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Theory of exciton-exciton correlation in nonlinear optical response
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We present a systematic theory of Coulomb interaction effects in the nonlinear optical processes in semi-
conductors using a perturbation series in the exciting laser field. The third-order dynamical response consists of
a phase-space filling correction, a mean-field exciton-exciton interaction, and two-exciton correlation effects
expressed as a force-force correlation function. The theory provides a unified description of effects of bound
and unbound biexcitons, including memory effects beyond the Markovian approximation. In the degenerate
four-wave-mixing experiments, correlation effects are shown leading to polarization mixing, ringing, etc. The
strong interaction, a nonperturbative theory of the correlation function, is numerically evaluated for a one-
dimensional model. Approximations for the correlation function are presented.@S0163-1829~98!03643-1#
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I. INTRODUCTION

Transient four-wave-mixing~FWM! experiments have
proven to be a powerful tool in probing and understand
optical coherence in semiconductors.1–5 Subpicosecond
spectroscopy yields information on the very early stages
time development of the carrier dynamics and many-part
correlations.

The essential physical picture behind the dynamical e
lution of optically excited electrons and holes can be und
stood in simple terms.1,4–8First, the ultrafast dynamics of th
exciting laser field with frequency near the fundamental ba
gap of a semiconductor creates coherent electron-hole~eh!
pairs. Second, the motion of the carriers, dominated by
Coulomb interaction among them, leads to an ultrafast e
tric polarization as a source of light that can be observ
The scattering of carriers by other carriers, by phonons,
by defects leads to polarization decay and loss of opt
coherence.9

The density-matrix equations of motion which describ
the dynamics of the microscopic polarization and parti
distribution functions were established by a number
groups.10–14Within the mean-field approximation, results fo
the ultrafast dynamics of the electron-hole pairs agreed w
with the extant experimental findings, for example, for t
dynamical Stark effect of the excitons in semiconductors15 in
a wide range of semiconductor bulk and quantum well s
tems. With recent advances in ultrafast nonlinear opt
spectroscopy and in fabrication of semiconductor hete
structures, the use of three-pulse FWM, polarization,16,17and
phase-sensitive measurements of the nonlin
polarization,18 and nondegenerate transient FWM~Ref. 19!
has led to effects beyond the mean-field approximation
exciton interaction and beyond the Markovian approximat
for dephasing. Effects such as the polarization-dependen
sponse of the excitons17,20 and signatures of boun
biexcitons21–23lead to more refined theoretical investigatio
beyond the mean-field approximation.16,17,24–33

Polarization mixing in the nonlinear optical response
PRB 580163-1829/98/58~19!/12920~17!/$15.00
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caused by excitation of two excitons of opposite spins t
first occur in the second order of the Coulomb interaction27

The mean-field description that treats the interaction betw
excitons to first order in the Coulomb interaction can acco
for neither the polarization mixing nor the formation o
bound biexcitons. This point was clearly demonstrated
Combescot and Combescot,34 who had stressed the impo
tance of bound and unbound biexciton states for the e
tonic ac-Stark shift as well as polarization effects.35 The for-
mation of parabiexcitons with singlet spin states for t
electrons and holes is one aspect of polarization mixi
which is most likely to be dominant for near-resonant ex
tations of the fundamental exciton states. Moreover, eve
the absence of bound biexcitons, the correlation in the c
tinuum of two-exciton scattering states is also important.20,30

In studying the optical processes in semiconductor s
tems, while much can be learned from ensembles of no
teracting atomic transitions36–38interacting with the radiation
field or interacting localized~dense! two-level systems,39 the
strong interaction and close proximity of the electrons
semiconductors provides a distinct avenue of research p
ics. It is well known that many-body effects lead to a reno
malization of the external field~local-field effects! as well as
to a renormalization of the interband transition energ
~self-energy effects!, depending sensitively on the densi
and dynamics of the surrounding electron-hole pairs.40,41

In the linear response regime, these effects assume qua
tive importance.42 However, the nonlinear properties o
semiconductors in the weak nonlinear regime and in
high-excitation regime constitute a challenging proble
where the electron interaction physics must be added to
rier nonequilibrium and physics of quantum optics.

In the low density or weakly nonlinear regime, i.e.,
third order in the external field, the dynamics of the sem
conductor for near-resonant excitation of the fundamen
exciton resonances can be formulated in terms of a se
effective dynamical equations for the exciton polarizati
with nonlinear exciton-exciton interaction and space-filli
effects, which have been derived from the semiconduc
12 920 ©1998 The American Physical Society
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Bloch equations~SBE’s!.2,43,44 These effective equation
provide a useful and physical picture of the origin of t
nonlinearities and the observed phenomena, for exampl
the theory of four-wave mixing,2 photon echo,45 or the Rabi
oscillations in semiconductors.46 Being within a mean-field
description, the effective equations can provide no more
formation than the full semiconductor Bloch equations in
mean-field approximation.

The inclusion of biexcitonic effects as well as the pos
bility of polarization mixing was first discussed in terms
phenomenological few-level models16,17,24 to explain the
temporal dependence of the FWM signal signal includ
oscillations as a beating phenomenon between bound
unbound biexciton states. In more microscopic theories
was first shown in the equation-of-motion method by A
and Stahl25 and later in a diagrammatic approach by Maia
and Sham27 that the semiconductor Bloch equations form
closed set of equations for the density-matrix elements
any given order of the external field, depending on the ini
state, which is usually the vacuum state of the electron-h
pairs. The so-called dynamics-controlled truncation schem25

provides a starting point for a microscopic theory of the p
larization effects and has been applied to up to fifth-or
processes.23 The inclusion of biexcitonic effects for actua
applications is mostly treated in a restriction to bound-st
contributions and asingletwo-exciton state contribution29 or
perturbation theory in the Coulomb interaction.27,28 The so-
lution for the third-order susceptibility is inextricably boun
to the solution of the four-particle problem.

In this paper, we give a microscopic theory of excit
interaction effects in nonlinear optical processes based on
Coulomb interaction between electrons. The detailed acco
provides the derivation behind our results publish
earlier.30,47 The theory recovers the established mean-fi
results in the literature and formulates the rest of the in
action effects, termed correlation, in a concise manner. P
ticularly striking is the resulting equation of motion for th
third-order nonlinear optical response shown to be driven
a number of terms with clearly identified physical origin
~1! phase-space-filling corrections, which are due to the P
blocking of electrons and holes,~2! exciton-exciton mean-
field interaction, and~3! the correlation term, which is ex
pressed as a two-exciton force-force correlation functi
The derivation of the general equations of motion for a
given order of the external field is given in Sec. II in terms
the Hubbard operators, using a complete basis set of thN
eh-pair states. The Axt-Stahl theorem25 manifests itself as,
for example, the Hilbert space of one and two electron-h
pairs being sufficient for the third-order nonlinear respon
of the semiconductor. Details of the commutation algebra
relegated to Appendix A. An alternative derivation in term
of the density matrix is not recorded here to keep the len
of the paper within bounds. The part of dephasing which
due to the electron interaction effects is included in our c
relation function and the rest of the dephasing due to o
causes is treated phenomenologically.

The correlation function approach gives a unified desc
tion of all correlation effects. It naturally encompasses
recently observed polarization mixing and bound-state b
citonic molecules. The exact two-exciton correlation tre
these effects on the same footing as the two-exciton sca
in
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ing states which will be shown to be equally important.
contains the exact spin-dependent Coulomb correla
among the four particles and determines the spectral we
of the biexciton states for the source term of the nonlin
response. These properties can be demonstrated by a nu
cal example of a one-dimensional model system with
advantage of not making decoupling approximations of
correlation effects.~See Sec. III.! Details of the model are
described in Appendix B.

Section IV gives an example of the correlation effects
a nonlinear optical process: a three-pulse four-wave-mix
experiment. Extensive new results of the numerical eval
tion of the simple model are qualitatively compared w
experimental results. Exact numerical evaluation of the c
relation function is confined to simple models. For more
alistic models to the semiconductor systems, we need rea
able approximations. A number of these are briefly descri
in Sec. V. We conclude with a summary of our theory a
with a brief outline of future applications in Sec. VI.

II. AN EQUATION OF MOTION
FOR THE THIRD-ORDER RESPONSE

We take as the fundamental approximation that, in
absence of the light-matter interaction, the Hilbert space
the semiconductor model consists of disconnected subspa
which can be labeled according to the number of eh pair
the many-particle states. Letu0& denote the trivial ground
state with no eh pairs present with energyv0,050. The one
eh-pair subspace is the exciton subspace with statesuEn,s

(1) &
with the quantum numbern, a polarization indexs and en-
ergyv1,n,s . Both bound and scattering states are included
n. The polarization index labels a specific transition whic
if optically active, corresponds to the helicity of the ligh
required to excite the eh-pair-states that form the excit
For example, in zinc-blende structures, fourp-type valence-
band states with total angular momentum 3/2 are conne
via an optical dipole transition to ans-type conduction band
with spin degeneracy. Due to selection rules, them53/2(m
523/2) electrons in the heavy-hole band are coupled via
optical transition with2~1! polarized photons to thes
51/2(s521/2) spin states in the conduction band. Them
51/2(m521/2) electrons in the light-hole band are coupl
via an optical transition with2~1! polarized photons to the
s521/2(s51/2) spin states in the conduction band. T
spin-orbit interaction usually splits off a valence band w
total angular momentum 1/2 and is neglected throughout
investigation.

The next relevant subspace is the biexciton Hilbert sp
with a complete setuEm

(2)& of bound and unbound state
Here, we introduce a single indexm to label the set of quan
tum numbers for the states with energyv2,m . Even though
not all the biexciton states are computed due to the ma
body nature of the problem, we keep all the states as lon
possible because occasions arise that the biexciton stat
intermediate states can be resummed by virtue of the c
pleteness theorem, similar to the treatment of the ac-S
shift.34 Such a step would be lost in a common approxim
tion which restricts from the start to one or two biexcito
states.

The use of the subspaces of different exciton number
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disconnected is implicit in previous works.25,27 The discon-
nectedness is an approximation because states with diffe
exciton numbers can be connected by the Coulomb inte
tion. The most important consequence is the neglect of
electron-hole pair fluctuations which affects the ground s
and the dielectric screening of the Coulomb interaction.
other words, we define the ground state of the semicondu
as a vacuum state with respect to the exciton annihilatio

Bn,su0&50, ~2.1!

which means that no electron-hole pairs are present in
semiconductor ground state. The dielectric screening is
proximately accounted for by the static dielectric constan
the semiconductor.

We define a totals polarization connected to an optic
transition, which can be of arbitrary helicity, depending
the electronic states involved,

Ps5ms* (
k

ck,s , ~2.2!

where the operatorck,s
† creates a zero total momentum e

pair with electron wave-vectork, hole wave vector2k and
polarization indexs and ms is the dipole matrix elemen
between the electron and hole states, assumed to be inde
dent ofk. Completeness of the operators leads to an equ
lent expression of thes polarization in terms of exciton cre
ation operators:

Ps5ms* (
n

an,sBn,s , ~2.3!

where

an,s5AVFn,s~x50!, ~2.4!

in terms of the exciton wave function at zero relative d
tance. The operator

Bn,s5(
k

ck,sfk,n,s* ~2.5!

creates an exciton stateBn,s
† u0&5uEn,s

(1) & with zero total mo-
mentum, energyv1,n,s and relative wave functionfk,n,s in
terms of momentumk. The combination of the electron ban
l1 and the hole bandl2 determines the polarization inde
s5s(l1 ,l2). The laser central frequencyvp is implicitly
subtracted from the exciton energy when we transfer to
rotating frame. The biexciton energyv2,m then contains a
reduction22vp . Note that the factoran,s depends on the
sample volumeV of the system forboundexciton states and
is nonzero only for exciton states withs-wave symmetry. We
take care of this volume dependence and show clearly
the final result is indeed volume independent.

Using the Dirac notation, we introduce the followin
Hubbard operators:

X̂N,a;M ,b5uEN,a&^EM ,bu, ~2.6!

which can be used, in combination with the completen
relation
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N,a

X̂N,a;N,a , ~2.7!

to express the exciton operator as

Bn,s5X̂0;1,n,s1 (
N>1,a,b

^EN,auBn,suEN11,b&X̂N,a;N11,b .

~2.8!

The interaction of the semiconductor with a classical ext
nal laser field with central frequencyvp and field strength
E(t)5(sEs(t)e2 ivptes1c.c. is given in the usual rotating
wave approximation36 by

HI52(
n,s

@En,s* ~ t !Bn,s1H.c.# ~2.9!

with

En,s~ t !5msan,s* Es~ t !. ~2.10!

For comparison with previous work,44 this expression is the
time-dependent renormalized Rabi frequency of a given
larizations and transitionn (\[1). The Hamiltonian of the
semiconductor, from the disconnectedness of the subspa
is

H5(
N,a

vN,aX̂N,a;N,a , ~2.11!

which is equivalent to a multiband microscopic Hamiltoni
in second quantization. From the form of the interactionHI it
follows that the expectation valueŝX̂0;N,a& t can be ex-
pressed as a power series in the external field,

^X̂0;N,a& t5 (
m50

m0

XN,a
~N12m!~ t !1O~EN12m012!. ~2.12!

The expectation value of a zero toN-pair transition is at leas
of order N in the external field. Thistheoremhas already
been proven by Axt and Stahl.25 An important relation can
be derived by the identity for an arbitrary stateuf(t)&,

^X̂N,a;M ,b& t5^f~ t !uX̂N,a;M ,buf~ t !&

5^f~ t !uEN,a&^0uf~ t !&^f~ t !u0&

3^EM ,buf~ t !&^X̂0;0& t
21 .

With X̂0
(0)(t)51 from the initial condition of the semicon

ductor in its ground stateu0&, we find for the general expec
tation values

^X̂N,a;M ,b& t5^X̂0;N,a& t* ^X̂0;M ,b& t^X̂0;0& t
21 . ~2.13!

In order to calculate thes polarization we consider the
equation of motion for̂Bn,s& t . Using the Hubbard operator
it reads
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i
]

]t
^Bn,s& t5~v1,n,s2 iG!^Bn,s& t

1 (
N>1

(
a,b

cn,s;a,b
~N! ^X̂N,a;N11,b& t2En,s~ t !

1 (
N>1

(
a,b

En,s;a,b
~N! ^X̂N,a;N,b& t ~2.14!

with

cn,s;a,b
~N! 5~vN11,b2vN,a2v1,n,s!^EN,auBn,suEN11,b& ,

~2.15!

En,s;a,b
~N! 5(

q
msEs~ t !fq,n,s* ^EN,au12n1,q,s1n2,q,suEN,b&.

~2.16!

We have introduced the dephasing due to degrees of free
not included explicitly~e.g., phonons! in a phenomenologi-
cal way with the effective parameterG. Using Eqs.~2.12!
and ~2.13! we see that Eq.~2.14! can be considered as
linear differential equation with a~trivial! first-order source
n
g

om

and nontrivial source terms of third and higher order. In t
following we restrict ourselves to the contributions up
third order. Then using Eqs.~2.12! and ~2.13! we see that
only X1,n,s

(1) and X2,a
(2) have to be determined. AsX1,n,s

(1) (t)
obeys Eq.~2.14! without the terms involving the summation
one obtains

X1,n,s
~1! ~ t !5 i E

2`

t

e2 i ~v1,n,s2 iG!~ t2t8!En,s~ t8!dt8.

~2.17!

The equation of motion forX2,b
(2) reads

i
]

]t
X2,b

~2!5~v2,b2 iGxx!X2,b
~2! 2 (

n8,s8;n9,s9
En9,s9~ t !

3^E2,buBn9,s9
† uE1,n8,s8&X1,n8,s8

~1! ~2.18!

with the biexciton phenomenological dephasing const
Gxx . In order to write the second term on the right-hand s
~rhs! of Eq. ~2.14! in a compact form we use the explic
result Eq.~2.18! for X2,b

(2)(t) in order to perform the summa
tion over the biexciton quantum numbersb,
X2,b
~2!~ t !5 i (

n8,s8;n9,s9
E

2`

t

e2 i ~v2,b2 iGxx!~ t2t8!En9,s9~ t8!^E2,buBn9,s9
† uE1,n8,s8&X1,n8,s8

~1!
~ t8!. ~2.19!

Using the identity

i (
n8,s8;n9,s9

En9,s9~ t !X1,n8,s8
~1!

~ t !exp i ~v1,n9,s91v1,n8,s822iG!t

5
1

2
] tS (

n8,s8;n9,s9
Xn9,s9

~1!
~ t !X1,n8,s8

~1!
~ t !exp i ~v1,n9,s91v1,n8,s822iG!t D ~2.20!

we obtain after a partial integration

(
b

cn,s;ñ,s̃,b
~1! X2,b

~2!~ t !5
1

2 (
n8,s8,n9,s9

H ^E1,ñ,s̃uBn,s~H2v1,n,s2v1,ñ,s̃!Bn9,s9
† uE1,n8,s&X1,n8,s8

~1!
~ t !X1,n9,s9

~1!
~ t !

2(
b

E
2`

t

] t8„^E1,ñ,s̃uBn,se2 i ~v2,b2 iGxx!~ t2t8!uE2,b&^E2,bu~H2v1,n,s2v1,ñ,s̃!Bn9,s9
† uE1,n8,s&

3exp i ~v1,n9,s91v1,n8,s822iG!~ t2t8!…X1,n8,s8
~1!

~ t8!X1,n9,s9
~1!

~ t8!

3exp2 i ~v1,n9,s91v1,n8,s822iG!~ t2t8!dt8J . ~2.21!
re is
We can also perform theb summation in the second term o
the rhs of Eq.~2.21!. For the derivative, we use the followin
identity, which holds for@Bñ,s̃ ,Bn,s#50 andHu0&50:

]t„^E1,ñ,s̃uBn,s~H2v1,n,s2v1,ñ,s̃!

3e2 iH tBn9,s9
† uE1,n8,s&ei ~v1,n9,s91v1,n8,s8!t

…

[2 i ^0uDñ,s̃;n,s~t!Dn8,s8;n9,s9
† u0&ei ~v1,n9,s91v1,n8,s8!t.

~2.22!
Here we have introduced the ‘‘force’’ operator

Dñ,s̃;n,s5†Bñ,s̃ ,@Bn,s ,H#‡ ~2.23!

and the usual time dependence in the Heisenberg pictu
given byD(t)5eiH tDe2 iH t. This allows to write Eq.~2.21!
in a compact form defining a memory kernel,

Fñ,s̃;n,s
n8,s8;n9,s9~t!ª^0uDñ,s̃;n,s~t!Dn8,s8;n9,s9

† u0&,
~2.24!
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for the second term on the rhs of Eq.~2.21!. The matrix
element in the mean-field contribution@first term on the rhs
of Eq. ~2.21!# can also be simplified, which gives

^E1,ñ,s̃uBn,s~H2v1,n,s2v1,ñ,s̃!

5^E1,ñ,s̃u~@Bn,s ,H#2v1,n,s!

5^0uDñ,s̃;n,s ~2.25!

and we finally arrive at

(
b

cn,s;ñ,s̃,b
~1! X2,b

~2!~ t !

5
1

2 (
n8,s8,n9,s9

H ^0uDñ,s̃;n,sBn8,s8
† Bn9,s9

† u0&

3X1,n8,s8
~1!

~ t !X1,n9,s9
~1!

~ t !2 i E
2`

t

e22G~ t2t8!

3Fñ,s̃;n,s
n8,s8;n9,s9~ t2t8!X1,n8,s8

~1!
~ t8!X1,n9,s9

~1!
~ t8!dt8J .

~2.26!

Here it is necessary to assume the relationGxx[2G to use
the identity Eq.~2.22!. The memory function in Eq.~2.24! is
a four-point correlation function in terms of electron~hole!
operators. As the operatorsAn,s(q) can be expressed i
terms of finite center-of-mass exciton operatorsBn,s(q),
F(t) can be considered a two-exciton correlation functio
From the double commutator definition of theD operators,
Eq. ~2.24! is a force-forcecorrelation function.48 An explicit
form of the operatorD is derived in Appendix A using a
specific semiconductor model.

The first expression on the rhs of Eq.~2.26! describes the
correlations between excitons as in the usual mean-fi
semiconductor Bloch equations~MFSBE!.11,2,44,45It is only
nonzero for excitons with zero center-of-mass moment
and with identical polarization, i.e., each pair of charge
carriers~electrons and holes! must belong to the same band
and consequently does not produce polarization mixing.
comparison with previous work on the MFSBE and earl
work on exciton-exciton interaction,49–51 we introduce the
matrix elements

b ñ,s̃;n,s
n8,s8;n9,s95^0uDñ,s̃;n,sBn8,s8

† Bn9,s9
† u0&, ~2.27!

g ñ,s̃;n,s
n8,s8;n9,s95^0uDñ,s̃;n,sDn8,s8;n9,s9

† u0&. ~2.28!

As Dñ,s̃;n,s(t)u0&50, the correlation functionF(t) can be
written as a time-ordered product and standard Feynman
grams can be used, e.g., to set up approximation sche
From a diagrammatic analysis to all orders the rigorous
larization selection rules1s̃5s81s9 can easily be read
off.27 The fact that the third-order polarizability can be e
pressed in terms of this correlation function depending o
single time difference is due to the simplicity of the sem
conductor ground state Eq.~2.1! approximated by the
vacuum state of the bound and unbound excitons.

An additional contribution to the third-order nonlinear r
sponse is given by the phase-space filling factor, which
due to the Pauli blocking of electrons. This term is assum
to play a minor role in the low-density regime of optic
.

ld

or
r

ia-
es.
-

a

is
d

excitations of semiconductors, but we include this contrib
tion here to preserve the exactness of our expression to
order in the exciting field. Keeping theN51 contribution in
Eq. ~2.16! we find with Eq.~2.13!

(
a,b

En,s;a,b
~1! ^X̂1,a;1,b& t

5 (
ñ,s̃,n8,s8,n9,s9

Cñ,s̃;n,s
n8,s8;n9,s9En8,s8~ t !

3@(X1,ñ,s̃
~1!

~ t !#* X1,n9,s9
~1!

~ t !. ~2.29!

The phase-space-filling parameter depends on the exp
exciton wave functions, cf. Appendix A:

Cñ,s̃;n,s
n8,s8;n9,s95ds,s8an8,s8(q

fq,n,s*

3^E1,ñ,s̃u12n1,q,s1n2,q,suE1,n9,s9&.

~2.30!

The exact third-order nonlinear polarizationPn,s
(3) (t) is given

by the solution of the following linear differential equatio
with a complete set of source terms:

S ]

]t
1 iv1,n,s1G D Pn,s

~3! ~ t !

52 i (
ñ,s̃,n8,s8,n9,s9

@X1,ñ,s̃
~1!

~ t !#* H Cñ,s̃;n,s
n8,s8;n9,s9En8,s8~ t !

3X1,n9,s9
~1!

~ t !1 1
2 b ñ,s̃;n,s

n8,s8;n9,s9X1,n8,s8
~1!

~ t !X1,n9,s9
~1!

~ t !

2
i

2 E
2`

t

e22G~ t2t8!Fñ,s̃;n,s
n8,s8;n9,s9~ t2t8!

3X1,n8,s8
~1!

~ t8!X1,n9,s9
~1!

~ t8!dt8J . ~2.31!

This equation expresses succinctly the physical origins of
source terms, which drive the third-order polarization: t
first term in the curly bracket being the phase-space filli
the second the Hartree-Fock or mean-field terms~of first or-
der in the Coulomb interaction between excitons!, and the
last the biexciton correlation. The source terms require a
lution of the linear-response problem of Eq.~2.17!. The
above derivation of the third-order nonlinear response can
extended to higher order in the external field. However,
higher-order correlation functions involved no longer ha
the simple structure of the third-order response force-fo
correlation function.

III. EXCITON-EXCITON CORRELATIONS

The correlation function formulation of the last sectio
provides us with a powerful framework for computing th
correlation effects of the two excitons based on treating
interaction among the two electrons and two holes on a eq
basis. In this section, we start with the nonlinear optical p
cesses that lead to the excitation of the excitons and dis
some general properties inferred from a study of a o
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dimensional system, where the correlation function can
calculated numerically for relatively large system sizes wi
out approximating the effects of the many-body interacti
We calculate the spectral function for the 1s-exciton contri-
bution to the third-order optical response for a on
dimensional semiconductor model. This is done in the f
quency representation with the use of the Lanc
algorithm.52 The details of the one-dimensional semicondu
tor model in real space are defined in Appendix B.

The selection rule that connects the helicity of the
exciting light to the spins of the electron and hole gives r
to different types of two-exciton excitations depending
the energy-level structures. For a semiconductor with zi
blende structure, spin-orbit coupling leads to a fourfold d
generate valence-band maximum. Two important spe
types of correlation functions are discussed in the followi

a. Opposite-spin excitons.If the two excitonic transi-
tions belong to different conduction and valence bands,
no single-particle states are the same, e.g., the polariza
mixing of simultaneous excitations of them523/2 valence-
band to conduction-bands521/2 transition with apositive
circular polarization of the light field and them53/2
valence-band to conduction-bands51/2 states with anega-
tive circular polarization of the light field, respectively.

b. Parallel-spin excitons. When the two exciton transi
tions have common hole and electron bands, their spins
parallel. In the case of positive circularly polarized exci
tion, only spin 11 excitons are populated. A three-pul
experiment can distinguish between the equal-spin and
opposite-spin correlations in the response signal.

Figure 1 shows the correlation function spectrum for
diagonal 1s-exciton contribution calculated in a one

FIG. 1. Force-force correlation function spectraF(v) for the
1s-exciton contribution for opposite spins~solid line! and parallel
spins ~dashed line!. The mass ratio of electrons and holes
me /mh51 for ~a!, which corresponds to thepositronium limit,
me /mh50.15 for~b!, which corresponds to the heavy-hole/electr
mass ratio of GaAs and for themolecular ~hydrogen! limit
me /mh50 in ~c!. Bound excitonic molecules appear forv,0 and
continuum two-exciton contribution havev.0.
e
-
.

-
-
s
-

e
e

-
-
al
.

.,
on

re
-

he

e

dimensional semiconductor model. The opposite-spin c
~solid line! and the parallel-spin case~dashed line! are
shown. The zero of energy corresponds to the energy of
noninteracting 1s excitons, which is spin independent. Res
nances at negative energiesv correspond toboundexcitonic
molecules~biexcitons!. In this case, the binding energy o
the biexciton is approximately 1.5 meV. In Fig. 1~a!, the
masses of electrons and hole are identical~positronium
limit !. The bound state of the parabiexciton is the most s
nificant feature at low energies, since the binding energ
expected to be much smaller than the usual excitonic bind
energies, which is 10 meV in this model for the 1s state. The
parallel-spin case has more pronounced spectral weigh
lower positive energies, but a bound state is not expecte
exist. The spectra have a maxima at higher energies be
dropping to zero. The bandwidth of a single-electron band
50 meV. It is surprising that the spectrum is almost ze
above the free electron-hole pair-state bandwidth of 1
meV. However, a high energy resonance is visible.

This distant resonance moves to lower energies in F
1~b!, when the ratio of the electron-to-hole mass is reduc
to me /mh50.15, found in semiconductors as in GaAs. T
reduced mass of electrons and holes is kept constant. M
spectral features appear in the lower-energy regime. In p
ciple, more bound states should appear for negative ener
A diplike structure can be found at almost the same posit
for the opposite-spin and parallel-spin case. In the case
opposite-spin correlations, we find increased spectral we
for smaller positive energies. This can be easily understo
if one eh pair is in the 1s-exciton state, whereas the seco
eh pair is quasi free~dissociated!.

This can be seen in Fig. 1~c! for infinite hole mass~mo-
lecular limit!. The opposite-spin case has pronounced sp
tral features at low energies. More resonances appear, i
spectral broadening in decreased. The resonances ca
classified as~1! bound excitonic molecules at negative ene
gies, which simply are the ground states of two electrons
static potential of twoheavyholes with varying distance, an
~2! scattering resonances, which are antibinding states w
molecular character. These antibinding states do contrib
to the nonlinear optical response. For example, the first la
resonance at positive energies results from the configura
where the two holes are extremely close together. This
similar to the configuration of a helium atom from the vie
of the fast moving electrons. The spectral weight of t
force-force correlation function favors states with small d
tance of the charged carriers, as can be seen from the
space representation of the stateD†u0& in Eq. ~B13!. A third
resonance is clearly visible at the same energy position
both spin cases atv'10 meV. This resonance is the large
feature in the case of parallel-spin excitons. The analysis
small systems of up to 10 sites strongly suggests that
feature originates from Coulomb correlation of electrons a
holes in the antibonding state, where the holes are locate
neighboring sites. This explains the feature in both spec
The position of the resonance is only weakly dependent
the on-site Coulomb interaction. We have verified that
spectral resonance from a state with a single 1s exciton and
a dissociated eh pair gives much a smaller contribution
this energy. The dip for parallel-spin excitons in Fig. 1~c!
goes almost to zero and separates a small band of biexc
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scattering states with weakly repulsive interacting pairs ofs
excitons from the antibonding resonance. For opposite-s
excitons, a spectral hole emerges at zero energy. Spe
weight from the product state of two 1s excitons with zero
center-of-mass momentum is recovered in the mean-fi
contribution to the nonlinear optical response.

The force-force correlation spectrum has a large num
of spectral features at the exact biexciton energies, wh
include bound-state as well as scattering-state contributi
The correlation function approach treats these states o
equal footing. We expect a similar behavior also for mo
realistic 2d or 3d models.

IV. APPLICATION TO FOUR-WAVE MIXING

In this section, we investigate the correlation effects
four-wave-mixing~FWM! experiments with semiconducto
heterostructures in the low-density excitation regime wh
the third-order theory in the exciting field is valid. Polariz
tion mixing of electrons and holes with different spin can
induced and probed using cross-polarized laser excitat
With the proliferation of new experiments which aim
probing correlations, we use, as illustrations of application
our theory, two specific experimental situations. The fi
paradigm experiment,20 by resonantly exciting excitons in
quantum-well structures, clearly demonstrates the signa
of polarization mixing in these systems for the ultrafast no
linear response, even in the absence of biexcitonic m
ecules. The actual numerical simulations are performed w
the quasi-one-dimensional semiconductor correlation fu
tion ~Sec. III! to model the spin-dependent effects and
not intended to quantitatively describe the experiment. A
second example, we study the effects of bound and unbo
two-exciton states and discuss the ‘‘beating’’ phenomena
the biexciton resonance, which was identified as quan
beats22 between bound and unbound biexciton states
which our calculation shows to be aringing of the bound-
state resonance alone.

The typical experimental setup is sketched in Fig. 2 fo
three-pulse four-wave-mixing geometry. This experime
leads to polarization mixing when pulses~2! and ~3! have
opposite helicity. In this case, equal populations of excito
with opposite angular momenta are excited. In the mean-fi
description, no third-order polarizationP(3)(k f) exists to dif-
fract probe pulse~1! in thek f5k31k22k1 direction for any
time delayT. However, beyond the mean-field theory, co

FIG. 2. Three-pulse four-wave-mixing transmission geometr
in
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relation effects between opposite-spin excitons cause po
ization mixing.

To allow for an analytical discussion, we consider t
limit of ultrashort light pulses with identical central fre
quency, which simplifies most of the following calculation
In this case, the exciting laser field is given by

E~ t !5(
j

E~k j !d~ t1t j !. ~4.1!

We emphasize that ad-pulse approximation is used only i
the time integration and not in the frequency integrati
since it gives a infinite broad spectral width. The laser pu
in the propagation directionk j interacts with the sample a
time t52t j . The correspondingarea of the light pulse is
given byE(k j ). The summation indexj labels the different
pulses involved the multiwave experiment. The first-ord
polarization of a single exciton transition is easily calculat
from Eq. ~2.17!,

Xn,s
~1! ~ t !5 imsan,s* (

j
e2 i ~vn,s2 iGs!~ t1t j !Q~ t1t j !Es~k j !.

~4.2!

Here,Es(k j )5E(k j )•es is the projection of the laser field in
the propagation directionk j onto the polarization unit vecto
es of the (n,s) transition. The dephasingGs may depend on
the polarization of the transition. In the exciton picture, t
total nonlinear polarization to third order in the extern
fields is given by Eq.~2.31!. The contribution from the
phase-space filling, well documented in the literature,53,2,40

plays only a minor role in the low-density limit. We focus o
the remaining contribution from the mean-field part and
genuine correlation, which can be treated on equal foot
Correlation leads to the following nonlinear complex pola
ization for the transition (n,s):

Pn,s
~3! ~ t !52

i

2
ms* an,se2 i ~vn,s2 iGs!t (

ñ,s̃,n8,s8,n9,s9
j 1 , j 2 , j 3

~aEf!

3$Q~ t1t j 1
!Q21Q32C12~ t !1Q~ t1t j 2

!

3Q12Q32C22~ t !1Q~ t1t j 1
!Q31Q23C13~ t !

1Q~ t1t j 3
!Q13Q32C33~ t !%. ~4.3!

with Qkl5Q(tk2t l) and an exciton wave-function
dependent factor

a[a ñ,s̃an8,s8
* an9,s9

* , ~4.4!

with an,s defined in Eq.~2.4!. The exciton-label dependenc
of a on the left is understood. The external field and helic
dependence is contained in the factor

E[ms̃Es̃
* ~k j 1

!ms8Es8~k j 2
!ms9Es9~k j 3

!. ~4.5!

A general phasef is due to the delay between the sho
pulses,

f[ei ~v ñ,s̃1 iGs̃!t j 1e2 i ~vn8,s82 iGs8!t j 2e2 i ~vn9,s92 iGs9!t j 3.
~4.6!
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The nontrivial part of the polarization dynamics in contain
in the time-dependent function (t.2ta ,ta,tb),

Ca,b~ t !5E
2ta

t

exp i ~vn,s1v ñ,s̃2vn8,s82vn9,s9!t8

3e2~Gs81Gs9!t8E
0

t81tb
F̃~t!dtdt8. ~4.7!

Equation ~4.7! contains the complete Coulomb correlatio
beyond the mean-field approximation. The integral kerne
the memory function, which can be calculated with t
knowledge of the exciton-exciton correlation function,

Fñ,s̃;n,s
n8,s8;n9,s9~t!5e2 i ~vn8,s81vn9,s9!tF̃~t!. ~4.8!

For the numerical calculation, we always use the reson
condition for the temporal evolution ofF̃(t) in Eq. ~4.8!,
i.e., vn81vn950. For nonresonant excitation, the detunin
dependent integrand in Eq.~4.7! has no phase dependen
for the diagonalcontributions of the correlation function.

We now consider the response from the nondegene
exciton ground states (1s) only, with near-resonant excita
tion of the central laser frequency, i.e.,vn51s,s5vs , and
neglect the transition labeln51s. We also setGs5G for
convenience. This simplifies the general expression Eq.~4.3!
and Eq.~4.7! considerably:

Ca,b~ t !5E
2ta

t

e22Gt8E
0

t81tb
F̃~t!dt ~ t.2ta ,ta,tb!.

~4.9!

The simplest experiment that is able to distinguish equ
spin from opposite-spin correlation is the three-beam exp
ment of Fig. 2, where the two pulses~2! and~3! interact with
the sample at the same time. Assuming that lasers~2! and~3!
interact with the sample att25t350 we define the delay
time t15T. The correlation function is now diagonal wit
respect to the exciton indices and has the spectral repre
tation with f m5^0uDuEm&

F̃~t!5(
m

u f mu2e2 ivmt, ~4.10!

where the m summation includes all contributions from
bound (vm,0) and unbound (vm.0) biexciton statesuEm&
and the implicit transition indices are understood. We fi
for Eq. ~4.9! with ta5T, tb50 for negative time delayT
,0 andt.2T,

C̃~ t,T!ª(
m

E
2T

t

e22Gt8E
0

t8
u f mu2e2 ivmt

5(
m

u f mu2H e2~2G1 ivm!t2e~2G1 ivm!T

ivm~ ivm12G!

2
e22Gt2e2GT

ivm2G J . ~4.11!

The second term of Eq.~4.11! is simplified by a sum rule
is

nt

-

te

l-
i-

en-

d

(
m

u f mu2vm
215b, ~4.12!

which can easily be derived from the usual Lehmann rep
sentation of the correlation function and using Eq.~2.27!.
The parameterb is the mean-field exciton-exciton interactio
parameter with four identical exciton indices (1s). For the
parallel-polarized case, this contribution is canceled exa
by the explicit mean-field contribution to the third-order no
linear polarization. This can be seen by inspection of
second and third terms on the rhs of Eq.~2.31!, when we set
F(t)[ ibd(t). For opposite-spin excitation, this paramet
b is zero. In the following we defineC(t,T) to be the result
of Eq. ~4.11! after the cancellation:

C~ t,T!ª(
m

u f mu2e~2G1 ivm!TH e2~2G1 ivm!~ t1T!21

ivm~ ivm12G! J
~4.13!

and, for comparison, the mean-field part,

CMF~ t,T!ª2 ibe2GTH e22G~ t1T!21

2G J . ~4.14!

The sum rule, Eq.~4.12!, does not imply that the mean
field instantaneous contribution in the nonlinear response
completely disappeared in Eq.~4.13!. Mean-field and corre-
lation contributions are treated here on an equal footing
part of the Coulomb interaction of the charged carriers.
the response function, Eq.~4.12!, the mean-field contribution
is recovered in thelarge dephasing limit, i.e.,G@vx . In the
following, we assume equal field strength for all pulses w
real amplitudeEs . We evaluate the signal according to th
following general rules:

a. Spatial dependence.The external sources, Eq.~4.5!,
for the nonlinear polarization Eq.~4.3! have to be selected
with the correct spatial phase dependence. For the sign
k f-direction, the index combinationsk j 2

5k2 , k j 3
5k3 and

k j 2
5k3 , k j 3

5k2 are possible withk j 1
5k1 fixed.

b. Time dependence.The set$ j 1 , j 2 , j 3% determines the
type of response termCi j and the correspondingQ-
functions. This will determine the temporal details of th
signal, depending on the time-order of the incoming puls

c. Helicity dependence.The polarization of the transi
tions and the helicity of the exciting fields determine t
correct type of correlation function and field amplitude pr
jection Es .

d. Transition dependence.Perform the summation ove
the exciton quantum numbers after the polarization dep
dence is determined in the above steps. Symmetry argum
can be used to reduce the actual number of terms.

Applying rules (a) and (b) in the case of a near-resona
excitation of the heavy-hole/light-hole 1s excitons, we find
for the time-resolved nonlinear polarization, usingms

[an51s,s* ms

Ps
~3!~ t !52

i

2
ms* (

s8,s̃,s9
e2 i ~vs2 iG!tei ~vs̃1 iG!Tms̃

* Es̃
* ~k1!

3@ms8Es8~k2!ms9Es9~k3!

1ms8Es8~k3!ms9Es9~k2!#k~ t,T! ~4.15!
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with

k~ t,T!5Q~ t !Q~T!C~ t,0!1Q~ t1T!Q~2T!C~ t,T!.

~4.16!
The helicity of the diffracted polarization depends on t
individual contributions, asmixedin Eq. ~4.13!.

We discuss in more detail an equal-spin excitation. C
rections due to phase-space filling are neglected. The th
pulse experiment in Fig. 2 can clearly distinguish betwe
correlations between opposite-spin excitons and parallel-
excitons. In the cross-polarized configuration, pulses~2! and
~3! have opposite helicity. The response in thek f direction
has opposite helicity with respect to pulse~1!. This is a con-
sequence of angular-momentum conservation. In the cas
equal helicity, all three pulses and the response have ide
cal helicity. In both cases, the main difference comes fr
the type of heavy-hole correlation function, which enters
calculation ofC(t,T). Since the response comes from ide
tical optical transitions, besides the helicity, we setmsEs

P$0,1%. The responses in both polarization configuratio
differ mainly in the type of correlation function to be calc
lated. For the6-heavy-hole exciton transition, we find fo
k1→s̄, k2→s, andk3→s̄ in the cross-polarized configura
tion andk i→s in the copolarized configuration (s̄52s)

Ps
~3!~ t !52 ie2 i ~vs2 iG!~ t1T!k~ t,T!

3H ei ~vs̄1vs!T

ei ~vs1vs!T
cross circular
cocircular. ~4.17!

For resonant excitation, i.e.,vs50, the time-resolved phas
of the polarization can be read offP(3)5uP(3)ueiF,54

F~ t !52Q~ t1T!Q~2T!tan21S ReC~ t,T!

ImC~ t,T! D
2Q~ t !Q~T!tan21S ReC~ t,0!

ImC~ t,0! D ~4.18!

in the case where probe pulse~1! comes after the excitation
with pulses~2! and ~3!, T,0, and the case where pulse~1!
precedes the excitation, i.e.,T.0. For small timest after the
excitation, the instantaneous phase-space-filling term lead
a p/2-phase shift of the polarization with respect to the e
ternal fieldE, as discussed in Ref. 18.

The observed quantities are the time-resolved~TR! inten-
sity,

I ~3!~ t,T!5uPs
~3!~ t !u25e22G~T1t !uk~ t,T!u2, ~4.19!

and the time-integrated~TI! intensity,

I ~3!~T!5E
2`

`

uPs
~3!~ t,T!u2dt. ~4.20!

We have performed numerical simulations using a o
dimensional extended Hubbard model with long-range C
lomb interaction as defined in Appendix B. We present
this section the exact numerical calculations for this sim
model and consider in the next section various approxim
tions involving truncation of the summation in Eq.~4.13! for
more complicated models. For resonant excitation, the
trafast polarization dynamics is strongly affected by the
r-
e-
n
in

of
ti-

e
-

s

to
-

-
-

e
-

l-
-

lation between the exciton dephasing parameterG and the
Rydberg energyvx , since the detuning is zero. The Rydbe
energy does not appear explicitly, but for the Coulomb int
actionŨ;vx holds. The results can be compared with fe
level models on FWM.24

The source termC(t,T) of Eq. ~4.13! plays a central role
in the nonlinear response, since it determines the nontri
polarization dynamics. Many-particle correlation leads to
dynamical structure that is absent in a simplified nonintera
ing two-level system. Figure 3 shows the typical source te
for the parallel-spin case. The mean-field source term sh
a finite rise time that corresponds to the finite rise time of
time-resolved nonlinear polarization signal, roughly t
dephasing timeT2 . For larger times, the nearly consta
source term leads to an exponential decay of the resulting
signal in Eq.~4.15!. The mean-field picture is considerab
changed when the exact correlations are taken into acco
Figure 3 shows the following characteristic features:~1! an
increase in the rise time of the signal compared to the me
field approximation;~2! the signal exhibits a phase dynam
ics, and~3! the asymptotic value is complex and differs co
siderably from the mean-field value. Only in the extreme
large dephasing limit, not shown in the figure, the correlat
result approaches the mean-field valueib/2G.

Figure 4 shows the typical source term for the case
opposite-spin correlation. The existence of a bound-s
biexciton has a strong influence on the nonlinear respo
Oscillations with the biexciton binding frequency of th
single bound state in the one-dimensional model are vis
in Fig. 4. The energy denominator in Eq.~4.13! favors low-
energy resonances, i.e., isolated bound states (vm,0) and
the low-energy scattering-states continuum. It is importan
note that the oscillations decay with twice the polarizati
decay timeT25G21 in the approximation of Sec. II. In the
TR signal, the oscillating contribution to the signal shou
therefore, be fairly small on the decaying part of the sign
The second, more important observation is that, from
~4.13! and the spectrum in Fig. 1, the biexciton resonan
alone is responsible for the oscillations. This is aringing
phenomenon, which isdifferentfrom the usual quantum-bea
picture that is suggested by the few-level model.22,20

FIG. 3. Source termC(t,0) in the nonlinear response in th
parallel-spin case with parameters of Fig. 4. The mean-field
proximation, which has no real part from Eq.~4.14! overestimates
the response.
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Figure 5 shows the results for the time-resolved polari
tion for zero delayT50 and weak dephasing. The solid lin
shows the mean-field calculation, which obviously gives
poor approximation for resonant excitation and sm
dephasing. The exact result for cross-polarized circular e
tation shows the ringing of the intensity signal with the bie
citon binding frequency, which is already present in t
source term in Fig. 4. The signal for copolarized excitation
of the same order of magnitude but shows no oscillat
behavior. The signal peaks at roughlyT2/2, which is less
than estimated previously.20

In Fig. 6, a shorter dephasing time ofT250.5 ps is as-
sumed. The mean-field result looks better in comparison w
the copolarized signal. The exact signals have a decre
rise time of the maximum, which can be explained by
additional dephasing mechanism due to the superpositio
the continuum of two-exciton states, which leads to a natu
intrinsic decay, similar to the effect of an inhomogeneous
broadened system.

The time-integrated signal in Fig. 7 shows the effect
finite delays between theexcitingpulses~2! and ~3! and the

FIG. 4. Source termC(t,0) for the nonlinear response in th
opposite-spin case with the spectral function of Fig. 1~b!. The
dephasing time isT252 ps. The pronounced oscillations with
period of 2.8 ps (Exx51.5 meV) origin from the bound-state biex
citon in the system.

FIG. 5. TR signal of the nonlinear polarization for the on
dimensional semiconductor model forT50 in the weak dephasing
limit. The oscillations with the biexciton binding energy are a rin
ing in the signal, since no additional biexciton states are neces
for the response. The dephasing time isT254 ps.
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probepulse~1!. The result of the numerical simulation is i
very good agreement with the experimental results by W
et al.,20 who have performed a three-pulse FWM experime
on a GaAs quantum-well system. The figure shows
strong decrease of the co-polarized signal for negative t
delay, which is due to the enhanced intrinsic dephasing
the continuum of two-exciton scattering states. The cro
polarized signal is stronger for negative time delay, wh
indicates the effect of quasibound excitonic molecules. T
spectral weight of the correlation function in Fig. 1~b! for
parallel-spin excitons is more enhanced in the low-freque
regime. This leads to a stronger total signal in Eq.~4.15!,
which can be reproduced for different dephasing paramet

Figure 8 shows the time-integrated intensity of the FW
signal for copolarized circular excitation for differen
dephasing times. For a short dephasing time, we recover
well-known mean-field behavior for homogeneously broa
ened systems, which predicts a rise of the signal;T2/4 and
a decay of the signal;T2/2.1,2 This can be explained by
simply counting the number of polarization waves that a
present before the nonlinear signal is emitted. For posi
time delay, even for a longer dephasing time, the decay;T2
can be observed because correlation effects influence

ry

FIG. 6. TR signal of the nonlinear polarization for the on
dimensional semiconductor model forT50 in the strong dephasing
limit in comparison with the mean-field response for parallel-s
excitation. The dephasing time isT250.5 ps.

FIG. 7. TI intensity of the FWM signal for copolarized~solid
line! and cross-polarized~dashed line! circular excitation for a
dephasing time ofT254 ps.
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the strength of the time-integrated signal. For negative t
delay, significant deviation from the;T2/4 law is found.
The probe pulse interacts with the delay2T.0 and fast
decaying modes of the correlations cannot be sustained.The
calculated results show a smooth transition from a steep
near zero delay time, where correlations with the fast mo
of the spectrum of two-exciton scattering states are imp
tant, to a regime where low-energy modes dominate the
sponse.The latter again shows the asymptotic mean-fie
like ;T2/4 dependence.

The most prominent feature of the cross-polarized
sponse in Fig. 9 is themodulationof the signal with the
binding frequency of the bound-state molecule at nega
time delay. This biexcitonic effect has been observed exp
mentally by various groups16,22 and has sparked much the
retical effort to improve the mean-field theory of the sem
conductor Bloch equations. This signature clearly shows
importance of correlations, which cannot be neglected for
resonant excitation of the 1s exciton in semiconductor het
erostructures. Similarmodulationof the signal can also be
observed at positive time delay infifth-order perturbation
theory, which has been shown by Bartelset al.23 No signal in

FIG. 8. Normalized TI intensity of the FWM signal for copola
ized circular excitation on a log scale. For negative time de
significant deviation from the exponential decay with a rise time
T2/4 is observed for smaller dephasing.

FIG. 9. Normalized TI intensity of the FWM signal for cros
polarized circular excitation on a log scale. For negative de
times, oscillations with the binding energy of the biexciton are v
ible for sufficiently small dephasing.
e
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e

the cross-polarized configuration is predicted by the me
field approximation. For shorter dephasing times, the mo
lations disappear very quickly and the signal shows sim
behavior compared to the copolarized geometry. We a
observe a decrease of the modulations, if the pulse widt
increased. The biexcitonic modulations~if a bound-state
molecule exists! can only be observed for sufficient sho
laser pulses and weak dephasing of the coherence~polariza-
tion! in semiconductors. However, none of the above con
tions is necessary to observe correlations due to the t
exciton scattering continuum, which is always present a
gives the main contribution, if bound states are absent
cause of impurity scattering, interface effects, etc. The c
relation function approach gives a unified description of
observable effects. In principle, the same treatment can
applied mixed-type correlation functions as well, but t
large number of terms involved renders the computat
quite tedious. Much work still has to be done. A discuss
of further specific nonlinear optical experiments where c
relations are involved is in progress.

V. APPROXIMATIONS AND COMPARISON
WITH RELATED APPROACHES

In considering possible applications of the correlati
function approach for an improved treatment of the dyna
cal nonlinear response, we need a tractable response th
that takes into account, for example,~i! nonresonant, above
band-gap excitations where electron-electron scattering
comes important and where the Markovian approximation
no longer valid on short time scales,~ii ! coherent and non-
coherent scatterings with LO phonons, and~iii ! applied mag-
netic field in heterostructures. Some theoretical work has
ready been done in deriving scattering-rate corrections w
memory kernels for the SBE,55,56 in LO phonon
corrections,57,58 and in high magnetic fields.32 In semicon-
ductor heterostructures or bulk systems, the calculation
the force-force correlation function, even for resonant ex
tation, is an enormous numerical task because of the fo
body problem involved. For systems beyond the simple m
els for which the exact calculations are possible as descr
in the last two sections, we develop various approximat
schemes to incorporate correlation beyond the mean-fi
level in the dynamical optical response for low-density ex
tation. For a more detailed description, we refer the reade
the Los Alamos preprint version.59

A. Excitation induced dephasing„EID …

EID corrections for the SBE have been discussed
Wang et al.60 in an application to FWM, where a phenom
enological, density dependent andk-diagonal dephasing pa
rameter was introduced. We can derive a similar correct
from the exact third-order contributions, c.f. Eq.~4.8!, to the
nonlinear response, which is based on the rapid loss
memory in the correlation function,

E
2`

t

e22G~ t2t8!Fñ,s̃;n,s
n8,s8;n9,s9~ t2t8!X1,n8,s8

~1!
~ t8!X1,n9,s9

~1!
~ t8!dt8

→g̃ ñ,s̃;n,s
n8,s8;n9,s9X1,n8,s8

~1!
~ t !X1,n9,s9

~1!
~ t !. ~5.1!

,
f

y
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The real part ofg̃ leads to adephasingof the nonlinear
polarization, which can be seen from Eq.~2.31!. In addition
to the phenomenological treatment,60 polarization mixing is
now also automatically taken into account.

B. Short-time memory approximation

In the limit of large dephasing, a short-time approxim
tion of the memory kernel in Eq.~5.1! is valid by Eq.~2.28!,

Fñ,s̃;n,s
n8,s8;n9,s9~t!→g ñ,s̃;n,s

n8,s8;n9,s91O~t!. ~5.2!

Thus, we obtain a correlation-modified complex mean-fi
parameter, which exhibits polarization mixing and leads
EID:

g̃ ñ,s̃;n,s
n8,s8;n9,s9→

g ñ,s̃;n,s
n8,s8;n9,s9

2G
. ~5.3!

We observe that, for diagonal contributions, e.g.,n5n85a

and ñ5n95b, the expression Eq.~5.3! is positive. Hence,
the nonlinear polarization for, saya, has an effective dephas
ing that depends on the density of speciesb given by

Ga→Ga1
ga,b

Ga1Gb
Xb* Xb.0. ~5.4!

Explicit results for the expectation valuega,b are given in
Appendix A.

C. Noninteracting excitons approximation

We propose an approximation scheme for the correla
function F, where we replace the time evolution for theD
operator Eq.~B13! with the full HamiltonianH of the biex-
citon subspace (Np52) with the free time evolution of ex
citons. For more explicit results, we use theD-operator rep-
resentation of Eq.~A13!:

Fñ,s̃;n,s
n8,s8;n9,s9~t!→ (

b,b8,a,a8,
qÞ0,q8Þ0

ŨqŨ2q8an,a~q!añ,a8~2q!

3an8,b~2q8!* an9,b9~q8!* ^0uBa,s~q!

3Ba8,s̃~2q!Bb,s8
†

~2q8!Bb8,s9
†

~q8!u0&

3exp2 i @vb,s8~q8!1vb8,s9~q8!#t.

~5.5!

This expression can be simplified further. We note that
expression Eq.~5.5! is a nonperturbative result which is ex
act to second order in the Coulomb interaction but prope
includes all Coulomb effects to form excitons. If no boun
state biexcitons are present, this expression should giv
reasonable approximation beyond the short-time memory
proximation.

D. Comparison with collision terms
in the Boltzmann approximation

Finally, we want to approximate the correlation to seco
order in the Coulomb interaction. This will enable a quali
-

d
o

n

e

y
-

a
p-

d
-

tive comparison of the correlation part of the nonlinear op
cal response with semiclassical Boltzmann-Equation
proaches. This is done here to third-order in the external fi
as follows. We expand thepolarizationfor a transitions and
Bloch vectork in terms of excitons and inspect the sour
terms, which gives the correlation corrections only. Since
force-force correlation function is already second order
Ũq , we can use the noninteracting linear polarization, E
~2.17!, with the noninteracting HamiltonianH0 being used
for the time evolution. This reproduces the third-order lim
of the collision terms, which were previously derived.55,56

This also corresponds to thetwo-loop diagrams in the dia-
grammatic approach.27 However, the truefermioniccontribu-
tions also appear, which are relevant for the parallel-spin
coupled-spin case and correspond to theone-loopdiagrams.
These terms might not be present in the usual semiclas
treatment of the scattering rates. The correlation function
proach naturally incorporates these effects on the fo
particle level and gives the exact low-density results.

VI. CONCLUSION

In this paper, we have presented aunified theory of
exciton-exciton interaction effects in the third-order nonli
ear optical response, using a correlation function approac30

The electronic problem ~dynamics of the four interacting
particles! is separated from the nonlinearoptical problem.
Furthermore, the correlation effects beyond the mean-fi
terms is explicitly represented by a two-exciton force-for
correlation function. By means of this formalism, we are a
to investigate the role of exciton-exciton correlations in t
third-order polarization in an application to resonantly e
cited heavy-hole excitons in a semiconductor quantum w
The correlation functions are calculated numerically for
one-dimensional semiconductor model with long-range C
lomb interaction, without perturbative approximation. The
spectra exhibit isolated resonances due to bound-state b
citons and continuum of two-exciton scattering states. Ad
tional, more pronounced features appear for decreasing m
ratio of electron to hole.

A three-pulse FWM configuration can distinguish b
tween parallel-spin and opposite-spin correlations. For co
larized excitations, we find a significant deviation from t
expected mean-field;T2/4 rise of the time-integrated FWM
signal for negative time delays between the pulses in
weak dephasing regime. This can be explained by an
trafast intrinsic decay of correlations due to two-exciton sc
tering states, since bound-state molecules areabsentin the
case of parallel-spin correlations. For strong dephasing,
recover the well known mean-field results.2 The signal in the
cross-polarized configuration is dominated by a modulat
with the binding frequency of the bound-state biexciton
the system, which has been observed in vario
experiments.16,22These oscillations appear as a ringing of t
biexciton mode in the time-resolved signal, as distinct fro
true quantum beats. For positive time delays, the third-or
response is close to the mean-fieldT2/2-decay behavior. Po
larization mixing for cross-polarized excitations is purely
correlation effect,27 absent in the conventional mean-field a
proach using the semiconductor Bloch equations.6,11

We have also derived generalized effective equations
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motion for the polarization for laser excitation near the fu
damental exciton resonance or the exciton continuum sta
This is intended for a future application of the theory to mo
realistic semiconductor quantum wells. The exact third-or
equations are compared with the results of Boltzmann-t
scattering corrections to the quantum-kinetic equations.
effective parameters entering the dynamics can be calcul
in second order of the exciton-exciton interaction, provid
only that the exciton states are known, which is possible
a large number of semiconductor systems.

The correlation function approach can be generalized
include additional interactions, such as spin-flipping scat
ing processes or the coupling to LO phonons.58 A further
application of the correlation theory to spin-beating pheno
ena in diluted magnetic semiconductors for the pump-a
probe configuration61 has been made.62
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APPENDIX A: COMMUTATOR ALGEBRA
FOR THE FORCE OPERATOR

In this appendix we derive the operators and parame
defined in Sec. II in terms of a semiconductor Hamiltonia
H[H01U, with an independent-electron part:

H05(
k,s

ek,sck,s
† ck,s , ~A1!

whereck,s
† creates a Bloch electron with combined band a

spin indexs at wave vectork, and an electron-electron in
teraction term:

U5
1

2 (
k,s,k8,s8,qÞ0

Ũq,s,s8ck1q,s
† ck82q,s8

† ck8,s8ck,s ,

~A2!

whereŨq,s,s8 is the Coulomb matrix element.
The exciton operatorBn,s of a given transitions is asso-

ciated with the relative motion wave functionfn,k,s at zero
center-of-mass momentum:

Bn,s5(
k

fn,k,s* ck,s8
† ck,s . ~A3!

The transitions5s(s,s8) connects an electron from a va
lence band with combined band and spin labels8 to a
conduction-band state with labels. The correspondingpair
operatorck,s8

† ck,s is denoted in Sec. II asck,s . Optical se-
lection rules determine whether thes transition is an opti-
cally allowed dipole transition with matrix elementms or a
so-calleddark transition. Dark states are connected to op
cally active states via a spin-flip process, which is assum
-
s.

r
e
e
ed
d
r

to
r-

-
-

ch

d

rs
,

d

-
d

to be very slow on the time scales of interest. The selec
rules also determine the corresponding helicity of the dip
transition.

The first step leading to the force operatorD is the com-
mutatorCn,s5@Bn,s ,H#,

Cn,s5(
k

~ek,s2
2ek,s1

!fn,k,s* ck,s2

† ck,s1

2 (
k,qÞ0

Ũq,s1 ,s2
fn,k,s* ck1q,s2

† ck1q,s1

1 (
k,qÞ0

Ũq,s1 ,s1
fn,k,s* ck,s2

† ck,s1

1 (
k,k8,s,qÞ0

~Ũq,s,s2
fn,k82q,s

* 2Ũq,s,s1
fn,k8,s

* !

3ck1q,s
† ck,sck82q,s1

† ck8,s2
. ~A4!

Using ck,s1

† ck,s2
5( ñf ñ,k,s

* Bñ,s , the Wannier equation for

the exciton wave function simplifies the first three terms
the rhs of Eq.~A4!:

(
k,k8

F S ek,s2
2ek,s1

1 (
qÞ0

Ũq,s1 ,s1D dk,k8

2Ũk2k8,s1 ,s2
~12dk,k8!GFk,n,s* Fk8,ñ,s

5v1,n,sdn,ñ , ~A5!

and, therefore,

Cn,s5v1,n,sBn,s1 (
k,k8,s,qÞ0

~Ũq,s,s2
fn,k82q,s

*

2Ũq,s,s1
fn,k8,s

* !ck1q,s
† ck,sck82q,s1

† ck8,s2
. ~A6!

The force operator is given by the commutat
Dp,l ;n,s5@Bp,l ,Cn,s#. The first contribution on the rhs o
Eq. ~A6! vanishes because@Bp,l ,Bn,s#50. Thus,

Dp,l ;n,s5 (
k,k8,qÞ0

~Ũq,l 2 ,s2
fn,k82q,s

*

2Ũq,l 2 ,s1
fn,k8,s

* !fp,k1q,l* 2~Ũq,l 1 ,s2
fn,k82q,s

*

2Ũq,l 1 ,s1
fn,k8,s

* !fp,k,l* ck1q,l 1
† ck,l 2

ck82q,s1

† ck8,s2
.

~A7!

The spin-independent Coulomb interaction leads to a furt
simplification. In terms of the operator

An,s~q!5(
k

~fn,k2q/2,s* 2fn,k1q/2,s* !ck2q/2,s1

† ck1q/2,s2
,

~A8!

the D operator can be written in a compact form:

Dp,l ;n,s5 (
qÞ0

ŨqAp,l~q!An,s~2q!. ~A9!
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The A operator can be related to excitons with fin
center-of-mass momentumQ. The mass ratio of electron
and holes play a crucial in the correlation function dynami
We define for the transitions5(s,s8) the positive mass ratio
ks5ms /ms8 . With

hs5
1

11ks
~A10!

the generalization of Eq.~A3! reads

Bn,s~Q!5(
k

fn,k,s* ck2hsQ,s8
† ck1kshsQ,s . ~A11!

We have neglected a possibleQ dependence of the relative
motion wave-function, which is valid for parabolic band
Transforming the eh representation in Eq.~A8! to one in
terms of the excitons leads to

An,s~q!5(
k,a

~fn,k2hsq,s* 2fn,k1hsksq,s* !fa,k,sBa,s~q!

5(
a

f n,a
s ~q!Ba,s~q!. ~A12!

The D operator in Eq.~A9! becomes, in terms of the exc
tons,

Dp,l ;n,s5 (
a,a8,qÞ0

Ũqf p,a
l ~q! f n,a8

s
~2q!Ba,l~q!Ba8,s~2q!.

~A13!

We useŨq5Ũ2q to ensure the symmetry of theD operator
in the exciton labels.

The initial value t50 of the correlation function Eq
~4.13! is a ground-state~vacuum! expectation value. We firs
calculate

^0uBa8,s̃~q!Ba,s~2q!Bb,s9
†

~2q8!Bb8,s8
†

~q8!u0&

5da8,s̃;b,s9da,s;b8,s8dq,2q81da8,s̃;b8,s8da,s;b,s9dq,q8

1^0uBa8,s̃~q!

3†@Ba,s~2q!,Bb,s9
† (2q8!],Bb8,s8

†
~q8!‡u0&. ~A14!

The initial valueg ñ,s̃;n,s
n8,s8;n9,s9 of Eq. ~4.13! can be split in

three contributions. The first term on the rhs of Eq.~A14!
gives

g~1!5ds,s8ds̃,s9 (
b,b8,q

Ũq
2f ñ,b

s̃
~q! f n,b8

s
~2q!

3 f n9,b
s9 ~q!* f n8,b8

s8 ~2q!* . ~A15!

The summation over the exciton labelsb,b8 can be per-
formed, using the abbreviation
.
gn,m

s ~q!5(
b

f n,b
s ~q! f m,b

s ~q!*

5(
k

~fn,k2hsq,s* 2fn,k1hsksq,s* !

3~fm,k2hsq,s2fm,k1hsksq,s!, ~A16!

which gives

g~1!5ds,s8ds̃,s9(q
Ũq

2gñ,n9
s̃

~q!gn,n8
s

~2q!, ~A17!

and for the second term on the rhs of Eq.~A14!,

g~2!5ds,s9ds̃,s8(q
Ũq

2gñ,n8
s̃

~q!gn,n9
s

~2q!. ~A18!

The third contribution arises only if the two electron-ho
pairs have at least one band in common, i.e., in the para
spin or coupled-spin case, c.f. Sec. III. In the case of excit
being idealbosons, only g (1) andg (2) would contribute. We
give the result for the general case:

g~3!52~ds,s9
~c! ds̃,s8

~c! ds,s8
~v ! ds̃,s9

~v !

1ds,s9
~v ! ds̃,s8

~v ! ds,s8
~c! ds̃,s9

~c!
! (
q,k,k8

ŨqŨk2k8~F ñ,k82q/2,s̃
*

2F ñ,k81q/2,s̃
* !~Fn9,k82q/2,s92Fn9,k2q/2,s9!

3~Fn8,k1q/2,s82Fn8,k81q/2,s8!~Fn,k1q/2,s*

2Fn,k2q/2,s* !. ~A19!

The Kroneckerd symbol with an upper index means, th
corresponding conduction (c) or valence band (v) must be
identical for the transition pair.

APPENDIX B: AN INTERACTING SEMICONDUCTOR
MODEL

We present the details of the real-space extended Hub
model used for the numerical calculations of the correlat
function and the linear optical properties~excitons!. We start
with the generald-dimensional lattice model of an electron
hole system and briefly review the fundamental aspects
the problem on a lattice. The kinetic energy part of a tw
band lattice model is the usual hopping term,

H05 (
m,m8,s

tm,m8
~s! cm,s

† cm8,s1H.c., ~B1!

where cm8,s
† creates an electron in a Wannier-state at

lattice sitem with a combined band and spin indexs and
tm,m8
(s) is the hopping matrix element between two sites. T

hopping is restricted to a nearest neighbor with parametert (s)

for each band. We taket (s),0 (t (s).0) for an s-type
~p-type! conduction~valence! band, allowing for interband
optical transitions. The potential energy of the system
given by the Coulomb interaction between the electrons



in
on

e
n

th
nd
ly

re
i-
c
a

th
-

l
o-
th
ri

fo

rg

t

ic

o

or
ec

al-
ou-
on

ers
its

l

.

re-
atio
r of
imit

f a
on-
ul-

ex-
nds,
of

rel-
a

-
ter

le
ed.

ex-

e
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charge-positive lattice ions with chargeeZcore.0. In terms
of the dimensionless charge density~electrons and ions! at
site m,

rm5S (
s

cm,s
† cm,sD 2Zcore , ~B2!

the Coulomb interaction in the Wannier states to lead
order is given by the electrostatic monopole-monopole c
tribution,

Û5
1

2 (
m,m8

Um,m8rmrm8 , ~B3!

whereUm,m85e2/um2m8u for different sites and the on-sit
Coulomb interactionUm,m[U0 is an additional parameter i
the model.

The ground stateu0& of the lattice model is given by the
completely filled valence-band states at each site. For
numerical calculation of the correlation function, a four-ba
approximation of the semiconductor is sufficient, i.e., on
two holes and two electrons of one or two species are
evant. The indexs is split into two bands and two spin d
rections. This leads to different types of correlation fun
tions, as discussed in Sec. III. We write the ground state

u0&5Pmcm,1,↑
† cm,1,↓

† uvac&. ~B4!

The spatial extension of the relative motion of asingleexci-
ton in its ground state depends on the ratio of the sum of
bandwidths Bs[B11B252d(t12t2) and the nearest
neighbor Coulomb energyU1[e2/aL , whereaL is the lat-
tice constant. ForBs /U1@1 the results of the lattice mode
are similar to the continuum limit given by the usual tw
parabolic-band effective-mass model. If one expands
band dispersion quadratically around the center of the B
louin zone one finds for the Bohr radius of the exciton
d53,

a05
2~ t12t2!

U1
aL , ~B5!

and the exciton binding energyvx is given by

vx5
U1

2 S aL

a0
D . ~B6!

In the following, we give all energies in units of the Rydbe
energyvx . One should keep in mind that this isnot the
exciton binding energy ind51, which apart from a differen
dimensionless prefactor depends on the ratioh[U0 /U1 .
The different effective electron~hole! masses enter via
ut1 /t2u5um2 /m1u. The total Hamiltonian operatorH5H0

1Û is conveniently transformed into the electron-hole p
ture defining cm,s5cm,2,s for electron states andhm,s

5cm,1,s
† for the hole states. LetuF& denote a many-particle

eigenstate ofH with an arbitrary numberNp of the eh-pairs
as a quantum number. As the corresponding pair-number
erator Np commutes withH, we can always work with
eigenstates ofNp . This is the fundamental assumption f
the Hubbard-operator formulation of the Hamiltonian in S
II.
g
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We now discuss in detail the results of the numerical c
culations for a quasi-one-dimensional ring model. The C
lomb interaction Eq.~B3! between two charges depends
the chord distance63

um2m8u5
NaL

p
sinFpN um2m8uG ~B7!

of the sites, which are labeled by the dimensionless numb
m. The model interpolates smoothly between the two lim
of Frenkel excitonsa0 /aL→0 and the Wannier limit of large
extended objectsa0 /aL@1, which is only limited by the fi-
nite total system sizeN. The system size for the numerica
calculation of the correlation function isN5120 for equal-
spin correlation andN5140 for opposite-spin correlation
The on-site Coulomb interaction is fixed withh51.5. We
have also fixed the bandwidthBªu4(t22t1)u of the eh-pair
continuum for each model, which depends only on the
duced electron and hole mass, while the positive mass r
me /mh is varied. The mass ratio is an important paramete
the two eh-pair subspace. We compare the positronium l
me /mh51 with the semiconductor GaAs case ofme /mh
'0.15 and the molecular~hydrogen! limit me /mh!1. The
long-range Coulomb potential leads to the formation o
finite number of bound exciton states in the system in c
trast to the usual Hubbard-model with purely on-site rep
sion U0 .

1. Parallel-spin excitons

The parallel-spin exciton case is characterized by the
change repulsion between same-type carriers in the ba
which, in an ideal one-dimensional system, plays the role
dynamical boundary conditions. The parallel-spin case is
evant when the optical excitation process is limited to
single circularly polarization of the external field. A com
plete set of parallel-spin two-pair states with zero cen
of mass momentum is given by63

up,a,b&5
Cp

~a,b!

AN
(
m

cm1p1a
† hm1p

† cm1b
† hm

† u0&, ~B8!

where

Cp
~a,b!5H& p5N/2 and a5b

1 else
~B9!

is a normalization constant and a triplet (p,a,b) labels the
relative position of the carriers. In order to avoid doub
counting of states, the set of possible triplets is restrict
The ~single! spin index is understood.

The real-space representation of product state of two
citons with quantum numbersa and b with band indices
(a2 ,a1) and (b2 ,b1), which enters the calculation of th
generating correlation function, is given by

Ma,b
† u0&5

1

N (
m1 ,m2 ,m3 ,m4

fb~m12m2!fa~m32m4!

3cm1 ,b1

† hm2 ,b2

† cm3 ,a1

† hm4 ,a2

† u0&, ~B10!
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where each exciton has zero center-of-mass momentum.
real-space exciton wave function is given by

fa,k5
1

AN
(
m

e2 ikmfa~m!, ~B11!

and the exciton operator can be expressed as

Ba
†5

1

AN
(

m1 ,m2

fa~m12m2!cm1 ,a1

† hm2 ,a2

† . ~B12!

For the force-force correlation function in the nonlinear o
tical response, we need a linear superposition of two-p
states in the initial stateDa,b

† u0&,

Da,b
† u0&5

1

N (
m1 ,m2 ,m3 ,m4

fb~m12m2!fa~m32m4!

3~Um32m1
2Um42m1

2Um32m2
1Um42m2

!

3cm1 ,b1

† hm2 ,b2

† cm3 ,a1

† hm4 ,a2

† u0&. ~B13!

Both states are center-of-mass eigenstates with zero total
mentum in systems with periodic boundary conditions. It
possible to fix the hole positionm4 and to introduce relative
distances with respect to this hole to reduce the numbe
coordinates. The states Eq.~B10! and Eq.~B13! can then be
expressed in the basis set Eq.~B8!.

2. Opposite-spin excitons

The corresponding basis set for the opposite-spin
states is chosen as
P
nd

S.

d

in

-

he

-
ir

o-
s

of

ir

um1 ,m2 ,m3&

5
1

AN
(
m4

cm31m4 ,a1

† hm21m4 ,a2

† cm11m4 ,b1

† hm4 ,b2

† u0&,

~B14!

where the opposite-spin indices for the carriers in one b
are understood, i.e.,b2Þa2 and b1Þa1 . For numerical
work, the absence of the Pauli blocking for the two ele
trons/holes in the bands leads to a quite simple counting
opposite-spin states in contrast to the equal-spin case.

The numerical evaluation proceeds in the usual way. T
total number of basis states involved in the calculation isN3

for the opposite-spin problem, which gives a vector length
about 33106. The Lanczos algorithm requires two states f
the iteration, which reside in memory to speed up the proc
and can be handled quite well on a PC with a total of
MByte memory. The Lanczos algorithm tridiagonalizes t
Hamiltonian for the four-particle problem, starting with th
~normalized! initial stateD†0& for the force-force correlation
function. Each iteration step produces one new basis s
The iteration is extremely fast, due to the sparseness of
Hamiltonian matrix ofH in real space. We truncate the i
eration after the spectrum of the resolvent matrix (z2H)21

stabilizes. No eigenvectors or eigenvalues for the biexci
problem have to be calculated. The relevant spectrum
given in the usual way,

f a,b~v!522 Im^0uDa,b

1

v2H1 i0
Da,b

† u0&, ~B15!

from the inversion of the resolvent matrix, which is simple
the tridiagonal representation ofH. A similar Lanczos algo-
rithm has also been used by Ishidaet al.64 for calculating
biexciton ground-state properties for a one-dimensio
tight-binding model.
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