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The scattering-matrix approach to phase-coherent transport is generalized to nonlinear ac transport. In
photon-assisted electron transport it is often only the dc component of the current that is of experimental
interest. But ac currents at all frequencies exist independently of whether they are measured or not. We present
a theory of photon-assisted electron transport which is charge and current conserving for all Fourier compo-
nents of the current. We find that the photocurrent can be considered as an up and down conversion of the
harmonic potentials associated with the displacement currents. As an example explicit calculations are pre-
sented for a resonant double barrier coupled to two reservoirs and capacitively coupled to a gate. Two
experimental situations are considered: in the first case the ac field is applied via a gate, and in the second case
one of the contact potentials is modulated. For the first case we show that the relative weight of the conduction
sidebands varies with the screening properties of the system. This is in contrast to the noninteracting case in
which one finds that the relative weights are a universal function determined by Bessel functions. Moreover,
interactions can give rise to an asymmetry between absorption and emission peaks. In the contact-driven case,
the theory predicts at zero bias a photocurrent proportional to the asymmetry of the double barrier.
[S0163-182698)03644-3

[. INTRODUCTION band peaks depend on the screening properties of the system.
Since in nonstationary conditions charge accumulation oc-
Photon-assisted tunneling has been of interest since thaurs and causes induced fields, a self-consistent treatment of
work of Tien and Gordohand TuckeP Carrier transmission the electron-electron interactions is important. The issues are
through barriers with oscillating potentials has been analyzedimilar for theories and experiments which investigate
to find the traversal time for tunnelifgRecently photon- photon-assisted process not in the dc current but in its
assisted tunneling has found renewed interest in the field dfuctuations®>?® Here we emphasize mainly the average cur-
mesoscopic physics stimulated by theoretical work byrent and address the fluctuation spectra only briefly in the
Bruder and Schoellérand experiments on quantum dots by Appendix.
Kouwenhoveret al.® and by experiments on superlattices by A convenient description of conduction processes in me-
the group of Allenet al®=8 Typically of interest®’~?%is the ~ soscopic systems which incorporates the role of contacts and
zero-frequency current component induced in response to grermits us to investigate directly the phase-coherent trans-
oscillating voltage. Theoretical treatments of photon-assistechission from one reservoir to another, is the scattering-
electron transport often assume that the driving field ismatrix approaci’?® The description of linear ac conduction
known and equals the external field. However, the long4in response to oscillating potentials and consideration of the
range Coulomb interaction will screen the external field andong-range Coulomb interaction has already been discussed
generates an internal potential that can be quite differertboth for the case of zero-dimensional syst&hi$and for
from the applied potential. Similarly, since it is the dc com- extended systems for which one needs to discuss the entire
ponent which is measured, one might think that displacemerpiotential landscap&3? A review of this subject can be
currents play no role. However, the dc component is a confound in Ref. 33. Here we generalize the scattering-matrix
sequence of nonlinearities in the conduction process. Clearlgpproach to take into account the nonlinear dependence on
in such a conductor, the current has not only a dc componenascillating potentials. First we consider the response of the
but also currents at the frequency of the oscillating voltageelectrons to a potential applied only to the contacts of the
and its higher harmonics. Not only are the dc currents consample, assuming the internal potential is kept fixed. The
served but also the currents at the oscillation frequency andesponse to the total potential will, in a subsequent step, be
at its higher harmonics. Consequently a theory is needed ioalculated self-consistently in random-phase-approximation
which all frequency components of the current are treatedRPA). The resulting charge and current conserving theory
self-consistently. Such a theory is developed below. It leadsvill be used to investigate the photoinduced dc current in a
to the conclusion that the photocurrent is induced by a nonresonant tunneling barrier. As function of Fermi energy and
linear up and down conversion of the electric fie[@eten-  frequency we find large differences between the induced in-
tials) associated with the displacement current. Bessel fundernal potential and the external applied potential, showing
tions are a hallmarkof the discussion of photon-assisted that long-range Coulomb forces are important for photon-
tunneling: For noninteracting theories the relative weights ofassisted tunneling in mesoscopic systems. Furthermore, in-
the sideband peaks are determined by Bessel functions aneractions can give rise to an asymmetry between absorption
are universal. However, in the self-consistent theory disand emission peaks, as well as changing the distance be-
cussed below we find that the relative weights of the sidetween peaks from a multiple of photon quanta to a distance
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depending on screening properties. tween currents and voltages up to second orde¢.iThe
Our discussion is complementary to works which modelexpansion coefficients are conductancggg,(nw,mw)

interactions based on a Hamiltonian suitable to describevhich give the current at contaet in response to a voltage

Coulomb blockade effects. The work of Bruder andVg(nw) at contactB at a frequencynw and a voltage a

Schoellet also considers coupling to a gate and also consideontacty at a frequencynw. The overall dc current is

ers displacement currents. In principle, all the questions ad-

dressed here can be investigated within such a framework. 1,(0)=19T{V4(0)}]+1270:{V4(0)}], 2

The scattering approach used here has the advantage that it is

not limited to the tunneling regime but can also be applied to . _ ) *

conductors which are strongly coupled to reservilistic IETO{V4(0)}1= % FapL @, = @V 0} V(@) V5 (@).

or metallic diffusive wires, et¢. The RPA treatment as it is 3

formulated below does have the disadvantage that it is not , d : .
appropriate description in the case when charge quantizatizﬂhe first term of Eq(2), I_ﬁ{vﬁ(o)}]’ s the direct curr_ent
that would be measured in the presence of purely static volt-

effects(Coulomb blockadeare important. However, its con- . X
ceptual clarity makes the RPA treatment a useful point of98SVs(0), =12, ... applied to the different contacts of
reference for comparison of different theoretical discussions® Sample and capacitors. In the following, for the direct
The basic view taken here is the same as that used for tH&/"ent, we retain the full dependence to all orders in the
discussion of dc conductané®sind ac conductand@ What ~ Static applied voltages. We indicated the full set of voltages
is needed is the connection between currents at the contadfdth the help of curly brackets/,4(0). If the dc current
of the structure and the voltages at these contacts. Either the{Vs(0)}] is expanded in powers of the applied voltage
currents or the voltages can be controlled. As in the discusthen the terms linear in the applied voltages determine the
sion of the ac conductance it is necessary to consider néic-conductance matrig,;(0) and the terms quadratic in the
only the mesoscopic conductor itself but all nearby metallic@Pplied voltages are the dc-rectification conductances
bodies(gates and capacitorsvhich interact via long-range Jag,(0), discussed by Christen and one of the autfidfs,
Coulomb forces with the mesoscopic conductor. We assumwhich determine the leading order nonlinearity of thel e¢
that the Conductor and the gates are Connected to good quﬂharacteristié.G In addition to these contributions to the dc
ity metallic contacts in which screening is efficient. As acurrent which characterize the purely stationary transport
consequence the interior of the metallic contact is chargéhere is now also a contribution to the dc current due to the
neutral. The electrostatic potentisl(r,t) and the electro- Pphoton-assisted processé§] 0;{V4(0)}]. In particular, to
chemical potentiak(t) oscillate in synchronism to keep the second order in the applied ac voltageg(w), carriers
Fermi energyEg(r)=pu(t)—eU(r,t) (the chemical poten- Which emitand reabsortvirtual) photons are determined by
tial) time independent. bA the dc photoconductanag, s, w, — w;{V(0)}] which de-
voltageV(t) applied to the contact pends in general also on the dc voltayg$0). Thefirst two
can thus be viewed both as a change in the electrochemicargumentse and —w indicate the frequencies of the two
potential away from its equilibrium value or as a change indriving voltages which give rise to this photoconductance.
the conduction band bottofh.Let « label all the relevant These photoconductance coefficients represent an up and
contacts. The current at contaetcan be written in terms of down conversion of the first harmonic voltages.
its Fourier components,(nw). Heren=0 is the dc compo- The current at the frequency of the oscillating potential is
nent of the currents, anu= =+ 1 are the Fourier components in general composed both of a particle current and of a dis-
at the driving frequency. Nonlinearities lead to higher har-Placement current. To be brief we call this current simply the
monicsn=+2.3, ... . Similarly, the voltage at contact displacemgnt current. To linear order in our expansion pa-
has the Fourier componenis,(nw). We emphasize that the rameter it is given by
voltage of a contact is only a well defined quantity if local
electric fields deep inside the contact vanish. There must, l (@)= 2 Gapl 0i{V,(0)} V(). 4
therefore, exist a Gauss volume which encloses the mesos- B
copic conductof® The electric flux through this Gauss vol-
ume vanishes. As a consequence the total ch@ngside the
volume is conservet? Charge conservation, and current
conservation, apply to each Fourier component separately. |
particular, we must have that the total charge within the
Gauss volume vanishes at each frequency,

Here expandingy,gl »;{V,(0)}] in the dc voltages yields

the equilibrium admittanc® of the mesoscopic structure

%aﬁ(w) and the dc—ac rectification conductamgg;,(w;0).
The current at @ is

la(2w>=§ 9l 20;{V,(0)}1V4(2w)

Qu(Nw)=0. (1)
A theory for which this holds gives currents which depend )
ultimately only on voltage differences. We call such a theory + Bzy Japyl @, 0 {V4(0)}IVe(w)V (0) (5)

of electric conductance gauge invaridhiTo be definite let

us introduce an expansion parameteiVe take the Fourier determined by a  second-harmonic  conductance
components of the first harmoni,(w) proportional toe  Jap[2@;{V,(0)}] and a nonlinear up-conversion conduc-
and expand the currents in powers @f The second har- tanceg,g, w,0;{V0)}] whereby a second-harmonic cur-
monic voltages/,(2w) describing two-photon processes arerent is generated due to a nonlinear combination of first-
then proportional ta?>. Below we write the relationship be- harmonic voltages. We emphasize that the expansion given
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C, C, Next, consider the dc photocurrent generated by this arrange-
ment
\Y%
1 \& 1P70) = guggl @, — @ {V4OH[Vg(@)[2. (9
&
Using Eq.(8) to eliminate the gate voltagé,(w) in Eq. (9)
we find
Vv, 1 gugol @, — w;{Vz(0
i 10)= — ool L )f]lla(mlz. (10)
FIG. 1. Conductor connected to two contacts and coupled ca- w® [Cuglwi{Vg(0)}

pacitively to a gate.

Thus to second order in the oscillating voltages, the photo-
here can, in principle, be carried further to an arbitrary ordeccurrent is directly related to the displacement current. The
in €. Our task is to find explicit expressions for tf@onlin-  photocurrent is proportional to the square of the displace-
eal ac conductances defined in EG®)—(5). It is useful to  ment current. This relation suggests that since the displace-
state first a number of general properties of these condugnent current is not a property of a noninteracting system but
tances. is in an essential way determined by the long-range Coulomb

Current conservation holds for each Fourier componeninteraction, so similarly, the long-range Coulomb interaction
separately. Furthermore, since we can break off the expamust play an essential role in determining the photocurrent.
sion at any order, current conservation restricts each type dfote that the photoconductance which enters(E). is also
conductance coefficient in Eq§2)—(5). An additional re- proportional tow? and the photocurrent given in E¢LO0)
striction imposed on these conductance coefficients arise®erefore has a well-defined zero-frequency limit. Now we
due to the fact that a voltagé(nw) which is applied to all proceed to find explicit expressions for the nonlinear conduc-
contacts simultaneously cannot have a physical effect. As tances introduced above.
consequence the conductances obey the sunrtdfes

Il. OSCILLATING CONTACT POTENTIALS:
> gag(kw)=§ Jup(jw)=0 (6) EXTERNAL RESPONSE
[e3

We consider a conductor with voltages which oscillate in
time applied to the contacts of the sample or to nearby ca-
pacitors. First we evaluate the response of noninteracting
> gagy(kw,jw)=2 Gapy(ko,j0) particles with the internal potential kept fixed. Only the re-

@ B sponse to the total potential has physical meaning, however,
these results are needed in the next section for treating the
=> apy(ko,j)=0. (7)  problem with interactions.
Y The current operator for current incident in contadn a
esoscopic system can be writteri®as

for k,j e V. Similarly, the second-order coefficients obey

) . m
These sum rules guarantee that the final result will depend on
voltage differences only.

Equations(2)—(5) are completely general and are appli- PR EJ f A T

cable to any phase-coherent multiterminal conductor. We (V) h dE | dE'[a,(E)a.(E")
now discuss these general relations for the case of a two- A (BTt
terminal conductor capacitively coupled to a gate, a situation ~bl(E)b,(E")]e/E-E)/A (1)
sketched in Fig. 1, in the limi€,;=C,=0. This simple ar-
rangement permits us already to point to the connection b&yherea, andb, are vectors of operators with components
tween photocurrents and displacement currents. We are i andb,,. Herea,, annihilates an incoming carrier in

terested in the photocurrent generated by a sinusoida : ~ o . .
channeln in lead « andb,,, annihilates an outgoing carrier

oscillation of the voltageVy(w) at the gate. First consider . . ; ; .
the displacement current. The oscillating gate couples witf? channehn in lead«. Equation(11) applies for frequencies

the conductor in a purely capacitive manner. Therefore, théE —E')/% small compared to the Fermi energy.

Jugl @:{V4(0)}] describe capacitive currents and we can The incoming and outgoing waves are related.by the scat-

write g,ql @;{V3(0)}]= —iwC,g[ w;{V4(0)}]. We empha- tering matrice® Sxp Via, ba:E_Bsaﬁa_B. In a multichannel

size that this is a global transport coefficient which connectgonductor the matrix,z has dimensiond, XN for leads

the voltage at one contact to the current at another contactith N, andNg channels. Here, and in the following, greek

As a consequence, the capacitance coefficients are not ofiadices run over all contacts of the conductors.

purely geometrical nature but can be strong functions of Letus now suppose that a potential variation is applied to

magnetic field and the dc gate voltage’3** Thus, the reservoira. The potential iseU,(t) =eV,(w)coswt, where

current at contactr is determined by V,(w) is the modulation amplitude. With this potential the
solution to the single-particle Schitimger equation at energy

l(0)=—10Cg[ w{Vs(0)}Vy(w). (8) Einais
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i - ev,\ erage can be found by evaluating averages of &pez
E) = . iEt/h il ot A
Van(XGE)=dan(xE)e .Zx J'( ﬁw)e ' —lAw) as for an equilibrium system. Replacing thg(E
(12) —l% w) by their equilibrium statistical expectation values we
find

where ¢, n(X;E) is the wave function describing an incom-

ing (or outgoing carrier in contacte in channeln in the e

absence of a modulation potential, addis the Ith order lo(t)= HJ’ dE% TrA,(a,E.E+(k=Dfiw)
Bessel function. Thus the potential modulation leads for each ”

state with central energk to sidebands at enerdy+17 w ev, ev, kDot

describing carriers which have absorbed0 modulation xJ 7o 7% € “f(E-lho),
guanta or have emittdd<0 modulation quantd w. Here we

have assumed that all potentials oscillate in phase. If one (16)
allows for a different phase, for each contactx that will where f (E)=f(E—u,) is the Fermi distribution function

il - : . : :
add a terme” "%« to each term in the sum in the wave func- for contacty. Here w, is the electrochemical potential of
tion above. Below, for simplicity, we assume that all contactreservoiry. In Eq.(16) the trace is over all channels in lead

potentials are in phase. «. Taking into account the symmetry properties of the cur-

We now suppose that the modulation potential exists onlyent matrix under exchange of the energy arguments it can be
far away from the conductor and that the modulation potenshown that the current given by E(L6) is real.

tial vanishes as we approach the conductor. Thus there is a grom Eq.(16) we find that for the dc current only the

transition region from a portion of the lead in which the terms| =k contribute. In this case, as is seen by looking at
potential is oscillating and a portion of the lead close to theEq_ (16), the energy arguments of the current matrix are
conductor where we initially assume that the potential is timeequa|_ The trace of the current matrix at equal energy argu-

independent and equal to the equilibrium potential. We asments and equal lower lead indices are just transmission and
sume that in this transition region the potential varies slowlyyefiection probabilities We  define T,.(E)=
: wy

compared to the Fermi wavelengtidiabati¢’) such that it —TrA, (a,E,E). For unequal indicesr and y this is the
does not give rise to additional scattering. Now we need theansmission probability for carriers incident in legdo be
wave function in the time-independent potential region. This,,nsmitted into contact. If also a=1y the trace of the
leads to a matching problem. If the transition is adiabatic &, rent matrix is equal to the probabilitg,, of carriers
state with energyE in the conductor obtains a contribution ;i iqent in leadw to be reflected back into lead, minus the
from all reservoir states with central enery-1iw due to  ,mper of quantum channels, at energyE. In this nota-

its sideband of amplitudé,(eV, /fw) at energyE. In the  yjon *harticle conservation in the scattering process is ex-
notation of second quantization the annihilation operator Obressed by the sum rulE,T,,=0. For the dc current we

Yo ay '

an incoming state close to the conductor is find thus
Ben(B)= 3 &) (E—1hi0))| 13 1 0=- [ S T.E7 )t e
a,n = Gan N\Zo ! L(0)= n = af( B T N ).
up to corrections of the order éfw/Er which arise from the 17

difference of the wave vectors of the sidebands Now we expand in this expression the Bessel functions in
=\2m(E+1%w)/% and the wave vector at enerdy The  powers of the applied oscillating potentidls . The zeroth-
current operator Eq11) is expressed in terms of the incom- order terms give the dc curreh‘ic'(o)[{vﬁ}] that flows as a
ing (and outgoing states of the stationary time-independentconsequence of stationary differences in the applied poten-
scattering problem. Equatiofi3) can now be used to find tials. We use a superscript (0) to denote a response to an
the current operator in terms of the reservoir stafes. The external potential only. Since the potential in the interior is
current operator becomes ’ kept fixed thisl-V characteristic is not gauge invariant. A
discussion is provided in Ref. 29 and by Christen and one of

. e o the authors® The next term is second order in the ampli-
(D)= ﬁf dEf dE’E E (a’); tudes of the oscillating voltages. For identifying conductance
o k== coefficients recall that the applied potential is of the form
eV eV, , V,(1)=3V (w)e'”'+3V}(w)e™®", with the amplitudes
x(E—Iﬁw)J|(ﬁ—7)Jk<h— g/ (E-ENUA taken as real. Thus, from the calculated responé,(t) we
@ @ need to extract the response to the Fourier amplitudes. These
XA 5(a,E E,)éfg(E, —Khw) (14) second-order terms are determined by the photoconductances
’)/ 1 1 1
0 .
where we have introduced thiirrent matrix® apyl @, — @i{V(0)}]
3
! ! e
Ao EE)= 8,580 10—SLAE)S,,(E).  (15) — = o, 5| GETAENVAO)]

It is assumed that the modulation imposed on the system
is so slow that the contacts can still be regarded as being in a X fp(Ethw) T T5(E-fiw) =21 4(E) _
dynamic equilibrium state. Thus the quantum statistical av- (hw)?

(18)
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The photoconductanc@g‘gy[w,—w;{v5(0)}] determines pends also on the phases of the scattering matrix. Expressed
the zero-frequency current in contaat in response to a ina more physical language, the displacement current is sen-
second-order voltage oscillaticmé(w) at contactB. Note sitive to the densities of carriers, expressed here via energy
that the external photoconductance generated by bilinedterivatives of phases. Below we find that the self-consistent
productsV 4(w)V,(w) with 8 unequal toy vanishes. Instead p_hotocurr_ent contains in fact not only transmission probabili-
of a second-order difference in Fermi functions we can exiies but, like the displacement current, also information on

press the photoconductance as a second-order difference 6 charge accumulated in the conductor. _
transmission probabilities Before considering the effect of screening, we discuss the

relation of the external response to previous work. A discus-

0 e’ sion of shot noise in a conductor with applied ac voltages can
Gupylo—@]=— 5B7Ff dEf4(E) be found in the Appendix.
y Top(E+hiw)+T,5(E—frw)—2T ,4(E) A. Two-terminal conductors
(how)? ' We consider the external response for the two-terminal

19 conductor. The conductor might consist of a single tunneling
barrier or might be a resonant double barrier connected on
For simplicity we have not explicitly indicated the depen- either side to a large contact. The results we obtain from the
dence on the stationary potentiaiss(0). Equation (19) external response described above look very similar to the
shows clearly that we obtain an externally induced photocurresults of Tien and Gorddrand Tucker. There is, however,
rent only if the transmission probabilities through the samplean important difference. The results presented in this section
are energy dependent. Thus, for a quantum point contact @re not gauge invariant since in our approach the potential is
for a quantized Hall conductor, where we encounter situaheld fixed also in the contacts near the barrier. As a conse-
tions characterized by transmission probabilities which areuence, different but physically identical configurations of
either zero or one, there is no externally induced photo curvoltages lead to different results. Later we will show how
rent. This form of photoconductance also makes it evidenthese results change when screening is taken into account,
that current conservation is satisfied due to the unitarity ofor the specific example of a resonant tunneling barrier. On
the scattering matrix: The sum of all photoconductances ovethe other hand, for a single barrier, as will be discussed
all contacts adds up to zer,,g'%),[ w,— ]=0. However, briefly, the results by Tien and Gordon and Tucker do allow

[e3

similar to the dcl-V characteristic these conductances ared gauge-invariant interpretation.

not gauge invariant. The sumﬁgﬁf’ﬁ)y[w,—w] does not van- First we consider the zero-frequency photocurrent which
ish and consequently the photocurrent evaluated with thes@/ises if one of the contact potentials is oscillating and the
expressions depends not only on voltage differences. other is kept fixedV;(w)=V(w) andV,(w)=0. For sim-

Let us next consider the displacement current. The currerRliCity we assume that the scattering matrix has been diago-

at the frequency is determined by the terms in EL6) for ~ Nalized such that transmission through the barrier is de-
whichk—1=1 and it is given by scribed by a transmission probability,(E) and a reflection

probability R,,(E) for the mth eigenchannel. Using E¢L7)

e and wusing the sum rule for Bessel functions,
Ia(w)=ﬁf dE; TrA,(a,E.E+fo) 3131k (X) 31 (X) = o, We find
eV eV __® L[ eV(w)
Linearizing the response to an oscillating external potential X[f1(E+1hw)—fa(E)]. (22

yields the admittance previously foufit The time-dependent current was investigated by Tucker for

o2 the same geometR/Using Eq.(16) we find
ggog[w;{vy(O)}FFf dETrAggle,E,E+Aw;{V,(0)}]

BT E+ho)

o (21)

|l(t):; TrA,,(a,E,E+kfiw)
Y
(eV(w)) eV(w)

The external admittance given by Eg1) has been the start- < fiw Tk fho
ing point of a self-consistent discussion of ac transport based 23
on the scattering-matrix approach. The approach has been
illustrated in a number of work€~%* The next term in the Note that in contrast to the zero-frequency photocurrent the
expansion is third order in the oscillating potentials and willtime-dependent current is expressed with the help of the cur-
not be needed here. rent matrix, Eq(15), and not with transmission probabilities.

We remark that the external photoconductances(Eg).  Neither Eq.(22) nor (23) is invariant under an equal shift of
are like the dc current determined by transmission probabiliall potentials. For example, an experimentally equivalent
ties only. In contrast, the displacement current invokes prodsituation would be to seV,;(w)=V(w)/2 and V,(w)=
ucts of scattering matrices at different energies and thus de- V(w)/2. This, however, yields a different result in the non-

)e_ik“’tfy(E—lﬁw).
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interacting approach. Even worse, settiNg(w)=V,(w) This matrix can also be expressed in terms of the scattering
=V(w)/2 should yield no photocurrent, but gives the samematrix and its derivative§
as forV,(w)=V(w)/2 andV,(w)=—V(w)/2. To remedy

this we introduce in the next section a simple self-consistent dV,s 1 s (E) dsgs(E) dsh,(E) 5, (E)
scheme to achieve charge and current conservation, similar dE 474 2 dE dE po(E)|-
to one used previousR?:* (26)

The results of Tien and Gordbrand Tucket have a _ _ _ _
slightly different appearance since the transmission prob!Sing this and Eq(13) we find the number operator in the
abilities are expressed with the help of Bardeen’s formuld’résence of oscillating contact potentials

T=472t|?v,(E)vo(E+1how) in terms of an energy- eV eV
independent matrix elemenand the density of states (E) N= f dE J, “)Jk<—ﬁ
and v,(E) to the left and right of the barrier. In our work the ik hw )\ Ao

energyE is a global variable, whereas Tien and Gordon mea- dN

sure energy in the densities of states from the conduction X(é’)L(E—Ihw) aﬂé_k(E—kﬁw), (27
band bottom to the left and right of the barrier. Of much dE

more significance is the appearance of the voltage in theiith the expectation value

expressions and its meaning as compared to E2§3.and

(23). As explained by Btiner and Gerlach! if one uses a )
coupling energye(V;N; +V,N,)cost) of the left and right N= 2 f dE J
contact voltage¥, andV, to the total chargekl; andN, of “

the left and right contacts and insists thatV,—V, is the  We can shift the frequency dependence from the Fermi func-
experimentally applied voltage, then the tunneling Hamil-tion to the partial density of states

toian approach yields a gauge-invariant result which depends

only onV. We remark here, that such a discussion only in- o[ €Va dN(aO)
vokes the reservoir charges and reservoir potentials and does N= Z; f dEJ ho!| dE
not attempt to provide a detailed description of the charge

distribution near the barrier or inside a sample. Our approachnd thus identify the injectanaN{")/dE at energyE in the

is not restricted to such a minimal coupling of voltages andpresence of a potential variation at contactHere the upper
charges but in addition to the coupling of the contact volt-index 0 is once more used to emphasize that this density is
ages to the charges also treats the voltages and charges in #haluated at fixed internal potential. To second order in the
interior of the sample. To this extent we now proceed to theoscillating potentialV ,(w), the injectance is

discussion of the charges injected into the sample.

eV,
ho

TdN““f E—l# 28
"G AE-lhw). (28

fo(E), (29

dN© ANoWo(E) €% |V (0)|? AN, o E+ i)
B. Density operator dE dE 2 (hw)? | dE
When applying voltages to the conductor, the sample will
be charged. The net charge of the sample in response to a dNoo(E—fiw)  dNo.(E) 30
potential applied to a contact can be decomposed into two dE dE

contributions: A charge response, called the injectance of the

contact, at fixed internal electric potential and a charge reln the limit that|V ,(w)| becomes small comparedfia the
sponse due to an electrically induced potential. Here we ddhjectance is that produced by a static voltage. We have now
termined the injectances of a multiterminal conductor. In thedetermined both the currents and the charges as a conse-
next section these results are used when treating the proble@tience of oscillating voltages at the contacts of the sample

with interactions. under the assumption that the internal potential is kept fixed.
At zero frequency, the number of electrons in the sampléVe next determine the internal potential and the current and
is determined by the operaffr charge response to this internal potential.
N= 2 j d2rf dE V},ﬁ(E)V}gﬁ(E) III. INTERNAL RESPONSE: SELF-CONSISTENT
afnm SCREENING
><‘I’Zn(f,E)‘Pﬁm(f,E)ézn(E)gl,gm(E), (24) In response to a potential variation at a contact the charge

distribution in the interior of the sample is driven away from
wherev,,(E) is the density-of-states for channglin con- its equilibrium pattern. Coulomb interactions oppose such a
tacta, andW ,,(r,E) is the corresponding wave function for variation. In the problem of interest here a variation of the
a scattering state describing carriers incident in cordatt  sample charge can come about both because we in general

channeln. consider a biased sample such that a dc current flows and
We now define the partial density-of-states matrixbecause we subject the sample to ac voltages. In general it is
dN,g/dE, with elements a nonequilibrium dynamical potential landscape that matters.

Here for simplicity we consider the sample to be zero dimen-
sional and assume that it suffices to consider a single internal
potentialU. Such an approximation is often used in the lit-
(25 erature on the Coulomb blockade and in the scattering ap-

dnN,
—E - f o%r VA (E) vEm(E)Win(r E)W (1 E).
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proach to electrical conduction has been used to discuss the e dN,(Ug) e dN,(USY

nonlinearl -V characteristic of mesoscopic sampfeand ac f ed—EdE— > ed—Ed
transport in Refs. 45, 30, and 47. At equilibrium, if all volt- « = e«

ages at the contact of the sample are equal, and in the ab-

sence of ac potentials, the value of this potentialUis =2 C,(Up—V,). (34)
=Ugq. Our first task is to determine the zero-frequency paYHereva=,¢fa—M is the deviation of the electrochemical po-
of this potential. tential in contacta from its equilibrium valuew. This ap-

To be more specific we now consider a sample coupled tproach was used by Christen andtéer*® to study the non-
a gate, as an example see Fig. 1. We denote the contact to tlweear conductance for a resonant tunneling barrier.
gate by the indexy and the capacitance of the central region Next, consider the case that is really of interest here. In
of the conductor to the gate Iy, . The capacitance between addition to possible static voltage differences we have time-
the central region of the conductor to the reservoiis de-  dependent potentials at the contacts. As a consequence the
noted byC,, . Next we introduce an index which runs over ~(unscreenedchargeQ(t) in the sample is also a function of
addition includes the contact to the gate N+1=g. components at the oscillation frequeneyof the voltage and
at all higher harmonickw. As a consequence the potential
inside the conductor will also oscillate and will similarly
A. Static internal potential have Fourier components at all harmonitikw). If an

Consider first the equilibrium potential?. The grand oscillating voltage at a contact, due to nonlinear processes,
canonical potential with the Coulomb energy included is2!SC changes the time-averaged charge in the sample then the
minimal for a potentialU§? that obeys the Poisson equation. potentiall, as determined above would be modified by the

In our case the Poisson equation is discretized and is epresence of_the os_ci_llating potentials. To take this into ac-
count we write the injected charge as a response to external

r with the help of th metrical itan intro* . ) ) .
pressed with the help of the geometrical capacitances intrg Ptennals in the presence of a self-consistently determined

duced above. The net electronic charge on the sample is that ) - -
permitted by the Coulomb interaction: Static potentlal plus the response from the |nt.err_1al osullapng

potential. The response to the internal potential is determined
by three unknown response coefficients,, x.i,» and i
such that

-3 [

Q-Q =2 C,(U-V,). (31)

a

= dE+§ deXm(E)u*(w)va(w)

dN©
d

Here Q is the electronic chargeQ* is an effective “ionic
charge” created by the donors, af, are the geometrical

capacitances. +> f dEx.i(E)Vi(@)U(w)+ xi (E)|U(w)|%
For V,=0, the equilibrium charg®= Qg% and the equi- a
librium potentialU=Ug® follow from Eq. (31) as follows. (35)

The electronic charge on the conductor can be expressed aga determineyi,, x.i, and x;; we use the fact that the
sum of all the charges injected from the various contacts, injectance be invariant under a shift of all oscillating poten-
tials by an equal amount. This yields the coefficients

e
SQZE J’u edNZ(éJOq) dE, (32) XIa(E) XaI(E)
a Joe Tr[l( e )2 dNaa(E+ﬁw)+dNaa(E—ﬁw)

where the injectandé®3 of contacte is given by Eq.(30). 2\Aw dE dE
Note that the scattering matrix and thus the injectance also dN,.(E)
depends otJ§". Equation(32) is thus a self-consistent equa- - T) } (36)
tion for the equilibrium potential.

Next, let us keep the ac voltages turned off but apply dc xii(E)= —g XialE). (37)

voltages to the contacts, charge will flow into the conductor . _ o
causing a shift of the static potential in the barrier. We de-With this we can express the gauge-invariant injectance as

note the resulting potential by,. It is a function of the ) )
applied potential®/, since now the injected charge depends dN, __ | dNe(E) € [Va(@)—U(o)]
on all the applied voltages. The injected charge is given by dE dE 2 (hw)?
d E+# d E-#
#a dN,(Uo) x( NaalE¥ i) | dNeol E-H0)
Qo= e—gg JE (33 dE dE
dNyo(E)
Using Eq.(32) to express the effective background charge in —2 dE (38)

terms of the scattering matrix and the charges on the capaci-
tors gives the following self-consistent equation for deter- Equations(34) and (38) now allow us to find the static
mining the internal static potential in the sample internal potentialJ, in the presence of static and oscillating
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contact voltages. Note thdN, /dE depends otJ, since the 0

scattering matrix depends d#,. The potentiall, depends Jaiil 0, — 0 {Vs0)}]= 2 9ip, L@, — @ {Vs(0)}].

on dc voltages applied to the sample and depends through 43)
nonlinear processes on the amplitudes of the ac voltages and

the frequency. Our next task is now to find tberrentre-  Thus the photoresponses to the internal potential are deter-
sponse to the oscillating internal potenti(t). mined by combinations of external photoconductances.

With these conductances, the dc current can be written as

B. dc current 1,(0)=I ?f’[{VIB(O)}]
Consider first the photoinduced dc current. The dc current
can be divided into two parts, one due to direct transmission +2 gipal @, — 0i{V,(0)}]|Vg(w) —U(w)|2
processes, and one due to transmission after absorption
(emission of a photon followed by its emissidabsorption. (44)

Both processes take place in a self-consistently determined )
electrostatic background, which depends on all voltages at alfote that the current depends on the difference between an

frequencies: applied voltage and the internal voltage only. All the nonlin-
ear transport coefficients in Eq8l0)—(44) also depend on
| (0)= IiT{VB(O)}]+I§T{VB(O)}]. (39) Uy, the self-consistent dc potential.
Here 197{V4(0)}] is determined from the first term of the C. Displacement current
sum in Eq.(17), where now the scattering matrix depends on  The current at frequenay is only needed to first order in
Up. the applied oscillating voltages. In addition to the external

The photocurrent can be written generally as the sum opotential the oscillating internal potential also contributes to
the response to the external oscillating potential and the inthe current. In the presence of the internal potential the gen-
ternal potentialU(w). To proceed we now conside¢  eral form for the current is to first order in the potentials
=eU(w)/(fw), a small parameter in which we can expand.
All the oscillating contact potentials are also of orderin
this work we will stop this expansion at the first nontrivial
order. Since photon-assisted tunneling is of second or higher
order in the oscillating potentials, we carry the expansion to +9ail 0:{V,(0)}]U(w). (45
second order.

For the photocurrent we obtain

| (@)= E 9N i {V,(0)}V4(w)

Here g{)[w;{V,(0)}] are the external ac conductances
given by Eq. (21) andg,; is the ac response to the internal
potential. Again we determing,; through the requirement
p — (0) _ . * that this expression is invariant under an overall shift of the
I‘H{VB(O)}] 2 Gupyl @~ @V O)HVg(@) V5 (@) potential. This gauge-invariance argument determines the re-
sponse to the internal potential in terms of external re-
+ Guplo— 0 {Vo(0)}Va(@)U* (w)  SPONSESgylwi{V (0)}]=—2 g0l wi{V,(0)}].
B Both for the dc current and the ac current we now know
the response to the external voltageg0) and to the inter-
+2 gaiy[w,—w;{Vg(O)}]U(w)V’;(w) nal potentialU(t). But the internal potential is thus far not
Y determined. This is our next task.

To be more specific we now return to the sample shown
in Fig. 1. The current at contaet is the particle current plus
the displacement current(capacitive current | (o)

wC, [V, (w)—U(w)] with | , as determined above. The
de current from the gate to the sample is purely capacitive and
fs given byl 4(w)= |ng[V (w)—U(w)]. Since the over-
all charge at frequency is conserved the sum of these
currents must vanish. Thus we must have

+ il @, —0{V40)}]U(0)U*(w), (40

where the index refers to responses due to the internal po-"
tential U(w).

The responses to the internal potential are found by
manding that the current is invariant with respect to a shift o
all voltages(gauge invariange Lowering all voltages at fre-
guencyw by U(w) shifts the internal potential to the exter-
nal potentials. Comparing the resulting expression with Eq.

(40) gives 2 lw)=—iwX C[U(0)-V,(0)]. (46

Solving this equation for the internal potential yields
Gupl o~ 0 V(O =3 gL, ~ei{VAO}], g this &q P y

(42) E glplwi{V(0)}Vp(@) —i0Z CV,(w)
U(w)=

gaiy[w,—w;{vﬁwn]:—EB 99,0, — wi{Vs(0)}, 2 g\l w;{V,(0) }]—qu C,
(42) (47)
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The external ac conductances and the geometrical capaci- a1
tances determine the potentld{ w) and determine the self- av

consistent dc current due to photoassisted tunneling and the
self-consistent ac conductances. 08

IV. RESONANT TUNNELING BARRIER 0.6

As an application of the self-consistent theory developed
above, we consider the photoinduced dc current through a
resonant tunneling barrier. The experimental setup is taken
as sketched in Fig. 1. Each side of the resonant barrier is
connected to reservoirs with chemical potentjalsand .,
and capacitance§,; and C,. The interior of the barrier is
coupled to a gate with a capacitan€g. For simplicity we
assume that the gates are macroscopic with no dynamics of
their own. A dc bias will be applied by makingv=e(V,

—V,)= 1~ s, NONZErO. evi(i2)
2) T M1 M2

The scattering matrix close to a resonance is given by the

Breit-Wigner formuld®==° FIG. 2. Differential conductance as a function of dc bias from
the noninteracting discussion. The left contact potential is oscillat-
ing. The parameters afew/(y/2)=5, €2=0.1, and the Fermi en-

(48) ergy is equal to the resonant energy-E,. For comparison the
dashed line shows the transmission probability determined from the
Breit-Wigner expression.

VYm7n Qi (O * 8).

'E—E,—eUy+iy2

Smn=| Omn—

Herevy,, n=1,2 are the partial widths of the resonance pro-
p.ortional.to the tunneling probability through the left and tance as a function of dc voltage, or the current as a function
right barrier andy= 3,y IS the; total width qf the resonance. gate voltage, the sidebands are observed at a voltage cor-
om are the pha§es acquwgd in the reflection or tralnsm'ss'oﬁssponding to the photon energy. Discussions which neglect
process and, is the position of the resonance. The terM;interactions do not discriminate between these two methods
eqo=e[vl(0)+V2(0)]/E_)2+W ensures invarlancé upon a ¢, ghserving photon-assisted transport. If we now consider
shift of the dc voltages: W is determined by the conditions physically meaningful result, the theory which includes
Egs.(34) and(38), and is a function oW,(0)—V;(0) only. jteractions, the general behavior will remain the same, but
The injectivities aré the two methods of analyzing photon-assisted transport, i.e.,
consideringdI(V)/dV or 1 (Vgy) now give in general different
results. The effects brought about by screening, discussed in
dN, _ i Va (49) more detail in the next section, are: First, the relative weight
dE 27 (E—Eg—eUy)?+ (y/2)? of the sidebands and the central peaks will not be the same in
the two situations. Second screening also brings about an
asymmetry in the weights of the sidebands fonf w. In a
The Breit-Wigner formula is a reasonable form for the discussion that neglects interaction the side bands have the
scattering matrix as long as the energy does not get close t@me weight. In contrast, in the interacting case, if the equi-
the next resonance level. Assuming that the level spacing dibrium chemical potential does not coincide with the reso-
our system is large enough such that neighboring levels camant energy, screening will be different for the two voltages
safely be ignored we will use the formula in a wide energywhere peaks are seen, and accordingly their weights will
range. differ. Such asymmetries are seen in experimémslow we
Photon-assisted tunneling is most easily seen either in th@iscuss these effects in detail.
differential conductance as function of bias voltage
dI(V)/dV, where side peaks show up at multiples of the
photon energy, or in the dc current for smélifinitesima)
bias when varying the gate poten?iaKVg). In Fig. 2 we First, consider a sample subject to a dc biesV,—V,
show an example of dl(V)/dV curve using the noninter- and an oscillating voltag¥y(w) applied solely at the gate.
acting discussion, Eq22) and using the Breit-Wigner ex- For simplicity we takeC,=C,=0. In this case there can be
pression Eq(48) with Uy=0. The potential of the left con- no dc photocurrent whem,=pu,, since = gAg4(a,E,E)
tact oscillates. We apply a dc voltagé=V,;—V,, take =0[see Eqs(18) and(44)] as a consequence of the unitarity
hwl/(y/2)=5 and consider the symmetric casg="y, of the scattering matrix. The effect of photon-assisted tunnel-
=y/2. In this and all the following examples we ugé ing in this setup is controlled by the internal potential. Thus,
=0.1, for which the expansion to second order is pertinentit is of interest to understand how it relates to the applied
For this choice of parameters only the first sideband peakgate voltage in the presence of screening. From the self-
can be resolved. In a noninteracting discussion one identifiesonsistent theorysee Eq.(47)] we find for the ratio of the
U=V, and as a consequence both the differential conducapplied to the external potential

A. Gate-driven case
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U(w) i -1
=1+ —2 ¢'%(w;V 50
Vg((!)) wCaZB gaﬁ(w ) ( )

This ratio is determined by the ac conductanggg(w;V). These ac conductances are known. At zero temperature, for the
symmetric resonant tunneling barrigg =y, they are given by Fu and Dud€yand for the asymmetric casg # v, by

Buttiker and Christeri®

09(0) =g (w)
Y2

o) =g )|
V1

95 (0;V) =052 (w; V),

e? Y172 1

[i [(u—ho—Ey—W-eVi2)2+(y/2)%]

ﬁ—l(l—iﬁ—w) , (51)
Y2 Y

ﬁ—l(l—iﬁ—“’) , (52)
Y1 Y

(53

. i | [(u+ho—Eg—W—eVI2)%+(v/2)?]
—=Iin

(0) - _
912(0)= 1 re =i (holy)| 2"

utho—Ey—W—eV/2

[(u—Eo—W—eVI2)2+(y/22] 2

pu—fho—Ey—W—eV/2

[(u—Eo—W—eVI2)?+(y/2)%]

- arctar(

+ arctar{ 2

With these expressions E¢G0), the ratio of internal to

(54)

¥I2 ) '

the resonance. This is expected since the density in the bar-

external potential, can be evaluated. This ratio has twaier is a Lorentzian with a peak at resonafitéhus provid-

simple limits. In the noninteracting limi€— «, the internal

ing more screening electrons. As a function of frequency the

potential directly follows the applied potential. In the limit ratio changes qualitatively; for low frequencies the internal

C—0, we have a charge neutral sample &hdo)=0.

potential is reduced compared to the external potential,

In Fig. 3, we show the absolute square ratio of the internaWhereas with increasing frequency the situation reverses.

to the external potential for different frequencies, when

Next consider the current as a function of gate voltage.

sweeping the Fermi level through the resonance. The norsince screening depends on the position of the resonant level
screened cas€— o, where the ratio is 1, is shown as the compared to the equilibrium electrochemical potential, the
dashed line. It is evident that screening introduces a largeentral peak and the sideband will experience a different de-
renormalization of the internal potential for this choice of gree of screening and, thus, their weights will no longer be
capacitance with a strong dependence on frequency. One opiven by a Bessel function behavior as in the noninteracting
serves the largest effect when the Fermi energy is close tapproach. In Fig. 4 the ratio of the sideband peak to the

L0 e N [ . o S
@l' /\ 0.12
(a)
(b)
(@) 0.1
0.9 (c)
0.08
0.8 (b)
0.06
0.7
0.04
0.6
0.02
0.5
© o
-20 -10 0 10 20 (] 1 2 3 4 5
€y Cyme
V2

FIG. 4. Ratio of the sideband weight to central peak weight as

FIG. 3. Ratio of the internal potential to the gate voltage
function of the Fermi energy, foE=e?/ 7y, V=0 and for the
frequencies (a) #Aw/(y/2)=10, (b) Aw/(y/2)=3, and (c)
hol(y/2)=1.

asfunction of capacitance in the current vs gate voltage characteristic
I (V) for frequenciesa) fw/(y/2)=3, (b) fiw/(y/2)=5, and(c)
fiwl(y/2)=10, whene?=0.1. The dashed line shows the result
when no screening is present.
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0.2 ’ 1.4 d
(c) o dv
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FIG. 5. Ratio of the sideband weight to the central peak weight FIG. 6. Weight asymmetry for the: % w sidebands as function
as function of the capacitance in the differential conductati¢eéV of capacitance in thell/dV characteristic fory, /(y/2)=1/4 and
for the frequencieda) fiw/(y/2)=3, (b) fiw/(y/2)=5, and(c)  v,/(y/2)=3/4, and for(@) hw/(y/2)=3, u/(y/2)=-5, and(b)
hwl(y/2)=10 ande?=0.1. The dashed line shows the result when fol(y2)=5, ul(y/2)=—10. The dashed line shows the result
no screening is present. when no screening is present. The inset shows an example of a

. . . . differential conductance curve as a function of the bias voltage for
central peak is shown. The noninteracting approach predicts — . 7 .,/(y/2)=5, u/(y/2)=—10, andC=0.1(€%/my). The

a ratio of 0.125 for the parameters chogdashed ling Itis  gashed line is the result without screening.
seen that, depending on capacitance and frequency, this ratio
can be quite different.

Similarly, when measuring the differential conductance as
function of dc voltage screening will also vary as function of A setup often used experimentally is to couple the oscil-
voltage. In this case the sideband weight to central pealating field to the conductor via a bowtie anterfn this
weight ratio is shown in Fig. 5. Again, large differences with case we assume that there is no gélgs=0. For simplicity
respect to the noninteracting case are possible. we take the capacitances across each tunneling barrier to be

An interesting effect due to the dependence of screeniniflentical,C;=C,=C/2. The dc current into contact 1 is then
on the dc voltagéor the gate voltageis that sidebands will
no longer be strictly Lorentzian, but skewed. However, this
skewing effect is rather small and probably difficult to re- 2
solve experimentally. E gg(w;v)ﬂwc/z

When the Fermi level is off resonance the first sidebands an_ | oo, a

. . > 1,00;V)=| g% w,—w;V)
corresponding to absorbing and afterwards emitting a photon o, . )
and vice versa occur at different potentials. Screening will EB 9ap(@;V)—iwC
therefore occur asymmetrically for the two peaks introducing ¢
an asymmetry between the sidebands. This effect is illus-

B. Contact driven case

trated in Fig. 6. Experimental observation of this effect has Ea: gl (@;V) +iwC/2

already been madealthough it has not been studied system- +9% w,— w;V)

atically. E 9% w;V)—iwC
Another effect is visible in the inset in Fig. 6. One notices o P

that the width of the central peak is significantly larger than
the width of the sidebands. Since the capacitance in this ex-
ample is rather small, the charging energy is large, and when
increasing the dc bias voltage the added charge gives rise to
a huge increase in the static internal potential. The result ifn the absence of a dc voltage drop and fqr v, the dc

that the resonance floats upwards in energy, widening thphotocurrent vanishes, because of the symmetry of the prob-
peak. For the same reason, the distance from the central peltn. However, in contrast to the gate driven case a zero-bias
to the sideband is no longer simplyw, but substantially current can be generated for the asymmetric sample, given
larger. by

X|Va(@) = Vy(w)]?. (55

|272_ y1 1959 (@) y172/*+ oC[REG1Y (0)}/ 71 72]

1,(0;V=0)=g' %, — ®)|Vy(®)—V;(w)
. 4 199 () y17,— 0ClHiy|?

(56)
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Sinceg{9(w)/(y1y,) is a function only ofy we find that the  plied field but the total field. Since the effective field is de-
zero-bias current is proportional to the effective asymmetrypendent on screening and therefore on applied bias, chemical
of the double barrier, ¥;— y,)/y. For small capacitances, potential, etc., the weights of the central peak and the side
C7172/(2ﬁ9(1%)(w))<71,72, the current is directly propor- p_eaks in the differe_ntial cqnduction versus applied voltage
tional to the asymmetry of the barrier without any renormal-differ from the noninteracting approach. Furthermore, the
ization from screeningl,(0;V=0)=g;11(®,— ®)|Va(w) peak weight is no longer (;I|str|bute_d according to the increas-
—V1()|2(y2— y1)/y. Thus, the ac field effectively pumps N9 order of B(_assel funcuqns. This leads tq the peak .rat|os
electrons through the system. The noninteracting resulf2€ing @ complicated function of the screening properties of
given by Eq.(22), also predicts a current at zero bias. Thisthe system. Experlmepts in single and 'double quaptgm dots
result, however, being independent of the asymmetry of th€how a rough qualitative agreement with the predictions of
system. This prediction of a zero-bias current for the symin€ noninteracting approachQuantitative comparisons be-
metric case is again a consequence of the lack of gauge ifWeen experiment and theory of the peak ratios are not avail-
variance of the noninteracting result. That a symmetric struc@ble. The interacting theory also predicts an asymmetry be-
ture, in the absence of dc voltages, cannot exhibit gween the corresponding left and right sidebands.
photocurrent, can be understood from the following symmeASymmetric photoconductance peaks have been obséfved.
try and invariance conditions. Consider first a variation of The necessity to include screening in the treatment of
the voltage at the left contadt;(w)=V,coswt) and sup- photogsssted.transport is most c!early exempl_n‘led by the
pose this produces a dc photocurrént Then consider a follqwmg c9n5|derat|on. For a spatially symmetric system a
voltage variation of the right contadl,(w)=—\V,cos@t)  noninteracting approach predicts a photocurrent in response
—V,Cosft+m). By symmetry this must give a currehj= to the oscillation of either thelleﬁ or the 'rlght contact volt-
—1,. In reality, however, due to gauge invariance these twd9&- In contrast, the gauge-invariant discussion presented

voltage oscillations are experimentally the same and henda€re, Predicts that a symmetrical system exhibits no photo-

must give rise to the same dc current. But the only dc currergurrent. Our result for the two-terminal resonant tunneling

which reflects this symmetry is=0. Clearly, the correct barrier, Eq.(56) is a photocgrrent which is proportional to
answer is a consequence of gauge invariance. the asymmetry of the tunneling rates of the resonant double-

barrier structure.

In this work we have emphasized that interaction effects
are important whenever a variation of a parameter, an oscil-
V. CONCLUSION lation of a voltage, changes the charge away from its equi-

We have extended the scattering-matrix approach t(IJbrlum value. In photoassisted tunneling it is not sufficient

transport in phase-coherent conductors to take into accoufff consider just the dc current, but a theoretical discussion

oscillating contact potentials and internal potentials in non_has to be self-consistent at all frequencies. Thus there is nec-

linear order. The effect of screening has been taken into a(,e—ssar'ly a relation between the_ photoassistgd.dc cu_rrent and

count to second order in the oscillating potentials by mean € d|splace_ment current. On!y if the Chafge IS mvesygated at

of a RPA treatment. The result is a theory, valid for arbitraryf"lII frgquenmes can an electrically meaningful, that is gauge

dc voltages, which is current and charge conservigayge  nvarnant, answer be found.

invariany. The internal potential in the conductor has been

treated as a single parameter. Certainly, to go beyond this

approximation and treat a more realistic continuous potential ACKNOWLEDGMENTS

distribution would be interesting. But even for the case of

linear ac transport, a scattering matrix for continuous poten- We are grateful for valuable discussions with Harry Tho-

tials exists only to linear order in frequen®yand exception- Mas and Anna Ptee, who helped to clarify the derivation

ally to second ordef® Discussions of the dynamic conduc- Presented in Sec. II. This work was supported by the Swiss
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taking into account spatial potential variatioisre not yet

formulated within the scattering approach. It would also be

inter_esting to extend our diS(_:ussion to highe_r order_in the APPENDIX: CURRENT NOISE

applied voltages. For large field strengths it is possible to

make one of the Bessel functions zero, giving rising to dy- The analysis of this paper concentrates on the average

namic localizatiorr>®*?Since we find that Bessel functions zero-frequency photocurrent. However, the approach used

can in general not give a gauge-invariant answer it is cleahere also allows us to find the fluctuations of the current. Of

that the criteria for dynamic localization will be changed in particular interest are the current-current correlations which

an essential way in the presence of interactions. determine the spectral densities of the current fluctuations.
We have applied our theory to photon-assisted tunnelingdere we present the general result for the noise spectra of a

using a resonant tunneling barrier as an example. The twmultiterminal conductor in the presence of oscillating contact

standard setups for photon-assisted tunneling, applying thegotentials assuming that the internal potential is kept fixed.

modulation to one of the contacts in a two-terminal experi-As with the average dc current a physically meaningful result

ment, or coupling the potential to the conductor via a gateequires in general a discussion of the effects of screening.

was examined within the self-consistent theory. In both For a multiprobe conductor with potential§,cost) at

cases, the inclusion of screening leads to a renormalization dfequencyw applied to the contacts, using Ed4), we find

the noninteracting answer. The driving field is not the ap-the correlation function
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st e 3 (554 5

LAY
ev'y I((E—E")hrai(l+]" —k—k') ot ’ ’ I"—K)% k' =&
x| 7L|e e TIA, 5 a,E,E)A(B.E'+(I'—Kho,E+(K —Dhw)]
X[ (E—1hw)(1—f {E'—kho))+f5(E'—khiw)(1—f (E-1hw))]. (A1)

Here the bracket§} denote the anticommutator. In the presence of ac voltages the current-correlation function is not only a
function of the relative time- but depends also on the absolute timExperimentally what is of interest is the noise spectrum
on a time scale long compared ter2w. Therefore we define the noise spectrum as an average

1 (7 N R
SQB(T)IEL dt({Al,(t+7),Al4(1)}), (A2)

where T=2x/w is the period. The factor 1/2 arises because we have symmetrized the correlation function. The spectral

density is related to the current-current correlation function wi®2;(€2; w) 5(2+Q")= (1/2)<{ATQ(Q),AT,B(Q’)}), which
is just the Fourier transform &(7). We find

Qo) e e)2 ES (ev,/) (ev,s) (eV5> evy) 0 Ot (K|
Saﬁ( Tw)= g Ey(sylkk, J| % Ji % N % Jir % Tr[Ay,;(a,E,E—i-ﬁ )A(;y(ﬂ,E'i‘h +(k'-DHhw,E
+(K =D hw)[f (E—1ha)(1—f (E+AQ—Khw))+f E+AQ—Kho)(1—f (E-lfiw))]. (A3)

In the limit of vanishing driving frequencyw =0, Eq.(A3) reduces to the frequency-dependent noise spectra of Ref. 39.
For the special case that the scattering matrices can be taken to be independent of enery,(oeE,E+%w)
=A,s(a) Eq. (A3) simplifies considerably. Using the addition theorem for Bessel functions we find

2 Vi—V
saﬁ(o;w)=<;) jdEgﬂ Tr[Ayg(a)Agy(/a)]JF(e(;—w’))[fV(E+|ﬁw)(1—f5(E))+fﬁ(E)(l—fy(Eth))].

(A4)

For a two-terminal conductor this result is identical to that of Lesovik and Le¥itewven though in that work this result was

derived in response to an electric field and not as here as a response to an oscillating contact voltage. In the experiment of

Schoelkopfet al?® the shot noise is measured in the presence of an oscillating voltage applied to the contacts of the sample.
We emphasize that the noise spectra given by E3) and(A4) give only the noise for fixed internal potential. We have

already remarked that the average dc current exhibits an external response due to photon-assisted transport only if the

transmission probabilities exhibit an energy dependésee Eq(19)]. In contrast, in the shot-noise spectra, we have an effect

even if the scattering matrix is taken to be energy independent. That is a consequence of the fact that the noise spectra depenc

in a nonlinear way on the Fermi functions.
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