nanowires where, apart from the electron-sound inrent is expected to exist whenever the ultrasound is absorbed
teraction, there is also a weak scattering of the conductioBy the conduction electrons and therefore the quasimomen-
electrons. tum transfer is nonzero.

The acoustoelectric curredtis a result of the drag of the  |n contrast, for the ballistic case considered in Ref. 1, for
electrons due to absorption of the ultrasonic phonons andhe sound of comparatively low frequencies, the drag current
due to the spatial quantization, it exhibits giant quantum osyanishes even if the acoustic absorption, and therefore the
cillation as a function of the Fermi level position that can bequasimomentum transfer from the acoustic flux to e|ectronsy
monitored by the gate voltage. This phenomenon is similajs nonzero. At first the result seems to be paradoxical. In
to giant quantum oscillations of the ultrasonic absorption in ayhat follows we show that the paradox is a direct conse-
magnetic field in bulk samples where due to a system of quence of the ballistic nature of the transport. We will also
Landau levels analogous oscillations can be observed in thghow that an inclusion of a weak additior{abackground”)
course of magnetic field variation. An important feature ofscattering leads to a nonvanishing drag current. However, if
the predicted effect in nanostructures is vanishing of thehe scattering is weak the Weinreich relation is not restored.
acoustoelectric current for acoustic frequencies below th@ne gets instead a new relation between the acoustic flux
threshold valué and acoustoelectric current densfiyee below Eqs(27),
(28), and(35)].

Following the approach used in Ref. 1, we begin by giv-
ing a brief review of the main results exhibiting the paradox.
We represent the ultrasound as a flux of phonons with the
Here m and w are the electron effective mass and soundsame frequency, and wave vectorj. The phonons are
velocity, respectively. assumed to propagate in the bulk of the sample, i.e., to be

wp=2mw/h. 1)
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three dimensional3D). The nanostructure in the form of a (p<0), respectively(Below we will consider a more gen-
quantum wire of a constant cross section is oriented alongral boundary conditioh.For p>0 (p<0), respectively,

the x axis. This means that in the course of electron-phonorthe solution of Eq(4) is

collisions thex component of the quasimomentum is con-
served whereaq, andq, are not because the electrons are
confined iny and z directions.

We will assume that the direction of phonon propagation
i.e., their wave vectoq, is also parallel to the axis. Then
the energy and quasimomentum conservation law takes t
form

Af(x)=(xiL/2)%I[f]. (5)

Here x=0 lies at the midpoint of a conductor of a total
Hgngth L. Af(x) is proportional to /. This is physically
natural as for the ballistic transport the nonequilibrium part
of the distribution function relaxes because the conduction
electrons leave the quantum wire in the course of their mo-
€n(p) +hwg=€,(p+£iq). 3 tion. The smaller thex componenet of the electron velocity,
the slower the relaxation. The explicit form of the collision
Here e,(p) = €,(0) + p?/2m is an energy of electron belong- term readswe assume that only transitions within one 1D

ing to a one-dimensionallD) subband(channel, n is the  electron band are allowed by the energy and quasimomen-
quantum number of transverse quantizatief{0) is the po-  tum conservation

sition of thenth level of transverse quantizatiop,is the x

component of electron quasimomentum, while the phonon do’ [ &2

frequency is wq=wq where w is the sound velocity. l[f]:j_pf a. W(f'— )N
p=mw—7%q/2, andp+#Aq=mw+#q/2 are the solutions of 2mh ) (2)?

Eqg. (3) where we have omitted the indexfor the phonon

wave vectorq. The quasimomentum transfer from phonons X[o(e'—e—hawg)+ (e’ —ethwg)],  (6)
to electronsf.q, is expected to bring about an acoustoelecyyhere N is the phonon distribution functiofwe have dis-
tric currentJ across the nanowire. carded 1 sinceN>1), W is the coefficient of electron-

The initial and final quasimomenta of electrons takingphonon interaction introduced in Ref. 1. For the deformation
part in such transitions are completely determined by(B.  potential interaction we have

Such transitions occur if the initial electron state is either

within a thermal layer near the Fermi lev#l £ w,<kgT) or A 2.2

within a layer of width# w, betweenu,—# wq a?nd wn (as- Wo=mA%q T pag, @)

suming thatfw >kgT), where u,=u—¢€,(0), u being whereA is the deformation potential constant for the phonon

the chemical potential. branch in consideration and is the mass density. For the
Consider, for instance, the case,>kgT. When in the  unscreened piezoelectric interaction

course of gate voltage variation both the initial and final

states appear occupied or unoccupied the acoustoelectric cur- - [47763 (g,a)]2
rent drops. With further change in the gate voltage an elec- @ o] 4.3 . )
tron with its initial state belonging to another subbamd p®q €qq

moves into the layer betweep, —fwq and u,, which  Here g, |, is the tensor of piezoelectric modufhich is
leads(provided that its final state is outside the layer, i.e., issymmetric in the last two indicgse;, is the tensor of dielec-
unoccupied to an increase in acoustoelectric current. Thistric susceptibility,»,(g,a) is the polarization vectofi.e., a
results in the giant quantum oscillation of acoustoelectricunit vector along the elastic displacementof the phonon

current as a function of the gate voltage. with wave vectorg, belonging to the branch. Index g
In the absence of sound, the distribution function of elecindicates the projection of a tensor on thelirection.
trons, fp,, is simply the Fermi functionf(F(e), where The total current is given by

e=€,(p) is the electron energy. Allowing for a weak inter-
action between electrons and the ultrasonic phonons results

in f,=f(P(e,)+Af, with Af satisfying the equation J=2e>, F %vAfnp(x), (9)
n —o0 &TT.
EINi whereAf,,,(x) is given by Eq.(5). The integrand in Eq.9)
v =] (4)  is proportional to electron group velocity=p/m whereas

Af,p(x) according to Eq(5) is proportional tov 1. As a
Here v=de,/dp is the electron velocitywhich does not result we have

depend explicitly on the quantum numbar. I[f] is the

electron-phonon collision term. We have dropped from the = dp 0 dp
right-hand side of Eq(4) the terme(dA ¢/ax)(af®/ap) JZZGLE fo m'[f]—ZeLE Lcm'[f]
(whereA ¢ is the time averaged electrostatic potentas it

gives no contribution to the current. We will drop the 1D > dp
subbandchannel index n wherever it will not create confu- +4EX; ﬂcmm]- (10
sion.

We start with the analysis of the simplest boundary con-The last term in Eq(10) vanishes since collisions do not
dition Af=0, which is satisfied atx=%L/2 for p>0  change the total number of electrons.
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The integrations in E(6) are in fact over the three com- relaxation time” mL/Aq appears to be of the order of the
ponents of the phonon wave vector. The 3D phonon distritime of flight of an electron across the nanostructure, as may

bution functionN, can be presented in the form

Ne=[(2)3S/Aw?k] 8 (k—q), (11

be indeed expected for the ballistic structures.

However, forig<2mw (or w<wy,) the situation dif-
fers drastically. Indeed, whethg<2mw and therefore both
mw—7%q/2 andmw+#q/2 are positive thes functions do

whereSis the sound intensity. For the electron distribution not contribute to the integral

function Af we have Eq(5) with

I=A[S8(p—Pp2)—&(p—p1)]. (12
Here
P1,=MW*7%q/2 (13
and
SWm
= ( mw haql2— fmw+hq/2) (14)

 (fwg)?

Inserting Eq.(11) into Eq. (6) and making use of Eq10)
one gets forhq>2mw

emSW
277}13 ZLE [f(F (6(_)_1““n)_f(F)(EH—)_Mn)],
(15

where €)= (%.g/2=mw)?/2m, and we remind thag,= u

—€,(0).
Taking into account the-function structure of the colli-

[ i

in Eqg. (16). So we are left with

an

T (18

e [

coll

In view that the integra(18) should vanish because the col-
lisions conserve the concentration of electrons, one sees that
the acoustoelectric current, which is proportional to the same
integral, should also vanish.

Yet the rate of quasimomentum transfer in this case is
given by

(19

&P = dp Aqg
5725 | e

One sees that this quantitglirectly related to the number of

sion term[Eq. (12)] one can check explicitly the fact that the acoustic quanta absorbed by electjodses not vanish, un-
electron-phonon collisions conserve the number of electrongke the current. Thus we arrive at a contradiction with the

an
ot

=2§n) J%mm]

coll
>dp 0 dp
=§ LEWH; f_wﬁm]:o. (16)

Since the integrand of E@10) is proportional to the sum
of delta functions one can write

: (ﬁ%'“]—ﬂi—i'“])
i |z

dpp [ I 1 9P
2hq at

physics of quasimomentum balance discussed above. The
resolution of the contradiction is related to the very nature of
the ballistic transport.

On the one hand, fow<wy,, the electron-phonon colli-
sions do not change the direction of electron quasimomen-
tum. Thus only the electrons penetrating into the wire from
one of the reservoirgsay, the “left” one) are coupled to the
phonons while those penetrating from the “right” one
are insensitive to the sound. Therefore we have the bound-
ary problem formulated only for the “left” boundary at
x=—L/2. On the other hand, the total number of the elec-
trons passing through this boundary is evidently not affected
by the acoustic wave. Therefore, the current of the “left”
electrons is completely controlled by the corresponding
boundary condition keeping it equal to a countercurrent of
the “right” electrons.

This situation can be described in different words. The

where 9P/t is the overall rate of quasimomentum transfertransitions due to the absorptions of acoustic quanta are al-
from the phonon flux to electrons. Correspondingly, one getfowed only between the electrons with positive velocities
the following relation between the acoustoelectric curreniy>0). The contribution of each such electron to the current

and the rate of quasimomentum transfer to the electrons:

eL P

is, on the one hangyroportionalto v. On the other hand, it

is proportional to the time it spends within the quantum wire,
which is inversely proportionalto v. As a result, it isv
independent and the absorption of ultrasonic quanta does not
change the current although it enhances the total electron

This is a sort of Weinreich relation for 1D electrons quasimomentun®.

(and 3D phononswhile the factoreL/%q plays a role of the
“effective mobility.” As #g/m is of the order of the velocity

While the total current vanishes, the acoustic wave does
affect the local concentration of the electrons. Indeed, as can

of electrons interacting with the acoustic wave the “effectivebe obtained from Eq5):
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L\ SmW [/mw\2 1]t As is mentioned above, positive valuespfiive no con-
Anz( + E)—z ( ) - Z} tribution to the acoustoelectric current. The contribution of
ha(fhwg) p<O0 is given by
X 2 [FF(e) =) =1 F(eD = upl. (20 o 2dp
! J=e —Af_
— 27Th p

Here we neglect the screening effects. If the latter were
strong and supported the neutrality of the system, one woultwe will assume that only one 1D electron band can contrib-
expect a formation of the screening electrostatic field whichute to the acoustoelectric current and will drop summation
in its turn, would create a nonzero acoustoelectric current. over n in such expressionsMaking use of Eq(26) we get

If, in addition to the interaction with the acoustic wave,
one takes into account other scattering processes where the wm R, R,
conduction electrons take part one will get a nonzero acous- J= |_—3—2—(f —- 2) :
toelectric current. To begin with, we will consider the sim- Thw 1-R; 1-R;
plest form of elastic processes, i.e. the reflection of electrons (27)

at both ends of the quantum wiref. with Ref. 6 where Tpjs equation represents giant quantum oscillations of the
scattering by a long-range potential due to the edges of thgcoustoelectric current whose amplitude is smaller than in
channel has been consideyetihe reflection coefficients will {he collisionless casiEq. (15)] by the factor

be assumed the same at both ends of the wire and will be
denotedR; andR, for p; andp,, respectively. The role of

(F)
mw—hq/2~ fmw+hq/2)

such processes is particularly interesting fog/2mw<1 Ry _ R,
where without these processes one getd. Let us turn to 1—R§ 1—R§'
this case. In other words, let us assume thagnd p, are ) ) . . .
positive. It is also interesting to consider an asymmetric case where
The transport equatiofd) can be now rewritterjwith the reflection coefficient for the electrons wiph<O is zero
account of Eq(12)] as at x=—L/2 and is nonvanishing and dependent only at
x=L/2. Then one has
2o _ AL a(p—pa)— o(p—py)] (2D) swW
v = P—P2)—o(P—P1)]. € m
24 J=L ,n,hSqu(fﬁn\)N—thZ fowsng2) (Ri—Ra), (28

The boundary condition at=—L/2 now has the form ) _
whereR; , are the values of the electron reflection coeffi-

_ cients forx=L/2 and quasimomenia, andp,, respectively.
Af,=RAf_,, (22 i
In the same manner one can consider a more general case
so that the solution of Eq21) is where the scatterer has some intermediate coordirgte

within the quantum wire.
m Thus we see that even additional scattering of a simplest
> EA[ S(p—p2)—8(p—p1)]- form resul_ts in an acoustoelectric current though th_e Wein-
23) reich relation in |ts_usual fo_rm dqes not h_old for thls case.
We also have physical considerations that in a nonlinear case
Below we will assume thap>0, so that the distribution where the sound intensity is so high that there is no direct
function for the negative values gi we will denote by proportionality between the intensity and acoustoelectric cur-

Af=R(p)Af_,+| x+

f(—p). rent one can expect the existence of acoustoelectric current
Now, the boundary condition at=L/2 has the form even foriqg<2mw. The nonlinear case, however, deserves a
special treatmenfcf. with Refs. 7 and 8
Af_=RATf.. (24) Let us now consider another limiting case where the num-
P P : ; ; A
. . ber of scatterers is large enough while their spatial distribu-
Making use of Eq(23) one can write Eq(24) as tion along the channel is uniform, which corresponds to the

standard expression for the collision integral. The transport

m equation(4) can be now rewrittefiwith account of Eq(12)]
Af-p=R2Af-p—RL5A[6(p—pz)—5(|o—|o1)], as
(25
so that oAt f dp’ dp’
v TANP) | 5 Pop— | 5 2Py pAf(p")

m =A[d(p—p2)—d(p— . 29

At 1" 25(p+pl)l [8(p—p2)—8(p—py)] (29
P 1_R 1-R (26) Here P/, is the probability of elastic scattering from

statep to statep’, while the quantitieg, , are introduced
whereR; ;=R(p; 7). We remind that\f_; is not perturbed above. Here we assume the scatterers to be short-range ones.
directly by the acoustic wave. We would like also to note that for the purely 1D case the
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probabilitiesP,,, actually describe the backscattering with We write Eq.(34) in this form to emphasize that in this case

p’=—p and thusP, ,=P(|p[) 6(p’ +p). the acoustoelectric current is proportional to the relaxation
The second term on the left-hand side of E2P) is the rate rather than to the relaxation time as is the case in Ref. 5.

so-called “out” term of the collision operator that can be Physically this means that hefas above—see E§28)] the

presented aaf,/7,, where acoustoelectric current is determined by a single elastic scat-
tering event.
1 P(p) Making use of thes functions in the integrand one can

=2k (30 present Eq(34) in the following final form:
Tp T

is the electron relaxation time due to elastic collisions. The

third term on the left-hand side of ER9) is the “in” term. eSWmL ® ® 1 1
The boundary conditions will be assumed to have the sim- J= ?(fmwthlz_ frwsng2) L P ——
plest form, namely, T Wq e (35

Aflc-z12=0 where 73 ,= 7(p1 5. The productd./7v; should be consid-

for p>0 andp<0, respectively. ered as small parameters of our theory.

Assuming the elastic scattering to be weak we will use Itis interesting to compare our results with those obtained
iterations to solve Eq.29). In the first approximation by Shiltonet al® where the acoustoelectric current in the 1D
one neglects the elastic scattering. For the qase0 and channel(and the corresponding giant quantum oscillations
p,>0 one has, for the region L/2<x<L/2 with regards to  effec) was examined. For the nonballistic case;<L
the “zero” boundary condition ak=—L/2, (where7; is the relaxation time with respect to the impurity

scattering introduced in Ref) ¢he final result is proportional
1 1 to 7 (i.le., to the mobility M) and. do.es not vanish for any
—5(p—p,)——(p—py)|. (31  acoustic frequency. Such behavior is typical for a situation
U2 U1 described by the Weinreich relatiSrHowever, for the bal-
] o ) listic or “almost” ballistic situationv 7;>L, a nonvanishing

Now we make the next iteration in the scattering prob-¢yrent is also predicted in Ref. 9 for all the acoustic frequen-
abilities P,,,. We will have contributions proportional 10 ¢jes, which is in disagreement with our results. In our opin-
the “out” and “in” terms, respectively. The “out” contri- o this difference is related to the fact that in Ref. 9 the
bution naturally has the same structure as the perturbatiopyerse relaxation operator approximation was extended to
and is quadratic irx: the ballistic situation(namely, a concept of “escape rate”

~v/L was usell We believe that the very nature of the
2 1 ballistic transport may be not always compatible with the use
X+ E) 7—{7 o(p—p2)— 75(9— P1) |- of this approximation. We stress that the pure ballistic trans-
pL¥2 ! 32 port is related to a boundary condition problem that, as was
shown, for the low acoustic frequencies resultvamishing

The “in” contribution is related only to negative values ©f the current _ .
of v (because one deals with a backscattering of electrons N summary, we have analyzed acoustoelectric current in
with positive values of the initial velocily Thus the bound- & nanowire under the quasiballistic conductance regime.

ary condition should be formulated far=L/2 and one fi- While for comparatively large frequencies in the absence of
nally obtains electron scattering the current obeys a sort of relation deter-

mined by the quasimomentum conservation, for compara-
) tively low sound frequencies the current vaniskieshe ab-
}[5(p—p2)—5(p—p1)]. sence of screenlr)gdesplte the nonzero quasimomentum
transfer from the acoustic flux to the electrons. This paradox
(33 is shown to be related to the very nature of the ballistic
_ transport where for small frequencies the sound wave ap-
To calculate the current related &, one should multi-  hears to be coupled only to electrons entering the structure
ply this quantity byv and sum ovep. For the contribution  from one of the two reservoirs connected by the nanostruc-
of the “in” term one can change the variable in this integra-yyre, the total electron flux being fixed by the boundary con-
tion p— —p, and the term(x+L/2)? is seen to cancel out gition. We have shown that the effect of weak scattering
the contribution of the “out” term. leads to the restoration of the acoustoelectric current for the
Thus low-frequency limit. An explicit equation for the acousto-
electric current is obtained for this case. In this case too we
eLSWm - predict giant quantum oscillations of the acoustoelectric cur-
J= —(fﬁv—ﬁqlz_fgﬁ\)/wm/z)f — rent.
2(fiwg)? 0 7p The existence of such an effect is, in essence, based on
1 1 2dp the c_onservation Iaws for the energy andornponer_n of the
X| —58(p—p1)— _zg(p_pz)}__ (34  quasimomentum in the electron-phonon interaction. There-
U1 U2 mh fore it should exist not only for the 3D bulk sound but also

Af]_: 2

L
X+ —)A

1
Af<2°uD(I0)=—§

L
X2

. A
(N _ny=_|12_
AfV(—=p) 27{'—
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for the 2D surface acoustic waves interacting with a quantunthe electrons in nanostructures.
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effect can be used for detection of the ultrasound, for iNVeSzcrint and providing valuable remarks. V.L.G. and V.I.K. are

tigation of the electron spectrum in microstructures, andpleased to acknowledge the support for their work by the

(which could prove to be one of the most interesting appli-Russian National Fund of Fundamental Rese&@tant No.
cationg for investigation of “background” scattering of 97-02-18286-a

1V.L. Gurevich, V.B. Pevzner, and G.J. lafrate, Phys. Rev. Lett. ’P.E. Zil'berman, Zh. Eksp. Teor. Fig0, 1943(1971) [Sov. Phys.

77, 3881(1996. JETP33, 445(1972)].
2R. Landauer, IBM J. Res. Detl, 233(1957; 32, 306 (1989. 8Yu.M. Gal'perin, V.D. Kagan, and V.l. Kozub, Zh. Eksp. Teor.
3Y. Imry, in Directions in Condensed Matter Physieslited by G. Fiz. 3, 1083(1972 [Sov. Phys. JETRB6, 798(1972].

Grinstein and G. Mazenk@Norld Scientific, Singapore, 1986 9J.M. Shilton, D.R. Mace, V.T. Talyanskii, Yu. Galperin, M.Y.

p. 101; M. Bitiker, Phys. Rev. Lett57, 1761(1986. Simmons, M. Pepper, and D.A. Ritchie, J. Phys.: Condens. Mat-
4V.L. Gurevich, V.G. Skobov, and Yu.A. Firsov, Zh. Eksp. ter 8, L337(1996. See also H. Totland and Yu. Galperin, Phys.

Teor. Fiz.40, 786 (1961) [Sov. Phys. JETR3, 552(1961)]. Rev. B 54, 8814 (1996 where giant quantum oscillation of
5G. Weinreich, Phys. Rewl07, 317 (1957. acoustoelectric current in nanostructures brought about by a sur-

Frank A. Madg and Y. Galperin, Phys. Rev. 86, 4028(1997). face ultrasound wave has been treated.



