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We present a systematic theory of Coulomb interaction effects in the nonlinear optical processes in semi-
conductors using a perturbation series in the exciting laser field. The third-order dynamical response consists of
a phase-space filling correction, a mean-field exciton-exciton interaction, and two-exciton correlation effects
expressed as a force-force correlation function. The theory provides a unified description of effects of bound
and unbound biexcitons, including memory effects beyond the Markovian approximation. In the degenerate
four-wave-mixing experiments, correlation effects are shown leading to polarization mixing, ringing, etc. The
strong interaction, a nonperturbative theory of the correlation function, is numerically evaluated for a one-
dimensional model. Approximations for the correlation function are presei$6d63-18208)03643-1

I. INTRODUCTION caused by excitation of two excitons of opposite spins that
first occur in the second order of the Coulomb interacfion.
Transient four-wave-mixing(FWM) experiments have The mean-field description that treats the interaction between
proven to be a powerful tool in probing and understandingexcitons to first order in the Coulomb interaction can account
optical coherence in semiconductdrs. Subpicosecond for neither the polarization mixing nor the formation of
spectroscopy yields information on the very early stages obound biexcitons. This point was clearly demonstrated by
time development of the carrier dynamics and many-particl&ombescot and Combesc8twho had stressed the impor-
correlations. tance of bound and unbound biexciton states for the exci-
The essential physical picture behind the dynamical evotonic ac-Stark shift as well as polarization effettThe for-
lution of optically excited electrons and holes can be undermation of parabiexcitons with singlet spin states for the
stood in simple term&#~8First, the ultrafast dynamics of the electrons and holes is one aspect of polarization mixing,
exciting laser field with frequency near the fundamental banavhich is most likely to be dominant for near-resonant exci-
gap of a semiconductor creates coherent electron{edle  tations of the fundamental exciton states. Moreover, even in
pairs. Second, the motion of the carriers, dominated by th#&e absence of bound biexcitons, the correlation in the con-
Coulomb interaction among them, leads to an ultrafast eledinuum of two-exciton scattering states is also importdrf.
tric polarization as a source of light that can be observed. In studying the optical processes in semiconductor sys-
The scattering of carriers by other carriers, by phonons, antems, while much can be learned from ensembles of nonin-
by defects leads to polarization decay and loss of opticaleracting atomic transitio$ *8interacting with the radiation
coherencé. field or interacting localizeddensg two-level system§,9 the
The density-matrix equations of motion which describedstrong interaction and close proximity of the electrons in
the dynamics of the microscopic polarization and particlesemiconductors provides a distinct avenue of research phys-
distribution functions were established by a number ofics. It is well known that many-body effects lead to a renor-
groupst®~1*Within the mean-field approximation, results for malization of the external fiellocal-field effect$ as well as
the ultrafast dynamics of the electron-hole pairs agreed wello a renormalization of the interband transition energies
with the extant experimental findings, for example, for the(self-energy effects depending sensitively on the density
dynamical Stark effect of the excitons in semiconducftrs ~ and dynamics of the surrounding electron-hole p#ife.
a wide range of semiconductor bulk and quantum well sysin the linear response regime, these effects assume quantita-
tems. With recent advances in ultrafast nonlinear opticative importancé? However, the nonlinear properties of
spectroscopy and in fabrication of semiconductor heterosemiconductors in the weak nonlinear regime and in the
structures, the use of three-pulse FWM, polarizatfotH,and  high-excitation regime constitute a challenging problem,
phase-sensitive ~ measurements of the  nonlineawhere the electron interaction physics must be added to car-
polarization'® and nondegenerate transient FWRef. 19 rier nonequilibrium and physics of quantum optics.
has led to effects beyond the mean-field approximation for In the low density or weakly nonlinear regime, i.e., to
exciton interaction and beyond the Markovian approximatiorthird order in the external field, the dynamics of the semi-
for dephasing. Effects such as the polarization-dependent reonductor for near-resonant excitation of the fundamental
sponse of the excitoh§?® and signatures of bound exciton resonances can be formulated in terms of a set of
biexcitong'~?%lead to more refined theoretical investigations effective dynamical equations for the exciton polarization
beyond the mean-field approximatidht’-24-33 with nonlinear exciton-exciton interaction and space-filling
Polarization mixing in the nonlinear optical response iseffects, which have been derived from the semiconductor
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Bloch equations(SBE’9).2*3%* These effective equations ing states which will be shown to be equally important. It
provide a useful and physical picture of the origin of thecontains the exact spin-dependent Coulomb correlation
nonlinearities and the observed phenomena, for example, imong the four particles and determines the spectral weight
the theory of four-wave mixing,photon echd? or the Rabi  of the biexciton states for the source term of the nonlinear
oscillations in semiconductof&.Being within a mean-field response. These properties can be demonstrated by a numeri-
description, the effective equations can provide no more inc@l example of a one-dimensional model system with the

formation than the full semiconductor Bloch equations in theRdvantage of not making decoupling approximations of the
mean-field approximation. correlation effects(See Sec. Il). Details of the model are

described in Appendix B.
Section IV gives an example of the correlation effects on
a nonlinear optical process: a three-pulse four-wave-mixing

phenomenological few-level modéis’?* to explain the : _ its of .
temporal dependence of the FWM signal signal includin experiment. I_Extenswe new results o f[he humerical eva!ua-
dign of the simple model are qualitatively compared with

oscillations as a beating phenomenon between bound a ¥

unbound biexciton states. In more microscopic theories, ipxpgrimental_resplts. E>'<act numerical evaluation of the cor-
was first shown in the equation-of-motion method by Axt relation function is confined to simple models. For more re-

and Statf® and later in a diagrammatic approach by Maialle alistic models to the semiconductor systems, we need reason-

and Shar¥ that the semiconductor Bloch equations form agble approximations. A number of these are briefly described
Sec. V. We conclude with a summary of our theory and

closed set of equations for the density-matrix elements fol . ; L .
any given order of the external field, depending on the initialVith @ brief outline of future applications in Sec. V.
state, which is usually the vacuum state of the electron-hole

pairs. The so-called dynamics-controlled truncation sckéme Il. AN EQUATION OF MOTION

provides a starting point for a microscopic theory of the po- FOR THE THIRD-ORDER RESPONSE
larization effects and has been applied to up to fifth-order
processe$’ The inclusion of biexcitonic effects for actual
applications is mostly treated in a restriction to bound-stat
contributions and aingletwo-exciton state contributiéi or
perturbation theory in the Coulomb interacti@if® The so-

lution for the third-order susceptibility is inextricably bound : . .
to the solution of the four-partigle pr)c/)blem. y state with no eh pairs present with energy,=0. The one

In this paper, we give a microscopic theory of exciton €11-Pair subspace is the exciton subspace with sfags)

interaction effects in nonlinear optical processes based on tH&!th the quantum numben, a polarization indexr and en-

Coulomb interaction between electrons. The detailed accouff9Y @1n,- - Both bound and scattering states are included in
provides the derivation behind our results published: The polarization index labels a specific transition which,

earlier®4” The theory recovers the established mean-field® OPtically active, corresponds to the helicity of the light
results in the literature and formulates the rest of the interf€quired to excite the eh-pair-states that form the exciton.
action effects, termed correlation, in a concise manner. Paf=0r €xample, in zinc-blende structures, fqutype valence-
ticularly striking is the resulting equation of motion for the Pand states with total angular momentum 3/2 are connected
third-order nonlinear optical response shown to be driven byi@ an optical dipole transition to atype conduction band
a number of terms with clearly identified physical origins: With spin degeneracy. Due to selection rules, fifre 3/2(m
(1) phase-space-filling corrections, which are due to the Paufi — 3/2) electrons in the heavy-hole band are coupled via an
blocking of electrons and hole€?) exciton-exciton mean- optical transition with —(+) polarized photons to the
field interaction, and3) the correlation term, which is ex- =1/2(s=—1/2) spin states in the conduction band. The
pressed as a two-exciton force-force correlation function=1/2(m= —1/2) electrons in the light-hole band are coupled
The derivation of the general equations of motion for anyvia an optical transition with-(+) polarized photons to the
given order of the external field is given in Sec. Il in terms of S= — 1/2(s=1/2) spin states in the conduction band. The
the Hubbard operators, using a complete basis set oNthe Spin-orbit interaction usually splits off a valence band with
eh-pair states. The Axt-Stahl theorfhmanifests itself as, total angular momentum 1/2 and is neglected throughout this
for example, the Hilbert space of one and two electron-holdnvestigation.
pairs being sufficient for the third-order nonlinear response The next relevant subspace is the biexciton Hilbert space
of the semiconductor. Details of the commutation algebra arwith a complete sefE%) of bound and unbound states.
relegated to Appendix A. An alternative derivation in termsHere, we introduce a single index to label the set of quan-
of the density matrix is not recorded here to keep the lengttium numbers for the states with energy,,. Even though
of the paper within bounds. The part of dephasing which isnot all the biexciton states are computed due to the many-
due to the electron interaction effects is included in our corbody nature of the problem, we keep all the states as long as
relation function and the rest of the dephasing due to othepossible because occasions arise that the biexciton states as
causes is treated phenomenologically. intermediate states can be resummed by virtue of the com-
The correlation function approach gives a unified descrippleteness theorem, similar to the treatment of the ac-Stark
tion of all correlation effects. It naturally encompasses theshift3* Such a step would be lost in a common approxima-
recently observed polarization mixing and bound-state biextion which restricts from the start to one or two biexciton
citonic molecules. The exact two-exciton correlation treatsstates.
these effects on the same footing as the two-exciton scatter- The use of the subspaces of different exciton numbers as

The inclusion of biexcitonic effects as well as the possi-
bility of polarization mixing was first discussed in terms of

We take as the fundamental approximation that, in the
bsence of the light-matter interaction, the Hilbert space of
he semiconductor model consists of disconnected subspaces,
which can be labeled according to the number of eh pairs in
the many-particle states. Lé®) denote the trivial ground



12 922 TH. OSTREICH, K. SCHO\HAMMER, AND L. J. SHAM PRB 58

disconnected is implicit in previous work$?’ The discon- .

nectedness is an approximation because states with different 1= Xn.wiNas 2.7
exciton numbers can be connected by the Coulomb interac- Noa

tion. The most important consequence is the neglect of thﬁ) express the exciton operator as

electron-hole pair fluctuations which affects the ground state
and the dielectric screening of the Coulomb interaction. In
other words, we define the ground state of the semiconductor g 0:)‘(0_“ ot 2 (En.alBn ¢r|EN+lB>5(N aN+Lg:
as a vacuum state with respect to the exciton annihilation ' T N=LaB ’ ' ’ o ’(2 3

Bn.+/0)=0, 2.0 . . . . .
' The interaction of the semiconductor with a classical exter-

which means that no electron-hole pairs are present in theal laser field with central frequenay, and field strength
semiconductor ground state. The dielectric screening is afE(t)==E(t)e '“r'e,+c.c. is given in the usual rotating
proximately accounted for by the static dielectric constant ofvave approximatioif by
the semiconductor.

We define a totabr polarization connected to an optical
transition, which can be of arbitrary helicity, depending on Hi=—2> [E} (1B, ,+H.c] 2.9
the electronic states involved, me

with

Po=us 2 Yo (2.2
: Eno(t)=moar Eq(t). (2.10

where the operatowlyf, creates a zero total momentum eh

pair with electron wave-vectdt, hole wave vector-k and time-dependent renormalized Rabi fr N £ 2 given bo-
polarization indexo and w, is the dipole matrix element \e-dependent renormalized Rabl frequency of a given po
é%r_lzatlona and transitiom (A=1). The Hamiltonian of the

between the electron and hole states, assumed to be indep iconductor. f the di ted f th b
dent ofk. Completeness of the operators leads to an equivas-em'con uctor, from the disconnectedness of the subspaces,

lent expression of the- polarization in terms of exciton cre-
ation operators:

For comparison with previous wof®,this expression is the

HZE wN,a)ZN,a;N,av (21])
* N,a
Py= 52 anoBno, 2.3
which is equivalent to a multiband microscopic Hamiltonian
where in second quantization. From the form of the interactirit
follows that the expectation value(§<o;N'a>t can be ex-
n,o™ \/V<I>,w(x=0), (2.4 pressed as a power series in the external field,

in terms of the exciton wave function at zero relative dis-

tance. The operator . o
Kom.ah= 2 Xla *™(O)+O(EN 210" %), (2.12

Bn,U:; (pk,(r(b’kc,n,g (25)

The expectation value of a zerolkbpair transition is at least
. ¢ D\ of order N in the external field. Thigheoremhas already
creates an exciton staBg, ,|0)=|Ey ;) with zero total mo-  peen proven by Axt and Stafil.An important relation can

mentum, energy»; , , and relative wave functiody » . in be derived by the identity for an arbitrary stae(t)),
terms of momenturk. The combination of the electron band

A\, and the hole band, determines the polarization index

o=0a(\1,\;). The laser central frequenay, is implicitly (Xn,aim, a0 = (O Xn 0o 6l S(1)
subtracted from the exciton energy when we transfer to the =((1)|En,)(0[$(1)){(1)[0)
rotating frame. The biexciton energy,, then contains a

reduction—2w,. Note that the factor, , depends on the X(Em.gld())(Xo0) *-

sample volume/ of the system foboundexciton states and
is nonzero only for exciton states wishwave symmetry. We  with X{°)(t)=1 from the initial condition of the semicon-
take care of this volume dependence and show clearly hoyyctor in its ground stat®), we find for the general expec-
the final result is indeed volume independent. tation values

Using the Dirac notation, we introduce the following

Hubbard operators: A A - - _
(Xn,aem 0= (KXot (Ko g Xoo)s +- (2,13

Xnam 5= En o) Em 4l 2.6 o ,
Nt 5= [ Ena)(Enn @8 In order to calculate ther polarization we consider the
which can be used, in combination with the completenesgquation of motion fo{B,, ,);. Using the Hubbard operators
relation it reads
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and nontrivial source terms of third and higher order. In the
[ E(Bn,a%:(wl,n,o—iF)<Bn,g>t following we restrict ourselves to the contributions up to

third order. Then using Eqg2.12 and (2.13 we see that

only X and X{2) have to be determined. AX{}) (t)

in,0
+N21 aE Cn <r a B<XN @ N+1B>t En,o(t) obeys Eq(2.14) Wlthout the terms involving the summations
one obtains
+2 EE o,a, <X a, > (214) t . . ’
N=1 a,p n, B\ N, a;N, 5/t Xg_lrz a-(t)zlf efl(wl’n’n.*lr)(t*t )En’o.(t,)dt’.
with (2.17
C 0= (ON+ 15~ ON o= @10 0)(En al B ol Ens 1) » The equation of motion fo$?) reads
(2.15
i —x Ph=(w25— I Ty) X2} — , 2 Ewgi(t)
noaB 2 moE t)¢qno<ENa|1 nlqa+n2qo|EN,8> nLosnho
(216) X<E2B|Bn" ,,-//lEln’ o’ >X1n o’ (218)

We have introduced the dephasing due to degrees of freedowith the biexciton phenomenological dephasing constant
not included explicitly(e.g., phononsin a phenomenologi- I'xx. In order to write the second term on the right-hand side
cal way with the effective parametét. Using Egs.(2.12  (rhg) of Eq. (2.14 in a compact form we use the explicit
and (2.13 we see that Eq(2.14) can be considered as a result Eq.(2.18 for X(fﬁ)(t) in order to perform the summa-
linear differential equation with &rivial) first-order source tion over the biexciton quantum numbess

t ) ) ,
XZt) =i E e (02— IT(t-t )Enn’gﬂ(t’)<E2’B|B:,,‘U,,

n’ g' nH o —oo

Expr o)X (1), (2.19

Using the identity

. 1 . .
| E nn’(,.//(t)xg_rz o' (t)eXpI(wlynny(,"—l— wlvn/’(,,—ZIF)t
n',a’";n", 0"

n’ 0’ nrr o

1
=§at( Z X5 AOXE, (Dexpi(wypr gt w10 o — 20T (2.20

we obtain after a partial integration

n’ (r n” "

1
1) s ot 1 1
2 X 0=5 2 (<E1,n,(,|Bn,0<H—wl,n,(,—wl,n,(,)Bn”,gmlEl,n/,(»xa,i, (DX (D)
t ) ) ,
_% f_ dp ((Eqn 3B e (w287 Had(t7t )|E2.,8><E2,,B|(H_wl,n,a_wlfl,})Biﬂ,U"|El,n’,a>
X expi(w to —2iD)t—t' )XY, L H)x, 1)
in" a" in’,o’ in’,o’ in”,o"

X eXp— | (wl’nrr’o.u"‘ wlynr’a_r - 2| F)(t_t,)dt, . (221)

We can also perform th8 summation in the second term on Here we have introduced the “force” operator
the rhs of Eq(2.2]). For the derivative, we use the following

identity, which holds fofB; 7 ,B,, ,]=0 andH|0)=0: D5.%:n,0=[B7,5:[Bno H]] (2.23
I (E155Bno(H= w10 5= 0157 and the usual time dependence in the Heisenberg picture is
) T given byD(7)=€e'""De """, This allows to write Eq(2.21)
xXe~ 'HTBn,, oE1n’. o)e (@1n a7t o1 o) T) in a compact form defining a memory kernel,

__|<O|Dn o'no'( )DT

o o |0>ei((‘)l,n”,(r”+wl,n’,(r’)7_
0'

n U n U( ) <O|Dno'no' )D ';n",g-”|0>'

H(Tﬂ(r

(2.22 (2.24
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for the second term on the rhs of E(.21). The matrix  excitations of semiconductors, but we include this contribu-
element in the mean-field qontyiputicﬁﬁrs} term on the rhs tion here to preserve the exactness of our expression to third
of Eq. (2.21)] can also be simplified, which gives order in the exciting field. Keeping tHé=1 contribution in

Eqg. (2.16 we find with Eq.(2.1
<Elﬁ,}|Bn,U(H_wl,n,a_wl,ﬁ,;') q ( 6) q ( 3)

= <E1,FI,’(;' ([Bn,a' 1H] - wl,n,a') 2'3 Eg:!-z)r;aﬁ()’\(l,ailﬁh
=<O|Dﬁ,¢~r;n,a (2.29 Y
and we finally arrive at = > CE’-;‘;’nj; T Epr ()
Z " " n,o-,n’,(r’,n”,o-”
Cc ~ ~~ X55(1)
s Cooin626 XX (T X, (). (2.29

1 > . t t The phase-space-filling parameter depends on the explicit
T2 0ot o <O|D“v”?“’”Bn’vv’Bn",a”|0> exciton wave functions, cf. Appendix A:

. t B o n/,u',;n”,()'”
KXY, (OXy (=i [ e 2t Ch e = vt . B

>< <El,’l'v1,’(;'| l_ I’ll'q'g-i— nzyq’0.| El,n”,o” .
(2.30

(226 The exact third-order nonlinear polarizati®f®)(t) is given
Here it is necessary to assume the relatigp=2I" to use by the solution of the following linear differential equation
the identity Eq.(2.22. The memory function in Eq2.24 is  with a complete set of source terms:
a four-point correlation function in terms of electr@mole)

R RO 00|

operators. As the operatos, ,(q) can be expressed in £+. TPt

terms of finite center-of-mass exciton operatoBs, ,(q), gt ' ®@1ne no(t)

F(7) can be considered a two-exciton correlation function.

From the double commutator definition of tie operators, . (1) w | ~n"olin" o

Eq. (2.24 is aforce-forcecorrelation functiorf® An explicit . E . X155 Cigine © Bnror(D)

form of the operatoD is derived in Appendix A using a oo e

specific semiconductor model. XD )4 L g0 i s (1) (D)
The first expression on the rhs of E@.26 describes the oo (1) 2Pnoino 1o (VX0 (1)

correlations between excitons as in the usual mean-field I LT )

semiconductor Bloch equatiofMFSBE).11244%5|t is only 3 J: e 2l Fatne (t=th)

nonzero for excitons with zero center-of-mass momentum
and with identical polarization i.e., each pair of charged i "
carriers(electrons and holésnust belong to the same bands, ><len/,(,,(t’)xl,n",l,//(t')dt’] : (2.31
and consequently does not produce polarization mixing. For
comparison with previous work on the MFSBE and earlierThis equation expresses succinctly the physical origins of the
work on exciton-exciton interactiot?; > we introduce the source terms, which drive the third-order polarization: the
matrix elements first term in the curly bracket being the phase-space filling,
oot o + + the second the Hartree-Fock or mean-field tefafdirst or-
Brine " =(0IDR5neBn 5B or0), (220 der in the Coulomb interaction between excitorand the
o last the biexciton correlation. The source terms require a so-
e 7 =<O|D;,;;n,UDl, - U,,|o>. (2.28 lution of the linear-response problem of E(.17). The
o o above derivation of the third-order nonlinear response can be
AS D7 5:n,0(7)|0)=0, the correlation functiof(7) can be  oyiended to higher order in the external field. However, the
written as a time-ordered product and standard Feynman digggher_order correlation functions involved no longer have

grams can be used, e.g., t0 set up approximation schemgge simple structure of the third-order response force-force
From a diagrammatic analysis to all orders the rigorous pogqre|ation function.

larization selection ruler+o=¢’'+¢" can easily be read

off.?” Thg fact that thg third-ordt_ar polari;ability can _be ex- Il EXCITON-EXCITON CORRELATIONS

pressed in terms of this correlation function depending on a

single time difference is due to the simplicity of the semi-  The correlation function formulation of the last section

conductor ground state Eq2.1) approximated by the provides us with a powerful framework for computing the

vacuum state of the bound and unbound excitons. correlation effects of the two excitons based on treating the
An additional contribution to the third-order nonlinear re- interaction among the two electrons and two holes on a equal

sponse is given by the phase-space filling factor, which idasis. In this section, we start with the nonlinear optical pro-

due to the Pauli blocking of electrons. This term is assumedesses that lead to the excitation of the excitons and discuss

to play a minor role in the low-density regime of optical some general properties inferred from a study of a one-

n,o':n
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! ‘ ‘ dimensional semiconductor model. The opposite-spin case
(solid line and the parallel-spin casélashed ling are
| shown. The zero of energy corresponds to the energy of two
N parallel-spin noninteracting $ excitons, which is spin independent. Reso-

i —— opposite-spin nances at negative energi@scorrespond tdoundexcitonic
} molecules(biexcitong. In this case, the binding energy of

the biexciton is approximately 1.5 meV. In Fig(al, the

masses of electrons and hole are identigabsitronium
limit). The bound state of the parabiexciton is the most sig-
nificant feature at low energies, since the binding energy is
expected to be much smaller than the usual excitonic binding
energies, which is 10 meV in this model for the dtate. The
parallel-spin case has more pronounced spectral weight at
lower positive energies, but a bound state is not expected to

Intensity

7, 1 exist. The spectra have a maxima at higher energies before
e WM dropping to zero. The bandwidth of a single-electron band is
N N\wkﬁa) 50 meV. It is surprising that the spectrum is almost zero
(‘) 5‘0 "1\00 above the free electron-hole pair-state bandwidth of 100

o [meV] meV. However, a high energy resonance is visible.

This distant resonance moves to lower energies in Fig.
FIG. 1. Force-force correlation function specfgw) for the  1(D), when the ratio of the electron-to-hole mass is reduced
1s-exciton contribution for opposite spirsolid line) and parallel 10 Me/My=0.15, found in semiconductors as in GaAs. The
spins (dashed ling The mass ratio of electrons and holes is reduced mass of electrons and holes is kept constant. More
me./m,=1 for (&), which corresponds to theositronium limit, spectral features appear in the lower-energy regime. In prin-
m./m,=0.15 for(b), which corresponds to the heavy-hole/electron Ciple, more bound states should appear for negative energies.
mass ratio of GaAs and for thenolecular (hydrogen limit A diplike structure can be found at almost the same position
me/m,=0 in (c). Bound excitonic molecules appear #or<0 and  for the opposite-spin and parallel-spin case. In the case of
continuum two-exciton contribution have> 0. opposite-spin correlations, we find increased spectral weight
for smaller positive energies. This can be easily understood,
dimensional system, where the correlation function can béf one eh pair is in the §-exciton state, whereas the second
calculated numerically for relatively large system sizes with-eh pair is quasi freédissociated
out approximating the effects of the many-body interaction. This can be seen in Fig(d) for infinite hole masgmo-
We calculate the spectral function for the-éxciton contri-  lecular limit). The opposite-spin case has pronounced spec-
bution to the third-order optical response for a one-tral features at low energies. More resonances appear, if the
dimensional semiconductor model. This is done in the frespectral broadening in decreased. The resonances can be
quency representation with the use of the Lanczoglassified agl) bound excitonic molecules at negative ener-
algorithm? The details of the one-dimensional semiconduc-gies, which simply are the ground states of two electrons in a
tor model in real space are defined in Appendix B. static potential of twdheavyholes with varying distance, and
The selection rule that connects the helicity of the the(2) scattering resonances, which are antibinding states with
exciting light to the spins of the electron and hole gives risemolecular character. These antibinding states do contribute
to different types of two-exciton excitations depending onto the nonlinear optical response. For example, the first large
the energy-level structures. For a semiconductor with zincresonance at positive energies results from the configuration
blende structure, spin-orbit coupling leads to a fourfold dewhere the two holes are extremely close together. This is
generate valence-band maximum. Two important speciadimilar to the configuration of a helium atom from the view
types of correlation functions are discussed in the following.of the fast moving electrons. The spectral weight of the
a. Opposite-spin excitons.If the two excitonic transi- force-force correlation function favors states with small dis-
tions belong to different conduction and valence bands, i.etance of the charged carriers, as can be seen from the real-
no single-particle states are the same, e.g., the polarizatispace representation of the st&§0) in Eq. (B13). A third
mixing of simultaneous excitations of time= —3/2 valence- resonance is clearly visible at the same energy position for
band to conduction-bansk= — 1/2 transition with apositive  both spin cases ai~10 meV. This resonance is the largest
circular polarization of the light field and then=3/2  feature in the case of parallel-spin excitons. The analysis of
valence-band to conduction-base 1/2 states with anega-  small systems of up to 10 sites strongly suggests that this
tive circular polarization of the light field, respectively. feature originates from Coulomb correlation of electrons and
b. Parallel-spin excitons. When the two exciton transi- holes in the antibonding state, where the holes are located on
tions have common hole and electron bands, their spins ameighboring sites. This explains the feature in both spectra.
parallel. In the case of positive circularly polarized excita-The position of the resonance is only weakly dependent on
tion, only spin +1 excitons are populated. A three-pulse the on-site Coulomb interaction. We have verified that the
experiment can distinguish between the equal-spin and thgpectral resonance from a state with a singdeekciton and
opposite-spin correlations in the response signal. a dissociated eh pair gives much a smaller contribution at
Figure 1 shows the correlation function spectrum for thethis energy. The dip for parallel-spin excitons in Fidc)l
diagonal X-exciton contribution calculated in a one- goes almost to zero and separates a small band of biexciton
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: relation effects between opposite-spin excitons cause polar-
ization mixing.

k To allow for an analytical discussion, we consider the
limit of ultrashort light pulses with identical central fre-
quency, which simplifies most of the following calculations.
In this case, the exciting laser field is given by

)
E(t)=2j E(kj) 8(t+7)). (4.2)

(+)

We emphasize that &pulse approximation is used only in
k =k +k -k the time integration and not in the frequency integration
b since it gives a infinite broad spectral width. The laser pulse

FIG. 2. Three-pulse four-wave-mixing transmission geometry. in the propagation directiok; interacts with the sample at
time t=—7;. The correspondingrea of the light pulse is

scattering states with weakly repulsive interacting pairsof 1 91ven byE(k;). The summation index labels the different
excitons from the antibonding resonance. For opposite-spiRUIS€S involved the multiwave experiment. The first-order
excitons, a spectral hole emerges at zero energy. Spectrﬁ?lar'zat'on of a single exciton transition is easily calculated
weight from the product state of twaslexcitons with zero from Eg. (2.17),

center-of-mass momentum is recovered in the mean-field

delay

contribution to the nonlinear optical response. XM () =ippaf > e e Tt + 7)) Eq(Kj).
The force-force correlation spectrum has a large number i
of spectral features at the exact biexciton energies, which (4.2

include bound-state as well as scattering-state contributiong;oe g (k;)=E(k;)-e, is the projection of the laser field in
Eal\Rj j) S

The correlation function approach treats these states on gpe propagation directiok; onto the polarization unit vector

equal footing. We expect a similar behavior also for MOreés Gt the (n transition. The dephasi mav depend on
realistic 24 or 3d models. o (n,o) ' phasirig, may dep

the polarization of the transition. In the exciton picture, the
total nonlinear polarization to third order in the external
IV. APPLICATION TO FOUR-WAVE MIXING fields is given by Eq.(2.31). The contribution from the
phase-space filling, well documented in the literafiire?°
In this SeCtion, we investigate the correlation effects inp|ays On|y a minor role in the |OW_density limit. We focus on
four-wave-mixing (FWM) experiments with semiconductor the remaining contribution from the mean-field part and the
heterostructures in the |0W'denSity excitation regime Wher%enuine correlation, which can be treated on equa| footing_

the third-order theory in the exciting field is valid. Polariza- Correlation leads to the following nonlinear complex polar-
tion mixing of electrons and holes with different spin can bejzation for the transitioni, o):

induced and probed using cross-polarized laser excitation.
With the proliferation of new experiments which aim at i

probing correlations, we use, as illustrations of application of Piy(t)=— Eﬂzan,oe_'(“’”"’_'mi > (@)
our theory, two specific experimental situations. The first “”rlgjr;”
paradigm experimerf®. by resonantly exciting excitons in

guantum-well structures, clearly demonstrates the signature x{O(t+ 711)21(932C12(t)+®(t+ TJ-Z)

of polarization mixing in these systems for the ultrafast non-

linear response, even in the absence of biexcitonic mol- X 0150 3,Co(t) + O(t+7; 10310 Cy5(1)

ecules. The actual numerical simulations are performed with
the quasi-one-dimensional semiconductor correlation func-
tion (Sec. Il to model the spin-dependent effects and are
not intended to quantitatively describe the experiment. As
second example, we study the effects of bound and unbou
two-exciton states and discuss the “beating” phenomena of
the biexciton resonance, which was identified as quantum

2 . .
beat$? between bound and unbound biexciton states angyith 4,  defined in Eq/(2.4). The exciton-label dependence
which our calculation shows to beringing of the bound-  f 4 on 'the left is understood. The external field and helicity

+®(t+ T]3)13®32C33(t)} (43)

ith ®,=0(r.—7) and an exciton wave-function-
n%ependent factor

— ~ % *
a=afﬁyo—anr’0_ranu,guy (44)

state resonance alone. _ o dependence is contained in the factor
The typical experimental setup is sketched in Fig. 2 for a
three-pulse four-wave-mixing geometry. This experiment EE,wEi‘(kj )iorEgr(Kj) i orE gn(K; ) (4.5)
[ a4 1 g (o8 2 a (o8 3 N N

leads to polarization mixing when pulsé®) and (3) have

opposite helicity. In this case, equal populations of excitonsy general phasep is due to the delay between the short
with opposite angular momenta are excited. In the mean-fielguylses,

description, no third-order polarizatid®®)(k;) exists to dif-

fract probe pulsél) in thek;=ks+k,—k; direction for any p=g' ot 7 e (0 o =ile) 7@ o o =TTy,

time delayT. However, beyond the mean-field theory, cor- (4.6
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The nontrivial part of the polarization dynamics in contained , 1
in the time-dependent function>t — 7,, 7,< 1), % |fl*0m™ =8, (4.12

t _ which can easily be derived from the usual Lehmann repre-
Ca,b(t):f_ expi(wp o+ s 5= @n o = wpr o)t sentation of the correlation function and using E2.27).
a The parameteg is the mean-field exciton-exciton interaction
STt [V , parameter with four identical exciton indicess)1 For the
Xe Dot fo F(r)drdt". (4.7) parallel-polarized case, this contribution is canceled exactly
by the explicit mean-field contribution to the third-order non-
Equation (4.7) contains the complete Coulomb correlation linear polarization. This can be seen by inspection of the
beyond the mean-field approximation. The integral kernel issecond and third terms on the rhs of £2.31), when we set
the memory function, which can be calculated with theF(7)=iB45(7). For opposite-spin excitation, this parameter
knowledge of the exciton-exciton correlation function, B is zero. In the following we defin€(t, T) to be the result
of Eq. (4.1)) after the cancellation:

[N/

Ej;?n’;z o (7_):e*i(wnl’a_r#»wnn’a_ﬂ)fﬁ(T). (4.9 - o (M +iom(t+T) g
e ] S
For the numerical calculation, we always use the resonant m lop(ion+2l)
condition for the temporal evolution d&(7) in Eq. (4.8), (4.13

i.e., w, + w,=0. For nonresonant excitation, the detuning-and, for comparison, the mean-field part,
dependent integrand in E¢4.7) has no phase dependence
for the diagonal contributions of the correlation function.

We now consider the response from the nondegenerate

exciton ground states €] only, with near-resonant excita- )
tion of the central laser frequency, i.@,_1c,=®,, and _ 1he sumrule, Eq(4.19, does not imply that the mean-
neglect the transition labei=1s. We also éeﬂ“U=F for field mstanta_neous contrl_butlon in the nonll_near response has
convenience. This simplifies the general expression&g  completely disappeared in E¢t.13. Mean-field and corre-
and Eq.(4.7) considerably: lation contributions are treat(_ad here on an equal foc_)tlng as
part of the Coulomb interaction of the charged carriers. In
t (e the response function, Et.12), the mean-field contribution
Ca,b(t)zf e 2l f "B(rdr (t>—14,7,<7). is recovered in théarge dephasing limit, i.e.'> w,. In the
“Ta 0 following, we assume equal field strength for all pulses with
4.9 real amplitudeE ;. We evaluate the signal according to the
.The simplest gxperjment that. is gble to distinguish equal.foIlgyvg]p?agglnggierﬁcli?ﬁce.The external sources, E¢.5),
spin from opposite-spin correlation is the three-beam EXPETltor the nonlinear polarization Eq4.3) have to be selected

ment of Fig. 2, where the two pulsé€®) and(3) interact with wi : ; .
i . th the correct spatial phase dependence. For the signal in
the sample at the same time. Assuming that la&®rand(3) k-direction, the iﬁdex Eombinatigrisj —kz, Kk =kj an%
! 2 ! 3

interact with the sample at,= ;=0 we define the delay i ) )
time 7,=T. The correlation function is now diagonal with Ki,=Ks Kj; =Kk are possible witfk;, =k, fixed.
respect to the exciton indices and has the spectral represen-b. Time dependenceThe set{j,,j,,js} determines the
tation with f,,=(0|D|E,) type of response ternC;; and the correspondingd-
functions. This will determine the temporal details of the
- ) signal, depending on the time-order of the incoming pulses.
F(n=2 [fal%e o, (4.10 c. Helicity dependence.The polarization of the transi-
" tions and the helicity of the exciting fields determine the
where them summation includes all contributions from Correct type of correlation function and field amplitude pro-
bound (@, <0) and unboundd,,>0) biexciton state§E,) ~ JeCONE,. _
and the implicit transition indices are understood. We find d- Transition dependence.Perform the summation over

for Eq. (4.9 with 7,=T, 7,=0 for negative time delayy  the exciton quantum numbers after the polarization depen-
<0 andt>—T, dence is determined in the above steps. Symmetry arguments

can be used to reduce the actual number of terms.
Applying rules @) and () in the case of a near-resonant

=2 (t+T) _
— i 2I'T e " 1
Cur(t,T)s=—ige? | 1. (414

~ t p [t ; o . . .
C(t,T)=, f e 2l f |l 2€ om” excitation of the heavy-hole/light-holeslexcitons, we find
m J=T 0 for the time-resolved nonlinear polarization, using,
S i1 p e~ (2T +iomt _ o2 +iomT =an_15 oMo
S [Fo iwn(ilon+2T) '

| . . ) )
3 B B -
PE’_ )(t)_ 3 [: ,Z ) e i(w, IF)teI(wU+IF)T EEE(kl)
o', o,0

(4.11

e*2[‘t_ eZFT]
|(l)m2F X[MU’EU’(kZ)MU"Eo’”(k?:)

The second term of Eq4.11) is simplified by a sum rule + o Egr(Kg) o gnE gn(Ko) 1 k(1,T) (4.19
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with 40

k(t,T)=0(1)0(T)C(t,00+0(t+T)O(—T)C(t,T).
(4.16 30,
The helicity of the diffracted polarization depends on the
individual contributions, asnixedin Eqg. (4.13.

We discuss in more detail an equal-spin excitation. Cor-
rections due to phase-space filling are neglected. The three-
pulse experiment in Fig. 2 can clearly distinguish between
correlations between opposite-spin excitons and parallel-spin
excitons. In the cross-polarized configuration, puk&sand .7
(3) have opposite helicity. The response in thedirection . ‘ ‘
has opposite helicity with respect to pulde. This is a con- 0 2 4 6 8
sequence of angular-momentum conservation. In the case of time [ps]
equal helicity, all three pulses and the response have identi-
cal helicity. In both cases, the main difference comes from FIG. 3. Source ternC(t,0) in the nonlinear response in the
the type of heavy-hole correlation function, which enters theparallel-spin case with parameters of Fig. 4. The mean-field ap-
calculation ofC(t,T). Since the response comes from iden-Proximation, which has no real part from E@.14) overestimates
tical optical transitions, besides the helicity, we getE,  the response.
€{0,1}. The responses in both polarization configurations
differ mainly in the type of correlation function to be calcu- lation between the exciton dephasing paraméteand the
lated. For the*-heavy-hole exciton transition, we find for Rydberg energw,, since the detuning is zero. The Rydberg
k,— o, ky— o, andks— o in the cross-polarized configura- €nergy does not appear explicitly, but for the Coulomb inter-

—— C,(t0)
----- Re C(t,0)
——— Im C(1,0)

20

(arb. units)

10 -

e ——

tion andk;— o in the copolarized configuratiorr= — o) actionU~ w, holds. The results can be compared with few-
level models on FWM?
PR(t)=—ie 1(ee DT (¢ T) The source tern€(t,T) of Eq. (4.13 plays a central role
o=t 0T _ in the nonlinear response, since it determines the nontrivial
% e'weT @)’ cross circular (417 polarization dynamics. Many-particle correlation leads to a
e'l@stoa)T  cocircular. ' dynamical structure that is absent in a simplified noninteract-

For resonant excitation, i.ew, =0, the time-resolved phase ing two-level system. Figure 3 shows the typical source term

of the polarization can be read d#®=|p®)|gi® 5 for_ the p_aral_lel-spin case. The mean-fielo_l source term shows
’ a finite rise time that corresponds to the finite rise time of the

ReQt,T) time-resolved nonlinear polarization signal, roughly the

() =—0(t+T)O(—T)tan * m) dephasing timeT,. For larger times, the nearly constant

source term leads to an exponential decay of the resulting TR
ReQt,0) signal in Eqg.(4.15. The mean-field picture is considerably
m) (4.18  changed when the exact correlations are taken into account.
’ Figure 3 shows the following characteristic featurgly: an

in the case where probe puléB comes after the excitation increase in the rise time of the signal compared to the mean-
with pulses(2) and (3), T<0, and the case where puléb field approximation;(2) the signal exhibits a phase dynam-
precedes the excitation, i.d.>>0. For small timeg after the ics, and(3) the asymptotic value is complex and differs con-
excitation, the instantaneous phase-space-filling term leads gderably from the mean-field value. Only in the extremely
a m/2-phase shift of the polarization with respect to the ex-large dephasing limit, not shown in the figure, the correlation

-0(H)O(Ttan !

ternal fieldE, as discussed in Ref. 18. result approaches the mean-field valyg#2l.
The observed quantities are the time-resol¢ER) inten- Figure 4 shows the typical source term for the case of
sity, opposite-spin correlation. The existence of a bound-state

biexciton has a strong influence on the nonlinear response.
19, T)=[PP(1)[2=e 2" TV |k(t,T)|>, (419  Oscillations with the biexciton binding frequency of the
single bound state in the one-dimensional model are visible
in Fig. 4. The energy denominator in E@.13 favors low-
% energy resonances, i.e., isolated bound staigs<(0) and
|(3)(T):J [P(t,T)|dt. (420 the low-energy scattering-states continuum. It is important to
o note that the oscillations decay with twice the polarization
We have performed numerical simulations using a onedecay timeT,=I""1 in the approximation of Sec. II. In the
dimensional extended Hubbard model with long-range CouTR signal, the oscillating contribution to the signal should,
lomb interaction as defined in Appendix B. We present intherefore, be fairly small on the decaying part of the signal.
this section the exact numerical calculations for this simplelhe second, more important observation is that, from Eq.
model and consider in the next section various approximat4.13 and the spectrum in Fig. 1, the biexciton resonance
tions involving truncation of the summation in E4.13 for  alone is responsible for the oscillations. This igiaging
more complicated models. For resonant excitation, the ulphenomenon, which idifferentfrom the usual quantum-beat
trafast polarization dynamics is strongly affected by the reicture that is suggested by the few-level model

and the time-integraterl) intensity,
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FIG. 4. Source ternC(t,0) for the nonlinear response in the FIG. 6. TR signal of the nonlinear polarization for the one-
opposite-spin case with the spectral function of Figb)1The  dimensional semiconductor model f6=0 in the strong dephasing
dephasing time isT,=2 ps. The pronounced oscillations with a limit in comparison with the mean-field response for parallel-spin
period of 2.8 ps E,,=1.5 meV) origin from the bound-state biex- excitation. The dephasing time 5=0.5 ps.

citon in the system.
probepulse(1). The result of the numerical simulation is in

_ Figure 5 shows the results for the timg-resolved pplarizavGry good agreement with the experimental results by Wang
tion for zero delayr =0 and weak dephasing. The solid line al,2> who have performed a three-pulse FWM experiment
shows the mean-field calculation, which obviously gives a;, 3 GaAs quantum-well system. The figure shows the
poor approximation for resonant excitation and smallgyong decrease of the co-polarized signal for negative time
dephasing. The exact result for cross-polarized circular excigg|ay, which is due to the enhanced intrinsic dephasing of
tation shows the ringing of the intensity signal with the biex-ihe continuum of two-exciton scattering states. The cross-
citon binding frequency, which is already present in the,qarized signal is stronger for negative time delay, which
source term in Fig. 4. The signal for copolarized excitation isipgicates the effect of quasibound excitonic molecules. The
of the same order of magnitude but shows no oscillatorpectral weight of the correlation function in Fig(bl for
behavior. The signal peaks at roughly/2, which is less  parajiel-spin excitons is more enhanced in the low-frequency
than estimated previousfy. o _ regime. This leads to a stronger total signal in E415),

In Fig. 6, a shorter dephasing time ©=0.5 ps is @s- hjch can be reproduced for different dephasing parameters.
sumed. The mean-field result looks better in comparison with Figure 8 shows the time-integrated intensity of the FWM
the copolarized signal. The exact signals have a decreasgghnal for copolarized circular excitation for different
rise time of the maximum, which can be explained by angephasing times. For a short dephasing time, we recover the
additional dephasing mechanism due to the superposition Qfe|l-known mean-field behavior for homogeneously broad-
the continuum of two-exciton states, which leads to a naturayneq systems, which predicts a rise of the signal/4 and
intrinsic decay similar to the effect of an inhomogeneously 4 decay of the signat-T,/2.12 This can be explained by
broadened system. _ o simply counting the number of polarization waves that are
_ The time-integrated signal in Fig. 7 shows the effect ofyresent before the nonlinear signal is emitted. For positive
finite delays between thexcitingpulses(2) and(3) and the  jme delay, even for a longer dephasing time, the deedy

can be observed because correlation effects influence only

1.5 ‘ ‘ .
—— MF (x0.1)
----- parallel-spin 3.0
———- opposite—spin co—polarized
0N 25 | =m--- cross—polarized
@ [
= I \
3. ’I \ 20
& —
= ! \ 2
& [ A €
o5t I/ A S 15
}' Vs 2
i (N =
";I \\_—:\\\ 1.0
IIII ~ :*:;_:;: ;;;;;
0.0 . L L =te = 05 -
0 2 4 6 8 10
time [ps] 0.0
-4
FIG. 5. TR signal of the nonlinear polarization for the one- delay [ps]

dimensional semiconductor model for=0 in the weak dephasing
limit. The oscillations with the biexciton binding energy are aring-  FIG. 7. Tl intensity of the FWM signal for copolarizedolid

ing in the signal, since no additional biexciton states are necessatine) and cross-polarizeddashed ling circular excitation for a
for the response. The dephasing timel'is=4 ps. dephasing time oT,=4 ps.
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the cross-polarized configuration is predicted by the mean-
field approximation. For shorter dephasing times, the modu-
lations disappear very quickly and the signal shows similar
behavior compared to the copolarized geometry. We also
observe a decrease of the modulations, if the pulse width is
increased. The biexcitonic modulatiof§ a bound-state
molecule exists can only be observed for sufficient short
laser pulses and weak dephasing of the cohergnalariza-
tion) in semiconductors. However, none of the above condi-
tions is necessary to observe correlations due to the two-
exciton scattering continuum, which is always present and

(arb. units)
b

4L

-6 ‘ L W h gives the main contribution, if bound states are absent be-
-4 -2 0 2 4 6 cause of impurity scattering, interface effects, etc. The cor-
delay [ps] relation function approach gives a unified description of the

FIG. 8. Normalized Tl intensity of the FWM signal for copolar- observable_ effects. In prln0|_p|e, the Same treatment can be
. . - o applied mixed-type correlation functions as well, but the
ized circular excitation on a log scale. For negative time delay,I b f b - ved d th tati
significant deviation from the exponential decay with a rise time of arge ngm er,\ﬁ ﬁrms kmvﬁ)l \;]e renb ezjs eAC‘;r.“p“ a_lon
T,/4 is observed for smaller dephasing. quite tedious. Much wor sti as to be lone. iscussion
of further specific nonlinear optical experiments where cor-

L . .. relations are involved is in progress.
the strength of the time-integrated signal. For negative time prog

delay, significant deviation from the-T,/4 law is found.

The probe pulse interacts with the delayT>0 and fast V. APPROXIMATIONS AND COMPARISON

decaying modes of the correlations cannot be sustaiFteel. WITH RELATED APPROACHES

calculated results show a smooth transition from a steep rise |, considering possible applications of the correlation

near zero delay time, where correlations with the fast modegction approach for an improved treatment of the dynami-
of the spectrum of two-exciton scattering states are impore| nonlinear response, we need a tractable response theory
tant, to a regime where low-energy modes dominate the reg ¢ takes into account, for examplé), nonresonant, above
sponse.The latter again shows the asymptotic mean-fieldyand-gap excitations where electron-electron scattering be-
like ~T2/4 dependence. i comes important and where the Markovian approximation is
The most prominent feature of the cross-polarized reqq |onger valid on short time scale@,) coherent and non-
sponse in Fig. 9 is thenodulationof the signal with the .oherent scatterings with LO phonons, diid applied mag-
binding frequency of the bound-state molecule at negativeetic field in heterostructures. Some theoretical work has al-

time delay. This biexcitonic Zeszect has been observed experiady heen done in deriving scattering-rate corrections with
mentally by various group&??and has sparked much theo- memory kemels for the SBB® in LO phonon

retical effort to improve the mean-field theory of the Semi'correction§7'58 and in high magnetic field? In semicon-
conductor Bloch equations. This signature clearly shows thgyctor heterostructures or bulk systems, the calculation of
importance of correlations, which cannot be neglected for thgne force-force correlation function, even for resonant exci-
resonant excitation of theslexciton in semiconductor het- tation, is an enormous numerical task because of the four-
erostructures. Similamodulationof the signal can also be gy problem involved. For systems beyond the simple mod-
observed at positive time delay mfth-ord% perturbation g5 for which the exact calculations are possible as described
theory, which has been shown by Bartetsal ™" No signalin j the last two sections, we develop various approximation
schemes to incorporate correlation beyond the mean-field
level in the dynamical optical response for low-density exci-
tation. For a more detailed description, we refer the reader to
the Los Alamos preprint versioti.

Pl A. Excitation induced dephasing(EID)

EID corrections for the SBE have been discussed by
Wanget al® in an application to FWM, where a phenom-
enological, density dependent aketiagonal dephasing pa-
rameter was introduced. We can derive a similar correction

(arb. units)

4L

T=lIps \ from the exact third-order contributions, c.f. E¢.8), to the
% s ‘ e ) nonlinear response, which is based on the rapid loss of
6 -4 -2 0 2 4 6 memory in the correlation function,

delay [ps]

t Pt
—2T(t—t' o'in”, 1 1
FIG. 9. Normalized TI intensity of the FWM signal for cross- f e 2t )nggﬁn; 7 (t—t')X(1,,1)/Y(,,(t')x(l,gu’(,ﬁ(t')dt'
polarized circular excitation on a log scale. For negative delay” ~~

times, oscillations with the binding energy of the biexciton are vis- ~n’,o"in", 0" (1) (1)

ible for sufficiently small dephasing. —~Yaono  Xiare (DX (D). (5.
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The real part ofy leads to adephasingof the nonlinear
polarization, which can be seen from E8.31). In addition
to the phenomenological treatméftpolarization mixing is
now also automatically taken into account.

B. Short-time memory approximation

In the limit of large dephasing, a short-time approxima-

tion of the memory kernel in Eq5.1) is valid by Eq.(2.28),

no_n

n’,o":n", o

n,o;n,o

(D= yezin? +0(7).

»o,n, o

(5.2

Thus, we obtain a correlation-modified complex mean-fiel
parameter, which exhibits polarization mixing and leads t
EID:

(5.3

We observe that, for diagonal contributions, ergsn’=a
andn=n"=b, the expression Eq5.3) is positive. Hence,
the nonlinear polarization for, say has an effective dephas-
ing that depends on the density of spediegiven by

_Tab_ x>0,

Ir,—r,+ F.+T,

(5.9

Explicit results for the expectation valug, , are given in
Appendix A.

C. Noninteracting excitons approximation

THEORY OF EXCITON-EXCITON CORRELATIONN . ..

ggrammatic approacH.However, the truéermioniccontribu-

12931

tive comparison of the correlation part of the nonlinear opti-
cal response with semiclassical Boltzmann-Equation ap-
proaches. This is done here to third-order in the external field
as follows. We expand theolarizationfor a transitiono and
Bloch vectork in terms of excitons and inspect the source
terms, which gives the correlation corrections only. Since the
force-force correlation function is already second order in

Uq, we can use the noninteracting linear polarization, Eg.
(2.17), with the noninteracting Hamiltoniakl, being used
for the time evolution. This reproduces the third-order limit
of the collision terms, which were previously derived®
This also corresponds to theo-loop diagrams in the dia-

tions also appear, which are relevant for the parallel-spin and
coupled-spin case and correspond to ¢ine-loopdiagrams.
These terms might not be present in the usual semiclassical
treatment of the scattering rates. The correlation function ap-
proach naturally incorporates these effects on the four-
particle level and gives the exact low-density results.

VI. CONCLUSION

In this paper, we have presenteduaified theory of
exciton-exciton interaction effects in the third-order nonlin-
ear optical response, using a correlation function appréach.
The electronic problem (dynamics of the four interacting
particleg is separated from the nonlineaptical problem.
Furthermore, the correlation effects beyond the mean-field
terms is explicitly represented by a two-exciton force-force
correlation function. By means of this formalism, we are able
to investigate the role of exciton-exciton correlations in the

We propose an approximation scheme for the correlatiohird-order polarization in an application to resonantly ex-

function F, where we replace the time evolution for tbe

operator Eq(B13) with the full HamiltonianH of the biex-

citon subspaceN,=2) with the free time evolution of ex-
citons. For more explicit results, we use theoperator rep-
resentation of Eq(A13):

>

B.B a,a’,
gq#0,49’#0

Xan g(— ') *aw, g(q')*(0[B,,(q)

XB, 7(— By ,(—q")B}, .(q")]0)

Xexp—i[wg (9" )+ wg ,(q")]T.
(5.5

FnI’U/;n/I’o_//
n,o;n,o

Dq’(J —q’an,a(q)aﬁ,a’( - Q)

(1)—

This expression can be simplified further. We note that th

expression Eq(5.5) is a nonperturbative result which is ex-
act to second order in the Coulomb interaction but properl

cited heavy-hole excitons in a semiconductor quantum well.
The correlation functions are calculated numerically for a
one-dimensional semiconductor model with long-range Cou-
lomb interaction, without perturbative approximation. Their
spectra exhibit isolated resonances due to bound-state biex-
citons and continuum of two-exciton scattering states. Addi-
tional, more pronounced features appear for decreasing mass
ratio of electron to hole.

A three-pulse FWM configuration can distinguish be-
tween parallel-spin and opposite-spin correlations. For copo-
larized excitations, we find a significant deviation from the
expected mean-field T,/4 rise of the time-integrated FWM
signal for negative time delays between the pulses in the
weak dephasing regime. This can be explained by an ul-
trafast intrinsic decay of correlations due to two-exciton scat-
tering states, since bound-state moleculesad®entin the

&ase of parallel-spin correlations. For strong dephasing, we

recover the well known mean-field resuttShe signal in the

fross-polarized configuration is dominated by a modulation

includes all Coulomb effects to form excitons. If no bound- With the binding frequency of the bound-state biexciton in

state biexcitons are present, this expression should give
reasonable approximation beyond the short-time memory a

proximation.

D. Comparison with collision terms
in the Boltzmann approximation

the system, which has been observed in various
xperiment$®22 These oscillations appear as a ringing of the
iexciton mode in the time-resolved signal, as distinct from
true quantum beats. For positive time delays, the third-order
response is close to the mean-fidlg2-decay behavior. Po-
larization mixing for cross-polarized excitations is purely a
correlation effect’ absent in the conventional mean-field ap-

Finally, we want to approximate the correlation to secondproach using the semiconductor Bloch equatidts.

order in the Coulomb interaction. This will enable a qualita-

We have also derived generalized effective equations of
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motion for the polarization for laser excitation near the fun-to be very slow on the time scales of interest. The selection
damental exciton resonance or the exciton continuum staterules also determine the corresponding helicity of the dipole
This is intended for a future application of the theory to moretransition.

realistic semiconductor quantum wells. The exact third-order The first step leading to the force operaldris the com-
equations are compared with the results of Boltzmann-typenutatorC, ,=[B, ,,H],

scattering corrections to the quantum-kinetic equations. The
effective parameters entering the dynamics can be calculated
in second order of the exciton-exciton interaction, provided
only that the exciton states are known, which is possible for

_ * T
Cn,u—_ ; (Ek,sz_ Ek,sl) d’n,k,(rck,szck,sl

a large number of semiconductor systems. -0 &%, cf c
The correlation function approach can be generalized to Kato ~dSuSPnkorkras,tkias,

include additional interactions, such as spin-flipping scatter-
ing processes or the coupling to LO phondfhg\ further 4 2 U * t

X X K . X q,sl,sl¢n,k,ock,s Ck,sl
application of the correlation theory to spin-beating phenom- k.q#0 2
ena in diluted magnetic semiconductors for the pump-and-

robe configuratiot has been mad®. ¥ % ~ *
P 9 + ) k’E 20 (Uq,s,szfﬁn,kr_q,a_ Uq,s,sl(ﬁn,krvg)
KT,8,q
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APPENDIX A: COMMUTATOR ALGEBRA v 1—-snler @, -
FOR THE FORCE OPERATOR ks 5517 k) | Picn o Pic o

In this appendix we derive the operators and parameters =W1in oot (A5)
defined in Sec. Il in terms of a semiconductor Hamiltonian,and therefore
H=H,+ U, with an independent-electron part: ' '

Cro=01noBnot 2 (Ugss @’
_ + n,o 1n,0Pn,o q,s,s k' —q,
Ho_é €k,sCk,sCk,s » (A1) kik'.s,70 B

~ t
. . -U X )Cl 4 Ck sC Cus. (AB
wherec] , creates a Bloch electron with combined band and 0551 Pn ko) k. ChsCho g0k s (AB)
spin indexs at wave vectok, and an electron-electron in-

; ) The force operator is given by the commutator
teraction term:

Dpiin,e=[Bp,1:Cns]. The first contribution on the rhs of
Eq. (A6) vanishes becaudd, ,B, ,]=0. Thus,

1 ~
= t At
U 5 z Uq,S,S’Ck+q,kar_q'S;Ckr'Ser'S,
k,s,k’,s’,q#0 _ ~ N
A2)  Dpine= 2 Uai, st g0
k,k',q#0
whereU is the Coulomb matrix element. - N . e .
q,s,s’ qu|2v51¢n,k’,a') ¢p,k+q,| (qullvsngn,k’*q,o

The exciton operatoB,, , of a given transitioro is asso-
ciated with the relative motion wave functiafy,  , at zero P A P, ) |CI+ | G e Chr o
center-of-mass momentum: AleS ko TR G 2T a8 TS

(A7)

Bno= > pr Ucl «Cks- (A3)  The spin-independent Coulomb interaction leads to a further
K ' simplification. In terms of the operator

The transitiono= o (s,s’) connects an electron from a va-

lence band with combined band and spin lakélto a An (@)= (Dhk-gz0— ¢:,k+q/2,g)CIt—q/Z,slckJrq/Z,Sz'
conduction-band state with labsl The correspondingair K A8
operatorcl,s,ck,S is denoted in Sec. Il agy ,. Optical se- (A8)
lection rules determine whether thetransition is an opti- the D operator can be written in a compact form:
cally allowed dipole transition with matrix elemept, or a

so-calleddark transition. Dark states are connected to opti- Dy (o= E A (DA, (—0). (A9)
cally active states via a spin-flip process, which is assumed Pl & "P ne
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The A operator can be related to excitons with finite
center-of-mass momentu. The mass ratio of electrons Inm(Q)= E fop(afa g(a)*
and holes play a crucial in the correlation function dynamics.
We define for the transitioor=(s,s’) the positive mass ratio
KU:mS/mS/ . With :; (d)’r:,k*naq,o_ ¢:,k+nnkgq,o')

1 X(¢m,k7770q,0'_ ¢m,k+770_Ka_q,0')7 (A16)
1+«, (A10)

No=
which gives

the generalization of EA3) reads

7( o- o’ 8(;- o’ % qgn n" Q)gg,n/(_Q), (A17)

— * t
Bn:U(Q)_; Pnk.oCc 9,08 Ckrr,m,Qse AL anq for the second term on the ths of E414),

We _have neglecteql a poss_ﬁi@e_depepdence of the_relatlve- y(2)= 8,07 5% E U2 gn,(q)ggn”(—q)_ (A18)
motion wave-function, which is valid for parabolic bands.

Transforming the eh representation in E&8) to one in ) o ) .
terms of the excitons leads to The third contribution arises only if the two electron-hole

pairs have at least one band in common, i.e., in the parallel-
spin or coupled-spin case, c.f. Sec. lll. In the case of excitons
Aol D= (B a0 Bricsnn qo) PakoBao() being idealbosons only ¥ and y(?) would contribute. We
’ give the result for the general case:

= 17.(0B.o(0). (A12) V== (85,00, 80 00,
(v) o) (C) C
The D operator in Eq(A9) becomes, in terms of the exci- +o, <r"5a o Oc o q%(/ U Uk I<’((I)n k' —al2.0
tons,

N q)%:,k' +q/2,})(q)n”,k’ ~q20"~ P k—qr2.07)
Dp,l;n,(r: 2 Uqflp a(q)f:a'(_q)Ba,l(q)Ba’,(r(_q)- X(q)n’rk+q/2y0"_(I)n',k'+q/2,0")(q):,k+q/2,0'
a,a',q#O
(A13) - :,k*q/Z,(r)' (Alg)

The Kroneckers symbol with an upper index means, the
corresponding conductiorc) or valence bandy) must be
identical for the transition pair.

We usqu=L~J,q to ensure the symmetry of th2 operator
in the exciton labels.

The initial value =0 of the correlation function Eq.
(4.13 is a ground-statévacuum expectation value. We first

calculate APPENDIX B: AN INTERACTING SEMICONDUCTOR
MODEL
(O|Ba,';(q)BM(—q)BJr U,,(—q’)B;, »~(a)]0) We present the details of the real-space extended Hubbard
' ' model used for the numerical calculations of the correlation
=0u' 5:p.0"0a.0:p' 0" 04, ~q' t O’ 37 .0 O, 8,07 O function and the linear optical propertiésxcitons. We start
+(0|B, =(q) with the generatl-dimensional lattice model of an electron-

hole system and briefly review the fundamental aspects of
x[[B, 0(_q)'B;3 ,,(—q’)],B*, ,(9")]]0). (A14) the problem on a lattice. The kinetic energy part of a two-
’ 7 7 band lattice model is the usual hopping term,

The initial value y~ ZN’”” of Eq. (4.13 can be split in o
three contrlbutlons The first term on the rhs of E414) Ho= E t( erIn Cmr st H.C., (B1)
gives mm-,s
where c;,’s creates an electron in a Wannier-state at the
YV =8, 185 g D Uqf (@f7 . (—) I?St)tlce sitem Wlth a comt?lned band and spin mde.xand
BB nA B toms IS the hopping matrix element between two sites. The
o o . hopping is restricted to a nearest neighbor with paranéter
an”,B(Q)*fn’,B’(_q) : (A15)  for each band. We take®<0 (t®9>0) for an s-type

(p-type) conduction(valence band, allowing for interband
The summation over the exciton labefsB’ can be per- optical transitions. The potential energy of the system is
formed, using the abbreviation given by the Coulomb interaction between the electrons and



12 934 TH. OSTREICH, K. SCHO\HAMMER, AND L. J. SHAM PRB 58

charge-positive lattice ions with charg&.,,.>0. In terms We now discuss in detail the results of the numerical cal-
of the dimensionless charge densiglectrons and ionsat  culations for a quasi-one-dimensional ring model. The Cou-
sitem, lomb interaction Eq(B3) between two charges depends on
the chord distan&
Pm— 2 C:q,scm,s) —Zcores (B2) Na
s L |7
|m—m’|=—3|r{—|m—m’| (B7)
T N

the Coulomb interaction in the Wannier states to leading
order is given by the electrostatic monopole-monopole conyt the sites, which are labeled by the dimensionless numbers

tribution, m. The model interpolates smoothly between the two limits
1 of Frenkel excitong/a; — 0 and the Wannier limit of large
U== > UnmPmPm » (B3)  extended objectay/a; >1, which is only limited by the fi-
2 ’ nite total system siz&l. The system size for the numerical

calculation of the correlation function =120 for equal-
spin correlation and\=140 for opposite-spin correlation.
The on-site Coulomb interaction is fixed with=1.5. We
have also fixed the bandwid®:=|4(t,—t;)| of the eh-pair
ontinuum for each model, which depends only on the re-
uced electron and hole mass, while the positive mass ratio

whereU , v =e?/|m—m’| for different sites and the on-site
Coulomb interactiotJ , ,=U is an additional parameter in
the model.

The ground stat¢0) of the lattice model is given by the
completely filled valence-band states at each site. For th

numerical calculation of the correlation function, a four-band ) . o .
me/my, is varied. The mass ratio is an important parameter of

approximation of the semiconductor is sufficient, i.e., onIythe WO eh-pair subspace. We compare the positronium limit
two holes and two electrons of one or two species are rel- P pace. P P

evant. The indes is split into two bands and two spin di- T%/ngld\’\t’gh thel serlr;"c;ogductct;rl_GiAs (;ase<Te/TT1h
rections. This leads to different types of correlation func-_ - an € moleculanydrogen imit Me/My=1. The

tions, as discussed in Sec. lll. We write the ground state a%or)g—range Coulomb poten_tlal leads to the formanon of a
inite number of bound exciton states in the system in con-

|O>:HmC;1,1,TC;1,1,1|VaC>- (B4) gi?)?]tljo the usual Hubbard-model with purely on-site repul-
0 .

The spatial extension of the relative motion afiagle exci-

ton in its ground state depends on the ratio of the sum of the 1. Parallel-spin excitons

bandwidths B;=B;+B,=2d(t;—t,) and the nearest-

neighbor Coulomb energy,=e?/a, , wherea, is the lat-

tice constant. FoB;/U>1 the results of the lattice mode

The parallel-spin exciton case is characterized by the ex-
| change repulsion between same-type carriers in the bands,

are similar to the continuum limit given by the usual two- which, in an ideal one-dimensional system, plays the role of

parabolic-band effective-mass model. If one expands thgynamical boundary conditions. The parallel-spin case is rel-

band dispersion quadratically around the center of the Brilevant vv_hen the opt|qal excitation process s limited to a
louin zone one finds for the Bohr radius of the exciton forSiNgle circularly polarization of the external field. A com-
d=3 plete set of parallel-spin two-pair states with zero center

of mass momentum is given By

2(t,—t
aO:MaL , (BS) Cg)a'ﬁ)

U
! |p,a,B)= N Em: CTm+p+ah;1+pCTm+,8hTm|0>’ (B8)

and the exciton binding energy, is given by

) U, where

a_
(l)x— 2 —_—

ag) (B6)

b v2 p=N/2 and a=p

In the following, we give all energies in units of the Rydberg P 1 else
energy wy. One should keep in mind that this ot the o )
exciton binding energy id= 1, which apart from a different 1S & normalization constant and a triplet, &, 8) labels the
dimensionless prefactor depends on the rajisU,/U,. relative position of the carriers. In order to avoid double
The different effective electrorthole) masses enter via counting of states, the set of possible triplets is restricted.
|ty /to]=|m,/m,|. The total Hamiltonian operatorl=H, TNhe(singlg spin index is understood.
+U is conveniently transformed into the electron-hole pic- . The rgal—space representation of pro<_:iuct state Of.tWO ex
ture defining c,, =c for electron states and citons with quantum numbera and b with band indices
m,s— “m,2s m,s

=c! 1, for the hole states. Lgtb) denote a many-particle (82,81) and ©,b1), which enters the calculation of the

eigenstate oH with an arbitrary numbeN, of the eh-pairs generating correlation function, is given by

as a quantum number. As the corresponding pair-number op- 1

erator N commutes'w.lthH, we can always WOI‘k.WIth |\/|;r1’b|o>:N > dp(M;—M,) d(Mg—my)
eigenstates oN,. This is the fundamental assumption for My, My, Mg, My

the Hubbard-operator formulation of the Hamiltonian in Sec. + + + +
1. X le,blhmz,bzcm3,a1hm4,a2|0>a (B]-O)

(B9)
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where each exciton has zero center-of-mass momentum. The [my,m,,mg)
real-space exciton wave function is given by
1
_ T T T t
1 - W ; Cm3+m4,alhm2+m4,azcml+m4,blhm4,b2|0>v
bak="= 2 € "Ma(m), (B11) )

N (B14)
where the opposite-spin indices for the carriers in one band
are understood, i.eb,#a, and b;#a;. For numerical
work, the absence of the Pauli blocking for the two elec-
1 trons/holes in the bands leads to a quite simpl ti f
4 _ + + q ple counting o
N mlzmz balMy mZ)le'alhmZ'a2' (B12) opposite-spin states in contrast to the equal-spin case.

The numerical evaluation proceeds in the usual way. The
For the force-force correlation function in the nonlinear op-tOtal number of basis states involved in the calculatioNis
tical response, we need a linear superposition of two-paif°" the opposite-spin problem, which gives a vector length of
: o + about 3< 10°. The Lanczos algorithm requires two states for
states in the initial stat®} ,|0), o , L
; the iteration, which reside in memory to speed up the process
and can be handled quite well on a PC with a total of 64
MByte memory. The Lanczos algorithm tridiagonalizes the

and the exciton operator can be expressed as

Bl=

1
DLalO)=F X gu(my—my)da(me—my)

Mg Mg, my Hamiltonian for the four-particle problem, starting with the
(normalized initial stateD '0) for the force-force correlation
X(Um,—m=Um,—m,~Um,—m, T Um,—m,) function. Each iteration step produces one new basis state.
: : ; ; The i_tera_tion is extremel_y fast, due to the sparseness of the
X Cm. b,Mm, 6,Cm; a,m, .2,/ 0)- (B13)  Hamiltonian matrix ofH in real space. We truncate the it-

eration after the spectrum of the resolvent matax () ~*
Both states are center-of-mass eigenstates with zero total matabilizes. No eigenvectors or eigenvalues for the biexciton
mentum in systems with periodic boundary conditions. It isproblem have to be calculated. The relevant spectrum is
possible to fix the hole positiom, and to introduce relative 9given in the usual way,
distances with respect to this hole to reduce the number of
coordinates. The states E®10) and Eq.(B13) can then be fap(w)=—21m(0|Dgp

DI,l0), (B15)
expressed in the basis set EBS).

1
w—H+i0
from the inversion of the resolvent matrix, which is simple in
the tridiagonal representation Bif. A similar Lanczos algo-
rithm has also been used by Ishidaal® for calculating

The corresponding basis set for the opposite-spin paibiexciton ground-state properties for a one-dimensional
states is chosen as tight-binding model.

2. Opposite-spin excitons
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