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Scattering theory of photon-assisted electron transport
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Département de Physique The´orique, Universite´ de Gene`ve, 1211 Gene`ve 4, Switzerland

~Received 25 March 1998; revised manuscript received 7 July 1998!

The scattering-matrix approach to phase-coherent transport is generalized to nonlinear ac transport. In
photon-assisted electron transport it is often only the dc component of the current that is of experimental
interest. But ac currents at all frequencies exist independently of whether they are measured or not. We present
a theory of photon-assisted electron transport which is charge and current conserving for all Fourier compo-
nents of the current. We find that the photocurrent can be considered as an up and down conversion of the
harmonic potentials associated with the displacement currents. As an example explicit calculations are pre-
sented for a resonant double barrier coupled to two reservoirs and capacitively coupled to a gate. Two
experimental situations are considered: in the first case the ac field is applied via a gate, and in the second case
one of the contact potentials is modulated. For the first case we show that the relative weight of the conduction
sidebands varies with the screening properties of the system. This is in contrast to the noninteracting case in
which one finds that the relative weights are a universal function determined by Bessel functions. Moreover,
interactions can give rise to an asymmetry between absorption and emission peaks. In the contact-driven case,
the theory predicts at zero bias a photocurrent proportional to the asymmetry of the double barrier.
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I. INTRODUCTION

Photon-assisted tunneling has been of interest since
work of Tien and Gordon1 and Tucker.2 Carrier transmission
through barriers with oscillating potentials has been analy
to find the traversal time for tunneling.3 Recently photon-
assisted tunneling has found renewed interest in the fiel
mesoscopic physics stimulated by theoretical work
Bruder and Schoeller4 and experiments on quantum dots
Kouwenhovenet al.,5 and by experiments on superlattices
the group of Allenet al.6–8 Typically of interest4,5,7–24is the
zero-frequency current component induced in response t
oscillating voltage. Theoretical treatments of photon-assis
electron transport often assume that the driving field
known and equals the external field. However, the lo
range Coulomb interaction will screen the external field a
generates an internal potential that can be quite diffe
from the applied potential. Similarly, since it is the dc com
ponent which is measured, one might think that displacem
currents play no role. However, the dc component is a c
sequence of nonlinearities in the conduction process. Cle
in such a conductor, the current has not only a dc compon
but also currents at the frequency of the oscillating volta
and its higher harmonics. Not only are the dc currents c
served but also the currents at the oscillation frequency
at its higher harmonics. Consequently a theory is neede
which all frequency components of the current are trea
self-consistently. Such a theory is developed below. It le
to the conclusion that the photocurrent is induced by a n
linear up and down conversion of the electric fields~poten-
tials! associated with the displacement current. Bessel fu
tions are a hallmark1 of the discussion of photon-assiste
tunneling: For noninteracting theories the relative weights
the sideband peaks are determined by Bessel functions
are universal. However, in the self-consistent theory d
cussed below we find that the relative weights of the si
PRB 580163-1829/98/58~19!/12993~14!/$15.00
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band peaks depend on the screening properties of the sys
Since in nonstationary conditions charge accumulation
curs and causes induced fields, a self-consistent treatme
the electron-electron interactions is important. The issues
similar for theories and experiments which investiga
photon-assisted process not in the dc current but in
fluctuations.25,26Here we emphasize mainly the average c
rent and address the fluctuation spectra only briefly in
Appendix.

A convenient description of conduction processes in m
soscopic systems which incorporates the role of contacts
permits us to investigate directly the phase-coherent tra
mission from one reservoir to another, is the scatteri
matrix approach.27,28The description of linear ac conductio
in response to oscillating potentials and consideration of
long-range Coulomb interaction has already been discus
both for the case of zero-dimensional systems29,30 and for
extended systems for which one needs to discuss the e
potential landscape.31,32 A review of this subject can be
found in Ref. 33. Here we generalize the scattering-ma
approach to take into account the nonlinear dependenc
oscillating potentials. First we consider the response of
electrons to a potential applied only to the contacts of
sample, assuming the internal potential is kept fixed. T
response to the total potential will, in a subsequent step
calculated self-consistently in random-phase-approxima
~RPA!. The resulting charge and current conserving the
will be used to investigate the photoinduced dc current i
resonant tunneling barrier. As function of Fermi energy a
frequency we find large differences between the induced
ternal potential and the external applied potential, show
that long-range Coulomb forces are important for photo
assisted tunneling in mesoscopic systems. Furthermore
teractions can give rise to an asymmetry between absorp
and emission peaks, as well as changing the distance
tween peaks from a multiple of photon quanta to a dista
12 993 ©1998 The American Physical Society
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depending on screening properties.
Our discussion is complementary to works which mo

interactions based on a Hamiltonian suitable to desc
Coulomb blockade effects. The work of Bruder a
Schoeller4 also considers coupling to a gate and also con
ers displacement currents. In principle, all the questions
dressed here can be investigated within such a framew
The scattering approach used here has the advantage tha
not limited to the tunneling regime but can also be applied
conductors which are strongly coupled to reservoirs~ballistic
or metallic diffusive wires, etc.!. The RPA treatment as it is
formulated below does have the disadvantage that it is no
appropriate description in the case when charge quantiza
effects~Coulomb blockade! are important. However, its con
ceptual clarity makes the RPA treatment a useful point
reference for comparison of different theoretical discussio

The basic view taken here is the same as that used fo
discussion of dc conductances28 and ac conductance.29 What
is needed is the connection between currents at the con
of the structure and the voltages at these contacts. Eithe
currents or the voltages can be controlled. As in the disc
sion of the ac conductance it is necessary to consider
only the mesoscopic conductor itself but all nearby meta
bodies~gates and capacitors! which interact via long-range
Coulomb forces with the mesoscopic conductor. We assu
that the conductor and the gates are connected to good
ity metallic contacts in which screening is efficient. As
consequence the interior of the metallic contact is cha
neutral. The electrostatic potentialU(r ,t) and the electro-
chemical potentialm(t) oscillate in synchronism to keep th
Fermi energyEF(r )5m(t)2eU(r ,t) ~the chemical poten-
tial! time independent. bA
voltageV(t) applied to the contact
can thus be viewed both as a change in the electrochem
potential away from its equilibrium value or as a change
the conduction band bottom.31 Let a label all the relevant
contacts. The current at contacta can be written in terms o
its Fourier componentsI a(nv). Heren50 is the dc compo-
nent of the currents, andn561 are the Fourier componen
at the driving frequency. Nonlinearities lead to higher h
monics n562,3, . . . . Similarly, the voltage at contacta
has the Fourier componentsVa(nv). We emphasize that th
voltage of a contact is only a well defined quantity if loc
electric fields deep inside the contact vanish. There m
therefore, exist a Gauss volume which encloses the me
copic conductor.29 The electric flux through this Gauss vo
ume vanishes. As a consequence the total chargeQ inside the
volume is conserved.29 Charge conservation, and curre
conservation, apply to each Fourier component separatel
particular, we must have that the total charge within
Gauss volume vanishes at each frequency,

Qa~nv!50. ~1!

A theory for which this holds gives currents which depe
ultimately only on voltage differences. We call such a theo
of electric conductance gauge invariant.34 To be definite let
us introduce an expansion parametere. We take the Fourier
components of the first harmonicVa(v) proportional toe
and expand the currents in powers ofe. The second har-
monic voltagesVa(2v) describing two-photon processes a
then proportional toe2. Below we write the relationship be
l
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tween currents and voltages up to second order ine. The
expansion coefficients are conductancesgabg(nv,mv)
which give the current at contacta in response to a voltage
Vb(nv) at contactb at a frequencynv and a voltage a
contactg at a frequencymv. The overall dc current is

I a~0!5I a
dc@$Vb~0!%#1I a

ph@0;$Vb~0!%#, ~2!

I a
ph@0;$Vb~0!%#5(

bg
gabg@v,2v;$Vd~0!%#Vb~v!Vg* ~v!.

~3!

The first term of Eq.~2!, I a
dc@$Vb(0)%#, is the direct current

that would be measured in the presence of purely static v
agesVb(0), b51,2, . . . applied to the different contacts o
the sample and capacitors. In the following, for the dire
current, we retain the full dependence to all orders in
static applied voltages. We indicated the full set of voltag
with the help of curly bracketsVb(0). If the dc current
I a

dc@$Vb(0)%# is expanded in powers of the applied volta
then the terms linear in the applied voltages determine
dc-conductance matrixgab(0) and the terms quadratic in th
applied voltages are the dc-rectification conductan
gabg(0), discussed by Christen and one of the authors,35,29

which determine the leading order nonlinearity of the dcI -V
characteristic.36 In addition to these contributions to the d
current which characterize the purely stationary transp
there is now also a contribution to the dc current due to
photon-assisted processes,I a

ph@0;$Vb(0)%#. In particular, to
second order in the applied ac voltagesVb(v), carriers
which emit and reabsorb~virtual! photons are determined b
the dc photoconductancegabg@v,2v;$Vd(0)%# which de-
pends in general also on the dc voltagesVd(0). Thefirst two
argumentsv and 2v indicate the frequencies of the tw
driving voltages which give rise to this photoconductan
These photoconductance coefficients represent an up
down conversion of the first harmonic voltages.

The current at the frequency of the oscillating potentia
in general composed both of a particle current and of a
placement current. To be brief we call this current simply t
displacement current. To linear order in our expansion
rameter it is given by

I a~v!5(
b

gab@v;$Vg~0!%#Vb~v!. ~4!

Here expandinggab@v;$Vg(0)%# in the dc voltages yields
the equilibrium admittance30 of the mesoscopic structur
gab(v) and the dc–ac rectification conductancegabg(v;0).

The current at 2v is

I a~2v!5(
b

gab@2v;$Vg~0!%#Vb~2v!

1(
bg

gabg@v,v;$Vd~0!%#Vb~v!Vg~v! ~5!

determined by a second-harmonic conductan
gab@2v;$Vg(0)%# and a nonlinear up-conversion condu
tancegabg@v,v;$Vd(0)%# whereby a second-harmonic cu
rent is generated due to a nonlinear combination of fi
harmonic voltages. We emphasize that the expansion g
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here can, in principle, be carried further to an arbitrary or
in e. Our task is to find explicit expressions for the~nonlin-
ear! ac conductances defined in Eqs.~2!–~5!. It is useful to
state first a number of general properties of these cond
tances.

Current conservation holds for each Fourier compon
separately. Furthermore, since we can break off the exp
sion at any order, current conservation restricts each typ
conductance coefficient in Eqs.~2!–~5!. An additional re-
striction imposed on these conductance coefficients ar
due to the fact that a voltageV(nv) which is applied to all
contacts simultaneously cannot have a physical effect. A
consequence the conductances obey the sum rules35,29

(
a

gab~kv!5(
b

gab~ j v!50 ~6!

for k, j PN. Similarly, the second-order coefficients obey

(
a

gabg~kv, j v!5(
b

gabg~kv, j v!

5(
g

gabg~kv, j v!50. ~7!

These sum rules guarantee that the final result will depen
voltage differences only.

Equations~2!–~5! are completely general and are app
cable to any phase-coherent multiterminal conductor.
now discuss these general relations for the case of a
terminal conductor capacitively coupled to a gate, a situa
sketched in Fig. 1, in the limitC15C250. This simple ar-
rangement permits us already to point to the connection
tween photocurrents and displacement currents. We are
terested in the photocurrent generated by a sinuso
oscillation of the voltageVg(v) at the gate. First conside
the displacement current. The oscillating gate couples w
the conductor in a purely capacitive manner. Therefore,
gag@v;$Vb(0)%# describe capacitive currents and we c
write gag@v;$Vb(0)%#52 ivCag@v;$Vb(0)%#. We empha-
size that this is a global transport coefficient which conne
the voltage at one contact to the current at another con
As a consequence, the capacitance coefficients are not
purely geometrical nature but can be strong functions
magnetic field and the dc gate voltage.29,37,34,38Thus, the
current at contacta is determined by

I a~v!52 ivCag@v;$Vb~0!%#Vg~v!. ~8!

FIG. 1. Conductor connected to two contacts and coupled
pacitively to a gate.
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Next, consider the dc photocurrent generated by this arran
ment

I a
ph~0!5gagg@v,2v;$Vb~0!%#uVg~v!u2. ~9!

Using Eq.~8! to eliminate the gate voltageVg(v) in Eq. ~9!
we find

I a
ph~0!5

1

v2

gagg@v,2v;$Vb~0!%#

uCag@v;$Vb~0!%#u2
uI a~v!u2. ~10!

Thus to second order in the oscillating voltages, the pho
current is directly related to the displacement current. T
photocurrent is proportional to the square of the displa
ment current. This relation suggests that since the displa
ment current is not a property of a noninteracting system
is in an essential way determined by the long-range Coulo
interaction, so similarly, the long-range Coulomb interacti
must play an essential role in determining the photocurre
Note that the photoconductance which enters Eq.~10! is also
proportional tov2 and the photocurrent given in Eq.~10!
therefore has a well-defined zero-frequency limit. Now w
proceed to find explicit expressions for the nonlinear cond
tances introduced above.

II. OSCILLATING CONTACT POTENTIALS:
EXTERNAL RESPONSE

We consider a conductor with voltages which oscillate
time applied to the contacts of the sample or to nearby
pacitors. First we evaluate the response of noninterac
particles with the internal potential kept fixed. Only the r
sponse to the total potential has physical meaning, howe
these results are needed in the next section for treating
problem with interactions.

The current operator for current incident in contacta in a
mesoscopic system can be written as39

Î a~ t !5
e

hE dEE dE8@ âa
†~E!âa~E8!

2b̂a
†~E!b̂a~E8!#ei ~E2E8!/\t ~11!

where âa and b̂a are vectors of operators with componen
âan and b̂an . Here âan annihilates an incoming carrier in
channeln in leada and b̂an annihilates an outgoing carrie
in channeln in leada. Equation~11! applies for frequencies
(E2E8)/\ small compared to the Fermi energy.

The incoming and outgoing waves are related by the s
tering matrices39 sab via, b̂a5(bsabâb . In a multichannel
conductor the matrixsab has dimensionsNa3Nb for leads
with Na andNb channels. Here, and in the following, gree
indices run over all contacts of the conductors.

Let us now suppose that a potential variation is applied
reservoira. The potential iseUa(t)5eVa(v)cosvt, where
Va(v) is the modulation amplitude. With this potential th
solution to the single-particle Schro¨dinger equation at energ
E in a is

a-
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ca,n~x,t;E!5fa,n~x;E!e2 iEt/\ (
l 52`

`

Jl S eVa

\v De2 i l vt,

~12!

wherefa,n(x;E) is the wave function describing an incom
ing ~or outgoing! carrier in contacta in channeln in the
absence of a modulation potential, andJl is the l th order
Bessel function. Thus the potential modulation leads for e
state with central energyE to sidebands at energyE1 l\v
describing carriers which have absorbedl .0 modulation
quanta or have emittedl ,0 modulation quanta\v. Here we
have assumed that all potentials oscillate in phase. If
allows for a different phasefa for each contacta that will
add a terme2 i l fa to each term in the sum in the wave fun
tion above. Below, for simplicity, we assume that all conta
potentials are in phase.

We now suppose that the modulation potential exists o
far away from the conductor and that the modulation pot
tial vanishes as we approach the conductor. Thus there
transition region from a portion of the lead in which th
potential is oscillating and a portion of the lead close to
conductor where we initially assume that the potential is ti
independent and equal to the equilibrium potential. We
sume that in this transition region the potential varies slow
compared to the Fermi wavelength~adiabatic40! such that it
does not give rise to additional scattering. Now we need
wave function in the time-independent potential region. T
leads to a matching problem. If the transition is adiabati
state with energyE in the conductor obtains a contributio
from all reservoir states with central energyE2 l\v due to
its sideband of amplitudeJl(eVa /\v) at energyE. In the
notation of second quantization the annihilation operator
an incoming state close to the conductor is

âa,n~E!5(
l

âa,n8 ~E2 l\v!Jl S eVa

\v D , ~13!

up to corrections of the order of\v/EF which arise from the
difference of the wave vectors of the sidebandspl

5A2m(E1 l\v)/\ and the wave vector at energyE. The
current operator Eq.~11! is expressed in terms of the incom
ing ~and outgoing! states of the stationary time-independe
scattering problem. Equation~13! can now be used to find
the current operator in terms of the reservoir statesâa,n8 . The
current operator becomes

Î a~ t !5
e

hE dEE dE8(
gd

(
lk52`

`

~ â8!g
†

3~E2 l\v!Jl S eVg

\v D JkS eVd

\v Dei ~E2E8!t/\

3Agd~a,E,E8!âd8~E82k\v!, ~14!

where we have introduced thecurrent matrix39

Adg~a,E,E8!5daddag1a2sad
† ~E!sag~E8!. ~15!

It is assumed that the modulation imposed on the sys
is so slow that the contacts can still be regarded as being
dynamic equilibrium state. Thus the quantum statistical
h

e

t

ly
-
a

e
e
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y

e
s
a

f

t

m
a
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erage can be found by evaluating averages of theâa(E
2 l\v) as for an equilibrium system. Replacing theâa(E
2 l\v) by their equilibrium statistical expectation values w
find

I a~ t !5
e

hE dE(
g,lk

Tr Agg„a,E,E1~k2 l !\v…

3Jl S eVg

\v D JkS eVg

\v De2 i ~k2 l !vt f g~E2 l\v!,

~16!

where f g(E)5 f (E2mg) is the Fermi distribution function
for contactg. Here mg is the electrochemical potential o
reservoirg. In Eq. ~16! the trace is over all channels in lea
a. Taking into account the symmetry properties of the c
rent matrix under exchange of the energy arguments it ca
shown that the current given by Eq.~16! is real.

From Eq. ~16! we find that for the dc current only th
terms l 5k contribute. In this case, as is seen by looking
Eq. ~16!, the energy arguments of the current matrix a
equal. The trace of the current matrix at equal energy ar
ments and equal lower lead indices are just transmission
reflection probabilities. We define Tag(E)5
2Tr Agg(a,E,E). For unequal indicesa and g this is the
transmission probability for carriers incident in leadg to be
transmitted into contacta. If also a5g the trace of the
current matrix is equal to the probabilityRaa of carriers
incident in leada to be reflected back into leada, minus the
number of quantum channelsNa at energyE. In this nota-
tion, particle conservation in the scattering process is
pressed by the sum rule(gTag50. For the dc current we
find thus

I a~0!52
e

hE dE(
g,l

Tag~E!Jl
2S eVg

\v D f g~E2 l\v!.

~17!

Now we expand in this expression the Bessel functions
powers of the applied oscillating potentialsVg . The zeroth-
order terms give the dc currentI dc,(0)@$Vb%# that flows as a
consequence of stationary differences in the applied po
tials. We use a superscript (0) to denote a response to
external potential only. Since the potential in the interior
kept fixed thisI -V characteristic is not gauge invariant.
discussion is provided in Ref. 29 and by Christen and one
the authors.35 The next term is second order in the amp
tudes of the oscillating voltages. For identifying conductan
coefficients recall that the applied potential is of the fo
Vg(t)5 1

2 Vg(v)eivt1 1
2 Vg* (v)e2 ivt, with the amplitudes

taken as real. Thus, from the calculated response toVg(t) we
need to extract the response to the Fourier amplitudes. T
second-order terms are determined by the photoconducta

gabg
~0! @v,2v;$Vd~0!%#

52dbg

e3

h E dETab@E;$Vd~0!%#

3
f b~E1\v!1 f b~E2\v!22 f b~E!

~\v!2
. ~18!
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The photoconductancegabg
(0) @v,2v;$Vd(0)%# determines

the zero-frequency current in contacta in response to a
second-order voltage oscillationVb

2(v) at contactb. Note
that the external photoconductance generated by bilin
productsVb(v)Vg(v) with b unequal tog vanishes. Instead
of a second-order difference in Fermi functions we can
press the photoconductance as a second-order differen
transmission probabilities

gabg
~0! @v,2v#52dbg

e3

h E dE fb~E!

3
Tab~E1\v!1Tab~E2\v!22Tab~E!

~\v!2
.

~19!

For simplicity we have not explicitly indicated the depe
dence on the stationary potentialsVd(0). Equation ~19!
shows clearly that we obtain an externally induced photoc
rent only if the transmission probabilities through the sam
are energy dependent. Thus, for a quantum point contac
for a quantized Hall conductor, where we encounter sit
tions characterized by transmission probabilities which
either zero or one, there is no externally induced photo c
rent. This form of photoconductance also makes it evid
that current conservation is satisfied due to the unitarity
the scattering matrix: The sum of all photoconductances o
all contacts adds up to zero,(agabg

(0) @v,2v#50. However,
similar to the dcI -V characteristic these conductances
not gauge invariant. The sum(bgabg

(0) @v,2v# does not van-
ish and consequently the photocurrent evaluated with th
expressions depends not only on voltage differences.

Let us next consider the displacement current. The cur
at the frequencyv is determined by the terms in Eq.~16! for
which k2 l 51 and it is given by

I a~v!5
e

hE dE(
g,l

Tr Agg~a,E,E1\v!

3Jl S eVg

\v D Jl 11S eVg

\v D f g~E2 l\v!. ~20!

Linearizing the response to an oscillating external poten
yields the admittance previously found.29,30

gab
~0!@v;$Vg~0!%#5

e2

h E dETr Abb@a,E,E1\v;$Vg~0!%#

3
f b~E!2 f b~E1\v!

\v
. ~21!

The external admittance given by Eq.~21! has been the start
ing point of a self-consistent discussion of ac transport ba
on the scattering-matrix approach. The approach has b
illustrated in a number of works.42–44 The next term in the
expansion is third order in the oscillating potentials and w
not be needed here.

We remark that the external photoconductances Eq.~19!
are like the dc current determined by transmission proba
ties only. In contrast, the displacement current invokes pr
ucts of scattering matrices at different energies and thus
ar
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e
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pends also on the phases of the scattering matrix. Expre
in a more physical language, the displacement current is
sitive to the densities of carriers, expressed here via ene
derivatives of phases. Below we find that the self-consist
photocurrent contains in fact not only transmission probab
ties but, like the displacement current, also information
the charge accumulated in the conductor.

Before considering the effect of screening, we discuss
relation of the external response to previous work. A disc
sion of shot noise in a conductor with applied ac voltages
be found in the Appendix.

A. Two-terminal conductors

We consider the external response for the two-termi
conductor. The conductor might consist of a single tunnel
barrier or might be a resonant double barrier connected
either side to a large contact. The results we obtain from
external response described above look very similar to
results of Tien and Gordon1 and Tucker.2 There is, however,
an important difference. The results presented in this sec
are not gauge invariant since in our approach the potenti
held fixed also in the contacts near the barrier. As a con
quence, different but physically identical configurations
voltages lead to different results. Later we will show ho
these results change when screening is taken into acco
for the specific example of a resonant tunneling barrier.
the other hand, for a single barrier, as will be discuss
briefly, the results by Tien and Gordon and Tucker do all
a gauge-invariant interpretation.

First we consider the zero-frequency photocurrent wh
arises if one of the contact potentials is oscillating and
other is kept fixed,V1(v)5V(v) and V2(v)50. For sim-
plicity we assume that the scattering matrix has been dia
nalized such that transmission through the barrier is
scribed by a transmission probabilityTm(E) and a reflection
probability Rm(E) for the mth eigenchannel. Using Eq.~17!
and using the sum rule for Bessel function
( lJl 1k(x)Jl(x)5dk0 , we find

I 1~0!52
e

hE dE(
lm

Jl
2S eV~v!

\v DTm~E!

3@ f 1~E1 l\v!2 f 2~E!#. ~22!

The time-dependent current was investigated by Tucker
the same geometry.2 Using Eq.~16! we find

I 1~ t !5(
lkg

Tr Agg~a,E,E1k\v!

3Jl S eV~v!

\v D Jl 1kS eV~v!

\v De2 ikvt f g~E2 l\v!.

~23!

Note that in contrast to the zero-frequency photocurrent
time-dependent current is expressed with the help of the
rent matrix, Eq.~15!, and not with transmission probabilities
Neither Eq.~22! nor ~23! is invariant under an equal shift o
all potentials. For example, an experimentally equival
situation would be to setV1(v)5V(v)/2 and V2(v)5
2V(v)/2. This, however, yields a different result in the no
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interacting approach. Even worse, settingV1(v)5V2(v)
5V(v)/2 should yield no photocurrent, but gives the sa
as for V1(v)5V(v)/2 and V2(v)52V(v)/2. To remedy
this we introduce in the next section a simple self-consis
scheme to achieve charge and current conservation, sim
to one used previously.29,45

The results of Tien and Gordon1 and Tucker2 have a
slightly different appearance since the transmission pr
abilities are expressed with the help of Bardeen’s form
T54p2utu2n1(E)n2(E1 l\v) in terms of an energy-
independent matrix elementt and the density of statesn1(E)
andn2(E) to the left and right of the barrier. In our work th
energyE is a global variable, whereas Tien and Gordon m
sure energy in the densities of states from the conduc
band bottom to the left and right of the barrier. Of mu
more significance is the appearance of the voltage in t
expressions and its meaning as compared to Eqs.~22! and
~23!. As explained by Bu¨ttner and Gerlach,41 if one uses a
coupling energye(V1N11V2N2)cos(vt) of the left and right
contact voltagesV1 andV2 to the total chargesN1 andN2 of
the left and right contacts and insists thatV5V12V2 is the
experimentally applied voltage, then the tunneling Ham
toian approach yields a gauge-invariant result which depe
only on V. We remark here, that such a discussion only
vokes the reservoir charges and reservoir potentials and
not attempt to provide a detailed description of the cha
distribution near the barrier or inside a sample. Our appro
is not restricted to such a minimal coupling of voltages a
charges but in addition to the coupling of the contact vo
ages to the charges also treats the voltages and charges
interior of the sample. To this extent we now proceed to
discussion of the charges injected into the sample.

B. Density operator

When applying voltages to the conductor, the sample w
be charged. The net charge of the sample in response
potential applied to a contact can be decomposed into
contributions: A charge response, called the injectance of
contact, at fixed internal electric potential and a charge
sponse due to an electrically induced potential. Here we
termined the injectances of a multiterminal conductor. In
next section these results are used when treating the pro
with interactions.

At zero frequency, the number of electrons in the sam
is determined by the operator46

N̂5 (
abnm

E d2rE dE nan
1/2~E!nbm

1/2~E!

3Can* ~r ,E!Cbm~r ,E!âan
† ~E!âbm~E!, ~24!

wherenan(E) is the density-of-states for channeln in con-
tacta, andCan(r ,E) is the corresponding wave function fo
a scattering state describing carriers incident in contacta in
channeln.

We now define the partial density-of-states mat
dNab /dE, with elements

dNab,nm

dE
5E d2r nan

1/2~E!nbm
1/2~E!Can* ~r ,E!Cbm~r ,E!.

~25!
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This matrix can also be expressed in terms of the scatte
matrix and its derivatives46

dNgd

dE
52

1

4p i(b Fsbg
† ~E!

dsbd~E!

dE
2

dsbg
† ~E!

dE
sbd~E!G .

~26!

Using this and Eq.~13! we find the number operator in th
presence of oscillating contact potentials

N̂5 (
ab lk

E dE Jl S eVa

\v D JkS eVb

\v D
3~ â8!a

†~E2 l\v!
dNab

dE
âb8 ~E2k\v!, ~27!

with the expectation value

N5(
a l

E dE Jl
2S eVa

\v DTr
dNaa

dE
f a~E2 l\v!. ~28!

We can shift the frequency dependence from the Fermi fu
tion to the partial density of states

N5(
a

E dE Jl
2S eVa

\v DdNa
~0!

dE
f a~E!, ~29!

and thus identify the injectancedNa
(0)/dE at energyE in the

presence of a potential variation at contacta. Here the upper
index 0 is once more used to emphasize that this densi
evaluated at fixed internal potential. To second order in
oscillating potential,Va(v), the injectance is

dNa
~0!

dE
5TrFdNaa~E!

dE
2

e2

2

uVa~v!u2

~\v!2 S dNaa~E1\v!

dE

1
dNaa~E2\v!

dE
22

dNaa~E!

dE D G . ~30!

In the limit thatuVa(v)u becomes small compared to\v the
injectance is that produced by a static voltage. We have n
determined both the currents and the charges as a co
quence of oscillating voltages at the contacts of the sam
under the assumption that the internal potential is kept fix
We next determine the internal potential and the current
charge response to this internal potential.

III. INTERNAL RESPONSE: SELF-CONSISTENT
SCREENING

In response to a potential variation at a contact the cha
distribution in the interior of the sample is driven away fro
its equilibrium pattern. Coulomb interactions oppose suc
variation. In the problem of interest here a variation of t
sample charge can come about both because we in ge
consider a biased sample such that a dc current flows
because we subject the sample to ac voltages. In genera
a nonequilibrium dynamical potential landscape that matt
Here for simplicity we consider the sample to be zero dim
sional and assume that it suffices to consider a single inte
potentialU. Such an approximation is often used in the l
erature on the Coulomb blockade and in the scattering



t

t-
a

a

d
o
on
n

is
n.
e
tr
th

l

a
,

als
-

d
to
e

ds
b

in
a

er

-

. In
e-

e the
f
rier

al
y

ses,
n the
he
ac-
rnal
ned
ing
ned

n-

as

g

PRB 58 12 999SCATTERING THEORY OF PHOTON-ASSISTED . . .
proach to electrical conduction has been used to discuss
nonlinearI -V characteristic of mesoscopic samples35 and ac
transport in Refs. 45, 30, and 47. At equilibrium, if all vol
ages at the contact of the sample are equal, and in the
sence of ac potentials, the value of this potential isU
5Ueq. Our first task is to determine the zero-frequency p
of this potential.

To be more specific we now consider a sample couple
a gate, as an example see Fig. 1. We denote the contact t
gate by the indexg and the capacitance of the central regi
of the conductor to the gate byCg . The capacitance betwee
the central region of the conductor to the reservoira is de-
noted byCa . Next we introduce an indexn which runs over
all N current contacts of the samplen5a51,2, . . .N and in
addition includes the contact to the gaten5N115g.

A. Static internal potential

Consider first the equilibrium potentialU0
eq. The grand

canonical potential with the Coulomb energy included
minimal for a potentialU0

eq that obeys the Poisson equatio
In our case the Poisson equation is discretized and is
pressed with the help of the geometrical capacitances in
duced above. The net electronic charge on the sample is
permitted by the Coulomb interaction:

Q2Q15(
n

Cn~U2Vn!. ~31!

Here Q is the electronic charge,Q1 is an effective ‘‘ionic
charge’’ created by the donors, andCn are the geometrica
capacitances.

For Vn50, the equilibrium chargeQ5Q0
eq and the equi-

librium potentialU5U0
eq follow from Eq. ~31! as follows.

The electronic charge on the conductor can be expressed
sum of all the charges injected from the various contacts

Q0
eq5(

a
E

2`

m

e
dNa~U0

eq!

dE
dE, ~32!

where the injectance47,33 of contacta is given by Eq.~30!.
Note that the scattering matrix and thus the injectance
depends onU0

eq. Equation~32! is thus a self-consistent equa
tion for the equilibrium potential.

Next, let us keep the ac voltages turned off but apply
voltages to the contacts, charge will flow into the conduc
causing a shift of the static potential in the barrier. We d
note the resulting potential byU0 . It is a function of the
applied potentialsVn since now the injected charge depen
on all the applied voltages. The injected charge is given

Q05(
a

E
2`

ma
e

dNa~U0!

dE
dE. ~33!

Using Eq.~32! to express the effective background charge
terms of the scattering matrix and the charges on the cap
tors gives the following self-consistent equation for det
mining the internal static potential in the sample
he

b-

rt

to
the

x-
o-
at

s a

o

c
r
-

y

ci-
-

(
a

E
2`

ma
e

dNa~U0!

dE
dE2E

2`

meq

(
a

e
dNa~U0

eq!

dE
dE

5(
n

Cn~U02Vn!. ~34!

HereVa5ma2m is the deviation of the electrochemical po
tential in contacta from its equilibrium valuem. This ap-
proach was used by Christen and Bu¨ttiker35 to study the non-
linear conductance for a resonant tunneling barrier.

Next, consider the case that is really of interest here
addition to possible static voltage differences we have tim
dependent potentials at the contacts. As a consequenc
~unscreened! chargeQ(t) in the sample is also a function o
time. It can be Fourier transformed, and we expect Fou
components at the oscillation frequencyv of the voltage and
at all higher harmonics,kv. As a consequence the potenti
inside the conductor will also oscillate and will similarl
have Fourier components at all harmonics,U(kv). If an
oscillating voltage at a contact, due to nonlinear proces
also changes the time-averaged charge in the sample the
potentialU0 as determined above would be modified by t
presence of the oscillating potentials. To take this into
count we write the injected charge as a response to exte
potentials in the presence of a self-consistently determi
static potential plus the response from the internal oscillat
potential. The response to the internal potential is determi
by three unknown response coefficients,x ia , xa i , andx i i
such that

Q05(
a

E e
dNa

~0!

dE
dE1(

a
E dEx ia~E!U* ~v!Va~v!

1(
a

E dExa i~E!Va* ~v!U~v!1x i i ~E!uU~v!u2.

~35!
To determinex ia , xa i , and x i i we use the fact that the
injectance be invariant under a shift of all oscillating pote
tials by an equal amount. This yields the coefficients

x ia~E!5xa i~E!

5TrF1

2S e

\v D 2S dNaa~E1\v!

dE
1

dNaa~E2\v!

dE

22
dNaa~E!

dE D G , ~36!

x i i ~E!52(
a

x ia~E!. ~37!

With this we can express the gauge-invariant injectance

dNa

dE
5TrFdNaa~E!

dE
2

e2

2

uVa~v!2U~v!u2

~\v!2

3S dNaa~E1\v!

dE
1

dNaa~E2\v!

dE

22
dNaa~E!

dE D G . ~38!

Equations~34! and ~38! now allow us to find the static
internal potentialU0 in the presence of static and oscillatin
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contact voltages. Note thatdNa /dE depends onU0 since the
scattering matrix depends onU0 . The potentialU0 depends
on dc voltages applied to the sample and depends thro
nonlinear processes on the amplitudes of the ac voltages
the frequency. Our next task is now to find thecurrent re-
sponse to the oscillating internal potentialU(t).

B. dc current

Consider first the photoinduced dc current. The dc curr
can be divided into two parts, one due to direct transmiss
processes, and one due to transmission after absorp
~emission! of a photon followed by its emission~absorption!.
Both processes take place in a self-consistently determ
electrostatic background, which depends on all voltages a
frequencies:

I a~0!5I a
dc@$Vb~0!%#1I a

ph@$Vb~0!%#. ~39!

Here I a
dc@$Vb(0)%# is determined from the first term of th

sum in Eq.~17!, where now the scattering matrix depends
U0 .

The photocurrent can be written generally as the sum
the response to the external oscillating potential and the
ternal potentialU(v). To proceed we now considere
5eU(v)/(\v), a small parameter in which we can expan
All the oscillating contact potentials are also of ordere. In
this work we will stop this expansion at the first nontrivi
order. Since photon-assisted tunneling is of second or hig
order in the oscillating potentials, we carry the expansion
second order.

For the photocurrent we obtain

I a
ph@$Vb~0!%#5(

bg
gabg

~0! @v,2v;$Vd~0!%#Vb~v!Vg* ~v!

1(
b

gab i@v,2v;$Vd~0!%#Vb~v!U* ~v!

1(
g

ga ig@v,2v;$Vd~0!%#U~v!Vg* ~v!

1ga i i @v,2v;$Vd~0!%#U~v!U* ~v!, ~40!

where the indexi refers to responses due to the internal p
tential U(v).

The responses to the internal potential are found by
manding that the current is invariant with respect to a shif
all voltages~gauge invariance!. Lowering all voltages at fre-
quencyv by U(v) shifts the internal potential to the exte
nal potentials. Comparing the resulting expression with
~40! gives

gab i@v,2v;$Vd~0!%#52(
g

gabg
~0! @v,2v;$Vd~0!%#,

~41!

ga ig@v,2v;$Vd~0!%#52(
b

gabg
~0! @v,2v;$Vd~0!%#,

~42!
gh
nd
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ed
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ga i i @v,2v;$Vd~0!%#5(
bg

gabg
~0! @v,2v;$Vd~0!%#.

~43!

Thus the photoresponses to the internal potential are de
mined by combinations of external photoconductances.

With these conductances, the dc current can be writte

I a~0!5I a
dc@$Vb~0!%#

1(
b

gabb
~0! @v,2v;$Vg~0!%#uVb~v!2U~v!u2.

~44!

Note that the current depends on the difference between
applied voltage and the internal voltage only. All the nonli
ear transport coefficients in Eqs.~40!–~44! also depend on
U0 , the self-consistent dc potential.

C. Displacement current

The current at frequencyv is only needed to first order in
the applied oscillating voltages. In addition to the extern
potential the oscillating internal potential also contributes
the current. In the presence of the internal potential the g
eral form for the current is to first order in the potentials

I a~v!5(
b

gab
~0!@v;$Vg~0!%#Vb~v!

1ga i@v;$Vg~0!%#U~v!. ~45!

Here gab
(0)@v;$Vg(0)%# are the external ac conductanc

given by Eq.~21! andga i is the ac response to the intern
potential. Again we determinega i through the requiremen
that this expression is invariant under an overall shift of
potential. This gauge-invariance argument determines the
sponse to the internal potential in terms of external
sponses;ga i@v;$Vg(0)%#52(bgab

(0)@v;$Vg(0)%#.
Both for the dc current and the ac current we now kn

the response to the external voltagesVg(0) and to the inter-
nal potentialU(t). But the internal potential is thus far no
determined. This is our next task.

To be more specific we now return to the sample sho
in Fig. 1. The current at contacta is the particle current plus
the displacement current~capacitive! current I a(v)
2 ivCa@Va(v)2U(v)# with I a as determined above. Th
current from the gate to the sample is purely capacitive
is given byI g(v)52 ivCg@Vg(v)2U(v)#. Since the over-
all charge at frequencyv is conserved the sum of thes
currents must vanish. Thus we must have

(
a

I a~v!52 iv(
n

Cn@U~v!2Vn~v!#. ~46!

Solving this equation for the internal potential yields

U~v!5

(
ab

gab
~0!@v;$Vg~0!%#Vb~v!2 iv(

n
CnVn~v!

(
ab

gab
~0!@v;$Vg~0!%#2 iv(

n
Cn

.

~47!
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The external ac conductances and the geometrical cap
tances determine the potentialU(v) and determine the self
consistent dc current due to photoassisted tunneling and
self-consistent ac conductances.

IV. RESONANT TUNNELING BARRIER

As an application of the self-consistent theory develop
above, we consider the photoinduced dc current throug
resonant tunneling barrier. The experimental setup is ta
as sketched in Fig. 1. Each side of the resonant barrie
connected to reservoirs with chemical potentialsm1 andm2
and capacitancesC1 and C2 . The interior of the barrier is
coupled to a gate with a capacitanceCg . For simplicity we
assume that the gates are macroscopic with no dynamic
their own. A dc bias will be applied by makingeV[e(V1
2V2)5m12m2 nonzero.

The scattering matrix close to a resonance is given by
Breit-Wigner formula48–50

smn5Fdmn2 i
Agmgn

E2E02eU01 ig/2Gei ~dm1dn!. ~48!

Heregn , n51,2 are the partial widths of the resonance p
portional to the tunneling probability through the left an
right barrier andg5(ngn is the total width of the resonance
dm are the phases acquired in the reflection or transmis
process andE0 is the position of the resonance. The ter
eU05e@V1(0)1V2(0)#/21W ensures invariance upon
shift of the dc voltages.35 W is determined by the condition
Eqs.~34! and~38!, and is a function ofV1(0)2V2(0) only.
The injectivities are47

dNa

dE
5

1

2p

ga

~E2E02eU0!21~g/2!2
. ~49!

The Breit-Wigner formula is a reasonable form for t
scattering matrix as long as the energy does not get clos
the next resonance level. Assuming that the level spacin
our system is large enough such that neighboring levels
safely be ignored we will use the formula in a wide ener
range.

Photon-assisted tunneling is most easily seen either in
differential conductance as function of bias volta
dI(V)/dV, where side peaks show up at multiples of t
photon energy, or in the dc current for small~infinitesimal!
bias when varying the gate potential5 I (Vg). In Fig. 2 we
show an example of adI(V)/dV curve using the noninter
acting discussion, Eq.~22! and using the Breit-Wigner ex
pression Eq.~48! with U050. The potential of the left con
tact oscillates. We apply a dc voltageV[V12V2 , take
\v/(g/2)55 and consider the symmetric caseg15g2
5g/2. In this and all the following examples we usee2

50.1, for which the expansion to second order is pertine
For this choice of parameters only the first sideband pe
can be resolved. In a noninteracting discussion one ident
U05Vg and as a consequence both the differential cond
ci-
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to
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tance as a function of dc voltage, or the current as a func
of gate voltage, the sidebands are observed at a voltage
responding to the photon energy. Discussions which neg
interactions do not discriminate between these two meth
for observing photon-assisted transport. If we now consi
the physically meaningful result, the theory which includ
interactions, the general behavior will remain the same,
the two methods of analyzing photon-assisted transport,
consideringdI(V)/dV or I (Vg) now give in general different
results. The effects brought about by screening, discusse
more detail in the next section, are: First, the relative wei
of the sidebands and the central peaks will not be the sam
the two situations. Second screening also brings abou
asymmetry in the weights of the sidebands for6n\v. In a
discussion that neglects interaction the side bands have
same weight. In contrast, in the interacting case, if the eq
librium chemical potential does not coincide with the res
nant energy, screening will be different for the two voltag
where peaks are seen, and accordingly their weights
differ. Such asymmetries are seen in experiments.7 Below we
discuss these effects in detail.

A. Gate-driven case

First, consider a sample subject to a dc biasV5V12V2
and an oscillating voltageVg(v) applied solely at the gate
For simplicity we takeC15C250. In this case there can b
no dc photocurrent whenm15m2 , since (bAbb(a,E,E)
50 @see Eqs.~18! and~44!# as a consequence of the unitari
of the scattering matrix. The effect of photon-assisted tunn
ing in this setup is controlled by the internal potential. Thu
it is of interest to understand how it relates to the appl
gate voltage in the presence of screening. From the s
consistent theory@see Eq.~47!# we find for the ratio of the
applied to the external potential

FIG. 2. Differential conductance as a function of dc bias fro
the noninteracting discussion. The left contact potential is oscil
ing. The parameters are\v/(g/2)55, e250.1, and the Fermi en-
ergy is equal to the resonant energym5E0 . For comparison the
dashed line shows the transmission probability determined from
Breit-Wigner expression.



r the

13 002 PRB 58MORTEN HOLM PEDERSEN AND MARKUS BU¨ TTIKER
U~v!

Vg~v!
5F11

i

vC(
ab

gab
~0!~v;V!G21

. ~50!

This ratio is determined by the ac conductancesgab
(0)(v;V). These ac conductances are known. At zero temperature, fo

symmetric resonant tunneling barrierg15g2 they are given by Fu and Dudley51 and for the asymmetric caseg1Þg2 by
Büttiker and Christen:33

g11
~0!~v!5g21

~0!~v!Fg1

g2
2

g

g2
S 12 i

\v

g D G , ~51!

g22
~0!~v!5g12

~0!~v!Fg2

g1
2

g

g1
S 12 i

\v

g D G , ~52!

g21
~0!~v;V!5g12

~0!~v;2V!, ~53!

g12
~0!~v!5

e2

h

g1g2

g\v

1

12 i ~\v/g!F i

2
ln

@~m2\v2E02W2eV/2!21~g/2!2#

@~m2E02W2eV/2!21~g/2!2#
1

i

2
ln

@~m1\v2E02W2eV/2!21~g/2!2#

@~m2E02W2eV/2!21~g/2!2#

1arctanS m1\v2E02W2eV/2

g/2 D2arctanS m2\v2E02W2eV/2

g/2 D G . ~54!
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With these expressions Eq.~50!, the ratio of internal to
external potential, can be evaluated. This ratio has
simple limits. In the noninteracting limitC→`, the internal
potential directly follows the applied potential. In the lim
C→0, we have a charge neutral sample andU(v)50.

In Fig. 3, we show the absolute square ratio of the inter
to the external potential for different frequencies, wh
sweeping the Fermi level through the resonance. The n
screened caseC→`, where the ratio is 1, is shown as th
dashed line. It is evident that screening introduces a la
renormalization of the internal potential for this choice
capacitance with a strong dependence on frequency. One
serves the largest effect when the Fermi energy is clos

FIG. 3. Ratio of the internal potential to the gate voltage
function of the Fermi energy, forC5e2/pg, V50 and for the
frequencies ~a! \v/(g/2)510, ~b! \v/(g/2)53, and ~c!
\v/(g/2)51.
o

l

n-

e

b-
to

the resonance. This is expected since the density in the
rier is a Lorentzian with a peak at resonance,48 thus provid-
ing more screening electrons. As a function of frequency
ratio changes qualitatively; for low frequencies the intern
potential is reduced compared to the external poten
whereas with increasing frequency the situation reverses

Next consider the current as a function of gate volta
Since screening depends on the position of the resonant
compared to the equilibrium electrochemical potential,
central peak and the sideband will experience a different
gree of screening and, thus, their weights will no longer
given by a Bessel function behavior as in the noninteract
approach. In Fig. 4 the ratio of the sideband peak to

s
FIG. 4. Ratio of the sideband weight to central peak weight

function of capacitance in the current vs gate voltage character
I (Vg) for frequencies~a! \v/(g/2)53, ~b! \v/(g/2)55, and~c!
\v/(g/2)510, whene250.1. The dashed line shows the resu
when no screening is present.
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central peak is shown. The noninteracting approach pred
a ratio of 0.125 for the parameters chosen~dashed line!. It is
seen that, depending on capacitance and frequency, this
can be quite different.

Similarly, when measuring the differential conductance
function of dc voltage screening will also vary as function
voltage. In this case the sideband weight to central p
weight ratio is shown in Fig. 5. Again, large differences w
respect to the noninteracting case are possible.

An interesting effect due to the dependence of screen
on the dc voltage~or the gate voltage! is that sidebands will
no longer be strictly Lorentzian, but skewed. However, t
skewing effect is rather small and probably difficult to r
solve experimentally.

When the Fermi level is off resonance the first sideba
corresponding to absorbing and afterwards emitting a pho
and vice versa occur at different potentials. Screening
therefore occur asymmetrically for the two peaks introduc
an asymmetry between the6 sidebands. This effect is illus
trated in Fig. 6. Experimental observation of this effect h
already been made,7 although it has not been studied syste
atically.

Another effect is visible in the inset in Fig. 6. One notic
that the width of the central peak is significantly larger th
the width of the sidebands. Since the capacitance in this
ample is rather small, the charging energy is large, and w
increasing the dc bias voltage the added charge gives ris
a huge increase in the static internal potential. The resu
that the resonance floats upwards in energy, widening
peak. For the same reason, the distance from the central
to the sideband is no longer simply\v, but substantially
larger.

FIG. 5. Ratio of the sideband weight to the central peak wei
as function of the capacitance in the differential conductancedI/dV
for the frequencies~a! \v/(g/2)53, ~b! \v/(g/2)55, and ~c!
\v/(g/2)510 ande250.1. The dashed line shows the result wh
no screening is present.
ts

tio

s
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B. Contact driven case

A setup often used experimentally is to couple the os
lating field to the conductor via a bowtie antenna.7 In this
case we assume that there is no gate,Cg50. For simplicity
we take the capacitances across each tunneling barrier t
identical,C15C25C/2. The dc current into contact 1 is the

I 1~0;V!5F g111
~0! ~v,2v;V!U(

a
ga2

~0!~v;V!1 ivC/2

(
ab

gab
~0!~v;V!2 ivC

U 2

1g122
~0! ~v,2v;V!U(

a
ga1

~0!~v;V!1 ivC/2

(
ab

gab
~0!~v;V!2 ivC

U 2G
3uV2~v!2V1~v!u2. ~55!

In the absence of a dc voltage drop and forg15g2 , the dc
photocurrent vanishes, because of the symmetry of the p
lem. However, in contrast to the gate driven case a zero-
current can be generated for the asymmetric sample, g
by

t FIG. 6. Weight asymmetry for the6\v sidebands as function
of capacitance in thedI/dV characteristic forg1 /(g/2)51/4 and
g2 /(g/2)53/4, and for~a! \v/(g/2)53, m/(g/2)525, and ~b!
\v/(g/2)55, m/(g/2)5210. The dashed line shows the resu
when no screening is present. The inset shows an example
differential conductance curve as a function of the bias voltage
g15g2 , \v/(g/2)55, m/(g/2)5210, andC50.1(e2/pg). The
dashed line is the result without screening.
I 1~0;V50!5g111
~0! ~v,2v!uV2~v!2V1~v!u2

g22g1

g

ug12
~0!~v!/g1g2u21vC@Re$g12

~0!~v!%/g1g2#

ug12
~0!~v!/g1g22vC/\gu2

. ~56!
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Sinceg12
(0)(v)/(g1g2) is a function only ofg we find that the

zero-bias current is proportional to the effective asymme
of the double barrier, (g12g2)/g. For small capacitances
Cg1g2 /„2\g12

(0)(v)…!g1 ,g2 , the current is directly propor
tional to the asymmetry of the barrier without any renorm
ization from screeningI 1(0;V50)5g111(v,2v)uV2(v)
2V1(v)u2(g22g1)/g. Thus, the ac field effectively pump
electrons through the system. The noninteracting res
given by Eq.~22!, also predicts a current at zero bias. Th
result, however, being independent of the asymmetry of
system. This prediction of a zero-bias current for the sy
metric case is again a consequence of the lack of gaug
variance of the noninteracting result. That a symmetric str
ture, in the absence of dc voltages, cannot exhibi
photocurrent, can be understood from the following symm
try and invariance conditions. Consider first a variation
the voltage at the left contactV1(v)5V0cos(vt) and sup-
pose this produces a dc photocurrentI 1 . Then consider a
voltage variation of the right contactV2(v)52V0cos(vt)
5V0cos(vt1p). By symmetry this must give a currentI 25
2I 1 . In reality, however, due to gauge invariance these t
voltage oscillations are experimentally the same and he
must give rise to the same dc current. But the only dc curr
which reflects this symmetry isI 50. Clearly, the correct
answer is a consequence of gauge invariance.

V. CONCLUSION

We have extended the scattering-matrix approach
transport in phase-coherent conductors to take into acc
oscillating contact potentials and internal potentials in n
linear order. The effect of screening has been taken into
count to second order in the oscillating potentials by me
of a RPA treatment. The result is a theory, valid for arbitra
dc voltages, which is current and charge conserving~gauge
invariant!. The internal potential in the conductor has be
treated as a single parameter. Certainly, to go beyond
approximation and treat a more realistic continuous poten
distribution would be interesting. But even for the case
linear ac transport, a scattering matrix for continuous pot
tials exists only to linear order in frequency,31 and exception-
ally to second order.46 Discussions of the dynamic condu
tance of a ballistic wire over a wide range of frequenci
taking into account spatial potential variations,32 are not yet
formulated within the scattering approach. It would also
interesting to extend our discussion to higher order in
applied voltages. For large field strengths it is possible
make one of the Bessel functions zero, giving rising to d
namic localization.52,8,12Since we find that Bessel function
can in general not give a gauge-invariant answer it is c
that the criteria for dynamic localization will be changed
an essential way in the presence of interactions.

We have applied our theory to photon-assisted tunne
using a resonant tunneling barrier as an example. The
standard setups for photon-assisted tunneling, applying
modulation to one of the contacts in a two-terminal expe
ment, or coupling the potential to the conductor via a g
was examined within the self-consistent theory. In bo
cases, the inclusion of screening leads to a renormalizatio
the noninteracting answer. The driving field is not the a
y

-

lt,

e
-
in-
c-
a
-
f

o
ce
nt

to
nt
-
c-
s

n
is
al
f
-

,

e
e
o
-

r

g
o

he
-
e
h
of
-

plied field but the total field. Since the effective field is d
pendent on screening and therefore on applied bias, chem
potential, etc., the weights of the central peak and the s
peaks in the differential conduction versus applied volta
differ from the noninteracting approach. Furthermore,
peak weight is no longer distributed according to the incre
ing order of Bessel functions. This leads to the peak ra
being a complicated function of the screening properties
the system. Experiments in single and double quantum d
show a rough qualitative agreement with the predictions
the noninteracting approach.53 Quantitative comparisons be
tween experiment and theory of the peak ratios are not av
able. The interacting theory also predicts an asymmetry
tween the corresponding left and right sideban
Asymmetric photoconductance peaks have been observe7,5

The necessity to include screening in the treatment
photoassisted transport is most clearly exemplified by
following consideration. For a spatially symmetric system
noninteracting approach predicts a photocurrent in respo
to the oscillation of either the left or the right contact vo
age. In contrast, the gauge-invariant discussion prese
here, predicts that a symmetrical system exhibits no pho
current. Our result for the two-terminal resonant tunneli
barrier, Eq.~56! is a photocurrent which is proportional t
the asymmetry of the tunneling rates of the resonant dou
barrier structure.

In this work we have emphasized that interaction effe
are important whenever a variation of a parameter, an os
lation of a voltage, changes the charge away from its eq
librium value. In photoassisted tunneling it is not sufficie
to consider just the dc current, but a theoretical discuss
has to be self-consistent at all frequencies. Thus there is
essarily a relation between the photoassisted dc current
the displacement current. Only if the charge is investigate
all frequencies can an electrically meaningful, that is gau
invariant, answer be found.
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APPENDIX: CURRENT NOISE

The analysis of this paper concentrates on the aver
zero-frequency photocurrent. However, the approach u
here also allows us to find the fluctuations of the current.
particular interest are the current-current correlations wh
determine the spectral densities of the current fluctuatio
Here we present the general result for the noise spectra
multiterminal conductor in the presence of oscillating cont
potentials assuming that the internal potential is kept fix
As with the average dc current a physically meaningful res
requires in general a discussion of the effects of screeni

For a multiprobe conductor with potentialsVacos(vt) at
frequencyv applied to the contacts, using Eq.~14!, we find
the correlation function
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^$D Î a~ t1t!,D Î b~ t !%&5S e

hD 2E dEdE8 (
gd,lkl 8k8

Jl S eVg

\v D JkS eVd

\v D Jl 8S eVd

\v D
3Jk8S eVg

\v Dei ~E2E8!/\tei ~ l 1 l 82k2k8!vtTr@Agd~a,E,E8!Adg„b,E81~ l 82k!\v,E1~k82 l !\v…#

3@ f g~E2 l\v!„12 f d~E82k\v!…1 f d~E82k\v!„12 f g~E2 l\v!…#. ~A1!

Here the brackets$ % denote the anticommutator. In the presence of ac voltages the current-correlation function is not
function of the relative timet but depends also on the absolute timet. Experimentally what is of interest is the noise spectru
on a time scale long compared to 2p/v. Therefore we define the noise spectrum as an average

Sab~t!5
1

2TE0

T

dt ^$D Î a~ t1t!,D Î b~ t !%&, ~A2!

where T52p/v is the period. The factor 1/2 arises because we have symmetrized the correlation function. The
density is related to the current-current correlation function via 2pSab(V;v)d(V1V8)5(1/2)^$D Î a(V),D Î b(V8)%&, which
is just the Fourier transform ofS(t). We find

Sab~V;v!5S e

\ D 2E dE (
gd,lkk8

Jl S eVg

\v D JkS eVd

\v D Jk81k2 l S eVd

\v D Jk8S eVg

\v DTr@Agd~a,E,E1\V!Adg„b,E1\V1~k82 l !\v,E

1~k82 l !\v…#@ f g~E2 l\v!„12 f d~E1\V2k\v!…1 f d~E1\V2k\v!„12 f g~E2 l\v!…#. ~A3!

In the limit of vanishing driving frequency,v50, Eq. ~A3! reduces to the frequency-dependent noise spectra of Ref. 3
For the special case that the scattering matrices can be taken to be independent of energy, i.e.,Agd(a,E,E1\v)

5Agd(a) Eq. ~A3! simplifies considerably. Using the addition theorem for Bessel functions we find

Sab~0;v!5S e

\ D 2E dE(
gd,l

Tr@Agd~a!Adg~b!#Jl
2S e~Vd2Vg!

\v D @ f g~E1 l\v!„12 f d~E!…1 f d~E!„12 f g~E1 l\v!…#.

~A4!

For a two-terminal conductor this result is identical to that of Lesovik and Levitov25 even though in that work this result wa
derived in response to an electric field and not as here as a response to an oscillating contact voltage. In the expe
Schoelkopfet al.26 the shot noise is measured in the presence of an oscillating voltage applied to the contacts of the

We emphasize that the noise spectra given by Eqs.~A3! and~A4! give only the noise for fixed internal potential. We ha
already remarked that the average dc current exhibits an external response due to photon-assisted transport o
transmission probabilities exhibit an energy dependence@see Eq.~19!#. In contrast, in the shot-noise spectra, we have an ef
even if the scattering matrix is taken to be energy independent. That is a consequence of the fact that the noise spec
in a nonlinear way on the Fermi functions.
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